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Regulatory T cell (Treg) therapies are emerging as powerful tools for treating
autoimmune and inflammatory diseases, preventing graft-versus-host disease
(GvHD), and promoting organ transplant tolerance. Building on the identification
of chimeric antigen receptor (CAR)-expressing Tregs as a correlate of poor
patient outcomes in CD19-CAR T cell therapy, this review examines strategies for
learning from clinical samples and data to improve Treg therapies. We highlight
current and next-generation Treg modalities, including polyclonal, antigen-
specific, converted, TCR-engineered, and CAR-engineered Tregs, provide a
comprehensive overview of Treg clinical trials, and evaluate the evolving toolkit
for in vivo Treg monitoring. Emphasis is placed on advanced immunomonitoring
technologies, such as single-cell multi-omic profiling, epigenetic analysis, and
spatial transcriptomics, which enable precise characterization of Treg
persistence, function, and lineage stability. By integrating insights from
adoptive T cell therapies and cutting-edge multi-omic platforms, this review
outlines how Treg therapies can be optimized as ‘living drugs” capable of
establishing immune tolerance across diverse clinical contexts.
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1 Introduction

Regulatory T cells (Tregs) represent a specialized subset of CD4" T lymphocytes crucial
for maintaining immune homeostasis and preventing autoimmunity. Originally
characterized by their high expression of CD25 (the IL-2 receptor o-chain) and the
transcription factor FOXP3 (1-4), Tregs play an essential role in dampening excessive
immune responses and promoting tolerance to self-antigens (5). Although detrimental in
cancer, immunosuppressive functions have positioned Tregs as attractive candidates for
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cell-based therapies aimed at controlling unwanted immune
reactions in autoimmune and inflammatory diseases, graft-versus-
host disease (GVHD), and solid organ transplantation (6). Recent
clinical observations from adoptive T cell therapy trials have
underscored the potential for uncovering correlates of therapeutic
outcomes and understanding the mechanism of failure in the
context of cancer T cell therapies. Notably, the identification of
chimeric antigen receptor (CAR)-expressing Tregs as negative
correlates of patient outcomes in CD19-CAR T cell therapy for
large B-cell lymphoma has provided insights on how engineered
Tregs can be monitored in clinical settings and provided evidence
for function of engineered Tregs in humans (7, 8). In this review, we
examine the evolving landscape of clinical trials for Treg cell
therapies, from non-engineered polyclonal Tregs to antigen-
specific, T cell receptor (TCR)-engineered, and CAR-engineered
Tregs. We discuss cutting-edge technologies for tracking and
characterizing Tregs in patients and highlight operational
considerations for maximizing insights from clinical trials. By
drawing lessons from other adoptive transfer approaches, we aim
to provide a framework for optimizing Treg therapies and
expanding their clinical applications.

10.3389/fimmu.2025.1675114

2 Treg cell therapies in the clinic
2.1 Polyclonal Tregs

The earliest clinical applications of Treg therapy employed non-
engineered, polyclonal Tregs isolated from peripheral blood (9)
(Figure 1). These approaches typically involved isolation of
CD4*CD127"" T cells through fluorescence-activated cell sorting
(FACS) and/or magnetic bead-based methods (often CliniMACS
Plus System, Miltenyi Biotec, for CD25" selection), followed by
cryopreservation or direct administration (10-12). The CliniMACS
bead enrichment approach, while practical, often results in around
80% Tregs mixed with other cell types (13-16) (NCT02371434,
NCT02385019). Given how rare Tregs are in peripheral blood —
comprising only 5-10% of CD4" T cells (17, 18) (2-8% in our hands)
— the field sought for additional clinical sources of Tregs with goals
to improve purity. Ex vivo expansion methods were developed and
implemented in clinical trials (19), specifically with anti-CD3/CD28
stimulation in the presence of high-dose interleukin-2 (IL-2) alone
(20, 21), or with rapamycin — an inhibitor of mammalian target of
rapamycin (mTOR) — resulting in improved Treg purity of about
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FIGURE 1

