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Introduction: Tumor necrosis factor alpha (TNF-a) is an important cytokine that

frequently contributes to the pathogenicity of autoimmune diseases. Therefore,

TNF inhibitors (TNFi) are used to treat autoimmune diseases. However, around

40% of the patients do not respond to TNFi, with genetic variants being a

contributor to this variance. The prevalence of genetic variants affecting TNFi

response in Middle Eastern populations is still not understood.

Methods: We assessed the distribution of variants in 111 genes associated with

TNFi in 14,387 Qatari individuals using whole genome sequencing data.

Results: Of the 151 known pharmacogenomic variants associated with response

to TNFi, approximately half have significantly different allele frequency

distribution in the Qatari population compared to other world populations

from the gnomAD dataset. High frequency of rs1800629 (TNF), rs1800896

(IL10), and rs1143634 (IL1B) variants are observed, which are known to be

associated with responses to Etanercept and Infliximab. Moreover, we

identified that PSORS1C1 has the highest CAPLoF (cumulative allele probability)

scores for loss-of-function variants, which is associated with response to

Etanercept and Adalimumab.

Discussion: The findings of this study will enhance our understanding of the

pharmacogenomics of TNF inhibitors in Qatar and beyond, while also supporting

the study of genetics in underrepresented populations.
KEYWORDS

TNF inhibitors, whole genome sequencing, precision medicine, pharmacogenomics,

Qatar, autoimmune diseases, drug response
Introduction

Autoimmune diseases are the major causes of morbidity and mortality both in the

developed and developing countries (1). There are more than 100 different types, such as

rheumatoid arthritis (RA), psoriasis, and systemic lupus erythematosus (SLE), affecting

approximately 10% of the population globally. Autoimmune diseases are one of the top ten
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causes of death in women (2). Tumor necrosis factor (TNF) is a key

inflammatory molecule whose up-regulation plays a crucial role in

the development and pathogenicity of many autoimmune diseases

(3). Several in vitro and in vivo studies demonstrated the

dysregulation of TNF-a in autoimmune disease patients (4, 5).

Therefore, TNF inhibitors (TNFi) are widely utilized for the

treatment of various autoimmune diseases (6, 7). To date, five

TNFi, Etanercept (ETN), Adalimumab (ADA), Certolizumab

(CZP), Golimumab (GOLI), and Infliximab (IFX) have been

approved by the US FDA (8). These inhibitors showed potential

activity against TNF-a in patients with above-mentioned diseases,

however, treatment response varied substantially, up to 40% of

patients showing no positive clinical response (8–10). In

rheumatoid arthritis (RA), 30%-40% of patients experience

treatment failure with TNFa antagonists, including primary non-

response, secondary loss of response, or adverse side effects (11).

Furthermore, 23%-46% of inflammatory bowel disease (IBD)

patients lose their response to treatment after 12 months (12, 13).

We recently reviewed and summarized the pharmacokinetics,

pharmacodynamics, and especially the pharmacogenomics of TNFi,

with a particular focus on the influence of HLA and other genetic

variants on treatment response and safety profiles (14). A previous

study conducted on IBD patients reported that who carried HLA-

DQA1*05 showed highest rate of immunogenicity when treated

with Infliximab and Adalimumab (15). Another study conducted

on IBD patients reported that HLADQA1*05A>G variant is

associated with a significantly higher risk of infliximab antibody

formation and loss of response (16). Furthermore, previous

genome-wide association studies (GWAS) (17) explored the

genetic variants associated with response to TNFi. A previous

study on the Italian population reported a significant association

between the TNFa -308 (rs1800629) polymorphism and Behçet

syndrome susceptibility. Moreover, they reported that the GA

genotype was found at a higher frequency in patients compared

to healthy controls (18). Similarly, in 74 Behçet syndrome patients

treated with anti-TNFa therapy, they found that the GA genotype

was more frequent among non-responders, while the GG genotype

predominated in responders, suggesting a possible role of rs1800629

as a predictive biomarker of treatment response (19).

In the Middle East region, the severity of RA is comparable to

other global regions, with 12% of patients reporting low disease

activity (20). In Qatar, more than 2000 patients are treated for RA

every month. The disease itself also has a strong genetic component,

~60% of RA disease variability in Qatar was shown to be inherited,

and two novel risk loci were identified in addition to the known

ones (21). Moreover, epidemiological studies from Qatar reported a

significant increase in rheumatic manifestations in IBD patients

compared to the rest of the world, suggesting a common link with

RA (22). Data from the RA registry at Hamad Medical Corporation

in Qatar shows variability in disease activity scores, with remission

rates ranging from 17.5% to 30.3% depending on the scoring

method used, highlighting that many patients do not achieve

remission despite various treatment regimens, including TNFa
inhibitors (23). Numerous studies have identified genetic loci and

gene expression patterns linked to TNFi response, with 25 single
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nucleotide polymorphisms (SNPs) in 5 genes associated with TNFi

response in RA, and additional SNPs identified through meta-

analysis (24). Since geographical and population differences affect

variant distributions, we hypothesize that the distribution of genetic

variants affecting response to TNFi may differ in the Middle Eastern

population from other world populations. Furthermore, there may

be population-specific novel variants in the genes associated with

TNFi response in the Qatari population. Here in this study, we used

computational approaches to explore the distribution of

pharmacogenomic variants associated with TNFi response in the

Qatari population.
Results

Summary of pharmacogenomic variants

A total of 141,735,839 variants were identified in 14,387 Qatari

individuals. A total of 111 TNF-response genes, previously associated

with response to TNF inhibitors (TNFi) in various populations were

analyzed, and we identified a total of 203,768 variants across these

genes in the Qatari population (Supplementary Figures S1, S2;

Supplementary Tables S1-S3). However, the association of these

variants with TNFi response, specifically in the Qatari population,

remains to be determined. Notably, 4261 variants in TNF-response

genes were classified as having high or moderate impact, while 3757

variants were missense, with 30% of these categorized as singleton

variants. The highest number of missense variants were found in the

genes REV3L (181, 4.8%), CR1 (168, 4.47%), and IVL (105, 2.67%).

