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Background: Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-
related mortality, with an immunosuppressive tumor microenvironment (TME)
contributing to therapeutic resistance. Although neutrophils are recognized as
key regulators of LIHC progression, their functional heterogeneity and metabolic
drivers are not yet fully understood.

Methods: We integrated bulk RNA sequencing (RNA-seq) data from The Cancer
Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database
(GSE39791) alongside scRNA-seq data from GSE149614 and GSE290925.
Neutrophils were annotated based on specific marker genes (FCGR3B, CSF3R)
and classified into three metabolic states: high arginine state (HAS), intermediate
arginine state (DTAS), and low arginine state (LAS) using arginine metabolism-
related gene sets. Differentiation trajectories were reconstructed via CytoTRACE
and monocle?2. Intercellular communication was analyzed using CellChat, while
machine learning, incorporating seven different algorithms, was applied to
identify key regulatory genes.

Results: scRNA-seq analysis revealed three distinct neutrophil subgroups: high
(HAS), intermediate (DTAS), and low (LAS) arginine metabolism states. The
proportion of LAS neutrophils was significantly enriched in tumor tissues
compared to normal tissues (p < 0.001). Trajectory analysis indicated that LAS
neutrophils exhibited a less differentiated state. From this landscape, ATP11B and
PADI4 were identified as key genes, with PADI4 expression being approximately
3-fold higher in HAS compared to LAS neutrophils. Functional studies
demonstrated that silencing PADI4 in LIHC cell lines inhibited cell proliferation
by approximately 50% at 96 hours, increased apoptosis by 2-fold, and reduced
cell invasion by 50%.

Conclusions: Arginine metabolism shapes neutrophil polarization in the LIHC
TME. Targeting metabolic pathways may provide new therapeutic strategies to
modulate the immune landscape and improve patient outcomes.
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Introduction

Liver hepatocellular carcinoma (LIHC) is the sixth most common
cancer globally and the third leading cause of cancer-related mortality
(1). It typically arises in the setting of chronic liver diseases, with
cirrhosis present in over 80% of cases (2). Key risk factors include
chronic hepatitis B and C infections, alcoholic liver disease, metabolic
syndrome, and exposure to aflatoxins (3, 4). These factors contribute
to liver inflammation and fibrosis, both of which are critical precursors
to tumorigenesis (5). Despite advancements in diagnostic imaging,
such as multiphase CT, MRI, and serum tumor markers like alpha-
fetoprotein (AFP), early detection of LIHC remains challenging, with
many cases being diagnosed at advanced stages (6, 7). While early-
stage LIHC can be treated effectively through surgical resection,
transplantation, or ablation, survival rates for advanced stages
remain poor, primarily due to the limited efficacy of current
therapies, including immune checkpoint inhibitors and multi-kinase
inhibitors (8-10). This is largely attributed to the immunosuppressive
and fibrotic TME, which impedes effective immune responses and
treatment outcomes (11, 12). Therefore, gaining a deeper
understanding of the TME and the mechanisms underlying tumor
progression is crucial for the development of more effective
therapeutic strategies.

Chronic inflammation is a hallmark of all etiologies of
chronic liver disease and plays a pivotal role in tumor initiation,
progression, and metastasis (13). The immune microenvironment
of the liver is uniquely tolerogenic due to the constant influx of
inflammatory mediators from the portal circulation (14).
This environment fosters the development of pre-neoplastic
lesions that evade immune surveillance, ultimately leading to
hepatocellular carcinoma (HCC) (15). Neutrophils, as the first
responders to infection, inflammation, and tissue damage, are
essential mediators of the innate immune response (16). They
perform antimicrobial and inflammatory functions through
mechanisms such as phagocytosis, degranulation, release of
neutrophil extracellular traps (NETs), and antigen presentation
(17, 18). Neutrophils are also key contributors to chronic
inflammation and represent a significant component of the
immune infiltrate in both chronic liver disease and HCC (19, 20).
Tumor-associated neutrophils (TANs) exhibit remarkable
functional plasticity, adapting to the metabolic and inflammatory
cues present in the TME (21, 22). Critically, this functional plasticity
is underpinned by profound metabolic reprogramming, which
remains a relatively unexplored layer of regulation in LIHC.

The complexity of the immune system is not only reflected in its
cellular diversity and intricate signaling networks but also in its close
integration with metabolic processes (23). Immune responses require
significant metabolic reprogramming to support cell proliferation,
differentiation, and effector functions (24). Therefore, the metabolic
microenvironment of the liver profoundly influences immune cell
activity and functionality (25). Arginine (Arg), a semi-essential amino
acid, plays a particularly important role during immune responses
(26). In immune cells, Arg is metabolized by arginase-1 (Argl) or
arginase-2 (Arg2) to produce urea and L-ornithine (Orn), or it is
utilized for protein biosynthesis (27). Nitric oxide synthases use Arg
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to generate nitric oxide, a key antimicrobial and signaling molecule
(28). Arginase-1 activity has long been recognized as an important
immunoregulatory mechanism, particularly in M2 macrophages and
MDSCs within the tumor context (29). In neutrophils, arginine
metabolism is altered, with a marked upregulation of ARGI1 (30).
This upregulation is driven by the TME and is particularly prominent
in the formation of MDSCs, which are key mediators of immune
suppression in tumors (31). Moreover, ARGI activity is linked to the
formation of NETs, which further promote immune evasion and
tumor progression (32).