Types of Treg therapies, T cell sources, and indications in clinical trials. Treg therapies from multiple sources of T cells (left) are manufactured via
multiple approaches (middle) for multiple applications under evaluation in clinical trials (right). Tconv cells are represented with grey cytoplasm and
nucleus, while Tregs are represented in blue. Colored receptors denote TCR or CAR where relevant. The number of clinical trials are listed in
parentheses. See Treg therapy clinical trial details in Supplementary Table S1. *Converted Treg products may originate from CD4" T conventional
cells. Trials that were withdrawn, terminated, or suspended were excluded. T1D, type 1 diabetes; ALS, amyotrophic lateral sclerosis; AD, Alzheimer's

disease; MSA, multiple system atrophy (108).
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90% (14, 22). Other sources of Tregs are also implemented in
clinical trials, such as cryopreserved umbilical cord blood
(NCT05027815, NCT05349591) or discarded thymus tissue from
pediatric heart transplants (NCT04924491, NCT06052436).
Polyclonal Tregs have shown promising safety profiles in
allogeneic settings such as GvHD prevention and solid organ
transplantation (22, 23), and also in autologous settings such as
type 1 diabetes (T1D) (24). One important example of polyclonal
non-engineered Treg therapy is Orca-T, where allogeneic (graft-
matched) Tregs were freshly administered at a 1:1 ratio with T
conventional cells (Tconv) along with CD34" hematopoietic stem
cells to prevent GVHD (10), leading to positive phase 2 trial results
(25, 26).

Antigen-specific Tregs can be enriched from purified polyclonal
Tregs through ex vivo expansion. In the context of allogeneic
setting, host Tregs can be isolated then exposed to donor cells ex
vivo to expand donor-alloantigen reactive Tregs. This approach has
been used in clinical trials to prevent transplantation rejection for
either kidney (NCT02091232, NCT02244801) (15, 16) or liver
(NCT02188719, NCT02474199, NCT03577431, NCT03654040).
Enriched antigen-specific Tregs have also been applied in
autologous settings. In a trial for Alzheimer’s disease (AD), Tregs
were expanded ex vivo in the presence of amyloid beta antigen to
enrich for amyloid beta reactive Tregs (27). An interesting
extension of this approach is ‘CRANE’ technology from Cellenkos
that expands Tregs from cord blood while enriching for a specific
population that has high levels of specific homing receptors. For
example, Tregs expressing integrin protein CD11a, in the case of
CK0803 for trial NCT05695521, have been used to target the
CXCR3/CXCL10 axis with the aim of engaging the inflamed
microglia in patients with amyotrophic lateral sclerosis (ALS).
Additionally, CD49d is targeted in CKO0802 for trial
NCT04468971 (28).

Although approaches for ex vivo polyclonal Treg expansion
faced several limitations, the early clinical experiences with
polyclonal Tregs provided valuable insights into dosing, safety,
and monitoring strategies. Polyclonal Treg trials have advanced
into late-stage trials despite the limitations of restricted antigen
specificity, possible in vivo instability, variable purity, and limited
persistence. In summary, the trials for polyclonal Tregs have paved
the way for next-generation Treg therapies by expanding Treg
sources, improving cell isolation and expansion technologies,
establishing the importance of antigen specificity, and providing
initial evidence of clinical benefit in both autologous and
allogeneic settings.