Moreover, half of the missense variants were rare, with an allele

frequency < 0.01. We also identified loss of function (LoF) variants in

genes associated with response to TNFi; 38 LoF variants were present

in 13 TNFi pharmacogenes (Supplementary Figure S3). CST5

(9 variants) and IVL (8 variants) had the highest number of LoF

variants (Supplementary Table S4). rs1800896 (IL10) and rs1143634

(IL1B) have been associated with rheumatoid arthritis and

inflammatory bowel disease. Moreover, we identified two novel

LoF variants in two genes, GBP6 (chr1:89384209, p. Gln529*, allele

frequency: 0.0000341) and LY96 (chr8:73991522, allele frequency:

0.0000341), in the Qatari population.
Allele frequency of known
pharmacogenomic variants associated with
response to TNF inhibitors

Diverse distribution of allele and genotype frequencies were

observed in the Qatari population compared to other world

populations (Table 1). Frequencies of 151 variants from 111 genes

were analyzed that were annotated in the PharmGKB as related to

response to Etanercept (Figure 1A), Adalimumab (Figure 1B), and

Infliximab (Figure 1C), as well as multiple TNFi (Supplementary

Tables S5-S10).

The rs1800629 variant in the TNF gene had a higher allele

frequency (around 19.5%) in the Qatari population as compared to
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other world populations (P-value = 1.89 × 10-21). This variant is

associated with response to Etanercept and belongs to Level 2B in

PharmGKB annotations. On the other hand, patients with the

rs1800896 (IL10 gene) variant showed a positive response to

Etanercept in rheumatoid arthritis (25), which means the high

prevalence of GG genotype in the Qatari population points towards

a probable better response to Etanercept as compared to other

populations. The rs1041981 variant in the LTA gene had allele A in

around 43% of the Qatari individuals studied. In comparison, the

distribution of this allele was slightly higher in the African

population, approximately 50% (P-value = 6.21 × 10-12). This

allele was associated with a better response to Etanercept in

patients with Rheumatoid Arthritis (26). On the other hand, for

the rs1800630 in TNF, the Qatari population had a higher frequency

of allele A (17.46%) as compared to the gnomAD (14.43%) (P-value

= 2.34 × 10-7). This allele was associated with better response to

Etanercept in patients with Rheumatoid Arthritis (26). Moreover,

the Qatari population with *3/*3 diplotype of CYP3A5 accounted

for 33.1%. Previous studies found that this diplotype was associated

with increased response to Etanercept (27). For the variant

rs3794271 in the SLCO1C1 gene, the allele frequency in the

Qatari cohort (66.5%) was higher than in the gnomAD dataset

(55.9%) (P-value = 3.95 × 10-47). This allele was associated with a

decreased response to Etanercept in patients with Rheumatoid
Frontiers in Immunology 03
Arthritis (28). The rs1800471 (TGFB1) variant was 6.7% in the

Qatari population, while the AF was around 8% in the non-Finnish

European population. Studies showed that allele C in rheumatoid

arthritis patients was associated with non-responsiveness to

Etanercept (25), thus Qatari patients with this allele could have

no response to this TNFi.

Some rare variants in the TNF gene related to Infliximab

response identified in the East Asian, American & non-Finnish

European populations were not present in the Qatari population,

including rs4987086, rs3093548, rs2736195, rs55634887,

rs55994001, and rs4248163. The frequency of rs1143634 variant

in IL1B was 38.3% in the Qatari population in comparison to

19.24% in gnomAD. Allele G of this variant was associated with

decreased response to Infliximab in Crohn’s disease (CD) patients

(29). Hence the higher frequency of this allele in the Qatari

population suggests more people may be at risk of poor response

when treated with Infliximab. In addition, for TNFRSF1B

(rs1061622), an important member of the TNF superfamily,

Qataris had a higher prevalence of allele G, around 25%, (P-value

= 2.35 × 10-7). Allele G was associated with a worse response to TNF

blockers in people with rheumatoid arthritis (25). The allele

frequency of rs2476601 (PTPN22), rs352139 (TLR9), rs1800630

(TNF), and rs1813443 (CNTN5) that are associated with response to

multiple TNF inhibitors were higher in the Qatari population as
TABLE 1 Distribution of variants associated with response to multiple TNF inhibitor in the Qatari population compared to gnomAD, highlighting
variants with significant differences in allele frequency.