Neutrophils can be classified into two main phenotypes: the
antitumor N1 phenotype and the protumor N2 phenotype. N1
neutrophils directly kill tumor cells via the production of reactive
oxygen species (ROS) and reactive nitrogen species (RNS), whereas
N2 neutrophils promote tumor progression by facilitating
angiogenesis, metastasis, and immune suppression (33).
Additionally, polymorphonuclear myeloid-derived suppressor cells
(PMN-MDSCs), a subset of immature neutrophils, contribute to
tumor progression through immune suppression, tissue remodeling,
and angiogenesis (34, 35). Recent advances in scRNA-seq have
unveiled the considerable heterogeneity of TANS, revealing distinct
transcriptomic signatures associated with disease progression and
patient prognosis (36). Understanding the molecular mechanisms
governing neutrophil polarization and reprogramming in the TME is
crucial for identifying new therapeutic strategies that can modulate
the immune landscape of LIHC.

This study aims to explore the role of arginine metabolism in
neutrophil polarization within the LIHC TME. While previous
single-cell studies have described the heterogeneity of TANS, the
metabolic drivers underlying this diversity remain poorly
understood. Here, we leverage scRNA-seq not merely to catalog
cell states, but to dissect how arginine metabolism reprograms
neutrophil differentiation, functional plasticity, and their
contribution to tumor progression. Ultimately, our research seeks
to identify novel biomarkers and therapeutic targets that can
modulate the immune landscape of LIHC, with a focus on
improving patient outcomes through targeted metabolic and
immune interventions.

Materials and methods
Data acquisition and processing

Transcriptomic data for LIHC were obtained from the Xena
database (https://xena.ucsc.edu/), comprising RNA expression
profiles and corresponding clinical data for 374 tumor samples
and 50 adjacent normal samples. The data were normalized to
Transcripts Per Million (TPM) and log,-transformed for
subsequent analysis. Additional validation was performed using
RNA data from the GEO database (https://www.ncbi.nlm.nih.gov/
gds/?term=) (GSE39791), which includes 72 tumor and 72 adjacent
normal samples.

Single-cell RNA sequencing datasets were retrieved from GEO
database (GSE149614 and GSE290925), including 8 adjacent
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normal and 12 tumor samples. Data processing and analysis were
performed using R, and Seurat was employed for quality control,
normalization, and clustering. Cells were filtered based on the
following criteria: mitochondrial gene content <20%, blood cell
content <3%. To exclude potential doublets and multiplets, we
enforced an upper threshold for both UMI counts (20,000) and the
number of genes detected (6,000). A lower threshold (UMI > 200,
genes > 200) was applied to remove empty droplets and low-quality
cells. Normalization was performed using NormalizeData, and
high-variable genes were identified using FindVariableFeatures
(top 2,000 genes). Batch effect correction was implemented using
Harmony. For dimensionality reduction and clustering, UMAP and
the Louvain algorithm were applied, respectively. Differential gene
expression between clusters was identified using FindAllMarkers
with criteria of p-value <0.05, log, fold change >0.25, and
expression ratio >0.1.

Arginine metabolism-related gene sets were obtained from the
Molecular Signatures Database (MsigDB), specifically the
GOBP_ARGININE_METABOLIC_PROCESS.v2025.1.Hs.gmt file
(https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/
GOBP_ARGININE_METABOLIC_PROCESS.html). This gene set
was used to calculate arginine metabolism scores for the single-
cell data.

All the data in this study were sourced from a public database
and no additional ethical approval was required. This study adhered
to relevant regulations in the acquisition and processing of data.

Cell annotation

Cells were annotated based on canonical marker genes for
specific cell types. Hepatocytes were identified by markers
EPCAM, KRT18, KRT19, and ALB; fibroblasts by DCN, THY1,
COL1A1, and COL1A2; endothelial cells by PECAM1, CLDNS5,
FLT1, and RAMP2; T cells by CD3D, CD3E, CD3G, and TRAC; NK
cells by NKG7, GNLY, NCAM1, and KLRD1; B cells by CD79A,
IGHM, IGHG3, and IGHA2; plasma cells by JCHAIN; myeloid cells
by LYZ, MARCO, CD68, and FCGR3A; mast cells by KIT, MS4A2,
GATA2; and neutrophils by FCGR3B and CSF3R. UMAP and
bubble plots were generated to visualize the expression of these
markers across the dataset.