2.2 Converted Tregs

By 2025, approaches of polyclonal T cell products included the
reprogramming of conventional T cells (Tconv) to acquire
regulatory function, generating induced Treg (iTreg) or converted
Treg cells (Figure 1). Generally, iTregs are produced in clinical trials
by culturing CD4"CD25™ T cells with IL-2, rapamycin,
transforming growth factor B (TGF-B), and anti-CD3 monoclonal
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antibody-loaded artificial antigen-presenting cells to generate
FOXP3™" iTregs with potent suppressive function (NCT01634217
for GVHD) (29). A similar protocol leveraging rapamycin has been
used to reprogram Tconv cells in the context of ALS and COVID-19
related acute respiratory distress syndrome. For example,
NCT06169176, NCT04220190, and NCT04482699 utilize Rapa-
501, a two-step, 7-day culture process. First, T cells are de-
differentiated using rapamycin with media starvation, which
drives T cells towards a T stem cell memory phenotype. The final
step is to re-differentiate the T cells into Treg and Th2 programs
with IL-2, IL-4, and TGF-f. As of 2025, NCT04220190 which used
this rapamycin reprograming approach was the most progressed
clinical trial of the converted Treg class and is in phase 3 for
treatment of ALS. Cell engineering approaches for converted Treg
products have begun clinical trials, where high FOXP3 expression is
induced by lentiviral transduction of CD4" T cells, together with a
surface marker gene tNGFR. This autologous converted Treg-like
cell product (CD4"VFOXP3) s administered to patients who
genetically lack functional Tregs in a first-in-human trial for
conditions including immune dysregulation, polyendocrinopathy,
enteropathy, and X-linked (IPEX) syndrome (NCT05241444) (30).
In a similar gene-transfer approach, high IL-10 production is
induced by lentiviral transduction into CD4" T cells (CD4"Y"-10)
to produce allogenic type 1 regulatory T cells (Tr1 cells) for “off-the
shelf” GVHD and inflammatory bowel disease (IBD) treatment in
clinical trials led by Tr1X Bio (31, 32). Type 1 Tregs are important
for peripheral tolerance, with suppressive functions mediated by IL-
10, TGF-B, and CTLA4, independent of FOXP3 (33, 34). These
approaches, which still produce polyclonal Treg-like cells, differ
from expanded polyclonal Tregs in that they do not enrich for Tregs
prior to differentiation/expansion, and rather utilize all CD4" T cells
as the starting material, overcoming the issues of reaching sufficient
Treg number and purity. Converted Tregs are particularly valuable
in settings where functional Tregs cannot be obtained in sufficient
numbers as a starting material (e.g. IPEX), or where inflammation is
naturally controlled by iTreg or Tr1 cells (e.g. IBD), with additional
settings under investigation.

2.3 TCR-engineered Tregs

T cell receptor (TCR) engineering of Tregs renders them
antigen-specific for a particular disease target and is an emerging
approach yet to fully transition to the clinic (6). Preclinical models
of transplantation tolerance demonstrate that TCR-engineered
Tregs exhibit enhanced potency compared to polyclonal Treg
populations and can mediate “linked suppression” of responses
against other antigens present in the same microenvironment (35-
37). To enhance antigen specificity and potentially improve
therapeutic efficacy, the field is developing TCR-engineered Tregs.
By introducing TCRs specific for relevant disease antigens (e.g.,
alloantigens in transplantation or self-antigens in autoimmunity),
TCR-engineered Tregs are expected to exert targeted
immunosuppression at pathogenic sites (Figure 1). In the context
of autoimmunity, preclinical models of TCR-engineered Tregs
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include the following targets: (i) myelin basic protein in multiple
sclerosis (38), (ii) Smith autoantigen in lupus nephritis (39), (iii)
factor VIII in hemophilia A (40), (iv) type IV collagen in anti-
glomerular basement membrane disease (41), and (v) glutamic acid
decarboxylase in type 1 diabetes (42). These studies demonstrated
the potential of TCR-engineered Tregs in restoring immune
tolerance. Key potential advantages of TCR-engineered Tregs, if
successful, would include improved localization reachable with
lower cell doses, enhanced persistence, superior antigen
specificity, and reduced risk of undesired immunosuppression via
lowered bystander suppression. However, challenges remain in
selecting optimal target antigens, which are still largely unknown
for the majority of autoimmune diseases (43), managing potential
off-target effects and genotoxicity, and ensuring reliable and safe
manufacturing of these more complex cellular products. As of late-
2025, only two clinical trials existed for TCR-engineered Tregs.
Abata therapeutics engineered autologous Tregs to express a TCR
that specifically recognizes immunogenic myelin fragments in the
CNS (ABA-101, NCT06566261). In late 2025 a phase 1 clinical trial
begun for GENTI-122, a converted Treg product from Gentibio to
treat T1D where CD4" T cells are engineered to express FOXP3, a
chemically inducible signaling complex (CISC) that provides IL-2
signaling support in response to rapamycin, and IGRP305-TCR
that recognizes the pancreatic islet-specific glucose-6-phosphatase
catalytic subunit-related protein (IGRP) peptide (NCT06919354)
(44). More work is needed for progressing preclinical results of
TCR-engineered Tregs into clinical trials, whereas the first TCR-
engineered Treg trials will provide crucial data for future
product optimization.