Gene Chromosome Locus rs ID Nucleotide change QGP-AF gnomAD AF Variants type

C9orf72 Chr9 27543283 rs3849942 c.-4953A>G 0.666701 0.7818 Downstream gene variant

RSRP1 Chr1 25243590 rs1043879 c.716A>G 0.315504 0.1868 Missense variant

MAP3K1 Chr5 56900777 rs96844 c.*7097G>A 0.722562 0.5875 Downstream gene variant

IFNGR2 Chr21 33403138 rs8126756 c.-406T>C 0.136016 0.2437 5 prime UTR variant

ATXN2L Chr16 28826194 rs8049439 n.-3584T>C 0.212344 0.4040 Upstream gene variant

MAP3K14 Chr17 45290287 rs7222094 c.256 + 203A>G 0.66574 0.5446 Intronic variant

CD84 Chr1 160546518 rs6427528 c.*1738T>C 0.697644 0.796 3 prime UTR variant

IL1RN Chr2 113116890 rs4251961 c.-1129T>C 0.507298 0.295 Upstream gene variant

TNFRSF1B Chr1 12207235 rs3397 c.*215C>T 0.648189 0.5096 3 prime UTR variant

CTLA4 Chr2 203874196 rs3087243 c.*1384G>A 0.552096 0.37 Downstream gene variant

REV3L Chr6 111352511 rs240993 n.-778A>G 0.714603 0.54 Upstream gene variant

IFNG Chr12 68161231 rs2069705 c.-1616C>T 0.784493 0.5953 Upstream gene variant

CNTN5 Chr11 100140279 rs1813443 c.1581-50847G>C 0.376634 0.2316 Intronic variant

NLRP3 Chr1 247448734 rs10754558 c.*230G>C 0.475429 0.6358 Intronic variant

TNFRSF1B Chr1 12208442 rs1061631 c.*1422G>A 0.265031 0.1533 3 prime UTR variant

ADAM17 Chr2 9522691 rs10929587 n.*4810A>T 0.755286 0.6351 Downstream gene variant

FBXL19 Chr16 30931304 rs10782001 c.1034 + 720G>A 0.677 0.5339 Intronic variant

IL23R Chr1 67222666 rs10489629 c.955 + 2936T>C 0.322062 0.4759 Intronic variant

TAP1 Chr6 32847198 rs1135216 c.2090A>G 0.230173 0.1749 Missense variant

CTNNA2 Chr2 79673969 rs11126740 c.102 + 22311A>G 0.763573 0.627 Downstream gene variant
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compared to all the other world populations from the gnomAD

datasets. However, the allele frequency of variants rs396991

(FCGR3A), rs4810485 (CD40), and rs1120902 (IL23R) was

very low in the Qatari population as compared to other

world populations.

The frequency of allele C in the rs9304742 (ZNF816) variant

was 44% in the Qatari population, lower than African, Amish,

South Asian, and Jewish populations. At the same time, it is higher

than other populations, including Finnish European, non-

European, East Asian, and American populations. Studies

identified that the carriers of allele C had decreased response to

Etanercept and other TNF-alpha blockers such as Adalimumab and

Infliximab (30). The prevalence of the G allele in TNFRSF1B

(rs1061622) was highest in the Qataris, followed by South Asians.

Previous studies reported that the rs1061622 variant increased the

risk of adverse effects in rheumatoid arthritis upon anti-TNF

treatment (31). Qataris had a high prevalence of this allele,

suggesting the potential for having a lower response and side

effects for patients during anti-TNF therapy.

For Adalimumab, the TF gene displayed the highest number of

genetic variants in the Qatari population, followed by TNFAIP3.
Frontiers in Immunology 04
The functional variants in the TF gene had a score of 0.0045 variants

per participant, while TNFAIP3 had a score of 0.0032, and ATG5

had the lowest score at 0.0002 (Supplementary Figure S4,

Supplementary Tables S11, S12). In the case of Etanercept, the

TNFRSF1B gene also had the highest number of variants, followed

closely by PTPN2, with functional variant scores of 0.003 for

TNFRSF1B and 0.0029 for PTPN2, while TNF had a score of

0.00069 (Supplementary Figure S5, Supplementary Tables S11,

S12). Similarly, for Infliximab, TNFRSF1B again showed the

highest number of variants, followed by FCGR2A and FCGR3A,

with scores of 0.003, 0.0028, and 0.0023 variants per participant,

respectively (Supplementary Figure S6, Supplementary Tables

S11, S12).
Linkage disequilibrium analysis of the
important pharmacogenomic variants

The Linkage Disequilibrium (LD) analysis revealed varying

degrees of allele associations across different SNP pairs associated

with response to TNF inhibitors (Supplementary Table S13). We
FIGURE 1

Comparison of Allele Frequencies of Pharmacogenes Associated with Response to Adalimumab, Etanercept, and Infliximab in the Qatari Population.
(A-C) Comparison of Allele frequencies of pharmacogenes associated with response to Etanercept (A), Adalimumab (B), and Infliximab (C). P-values
of significantly differing frequencies with Bonferroni adjustment indicated as follows: P < 0.05 (*); 10−49

≤ P < 10−20 (**); P ≤ 10−50 (***). One asterisk
(*) means statistically significant (P < 0.05); Two asterisks (**) mean highly significant (P between 10−20 and 10−49). Three asterisks (***) mean
extremely significant (P ≤ 10−50). (D) Cumulative Allele Probability score for LoF variants in pharmacogenes associated with TNF inhibitor response.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1674889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jan et al. 10.3389/fimmu.2025.1674889
found that the rs909253 variant on the TNF gene was in very strong