Neutrophil subgroup analysis

Neutrophils were isolated from the dataset based on the expression
of neutrophil-specific marker genes (“FCGR3B”, “CSF3R”) using the
Seurat subset function. The arginine metabolism scores for each
neutrophil were calculated using the UCell algorithm, based on the
GOBP_ARGININE_METABOLIC_PROCESS gene set. The
neutrophil population was then divided into three distinct subgroups
based on their arginine metabolism scores: HAS, DTAS, and LAS.
These cutoff values were determined empirically by identifying
significant points of change in the distribution of arginine
metabolism scores.
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CytoTRACE analysis

To assess the differentiation potential of neutrophil subgroups,
the CytoTRACE method was applied. CytoTRACE is a
computational tool that estimates the differentiation potential of
single cells based on gene expression data. For each neutrophil
subgroup, the CytoTRACE score was calculated, which reflects the
relative differentiation potential of individual cells.

MiloR and Ro/e analysis

To quantitatively assess the spatial distribution and differential
abundance of neutrophil subgroups in tumor and adjacent normal
tissues, we performed MiloR and Ro/e analyses on the single-
cell data.

MiloR analysis was employed to identify statistically significant
differences in the local cellular neighborhoods of neutrophil
subgroups between conditions (tumor vs. normal). Briefly, we
first constructed a k-nearest neighbor (KNN) graph of all cells in
the integrated dataset. The value of k was set to 50 to define a
sufficiently large local neighborhood. Neighborhoods were then
sampled by randomly selecting 100 representative index cells. For
each neutrophil subgroup (HAS, DTAS, LAS), we tested for
differential abundance between tumor and normal tissues within
these neighborhoods using a negative binomial generalized linear
model (GLM). A false discovery rate (FDR) of 5% was applied to
correct for multiple hypothesis testing.

Ro/e (Ratio of observed to expected) analysis was used to quantify
the enrichment or depletion of cell type interactions beyond random
chance. We first constructed a contingency table of cell type counts
across the KNN graph (with k=50). The “observed” count was the
actual number of edges between a neutrophil subgroup and every
other cell type. The “expected” count was calculated based on the
product of their overall abundances, representing the number of
edges expected if cell types were randomly distributed. The Ro/e value
was then calculated as Ro/e = Observed/Expected. An Ro/e value >
1.1 was interpreted as a significant attraction (enrichment) between
two cell types, while a value < 0.9 was interpreted as a significant
repulsion (depletion). These analyses were performed separately for
the tumor and normal tissue microenvironments to reveal context-
specific interaction patterns.

Pagwas analysis

To further investigate the functional role of neutrophil
subgroups in the context of arginine metabolism, Pagwas analysis
was performed. Pagwas is a pathway-based analysis tool that
integrates gene expression profiles with pathway-specific scores,
allowing for the exploration of biological pathways associated with
arginine metabolism in different neutrophil subgroups. The analysis
evaluated the relationship between arginine metabolism scores and
TRS scores, offering insights into the activation of key biological
pathways in neutrophils with varying arginine metabolic states.
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Pseudotime analysis

Pseudotime analysis of neutrophil subgroups was performed
using the monocle2 package. The DDRTree algorithm was used for
dimensionality reduction to infer the differentiation trajectory of
neutrophils. Default parameters were used for all other steps, and
the resulting pseudotime trajectories were visualized to assess the
differentiation states of neutrophils from HAS, DTAS, and LAS.

Cell-cell communication analysis

Cell-cell communication between neutrophils and other cell types
was analyzed using the CellChat package. Normalized gene expression
matrices were imported into CellChat to construct the communication
networks. Overexpressed genes and interactions were identified using
identifyOverExpressedGenes and identifyOverExpressedInteraction
functions. Potential ligand-receptor interactions were predicted using
computeCommunProb and filterCommunication. Communication

networks were visualized using the aggregateNet function.

Gene set scoring

Arginine metabolism scores for individual neutrophils were
calculated using four different methods: AUCell, UCell,
AddModuleScore, and Singscore. These methods were employed
to compute a comprehensive metabolism score for each cell, which
was used to categorize neutrophils into the three subgroups (HAS,
DTAS, and LAS). These scores were correlated with functional
pathways to assess potential biological impacts.

Machine learning-based gene identification

To identify key genes associated with neutrophil polarization
influenced by arginine metabolism, seven machine learning
algorithms were applied: Decision Trees, Random Forests, GBM,
Boruta, ABESS, XGBoost, and LASSO. Results from all models were
integrated using Upset analysis, identifying genes consistently
selected across algorithms.

Clinical sample collection and processing

Primary tumor tissues and matched adjacent normal tissues (=3
cm from the tumor margin) were collected from five liver
hepatocellular carcinoma (LIHC) patients who underwent
surgical resection at Sichuan Provincial People’s Hospital between
May 2022 and April 2024. Fresh samples were snap-frozen in liquid
nitrogen and stored at —80 °C for subsequent analysis. The study
was approved by the Institutional Ethics Committee of Sichuan
Provincial People’s Hospital, and written informed consent was
obtained from all participants.
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RNA extraction and gRT-PCR analysis

Total RNA was extracted from tissue samples using TRIzol
reagent (Invitrogen, USA) following the manufacturer’s protocol.
RNA concentration and purity were assessed with a NanoDrop
2000 spectrophotometer (Thermo Fisher Scientific, USA).
Complementary DNA (cDNA) was synthesized using the
PrimeScript RT Reagent Kit (Takara, Japan). qRT-PCR was
performed on a QuantStudio 5 Real-Time PCR System (Applied
Biosystems, USA) with SYBR Premix Ex Taq (Takara, Japan).
PADI4 mRNA expression was normalized to GAPDH using the
2A—-AACt method, and reactions were conducted in triplicate.