2.4 CAR-engineered Tregs

Chimeric antigen receptor (CAR) technology, which has
revolutionized cancer immunotherapy (45), has been adapted to
engineer Tregs with enhanced specificity and function (6). CAR
Tregs express synthetic receptors that recognize cell surface
antigens independent of MHC presentation, combining the
specificity of an antibody with intracellular signaling and leading
to Treg activation and regulatory function. Initial preclinical studies
demonstrated that CAR Tregs targeting HLA-A2, factor VIII, or
myelin oligodendrocyte glycoprotein (MOG) could suppress
alloimmunity, autoimmunity against factor VIII in hemophilia, or
experimental autoimmune encephalomyelitis, respectively (46-48).
The first clinical trials of CAR Tregs are now underway, including a
phase 1/2a trial of HLA-A2-specific CAR Tregs for prevention of
kidney transplant rejection (Sangamo Therapeutics,
NCT04817774) (49, 50) or liver transplant rejection (Quell
Therapeutics, NCT05234190), citrullinated vimentin-specific CAR
Tregs for rheumatoid arthritis (Sonoma Therapeutics,
NCT06201416) (51) and hidradenitis suppurativa
(NCT06361836), and CD6-specific CAR Tregs for GvHD
(NCT05993611) (Figure 1). Although not yet in clinical trials,
Tr1X Bio is developing TRX319, an allogeneic polyclonal CAR
Treg therapy for the treatment of multiple B cell mediated
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autoimmune diseases. The finding that CD19-CAR Tregs
correlate with poor outcomes in cancer immunotherapy further
underscores the potential of CAR Treg therapies for in vivo
suppression in clinical settings (7, 8). CAR Treg approaches offer
several potential advantages, including MHC-independent
recognition, tunable signaling domains, and diverse targeting
options. However, the complexity of CAR Treg biology presents
unique challenges, such as balancing activation and stability,
preventing exhaustion or plasticity due to CAR tonic signaling,
and addressing manufacturing considerations.

Leveraging our recently published list of Treg therapy clinical
trials (52), we have retrieved data for each interventional trial and
presented results in Supplementary Table S1, as summarized in
Figure 1. Polyclonal Treg approaches are the most established,
representing 83% of trials as of late 2025. Converted Tregs are
emerging (representing 6% of all Treg trials). Among engineered
Treg cell therapies, CAR Treg approaches are more mature than
TCR-engineered Tregs (representing 9% vs. 3% of all Treg trials,
respectively). It remains to be determined whether other forms of
engineered or “modified” Tregs can be exploited in the clinic, for
example to leverage Treg metabolism or enhance inflammatory
activity in cancer settings (53-56).

3 Technologies for Treg
immunomonitoring in clinical trials

Comprehensive monitoring of Treg therapies requires
sophisticated technologies that can track cell persistence,
phenotype, stability, immune rejection, tissue distribution, and
function over time. In this process, it is also critical to monitor
disease state, potential for infectious tolerance, and the overall
immune state in the relevant tissues and blood. Several
complementary approaches have emerged as essential tools for
understanding Treg behavior in vivo (Figure 2).