LD with rs1041981 (r² = 0.9932). rs1041981, located in the LTA

gene, has been associated with response to Etanercept (26), while

rs909253 is associated with multiple TNF inhibitors (32). Similarly,

a moderate LD was observed between rs1799964 and rs1800630,

with an r² value of 0.7619, suggesting a moderate association

between these loci. Both variants are located on the TNF gene

and are associated with response to Etanercept (26). On

chromosome 9, several SNP pairs exhibited strong to moderate

LD. The strongest LD was observed between rs868856 and

rs7046653 (r² = 0.9902), followed by rs3849942 and rs774359

(r² = 0.8499). rs868856 and rs7046653 are located on the MOB3B

gene, while rs3849942 and rs774359 are located on C9orf72. All four

variants are associated with response to multiple TNF inhibitors

(33). The SNP pair rs868856 and rs774359 showed a moderate

association (r² = 0.7155), while rs868856 and rs3849942

demonstrated a slightly weaker but still significant LD (r² =

0.6887). Notably, rs7046653 and rs3849942 also exhibited

moderate LD (r² = 0.6855). On chromosome 7, the pair rs854548

and rs854555 showed a relatively weaker LD (r² = 0.4676), while the

SNP pair rs1800750 and rs361525 on the TNF gene showed the

lowest LD in this analysis (r² = 0.3522), indicating a weak

association. rs854548 are rs854555 are located on PON1 and both

are associated with response to multiple TNF inhibitors (33).

rs361525 is associated with response to Etanercept (34), while

rs1800750 showed no association with response to Infliximab

(35). Overall, these results suggest that certain SNP pairs,

particularly on chromosomes 6 and 9, exhibit strong LD, which

could have significant implications for understanding genetic

factors influencing TNF inhibitor (TNFi) response. The high LD

between these variants may reflect shared genetic pathways that

contribute to treatment efficacy, adverse effects, or both, offering

potential markers for predicting patient-specific responses to

TNFi therapy.
Pharmacogenetic risk profile

To assess the potential risk associated with genetic variants in a

population, we calculated the cumulative allele probability (CAP).

This score captures both the number of functional variants and their

allele frequencies within a gene, representing the probability that

individuals in the population carry at least one variant allele in

a given gene. We calculated the CAP score for all the

missense variants (3757), and LoF variants (Figure 1D) separately

(Supplementary Tables S14, S15). The genes associated with

Infliximab response with the highest CAP scores for missense

variants included FCGR3A (0.021) and FCGR2A (0.01). The genes

associated with Adalimumab response with the highest CAP score

for missense variants included TF (0.048) and TRAF3IP2 (0.02).

Etanercept-associated genes with a comparable CAP score for

missense variants included PSORS1C1 (0.03) and TRAF3IP2

(0.02). In the case of all the missense variants, CR1 (0.178) and

RHD (0.108) had the highest CAP scores that are associated with
Frontiers in Immunology 05
response to multiple TNFi. The genes with the highest CAPLoF
scores were associated with response to multiple TNFi, including

PSORS1C1 and CST5.
Genotype frequency distribution of
pharmacogenomic variants known to be
associated with response to TNF inhibitors

We also calculated the genotype frequency of variants

associated with TNFi response in the Qatari population. In the

case of IL1B (rs1143634), the Qatari population had the GG

genotype frequency of 40.5%, which was associated with lower

response to Infliximab in Crohn’s disease patients (35) (Figure 2).

The genotype frequencies (AA and AC) of rs2431697 in PTTG1

were 81% in the Qatari population; studies showed that these

genotypes were associated with a decreased response to

Infliximab in Crohn’s disease patients. The genotype CC and CT

inHFE associated with response to Adalimumab in Crohn’s Disease

patients were associated with a decreased likelihood of response to

Etanercept in people with Rheumatoid Arthritis (36). Moreover, the

genotype frequency of AA in the CRP gene is 65.4% in the Qatari

population, which has been associated with an increased response

to Adalimumab (Figure 2).
Functional consequences of rare variants
in TNF

We identified 10 rare missense variants in TNF gene in the

Qatari population, out of which 5 variants had a CADD score

greater than 20 (Tables 2, S16). MutPred, a machine learning tool

was used for the prediction of the effect of mutations on the protein

function (Figures 3A, B). The p. Glu11Gly mutation in TNF-a
causes the loss of disorder (Predicted conservation scores PCS =

0.0606), loss of stability (PCS = 0.0821), whereas the mutation p.

Ala16Val was responsible for loss of helix (PCS = 0.0196), gain of

loop (PCS = 0.0312), loss of phosphorylation at Ser27 (PCS =

0.0818). Furthermore, the variant p. Gly54Glu causes the gain of

sheet (PCS = 0.0344), loss of helix (PCS = 0.0558), gain of solvent

accessibility (PCS = 0.0837), gain of loop (PCS = 0.0851) while

p. Pro88Ser causes the gain of phosphorylation at Pro88 (PCS =

0.0475), gain of MoRF (motif recognition factor) binding (PCS =

0.0728), gain of glycosylation at Pro88 (PCS = 0.095). The

p. Arg107His associated with the loss of MoRF binding (PCS =

0.0142). Moreover, we observed that the p. Thr181Asn variant on

TNF-a is responsible for the loss of phosphorylation at Thr181

(PCS = 0.0043), loss of disorder (PCS = 0.0587), gain of helix (PCS =

0.0854), loss of loop (PCS = 0.0986), although the CADD score of

this variant was lower than 20. dbNSFP v4.2a, a hub of 37 machine

learning algorithms, was used to annotate these rare variants

(Table 2). Functional annotation from six tools is presented in

Table 2. rs14054183, rs374531985 were predicted as deleterious,

rs758704433, rs57662166, rs5485326242 as probably damaging,
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whereas other variants were classified as benign, neutral, and

tolerated. The variants p. Glu11Gly and p. Pro88Ser are highly

deleterious missense variants in the Qatari population.
Interaction of the mutant and wild type
TNF with its receptor protein TNFR1