Cell culture and characterization

Human liver cancer cell lines (HuH-7, Hep G2, SNU-886, Hep
3B2.1-7, SNU-387) and the non-tumorigenic human liver cell line
LO2 were obtained from authenticated cell banks and verified by
STR profiling. All cell lines were mycoplasma-free. Cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco,
USA) with 10% fetal bovine serum (FBS; Gibco) and 1% penicillin-
streptomycin, maintained at 37 °C in a 5% CO, incubator. When
cells reached 80% confluency, total RNA was extracted and PADI4
mRNA levels were assessed by qRT-PCR in triplicate using
independent biological replicates.

siRNA transfection

siRNA targeting PADI4 and a non-targeting control siRNA
were synthesized and dissolved in nuclease-free water at a final
concentration of 10 uM. SNU-886 and SNU-387 cells were seeded
in 6-well plates (2 x 10° cells/well) and transfected with 50 nM
siRNA and 5 uL of Lipofectamine 3000 reagent (Invitrogen, USA)
in Opti-MEM medium (Gibco, USA). After 6 hours, the
transfection medium was replaced with complete growth
medium. RNA was harvested 48 hours post-transfection, and
knockdown efficiency was confirmed by qRT-PCR, showing a
>70% reduction in PADI4 expression (p < 0.01, Student’s t-test).
All experiments were independently repeated three times.

Cell proliferation assay (CCK-8)

Post-transfection, cells were seeded in 96-well plates (3 x 10°
cells/well) in quintuplicate. Cell proliferation was assessed at 24, 48,
72, and 96 hours post-transfection using the CCK-8 assay (Dojindo,
Japan). At each time point, 10 pL of CCK-8 reagent was added to
each well and incubated for 2 hours at 37 °C. Absorbance at 450 nm
was measured using a Synergy H1 microplate reader (BioTek,
USA). Relative cell viability was calculated by normalizing
absorbance to the 0-hour baseline, and proliferation curves
were plotted.
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Apoptosis assay (flow cytometry)

Apoptosis was analyzed 48 hours post-transfection using the
Annexin V-FITC/PI Apoptosis Detection Kit (BD Biosciences,
USA). Cells were collected, washed with cold PBS, and stained
according to the manufacturer’s protocol. Flow cytometry was
performed using a BD FACSVerse flow cytometer (BD
Biosciences), and data were analyzed with FlowJo software
(version 10). The proportions of early apoptotic (Annexin V*/PI')
and late apoptotic (Annexin V*/PI") cells were quantified.

Migration and invasion assays

Cell migration and invasion were assessed using 24-well Transwell
chambers with 8 um pore-size membranes (Corning, USA). For
migration assays, 5 x 10* cells in 200 UL serum-free DMEM were
added to the upper chamber, and 600 uL. DMEM supplemented with
10% FBS was placed in the lower chamber. After 24 hours, non-
migrated cells were removed with a cotton swab, and migrated cells
were fixed with 4% paraformaldehyde, stained with 0.1% crystal violet,
and counted in five randomly selected fields under a microscope.

For invasion assays, Transwell membranes were pre-coated with
Matrigel (Corning, USA) diluted 1:8 in DMEM, incubated for 4 hours at
37 °C, and then subjected to the same procedure as the migration assay.

Western blotting

Total protein was extracted using RIPA buffer (Beyotime, China)
supplemented with protease inhibitors (Roche, Switzerland). Protein
concentrations were measured using a BCA protein assay kit
(Thermo Fisher Scientific, USA). Equal amounts of protein (30 pg)
were separated by 10% SDS-PAGE, transferred to PVDF membranes
(Millipore, USA), and blocked with 5% non-fat milk in TBST for 1
hour. Membranes were incubated overnight at 4 °C with primary
antibodies: anti-cleaved Caspase-3 (1:1000, #9664), anti-E-cadherin
(1:2000, #3195), anti-Bcl-2 (1:1000, #15071), anti-Vimentin (1:1000,
#5741), and anti-B-actin (1:5000, #4970) (all from Cell Signaling
Technology, USA). After washing, membranes were incubated with
HRP-conjugated secondary antibodies (1:5000) for 1 hour. Protein
bands were visualized using enhanced chemiluminescence (ECL,
Millipore) and quantified using ImageJ software.

Statistical analysis

All statistical analyses were conducted using R (version 4.1.3). The
Pearson correlation coefficient was calculated to assess relationships
between continuous variables. The Chi-squared test was applied to
categorical variables, and the Wilcoxon rank-sum test was used for
comparisons of continuous variables. Survival analyses were performed
using the survival and survminer packages, with optimal cutoff values
determined using survminer. Kaplan-Meier curves and Cox regression
analysis were used to assess the prognostic significance of arginine
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metabolism states and identified genes. Statistical significance was set at
a P value of less than 0.05. In figures, asterisks denote statistical
significance as follows: *P < 0.05; **P < 0.01; ***P < 0.001; ***P <
0.0001; "ns" indicates not significant (P > 0.05).