3.1 Treg tracking methods

Historically, Jeffrey Bluestone’s group pioneered the first
approach to tracking Tregs in vivo. The technique involves
labeling Tregs with deuterium (*H) prior to infusion to enable
long-term tracking of cell persistence and proliferation. By
culturing Tregs in deuterated glucose (57) or media containing
deuterated water during ex vivo expansion, Tregs incorporate the
stable isotope into newly synthesized DNA and proteins (44, 58).
After transfer, deuterium-labeled Tregs can be detected in blood
and tissue samples through mass spectrometry, allowing assessment
of persistence, proliferation, and tissue distribution. A phase I trial
of deuterium-labelled polyclonal Tregs for type 1 diabetes showed
safety and Treg detection for up to one year post-transfer (22). This
technique provides unique insights into Treg kinetics in vivo
without genetic manipulation, offering advantages for clinical
studies where genetic tracking methods are not feasible.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1675114
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Rodrigues et al.

a \'/

Toom, sbr

) /é}’ j : N i \/T,rj;

ex vivo

manufacturing

10.3389/fimmu.2025.1675114

-
~

N

-

wia ]

Therapeutic

Biopsy Blood ! Source T cells / Tregs . Biopsy  Blood
. — " _
baseline : infusion post-infusion
b CH:OH «‘; N
0.
Y oL Q «*% . o
OH OH » ..
o & <+ *+  anti-drug g
deuterated flow & m;ss SCRNA- & DNA antibady
molecule " methylation ki detecti spatial
ddPCR cytokine etection . p
tracing cytometry SCATAC-seq  (FOXP3 locus) profiling ELISpot (in serum) histology  -omics
Treg persistence X X X X X
Treg stability X
infectious tolerance X X X X X X
immunogenicity X X

FIGURE 2

Experimental approaches for immune monitoring of Treg cell therapies in clinical trials. (a) Timepoints and sample types that can be valuable for
correlative studies in clinical trials. (b) Assays and specific insights into properties of Treg cell therapies that can be obtained from relevant clinical

samples (109).

Genetic tracking of engineered Tregs in clinical trials can be
achieved by encoding an inert and non-immunogenic human cell
surface transgenic protein that is detectable by flow cytometry (59)
and immunohistochemistry. One example is truncated epidermal
growth factor receptor (EGFRt), which can be detected by the
antibody cetuximab that is available with good manufacturing
practices (GMP) certification (60). EGFRt is utilized in CD19-
CAR T cell trials (NCT05625594). It is also often used in pre-
clinical testing of CAR Tregs (61). In addition to being an
engineered Treg tracking tool, EGFRt can enable enrichment of
engineered cells pre-transfer, as well as function as a ‘kill switch’ in
case of toxicity or malignancy through cetuximab-mediated in vivo
elimination. Another example of cell surface transgenic protein for
tracking Tregs is truncated nerve growth factor receptor (tNGFR),
also known as LNGEFR or CD271, and utilized for GMP-compatible
pre-transfer enrichment, post-transfer tracking, and quantification
of engineered Tregs (30). tNGFR-transduced cells were shown to be
safe (62) and were generated in the phase I clinical trial of
CD4LVEOXPS (ells for IPEX (NCT05241444; see above).
Alternatively, antibodies can be used to detect a functional
engineered Treg protein, such as CAR or TCR (7). For example,
CAR idiotype antibodies are specific to the scFv binding pocket of
the CAR construct (59). Antibody-mediated detection of genetic
Treg markers can be combined with single-cell technologies
through CITE-seq (63) or spatial technologies, such as
immunohistochemistry (IHC) (59) or CODEX (64), although
CAR idiotype antibodies often have excessive background signal
in spatial applications. DNA or RNA transcripts encoding
engineered proteins remain detectable and can be traced to
identify infused Tregs using quantitative real-time PCR, highly
sensitive digital droplet PCR (ddPCR) (65, 66), single-cell
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sequencing, or spatial transcriptomics. Overall, engineered cell
tracking technologies provide data on persistence and
biodistribution of engineered Tregs in humans.