Previous studies have reported that TNF binds to TNFR1,

leading to the activation of the signaling pathway. TNF inhibitors

block the TNF-TNFR1 interaction. Here in this study, we identified

two novel and three rare missense variants related to the TNF gene,

but only one mutation was localized in the binding region of TNF

(Pro88Ser). We performed the docking of both the wild type and

mutated TNF with TNFR1. Both mutant and wildtype are TNF-a
shown in pink color (Figures 4A, B). Out of the five variants, only

one variant increased the binding affinity of TNF with TNFR1. The

P88S variant confers a significant increase in the binding affinity of

the mutant TNF with TNFR1. The wild type of TNF forms four

hydrogen bonds with binding affinity of -266.34 kcal/mol, whereas

the binding affinity of the mutated TNF (Pro88Ser) with wild type

TNFR1 was -280.30 kcal/mol (Figures 4A, B).
Frontiers in Immunology 06
Discussion

We conducted an extensive survey of pharmacogenomic

variation associated with TNF inhibitor response in the Qatari

population. The observed differences in the allele frequency

distributions highlight the unique genetic makeup of the

Qatari population and emphasize the importance of tailoring

therapeutic approaches to local genetic characteristics. Moreover,

it emphasized the significance of rare genetic variations in

influencing pharmacogenes’ protein function.

Our analysis revealed that a lot of variants are rare and

singletons in TNFi response-associated pharmacogenes, with

deleterious variants more likely to be rare (37). This trend was

supported by the high prevalence of rare missense variants in the

examined pharmacogenes, consistent with prior research on drug

target genes (38, 39). Additionally, low-frequency functional

variants, which are predominantly rare, are often not sufficiently

addressed by conventional genotyping arrays (40). Pharmacogenes

with the highest number of missense variants in the Qatari

population was REV3L and CR1. Moreover, we found that the

CR1 (0.0125 variants per participant) gene has the highest number

of functional genetic variants in the Qatari population. A previous
FIGURE 2

Genotype frequency of some variants associated with TNF inhibitors in the Qatari population. Key variants include IL1B (rs1143634), which is more
frequent in Qataris (~40.5%) and linked to lower Infliximab response, and TNF (rs4248159). The CRP (AA genotype) is linked to increased
Adalimumab response.
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TABLE 2 Rare and novel missense variants in TNF gene present in the Qatari population and their predicted functional consequences.

Position in Protein CADD
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Ser 24.7 Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious Deleterious
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rs3745319 31575763 C T 0.000443111 c.22C>T p. Arg8T

rs763000109 31575788 C T 0.000068171 c.47C>T
p.
Ala16Va

rs576621666 31575827 G A 0.000102256 c.86G>A
p.
Arg29G

rs756182468 31575902 G A 0.000170427 c.161G>A
p.
Gly54Gl

rs4645843 31576785 C T 0.00538551 c.251C>T
p.
Pro84Le

rs75870443 31577155 G A 0.000340885 c.320G>A
p.
Arg107H

rs548532642 31577184 G A 0.000340885 c.349G>A
p.
Val117M

rs140654183 31577377 C A, T 0 c.542C>A
p.
Thr181A

. 31575773 A G 0.000068171 c.32A>G p. Glu11

. 31576796 C T 0.000340885 c.262C>T p. Pro88
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study investigated genetic variants affecting erythrocyte

sedimentation rate (ESR) in patients with severe active

rheumatoid arthritis (RA) and found that the CR1 rs6691117

genotype showed a significant association with baseline ESR levels

(P = 0.01) (41). Another study found the presence of two copies of

the AA major allele at rs6691117 in the CR1 gene is linked to

reduced baseline ESR levels before anti-TNF therapy (42). CR1 acts

as a potent inhibitor of complement activation, and genetic

variations within this gene could influence Rouleaux formation,

consequently affecting ESR levels. The rs6691117 SNP introduces a

non-synonymous change from isoleucine to valine, possibly altering

the secondary structure of CR1. This alteration might impact the

ability of CR1 to clear complement opsonized immune complexes,

potentially leading to increased ESR levels (41).

The prevalence of a high number of functional variants in CR1

underscores the potential clinical relevance in guiding treatment

decisions. These findings offer valuable insights for clinicians,

enabling them to better predict patient responses to TNF

inhibitors and optimize treatment strategies accordingly.

Moreover, the study’s approach of assessing both known and

novel variants across a wide range of genes associated with TNF

inhibitors provides a comprehensive understanding of the genetic

landscape influencing treatment response. This holistic approach

enhances the accuracy of predictive models, enabling more precise

identification of individuals at risk of treatment non-response or

adverse reactions. Furthermore, we identified that CR1 with the

highest cumulative allele probability score (CAP) associated with

multi-TNF inhibitor response highlights potential targets for

further investigation and therapeutic intervention. Understanding
Frontiers in Immunology 08
the genetic factors influencing response to specific treatments can

inform the development of personalized medicine approaches

tailored to individual patient profiles (43).

This study has several limitations. There is a lack of

experimental data related to the association between drug

responses for the novel pharmacogenomic variants identified.

This study lacks data on responders and non-responders to TNF

blockers. So, it was not possible to predict the association of the

novel variant with drug response. We predicted the phenotypic

consequences of missense variants associated with TNFi response-

related genes, which is a crucial aspect of precision medicine as it

helps in translating the genomic data into clinically actionable

information. Functional interpretation of novel variants relies on

computational tools that predict phenotypic effects based on

structural features, sequence homology, and evolutionary

constraints (44). However, we used several machine learning tools

including meta-predictor CADD for functional prediction.