Results

Characterization of the tumor
microenvironment in LIHC using scRNA-
seq

To investigate the cellular landscape of LIHC, we performed
scRNA-seq analysis on 8 adjacent normal and 12 tumor samples.
After quality control and normalization, a total of 160,566 cells across
29 clusters were identified. Cell type annotation was performed based
on canonical marker genes, resulting in the classification of cells into
nine major types: hepatocytes, fibroblasts, endothelial cells, T cells, NK
cells, B cells, plasma cells, myeloid cells, and neutrophils (Figures 1A,
B). The expression of specific cell type markers was visualized using
UMAP (Figures 1C, D), confirming accurate cell type identification.

Altered arginine metabolism in the tumor
microenvironment of LIHC

To explore the role of arginine metabolism in LIHC, we first
calculated the arginine metabolism scores for both bulk RNA-seq and
scRNA-seq datasets using the ssGSEA algorithm. In the bulk datasets,
we observed a significant decrease in arginine metabolism scores in
tumor tissues compared to adjacent normal tissues (Figures 2A, B).
Next, we calculated the arginine metabolism scores for individual cells
within the scRNA-seq dataset using four different methods: AUCell,
UCell, AddModuleScore, and Singscore. While no significant
differences were observed between the scores of different cell
subtypes (Figure 2C), there were notable differences in the scores of
specific cell subpopulations between tumor and adjacent normal
tissues. In tumor tissues, hepatocytes, fibroblasts, endothelial cells,
NK cells, plasma cells, and myeloid cells exhibited significantly lower
arginine metabolism scores compared to adjacent normal tissues
(Figure 2D). Among all cell types, hepatocytes displayed the highest
arginine metabolism scores, both in tumor and normal tissues
(Figures 2E-G). These findings were consistent across all cell types,
highlighting the prominent role of hepatocytes in arginine metabolism
in the liver cancer microenvironment. Similar results were observed in
spatial transcriptomics data, further validating the robustness of these
findings (Figure 2H).

Impact of arginine metabolism on
neutrophil subgroups and their
differentiation in LIHC

Although no significant differences were observed in the arginine
metabolism scores of neutrophils between tumor and adjacent normal
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their polarization can be influenced by metabolic states. To further  distinct subgroups based on their arginine metabolism scores: HAS,
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level, the classification into subgroups revealed significant differences in
functional properties. To assess the differentiation potential of each
subgroup, we applied CytoTRACE, a software tool for predicting cell
differentiation trajectories. The results indicated that neutrophils in the
LAS subgroup had the lowest CytoTRACE scores, suggesting a more
undifferentiated state compared to the HAS and DTAS subgroups
(Figures 3D, E). This finding suggests that neutrophils in the LAS state
are less differentiated and may represent a more “naive” phenotype,
whereas neutrophils in the HAS state may be more functionally
mature. Further analysis of the distribution of arginine metabolism
scores and differentiation potential within neutrophil subgroups
showed a significant positive correlation between arginine
metabolism scores and CytoTRACE scores (Figures 3F, G). We also
performed monocle2 trajectory analysis to infer the differentiation
pathways of neutrophils. The results revealed distinct trajectories for
the neutrophil subgroups, with HAS neutrophils occupying an earlier
point in the differentiation trajectory, while LAS neutrophils were
positioned later (Figure 3H). To explore the distribution of these
subgroups across different tissue types, we performed MiloR and Ro/
e analyses. These analyses showed that HAS neutrophils were enriched
in normal tissues, while LAS neutrophils were more prominent in
tumor tissues (Figures 3I-K), highlighting the role of arginine
metabolism in neutrophil polarization within the tumor
microenvironment. Finally, Pagwas analysis showed a significant
positive correlation between arginine metabolism scores and TRS
scores (Figures 3L, M), suggesting that arginine metabolism
influences neutrophil polarization and may contribute to the
functional differences observed between tumor and
normal neutrophils.

Distinct cell-cell interactions and pathway
enrichments in neutrophil subgroups of
LIHC