3.2 Assessing Treg phenotype, stability, and
function

3.2.1 Flow cytometry and mass cytometry

Flow cytometry remains the cornerstone of Treg identification
and characterization in clinical samples. Conventional panels
typically include markers such as CD4, CD25, CD127, and
FOXP3, along with activation markers (e.g. CD39), homing
receptors (e.g. CCR4), and functional markers (e.g. Ki-67) (67).
Spectral flow cytometry panels enable practical quantification of
30-40 markers. Mass cytometry (CyTOF) extends this capability by
enabling practical detection of 40-50 parameters using metal-
tagged antibodies, allowing more comprehensive phenotyping
with minimal spectral overlap (7, 68-70). This approach is
generally applied to batched cryopreserved samples, revealing
previously unappreciated heterogeneity within the Treg
compartment and distinct Treg subpopulations associated with
clinical outcomes (71). Key considerations for flow-based
monitoring include thoughtful antibody panel development and
validation, standardization of staining procedure (e.g. Using
lyophilized, pre-mixed antibody panels formatted as single-bead
aliquots), and including batch controls that express all markers up
to maximum level in the test samples. These methods can provide
critical information on Treg persistence and stability, functional
and homing marker assessment, trafficking patterns, and the overall
state of the immune system.
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3.2.2 Single-cell sequencing

Single-cell RNA-sequencing (scRNA-seq) has enabled deep
characterization of the in vivo cellular heterogeneity and proven
crucial for tracking Tregs during reconstitution post-stem cell
transplantation (72). The comprehensive transcriptional profiles
of individual cells provided by scRNA-seq reveals functional states,
activation status, and potential loss of phenotypic and functional
stability that may be missed by protein-based methods. In the
context of Treg therapies, scRNA-seq is useful in identifying
transcriptional signatures and pathways associated with
therapeutic efficacy or toxicity, tracking clonal dynamics of
transferred Tregs through integration with single-cell TCR
sequencing (scTCR-seq) (73), detecting lineage instability through
expression of non-Treg lineage genes, incorporating expression of
key proteins through CITE-seq (63), and mapping interactions
between Tregs and other immune or tissue cells through
interactome analyses (74, 75).

Assay for transposase-accessible chromatin using sequencing
(ATAC-seq) provides insights into the epigenetic landscape of cells
by quantifying regions of open chromatin (76). When applied to
Tregs, this technique reveals regulatory elements controlling Treg
identity and function, including those associated with FOXP3
expression and stability (77, 78). Single-cell ATAC-seq (scATAC-
seq) can identify epigenetic changes occurring in Treg
subpopulations during therapy, potentially predicting functional
alterations before they become apparent at the transcriptional or
protein level (79, 80). Further, scATAC-seq can assess the extent
that engineered Tregs recapitulate natural Tregs epigenetically
(including at the FOXP3 locus), providing information on cell
stability, enhancer activity, and the extent that Tregs are ‘primed’
for future cell states. Integration of scATAC-seq with scRNA-seq
data through multi-omic approaches (81-84) enables trajectory
inferencing (85, 86), while providing a more complete picture of
the Treg cellular states and kinetics.

The main limitations of single-cell sequencing technologies for
Treg clinical trials are the cost and limited cell numbers. Thus,
correlative studies often leverage fluorescence-activated cell sorting
(FACS) to enrich a population of interest — such as infused Tregs
from blood - prior to scRNA-seq or scATAC-seq. Costs can be
further reduced through selecting the most informative samples,
barcoding and pooling samples in batched analyses, and leveraging
rapidly evolving technologies (e.g. 10x Genomics GEM-X, BD
Rhapsody, Parse Evecode, Illumina Single Cell) and kits for
single-cell sequencing (e.g. 48-sample kit is more cost effective
than a 16-sample kit).