Jagadeesh et al. (45) reported that many variant classifier tools

misclassify pathogenic variants as benign, including SIFT (38%),

CADD (26%), POLYPHEN-2 (31%), and MetaLR (27%). So,

further studies are required for clinicians to use the prediction

and classification of novel pharmacogenomics variants based on

these tools. However, in this study, we also used the M-CAP tool

that classifies pathogenic and benign variants with 95% accuracy

(45). Further studies are required to generate more evidence for the

association of the variants studied and clinical implementation for

predicting TNFi response accurately. Our study provides valuable

insights into the pharmacogenomic variants associated with TNF

inhibitor response; however, it does not incorporate functional data
FIGURE 3

Rare mutations in TNF-a identified in the Qatari population and molecular docking analysis of wild-type and mutant TNF-a with TNFR1. (A) Surface
representation of TNF-a highlighting five missense mutations and their predicted effects on protein structure and function. The hydrophobic surface
around the binding site is also shown. (B) Cartoon representation of TNF-a, depicting overall structural organization and the location of the
identified mutations.
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such as protein abundance, enzyme/transporter activity, or drug

concentration in target tissues. These non-genetic factors, though

critical to precision dosing, remain underexplored and represent an

important avenue for future research (46).

Our study unveiled the distribution of pharmacogenomic

variants affecting response to anti-TNF treatment in the Qatari

population. We observed a distinct allele frequency distribution in

Qatar compared to other populations. Integrating genetic insights

into clinical practice can enhance treatment efficacy, minimize

adverse reactions, and ultimately improve patient outcomes in the

management of autoimmune diseases and other conditions

requiring TNF inhibitor therapy. Further clinical studies are

required to enhance the evidence for use of these pharmacogenes

in personalized gene-based medication prescriptions.
Materials and methods

Study design and data collection

The study follows a systematic workflow to investigate the

pharmacogenomics of TNF inhibitors in the Qatari population

using WGS data generated from an observational longitudinal

cohort as described in the next sections. First, we curated
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pharmacogenetic variants related to TNF inhibitor response from

PharmGKB. These variants were then mapped onto the Qatari WGS

dataset to determine their distribution and prevalence within the

local population. To further interpret their functional and clinical

relevance, the identified variants underwent annotation using

bioinformatics tools to assess their potential impact on gene

function and drug response. Next, linkage disequilibrium (LD)

analysis was performed to evaluate the co-inheritance of these

pharmacogenetic variants with other genetic variants. Additionally,

we compared the allele frequencies of these variants in the Qatari

population with those reported in global GnomAD to identify

population-specific pharmacogenetic differences. Finally, we

computed a cumulative risk probability score, integrating multiple

pharmacogenetic variants to estimate the likelihood of altered TNF

inhibitor response in the Qatari population. The complete workflow

of the study is illustrated in Supplementary Figure S1.
Ethical approval and the study population

Ethical approval for this study was obtained from the Qatar

Biobank (QBB) institutional review board (IRB) under the protocol

number QF-QBB-RES-ACC-016 as a retrospective data analysis

study. The study population comprised 14,387 Qatari individuals
FIGURE 4

Interaction analysis of wild type and mutant TNF-a with TNFR1. (A) Binding pattern of wild type TNF-a with TNFR1, demonstrating structural
alterations of wild type TNF-a with its receptor protein. (B) Binding pattern of mutant TNF-a (P88S) with TNFR1. The P88S mutation enhanced
hydrogen bonding propensities in neighboring residues, potentially affecting TNF-a/TNFR1 interactions.
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previously recruited by the QBB, where the participants provided

written informed consent to participate. The genomes of these

individuals were sequenced as part of the first and second phases

of the Qatar Genome Program (QGP). The cohort includes 8026

women and 6361 men, and the mean age of the included individuals

was 41.1 (SD 13.1). The study included Qatari and long-term

residents (≥15 years living in Qatar) aged 18 years and above.
Whole genome sequencing and data
processing

The sequencing and data processing were done as described

previously and briefly described here (47, 48). The genomic DNA

was isolated from blood using standard procedures adopted from

QIASymphony. Illumina TruSeq DNA Nano kit standard

procedure was adopted for genomic DNA library preparations

from 150 ng of total DNA and sequenced using HiSeq X Ten to

have at least a 30× mean coverage. FASTQ files were assessed using

FastQC (v0.11.2) (https://www.bioinformatics.babraham.ac.uk/

projects/fastqc/). Raw reads were mapped to human reference

genome assembly GRCh38 using bwaKit (v0.7.12) (49). Variant

calling was carried out by using Sentieon tool (50), and a variant call

file was generated by employing Haplotyper.
Variant identification

All the genes and variants associated with TNFi response were

collected from two resources: 1) PharmGKB (51) comprising

clinical variant data (downloaded in December 2023); 2) TNFi

response-related pharmacogenomics scientific publication (27, 52).

From PharmGKB, we retrieved 391 genes and 400 variants that

were known to be associated with response to TNFi, out of which 3

genes were collected from recent scientific publications (27, 52).