To explore the potential communication between neutrophils
and other cell types within the tumor microenvironment, we used
the CellChat package to construct a cell-cell interaction network.
This analysis revealed notable differences in communication
patterns between the three neutrophil subgroups (HAS, DTAS,
and LAS) and other cell types (Figures 4A, B). Compared to HAS
and LAS, DTAS neutrophils received significantly more incoming
signals from surrounding cells (Figure 4C). In terms of signaling, all
three neutrophil subgroups released common signals such as CXCL,
IL1, VISFATIN, and OSM, while also receiving a shared set of
signals including ANNEXIN, CXCL, and IL1 (Figures 4D, E).
Notably, DTAS neutrophils also received SAA signals, which were
absent in the HAS and LAS subgroups (Figures 4D, E).
Additionally, strong communication was observed between
neutrophils and endothelial cells, specifically through the
NAMPT-INSR interaction, a key signaling axis in tumor
vascularization (Figure 4F). Interestingly, LAS neutrophils
exhibited a unique interaction with other cell types through
SPP1-CD44 signaling, which was not seen in HAS or DTAS
neutrophils (Figure 4F). We also examined pathway enrichment
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using 50 hallmark pathways to identify differential activity between
the HAS and LAS subgroups. The results showed that HAS
neutrophils exhibited higher activity in pathways such as PI3K-
AKT-MTOR signaling, TGF-beta signaling, and several others
associated with immune responses and cell survival (Figure 4G).
In contrast, LAS neutrophils displayed elevated activity in the KRAS
signaling pathway (Figure 4G). Furthermore, using KEGG
metabolic pathways, we observed that DTAS neutrophils
exhibited more active metabolic signaling, suggesting that they
may be more metabolically active compared to the other two
subgroups (Figure 4H).

Gene module profiling and differential
expression in neutrophil subgroups

To investigate the gene modules associated with neutrophil
subgroups, hdAWGCNA was used for weighted gene co-expression
network analysis. The power value was set to 7 based on the scale-
free topology criterion (Figure 5A). This analysis identified 10
distinct gene modules, which were subsequently clustered using
hierarchical clustering, and the resulting dendrogram was visualized
(Figures 5B, C). The expression levels of these gene modules were
assessed in the three neutrophil subgroups. Notably, DTAS
neutrophils exhibited high module scores across all identified
gene modules, indicating a more uniformly active gene expression
profile (Figure 5D). In contrast, when comparing HAS and LAS
neutrophils, specific gene modules showed differential expression.
Pink, brown, green, and mengtA modules were expressed at
significantly higher levels in HAS neutrophils compared to LAS
neutrophils (Figure 5D). Differential gene expression analysis
between HAS and LAS neutrophils revealed several key genes that
were more highly expressed in HAS neutrophils (Figure 5E). To
further investigate the functional implications of these findings,
Upset analysis was performed to identify the intersection of HAS-
specific genes and the top four gene modules associated with HAS
neutrophils. This analysis revealed a set of core genes that are highly
expressed in HAS neutrophils and are linked to the four identified
gene modules (Figure 5F).

Predictive gene identification for
neutrophil polarization linked to arginine
metabolism

From the 64 genes identified through the intersection of
hdWGCNA modules and differential gene expression analysis, we
further filtered for genes most significantly associated with arginine
metabolism. A total of 39 genes were selected based on their
correlation with arginine metabolism scores (Figure 6A). To
identify key predictive genes, we applied seven machine learning
algorithms: Decision Trees, Random Forests, GBM, Boruta, ABESS,
XGBoost, and LASSO (Figures 6B-H). Each algorithm ranked the
importance of genes in relation to arginine metabolism. An Upset
analysis was then performed on the gene sets identified by each
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grouping into HAS, DTAS, and LAS. (D, E) CytoTRACE-predicted differentiation potential scatter plots and rain cloud plots comparing differentiation
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Bubble plot showing the expression of metabolic-related pathways from the KEGG database in HAS, DTAS, and LAS neutrophils.

algorithm, revealing five intersecting genes that were consistently
identified across all algorithms (Figure 6I).

ATP11B and PADI4 as potential biomarkers

Among the five intersecting genes identified, ATP11B and PADI4
have been extensively reported for their roles in tumors. To explore
their expression dynamics, we first analyzed the expression of these
genes in tumor and adjacent normal tissues using single-cell RNA
sequencing data. Our results revealed a significant upregulation of both
genes in tumor tissues (Figures 7A-C), with the lowest expression
observed in the low arginine state (LAS) neutrophil subgroup
(Figure 7D). However, in the TCGA dataset, the expression of these
genes in tumor tissues was significantly decreased (Figures 7E, F). This
discrepancy suggests that bulk tissue analysis may not fully capture the
nuanced expression changes of these genes in distinct cellular contexts.
By examining scRNA-seq data, we observed considerable variation in
the expression of ATP11B and PADI4 within neutrophil populations,
highlighting the importance of single-cell resolution for understanding
these changes (Figure 7G). Using PADI4 expression as a marker, we
separated neutrophils into PADI4+ and PADI4- subgroups for further
analysis. We performed cell-cell communication analysis using the
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CellChat package and identified significant differences in the
communication networks between the two subgroups (Figures 7H, I).
Specifically, PADI4+ neutrophils received more external signaling
compared to PADI4- neutrophils (Figure 7]). Additionally,
communication pathways between PADI4+ neutrophils and other
cell types showed distinct patterns. PADI4+ neutrophils transmitted
stronger ANXA1 — FPRI signals to myeloid cells, whereas PADI4-
neutrophils were more involved in transmitting CCL3 — CCR1 signals
to myeloid cells (Figure 7K). Furthermore, significant differences were
observed in signal reception between the two subgroups, especially in
their interaction with mast cells (Figure 7L).