3.2.3 Spatial omics

Spatial omics technologies build on the original spatial analysis
methods, including hematoxylin and eosin (H&E) stain, IHC, and
immunofluorescence. Single-cell spatial transcriptomic tools,
including Nanostring CosMx, 10x Genomics Xenium, and Vizgen
MERSCOPE, utilize probes to detect a preset panel of up to 6,000
genes and support custom probes for engineered proteins, such as
CAR or TCR. Spatial proteomics technologies, including MIBI (87)
and CODEX (64, 88), can be used instead of or in parallel with
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spatial transcriptomics methods to learn insights from the relevant
tissue biopsies. Already applied in studies on Treg therapy for
kidney transplantation (89-92), spatial omics methods could be
essential to comprehensively profile the immune state within the
relevant tissue biopsies in Treg trials, detect Tregs in tissues and
define their phenotype, and examine Treg-rich organized lymphoid
structures (TOLS) (93), if present. In addition to assessing Treg
persistence, phenotype, and microenvironment, spatial
transcriptomics can define spatial cell-cell communication (94,
95). Important advantages of spatial omic technologies are spatial
information and more accurate cell proportions when compared to
single-cell analyses of dissociated tissues. Limitations of spatial
omics include lower precision in cell type separation due to
imperfect cell segmentation and spillover effects, higher
background in spatial proteomics compared to flow cytometry,
and higher dropout in spatial transcriptomics compared to single-
cell sequencing. Constructing tissue microarrays (TMAs) from
serial tissue biopsies can reduce costs of spatial omics analyses.

3.2.4 TSDR demethylation

The biological instability of Tregs represents a concern for Treg
cell therapies, as infused cells could lose their identity when exposed
to inflammatory environments in vivo. This instability manifests as
FOXP3 downregulation, phenotypic conversion, proinflammatory
cytokine production, and unpredictable therapeutic performance
(67). While single-cell technologies can assess Treg phenotype for
inference of stability, DNA methylation information is considered
gold standard. Treg identity and stability are closely linked to
demethylation of specific regulatory regions of the FOXP3 locus,
particularly the Treg-specific demethylated region (TSDR) (96-99).
Quantitative analysis of TSDR demethylation serves as a reliable
measure of bona fide Tregs and can be used to track the stability of
transferred Treg cell products over time.

3.2.5 Treg functional assays

Assessing function of therapeutic Tregs in clinical samples
remains an active area of methodological development. In
addition to antigen-specific suppression, Tregs can induce
bystander suppression to antigens that are distinct from their
original antigenic specificity (100-103). Infectious tolerance is a
phenomenon that could occur in the context of Treg therapies
where Tregs induce tolerance in Tconv and other immune cells,
effectively ‘spreading’ their regulatory function beyond their direct
or bystander suppressive effects and potentially lasting even if the
therapeutic Tregs wane (104, 105). Although in vitro suppression or
antigen-specific suppression assays can provide evidence of Treg
function in blood samples, the quality of clinical samples collected,
stored, and transported over years may not always be sufficient for
functional assays. Pathway activity or proliferation markers of
therapeutic Tregs based on flow cytometry or scRNA-seq analysis
can provide evidence of function (7). Further, measuring changes in
regulatory plasma cytokines (e.g. IL-10, TGF-B) versus
inflammatory cytokines can provide evidence of function and
indirect evidence of infectious tolerance. Infectious tolerance and
bystander suppression can be assessed using flow cytometry, single-
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cell sequencing, TSDR demethylation, and spatial omics analysis of
tolerogenic features and reduction in inflammatory features among
non-therapeutic cells, respectively (e.g. increase in FOXP3 Helios™
T cells may indicate de novo Treg induction). Finally, examining
relevant tissue histology for a reduction in disease-specific features,
tissue structures associated with tolerance (e.g. TOLS), and
tolerogenic state of non-therapeutic cells using a combination of
H&E, THC, and spatial omics methods can provide vital
information on therapeutic Treg suppression and infectious
tolerance in situ. Clinical efficacy is ultimately the most important
metric of therapeutic Treg function that is assessed through disease-
specific metrics.