Among these, 118 genes with 161 variants remained after removing

the duplicate data for same genes and variants collected from

multiple sources. In the second phase of screening, we found 10

HLA haplotype variants in 7 HLA genes and removed them. Finally,

111 genes with 151 variants were selected, that also include

CYP2C9, CYP2D6, and CYP3A5. The variants selected above were

extracted from the QGP WGS data using BCFtools (53).
Variant annotations and linkage
disequilibrium

gnomAD v3.1.2 (54), ALFA (55), and dbSNP (56) databases

were used for the annotation of known and novel variants associated

with TNFi response. Tabix was employed to extract all variants from

the input vcffile. SnpEff/SnpSift v4.3 were used for the annotation of

variants, which categorized variants as high-, low-, modifier-, or

moderate-impact variants based on their possible impact on the

protein (57). Moreover, we used LOFTEE to extract the loss of

function variants (58). The high impact category included loss-of-
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function (LoF) variants. For the star allele calling in CYP2C9,

CYP2D6, and CYP3A5, Aldy4 was employed (59). Moreover, we

used PLINK for linkage disequilibrium analysis (60).
Statistical analysis

We computed the allele and genotype frequencies of the known

variants in the Qatari population directly from the extracted VCF file.

To assess the differential distribution of allele frequencies between the

Qatari population and gnomAD datasets, we conducted Chi-square

tests, Fisher’s exact tests, and two-proportion Z-tests. These tests were

used to estimate P-values for the differences in each variant’s allele

frequencies. The odds ratios were calculated to evaluate the strength

of the association between allele frequencies in the two cohorts. For

multiple comparisons, we applied the Benjamini-Hochberg

procedure for false discovery rate (FDR) correction, considering

results statistically significant at a threshold of P < 0.05. All

statistical analyses were performed using the Python programming

language, utilizing libraries such as pandas, scipy, and statsmodels.
Functional consequences of rare and
unreported variants

For the functional annotation of variants associated with TNFi

response, we employed different machine learning tools including

SIFT (61), POLYPHEN-2 (62), CADD (63), MutPred (64), M-CAP

(45), DANN (65), VEP (66), dbNSFP (67), VEST3 (68), REVEAL

(69), PROVEAN (70), Mutation Taster (71), DeepPVP (72),

FATHMM (73), VariantRanker (74), PON-P2 (75), MetaSVM

(76), MVP (77), and ANNOVAR (78).
Cumulative risk probability

We calculated the Cumulative Allele Probability (CAP) metric,

which incorporates both the count of functional variants and their

allele frequencies for each gene, allowing us to estimate the

probability that a population possesses at least one variant allele a

from all observed alleles A in gene g. (79):

CAP(g) = 1 −  
Y

a∈A

(1 − AF(a))2

In this study, CAP score was calculated for all the missense

variants separately. Additionally, we calculated CAP score for the

loss of function variants in TNFi response related genes.
Molecular modeling and docking of the
novel candidate variants

The crystal structures of TNF (PDB ID: 2AZ5) and TNFR1 (PDB

ID: 2ZJC) were initially obtained for molecular modeling from the

Protein Data Bank (PDB). The Swiss model server was used to build
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mutant models using the TNF crystal structure as a template, and the

quality of the generated model was evaluated using the global model

quality estimation (GMQE) score. In addition, AlphaFold was used to

improve the accuracy and dependability of the protein structure

predictions (80). The AlphaFold models were compared to the TNF

crystal structure and mutant models created with the Swiss model

server. To evaluate the stereochemical quality of the wild-type and

mutant models, we used multiple programs, including ERRAT,

Procheck and Verify3D (81). Finally, using PyMOL (v2.5) software,

all of the created protein models, including those generated by

AlphaFold, were analyzed (82). HADDOCK (v.2.4) (83) was used

to perform protein-protein docking.
Data availability statement

The informed consent given by the study participants does not

cover posting of participant level phenotype and genotype data of

Qatar Biobank/Qatar Genome Project in public databases.

However, access to the data can be obtained through an

established ISO-certified process by submitting a project request

at https://www.qphi.org.qa/research/how-to-apply which is subject

to approval by the QBB IRB committee. Other relevant data are

provided in the supplementary files.
Ethics statement

The study was approved by the IRB of Qatar Biobank (currently

under the Qatar Precision Health Institute): PPM 04-0312-200037.

The participants provided written informed consent to participate

in this study.
Author contributions

ZJ: Data curation, Formal Analysis, Investigation, Methodology,

Visualization, Writing – original draft, Writing – review & editing. DV:

Investigation, Methodology, Project administration, Validation,Writing

– original draft, Writing – review & editing. BM: Conceptualization,

Funding acquisition, Writing – original draft, Writing – review &

editing. PJ: Conceptualization, Funding acquisition, Supervision,

Writing – original draft, Writing – review & editing.
Pharmacogenomics of TNFi in Qatar
(QPGx-TNFi) Consortium

College of Health & Life Sciences (CHLS), Hamad Bin Khalifa

University, Doha, Qatar: Borbala Mifsud, Georges Nemer, Puthen

Veettil Jithesh, Nady El Hajj, Ehsan Pourkarimi, Omar Albagha,

Farah El Assadi, Zainab Jan, Dinesh Velayutham.

Rheumatology Department, Hamad Medical Corporation

(HMC), Doha, Qatar: Samar Al Emadi, Karima Becetti, Mohammed

Hammoudeh, Hala Albakheet, Nour Hamad, Sanaa Sharari.
Frontiers in Immunology 11
Pediatric Rheumatology, Sidra Medicine, Doha, Qatar:

Sharon Bout-Tabaku, Buthaina Al Adba, Mona El Chawli,

Fathima Abubacker.