Functional validation of PADI4 in LIHC cell
lines

To further investigate the role of PADI4 in LIHC, we first
analyzed its expression in tumor and adjacent normal tissues from
clinical LTHC patient samples. qPCR analysis revealed that PADI4
expression was significantly elevated in tumor tissues compared to
adjacent normal tissues (Figure 8A). Subsequently, we examined
PADI4 expression in various liver cell lines and found that SNU 886
and SNU387 cells exhibited notably higher PADI4 levels compared to
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Gene module analysis in neutrophil subgroups. (A) Scatter plot selecting power as 7 for the hdWGCNA analysis, determining the optimal power

parameter for module detection. (B) Hierarchical clustering dendrogram of 10 gene modules. (C) kME (module membership) plot for each of the
identified gene modules. (D) Bubble plot showing the expression of 10 gene modules across the three neutrophil subgroups. (E) Volcano plot of
differential gene expression between HAS and LAS neutrophils. (F) Upset analysis of the intersection of highly expressed genes in HAS neutrophils

and the four modules associated with HAS.

the normal liver cell line, LO2 (Figure 8B). Based on these findings,
we selected SNU 886 and SNU387 cells for further functional studies.
To assess the functional impact of PADI4, we knocked down its
expression in both cell lines using siRNA. qPCR confirmed the
successful depletion of PADI4 mRNA in the si-PADI4 groups, with
expression significantly reduced compared to the negative control
group (si-NC; P<0.0001) (Figure 8C). This knockdown led to a
marked reduction in cell proliferation, as evidenced by CCK-8
assay results, indicating that PADI4 contributes to cell growth in
LIHC (Figures 8D, E). Flow cytometry analysis further demonstrated
the effect of PADI4 knockdown on cell apoptosis. Cells with silenced
PADI4 exhibited a significant increase in apoptosis rate compared to
the control group (P<0.0001), suggesting that PADI4 may play a role
in inhibiting apoptotic processes in LIHC (Figures 8F, G).
Additionally, Transwell migration and invasion assays revealed that
PADI4 knockdown significantly reduced both cell migration and
invasion capacities. The number of cells migrating to the lower
chamber of the Transwell insert was considerably lower in the si-
PADI4 group compared to the si-NC group (P<0.0001), and
similarly, fewer cells invaded through the membrane (P<0.01)
(Figures 8H, I). Western blot analysis confirmed the molecular
effects of PADI4 knockdown at the protein level. As expected,
PADI4 protein expression was significantly reduced in the
si-PADI4 group (P<0.05). In addition, we observed changes in
apoptosis and epithelial-mesenchymal transition (EMT) markers:
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the pro-apoptotic protein c-caspase-3 was upregulated, while the
anti-apoptotic protein Bcl-2 was downregulated (P<0.05).
Furthermore, PADI4 knockdown resulted in an upregulation of
E-cadherin and a downregulation of Vimentin (P<0.05), indicating
that PADI4 depletion may inhibit the EMT process, further supporting
its role in tumor progression and metastasis (Figures 8], K).

Discussion

In this study, we identify three distinct neutrophil subgroups—
HAS, DTAS, and LAS—based on their arginine metabolism profiles
in the LIHC TME. Our analysis reveals that LAS neutrophils,
characterized by low arginine metabolism, are predominantly
enriched in tumor tissues and display a more undifferentiated,
immunosuppressive phenotype. In contrast, HAS neutrophils,
with higher arginine metabolism, are more differentiated and
primarily located in normal tissues, suggesting a potentially anti-
tumor role. Additionally, we identify ATP11B and PADI4 as key
genes involved in regulating neutrophil polarization, providing new
insights into the metabolic reprogramming that drives neutrophil
functional divergence in LIHC.

Arginine metabolism in LIHC presents a paradox: while tumor
cells actively accumulate arginine, the TME is functionally arginine-
deprived (37). Our scRNA-seq data reveal significantly lower
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Identification of key arginine metabolism-related genes regulating neutrophil function through machine learning. (A) Lollipop plot showing the
correlation between 39 intersecting genes and arginine metabolism scores. (B-H) Importance ranking of genes using seven machine learning
algorithms (Decision Trees, Random Forest, GBM, Boruta, ABESS, XGBoost, and LASSO). (I) Upset plot of the intersecting genes selected across the

seven machine learning algorithms.

arginine metabolism scores in tumor tissues—particularly in
hepatocytes, fibroblasts, and myeloid cells—consistent with the
repression of the urea cycle and the development of arginine
auxotrophy in tumors (38, 39). However, tumor cells themselves
utilize compensatory mechanisms, such as RBM39-mediated
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asparagine synthesis, to maintain high intracellular arginine levels
(40). This metabolic imbalance likely reflects the spatial
heterogeneity within the TME, where tumor cells sequester
arginine through the transporter SLC7AI, while stromal and
immune cells, particularly neutrophils in the LAS subgroup, face
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FIGURE 7