3.3 Monitoring Treg rejection

The immune system may recognize foreign antigens in
allogeneic Tregs or in genetically modified Tregs, such as scFv in
CAR or junction sequences in TCR, leading humoral (antibody-
mediated) and cellular (T cell-mediated) rejection of the therapeutic
Treg cells (106). Humoral rejection can be measured by ELISA of
serum samples to detect anti-drug antibodies targeting the
engineered protein. Cellular rejection can be tested in patient-
derived peripheral blood mononuclear cells (PBMCs) (e.g. against
peptides spanning the engineered protein) via IFN-y production by
ELISpot. Monitoring Treg rejection can provide valuable
information when therapeutic Tregs do not persist.

4 Operational considerations and
future directions

4.1 Maximizing insights from Treg
correlative studies

To maximize biological insights from Treg clinical trials, we
recommend a standardized yet flexible approach to sample
collection and correlative assays (Figure 2). Longitudinal
peripheral blood samples should be collected at baseline (ideally
at the time of apheresis, if applicable), immediate (days 1-2), early
(days 7-14), mid (weeks 4-8), and late (months 3-6) post-infusion;
precise timing would be driven by the biology of disease and Treg
therapy. At each timepoint, PBMCs, plasma, and serum should be
processed and cryopreserved. Tissue biopsies — if clinically justified
— should be collected at baseline and at matched post-infusion
timepoints (e.g. 4-8 weeks and 3-6 months). Treg infusion products
and pre-manufacture cell products should also be banked. We
recommend spectral flow cytometry or mass cytometry analysis
of all batched cryopreserved PBMCs, pre-manufacture cells, and
Treg infusion products to assess Treg persistence, stability, and
function and examine correlates of patient outcomes. Single-cell
RNA-seq and paired scTCR-seq should ideally be performed on
pre-manufacture cells, Treg infusion products, and FACS-enriched
blood CD4" T cells that are positive for a genetically encoded
surface marker, if available (e.g. EGFRt, tNGFR, CAR). When
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performed at high-quality timepoints, these approaches enable
deep profiling of infused Treg cell state and lineage stability.
FOXP3 TSDR demethylation assessed by bisulfite sequencing can
provide gold standard information on Treg lineage stability and
potential infectious tolerance. In tissue, immunohistochemistry on
full slides and spatial transcriptomics on TMAs should be used to
define Treg localization, phenotype, and tissue microenvironment.
For engineered Tregs, ddPCR should assess persistence, whereas
tracking non-engineered Tregs is limited to deuterium labeling and
may be difficult to implement. Cytokine profiling (e.g. Luminex) of
plasma and anti-drug antibody ELISA of serum provide functional
and rejection data, respectively. When rejection is suspected,
ELISpot for T cell responses against engineered domains is
recommended. These harmonized protocols should be combined
with monitoring relevant disease biomarkers to enhance biological
insights across Treg therapy trials.

4.2 Future landscape of Treg cell therapy

The field of Treg cell therapy stands at an inflection point, with
fundamental insights from preclinical studies and lessons from
early clinical experiences converging to guide next-generation
approaches (6). Future Treg cell therapies will likely be shaped by
several emerging trends: engineered antigen specificity, allogeneic
approaches for off-the-shelf availability, induced/converted Tregs to
overcome natural Treg limitations, and controlled expansion in vivo
to enhance persistence of therapeutically relevant cells. By learning
from both successes and challenges of adoptive T cell therapies
(107), the field can accelerate the development of Treg-based
approaches that harness their full potential as ‘living drugs’ using
cutting-edge technologies for engineering and monitoring Tregs,
coupled with thoughtful trial design and data analysis strategies.
With at least 69 Treg clinical trials across autoimmune and
inflammatory diseases and transplantation as of 2025
(Supplementary Table S1), Treg cell therapies have demonstrated
their potential for precise immune regulation that could transform
treatment paradigms.
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