Pediatric Gastroenterology, Sidra Medicine, Doha, Qatar:

Mamoun Elawad, Nazira Ibrahim.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. The authors thank the

College of Health & Life Sciences, Hamad Bin Khalifa University as

well as the QNRF (now the QRDI Council) and the QGP (now the

QPHI) for funding (PPM 04-0312-200037).
Acknowledgments

We acknowledge the Qatar Biobank (QBB) and Qatar Genome

Program (QGP) (now under the Qatar Precision Health Institute,

QPHI) and all the participants of the study.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1674889/full#supplementary-material
frontiersin.org

https://www.qphi.org.qa/research/how-to-apply
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1674889/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1674889/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1674889
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jan et al. 10.3389/fimmu.2025.1674889
References
1. Adelowo O, Mody GM, Tikly M, Oyoo O, Slimani S. Rheumatic diseases in Africa.
Nat Rev Rheumatol. (2021) 17:363–74. doi: 10.1038/s41584-021-00603-4

2. Angum F, Khan T, Kaler J, Siddiqui L, Hussain A. The Prevalence of Autoimmune
Disorders in Women: A Narrative Review. Cureus. (2020) 12:e8094. doi: 10.7759/
cureus.8094

3. El-Tahan RR, Ghoneim AM, El-Mashad N. TNF-a gene polymorphisms and
expression. SpringerPlus. (2016) 5:1508. doi: 10.1186/s40064-016-3197-y

4. Conrad C, Di Domizio J, Mylonas A, Belkhodja C, Demaria O, Navarini AA, et al.
TNF blockade induces a dysregulated type I interferon response without autoimmunity
in paradoxical psoriasis. Nat Commun. (2018) 9:25. doi: 10.1038/s41467-017-02466-4

5. van Loo G, Bertrand MJM. Death by TNF: a road to inflammation. Nat Rev
Immunol. (2023) 23:289–303. doi: 10.1038/s41577-022-00792-3

6. Willrich MAV, Murray DL, Snyder MR. Tumor necrosis factor inhibitors: clinical
utility in autoimmune diseases. Transl Res J Lab Clin Med. (2015) 165:270–82.
doi: 10.1016/j.trsl.2014.09.006

7. Jung SM, Kim W-U. Targeted Immunotherapy for Autoimmune Disease.
Immune Netw. (2022) 22:e9. doi: 10.4110/in.2022.22.e9

8. Nicolela Susanna F, Pavesio C. A review of ocular adverse events of biological anti-TNF
drugs. J Ophthalmic Inflamm Infect. (2020) 10:11. doi: 10.1186/s12348-020-00202-6

9. Johnson KJ, Sanchez HN, Schoenbrunner N. Defining response to TNF-inhibitors
in rheumatoid arthritis: the negative impact of anti-TNF cycling and the need for a
personalized medicine approach to identify primary non-responders. Clin Rheumatol.
(2019) 38:2967–76. doi: 10.1007/s10067-019-04684-1

10. Taylor PC, Matucci Cerinic M, Alten R, Avouac J, Westhovens R. Managing
inadequate response to initial anti-TNF therapy in rheumatoid arthritis: optimising
treatment outcomes. Ther Adv Musculoskelet Dis. (2022) 14:1759720X221114101.
doi: 10.1177/1759720X221114101

11. Rubbert-Roth A, Szabó MZ, Kedves M, Nagy G, Atzeni F, Sarzi-Puttini P. Failure
of anti-TNF treatment in patients with rheumatoid arthritis: The pros and cons of the
early use of alternative biological agents. Autoimmun Rev. (2019) 18:102398.
doi: 10.1016/j.autrev.2019.102398

12. Nielsen OH, Ainsworth MA. Tumor Necrosis Factor Inhibitors for Inflammatory
Bowel Disease. N Engl J Med. (2013) 369:754–62. doi: 10.1056/NEJMct1209614

13. Roda G, Jharap B, Neeraj N, Colombel J-F. Loss of Response to Anti-TNFs:
Definition, Epidemiology, and Management. Clin Transl Gastroenterol. (2016) 7:e135.
doi: 10.1038/ctg.2015.63

14. Jan Z, El Assadi F, Velayutham D, Mifsud B, Jithesh PV. Pharmacogenomics of
TNF inhibitors. Front Immunol. (2025) 16:1521794. doi: 10.3389/fimmu.2025.1521794

15. Sazonovs A, Kennedy NA, Moutsianas L, Heap GA, Rice DL, Reppell M, et al.
HLA-DQA1*05 Carriage Associated With Development of Anti-Drug Antibodies to
Infliximab and Adalimumab in Patients With Crohn’s Disease. Gastroenterology.
(2020) 158:189–99. doi: 10.1053/j.gastro.2019.09.041

16. Wilson A, Peel C, Wang Q, Pananos AD, Kim RB. HLADQA1*05 genotype
predicts anti-drug antibody formation and loss of response during infliximab therapy
for inflammatory bowel disease. Aliment Pharmacol Ther. (2020) 51:356–63.
doi: 10.1111/apt.15563

17. Massey J, Plant D, Hyrich K, Morgan AW, Wilson AG, Spiliopoulou A, et al.
Genome-wide association study of response to tumour necrosis factor inhibitor therapy
in rheumatoid arthritis. Pharmacogenomics J. (2018) 18:657–64. doi: 10.1038/s41397-
018-0040-6

18. Padula MC, Leccese P, Lascaro N, Radice RP, Limongi AR, Sorrento GG, et al.
Correlation of Tumor Necrosis Factor-a –308G>A Polymorphism with Susceptibility,
Clinical Manifestations, and Severity in Behçet Syndrome: Evidences from an Italian
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