Multi-omics analysis of ATP11B and PADI4 expression and neutrophil polarization. (A—C) Expression patterns of ATP11B and PADI4 across different tissue
types, visualized using bubble plots (A), violin plots (B), and ROC curve analysis for tissue classification (C), all based on single-cell RNA sequencing data.
(D) Expression differences of ATP11B and PADI4 between neutrophil subgroups using bubble plots. (E, F) Expression levels of ATP11B and PADI4 in the
TCGA dataset, shown through violin plots and ROC curve analysis, with tissue type classification results. (G) UMAP plot showing the probability density
distribution of ATP11B and PADI4 expression specifically in neutrophils from the single-cell RNA sequencing data. (H) Communication networks between
neutrophils (stratified by PADI4 expression, PADI4+ vs. PADI4-) and other cell types. () Heatmaps illustrating outgoing (left) and incoming (right) signaling
patterns across different cell types, showing the differential signaling activity between PADI4+ and PADI4- neutrophils and their interactions with
surrounding cells. (J) Scatter plot comparing outgoing interaction strength (x-axis) versus incoming interaction strength (y-axis) for each cell type,
illustrating how neutrophil subgroups (PADI4+ and PADI4-) differ in their communication dynamics. (K, L) Bubble plots illustrating ligand-receptor
communication between PADI4+ and PADI4- neutrophils and other cell types.
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arginine depletion (41). This depletion drives immune suppression
and contributes to a pro-tumor environment.

Our study further underscores the crucial role of arginine
metabolism in neutrophil polarization within the LIHC TME. We
observed that neutrophils can be classified into three subgroups based
on their arginine metabolism profiles: HAS, DTAS, and LAS. LAS
neutrophils, characterized by low arginine metabolism, are
predominantly found in tumor tissues and exhibit an undifferentiated
phenotype, with reduced differentiation potential as indicated by lower
CytoTRACE scores. This aligns with observations that neutrophils in
the TME, similar to myeloid-derived suppressor cells (MDSCs), deplete
extracellular arginine to suppress T-cell function (42). These LAS
neutrophils likely contribute to immune suppression and tumor
progression by creating an environment conducive to immune evasion.

In contrast, HAS neutrophils, with higher arginine metabolism, are
more mature and enriched in normal tissues. These neutrophils likely
retain anti-tumor potential, as they show increased expression of
markers associated with pro-inflammatory responses, such as nitric
oxide (NO) production. NO is critical for their anti-tumor activity, as it
enhances phagocytosis and promotes NET formation (43). Thus, a
balance exists between the iNOS-driven pro-inflammatory responses of
HAS neutrophils and the ARG2-dependent immune suppression in
LAS neutrophils. Our data suggest that arginine metabolism serves as a
key determinant in neutrophil functional polarization, where
extracellular arginine availability influences whether neutrophils
adopt a pro-tumor or anti-tumor phenotype.

ATP11B and PADI4 emerge as key regulators of neutrophil
polarization in the LIHC TME. While the role of ATP11B in
neutrophil polarization has been less explored, there is evidence
suggesting that ATP11B may enhance T-cell function by
upregulating and externalizing S1IPR1 (44), a mechanism that could
similarly affect neutrophil function. PAD4, on the other hand, plays a
critical role in the formation of NETs (45), which have been implicated
in promoting liver cancer progression and metastasis. Together,
ATP11B and PADI4 not only serve as potential biomarkers for
neutrophil functional modulation but also highlight the complex
interplay between metabolic reprogramming and immune
polarization in the TME. Their differential expression in neutrophil
subgroups provides new insights into how metabolic pathways shape
immune cell behavior, opening up novel therapeutic strategies aimed at
reprogramming the immune microenvironment for more effective
cancer treatments.

Limitations and future directions

Despite the valuable insights from this study, several limitations
should be addressed in future research. First, our analysis relied on
publicly available datasets, which may not fully reflect the complexity of
individual patient tumor microenvironments. Validation using clinical
samples or patient-derived models is needed. Second, while we focused
on arginine metabolism, other metabolic pathways and immune cell
interactions in the tumor microenvironment remain unexplored.
Expanding these investigations will provide a more comprehensive
understanding of tumor progression. Although we observed that
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arginine metabolism influences neutrophil phenotypes, our study
does not fully clarify how it affects neutrophil function, warranting
further research. Additionally, sScRNA-seq has limitations in detecting
low-abundance transcripts, which may affect the sensitivity of
identifying key regulatory molecules. Future studies incorporating
advanced technologies or complementary methods may help address
this limitation. Finally, longitudinal studies and clinical trials are crucial
to evaluate the potential of biomarkers like PADI4 in predicting disease
progression and therapeutic response in LIHC.

Conclusion

In conclusion, our study highlights the critical role of arginine
metabolism in neutrophil polarization within the LIHC TME. By
influencing neutrophil differentiation and immune function,
metabolic reprogramming serves as a key regulatory mechanism
in tumor progression and immune evasion. Our findings suggest
that targeting arginine metabolism could offer a promising
therapeutic strategy to modulate neutrophil function and improve
cancer treatment outcomes. Further exploration of metabolic
pathways in neutrophils will be essential to optimize strategies
aimed at overcoming the immunosuppressive TME and enhancing
the efficacy of cancer therapies.
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