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Background: Liver hepatocellular carcinoma (LIHC) is a leading cause of cancer-

related mortality, with an immunosuppressive tumor microenvironment (TME)

contributing to therapeutic resistance. Although neutrophils are recognized as

key regulators of LIHC progression, their functional heterogeneity and metabolic

drivers are not yet fully understood.

Methods: We integrated bulk RNA sequencing (RNA-seq) data from The Cancer

Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database

(GSE39791) alongside scRNA-seq data from GSE149614 and GSE290925.

Neutrophils were annotated based on specific marker genes (FCGR3B, CSF3R)

and classified into three metabolic states: high arginine state (HAS), intermediate

arginine state (DTAS), and low arginine state (LAS) using arginine metabolism-

related gene sets. Differentiation trajectories were reconstructed via CytoTRACE

and monocle2. Intercellular communication was analyzed using CellChat, while

machine learning, incorporating seven different algorithms, was applied to

identify key regulatory genes.

Results: scRNA-seq analysis revealed three distinct neutrophil subgroups: high

(HAS), intermediate (DTAS), and low (LAS) arginine metabolism states. The

proportion of LAS neutrophils was significantly enriched in tumor tissues

compared to normal tissues (p < 0.001). Trajectory analysis indicated that LAS

neutrophils exhibited a less differentiated state. From this landscape, ATP11B and

PADI4 were identified as key genes, with PADI4 expression being approximately

3-fold higher in HAS compared to LAS neutrophils. Functional studies

demonstrated that silencing PADI4 in LIHC cell lines inhibited cell proliferation

by approximately 50% at 96 hours, increased apoptosis by 2-fold, and reduced

cell invasion by 50%.

Conclusions: Arginine metabolism shapes neutrophil polarization in the LIHC

TME. Targeting metabolic pathways may provide new therapeutic strategies to

modulate the immune landscape and improve patient outcomes.
KEYWORDS

hepatocellular carcinoma, tumormicroenvironment, neutrophil heterogeneity, arginine
metabolism, single-cell transcriptomics, PADI4
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Introduction

Liver hepatocellular carcinoma (LIHC) is the sixth most common

cancer globally and the third leading cause of cancer-related mortality

(1). It typically arises in the setting of chronic liver diseases, with

cirrhosis present in over 80% of cases (2). Key risk factors include

chronic hepatitis B and C infections, alcoholic liver disease, metabolic

syndrome, and exposure to aflatoxins (3, 4). These factors contribute

to liver inflammation and fibrosis, both of which are critical precursors

to tumorigenesis (5). Despite advancements in diagnostic imaging,

such as multiphase CT, MRI, and serum tumor markers like alpha-

fetoprotein (AFP), early detection of LIHC remains challenging, with

many cases being diagnosed at advanced stages (6, 7). While early-

stage LIHC can be treated effectively through surgical resection,

transplantation, or ablation, survival rates for advanced stages

remain poor, primarily due to the limited efficacy of current

therapies, including immune checkpoint inhibitors and multi-kinase

inhibitors (8–10). This is largely attributed to the immunosuppressive

and fibrotic TME, which impedes effective immune responses and

treatment outcomes (11, 12). Therefore, gaining a deeper

understanding of the TME and the mechanisms underlying tumor

progression is crucial for the development of more effective

therapeutic strategies.

Chronic inflammation is a hallmark of all etiologies of

chronic liver disease and plays a pivotal role in tumor initiation,

progression, and metastasis (13). The immune microenvironment

of the liver is uniquely tolerogenic due to the constant influx of

inflammatory mediators from the portal circulation (14).

This environment fosters the development of pre-neoplastic

lesions that evade immune surveillance, ultimately leading to

hepatocellular carcinoma (HCC) (15). Neutrophils, as the first

responders to infection, inflammation, and tissue damage, are

essential mediators of the innate immune response (16). They

perform antimicrobial and inflammatory functions through

mechanisms such as phagocytosis, degranulation, release of

neutrophil extracellular traps (NETs), and antigen presentation

(17, 18). Neutrophils are also key contributors to chronic

inflammation and represent a significant component of the

immune infiltrate in both chronic liver disease and HCC (19, 20).

Tumor-associated neutrophils (TANs) exhibit remarkable

functional plasticity, adapting to the metabolic and inflammatory

cues present in the TME (21, 22). Critically, this functional plasticity

is underpinned by profound metabolic reprogramming, which

remains a relatively unexplored layer of regulation in LIHC.

The complexity of the immune system is not only reflected in its

cellular diversity and intricate signaling networks but also in its close

integration with metabolic processes (23). Immune responses require

significant metabolic reprogramming to support cell proliferation,

differentiation, and effector functions (24). Therefore, the metabolic

microenvironment of the liver profoundly influences immune cell

activity and functionality (25). Arginine (Arg), a semi-essential amino

acid, plays a particularly important role during immune responses

(26). In immune cells, Arg is metabolized by arginase-1 (Arg1) or

arginase-2 (Arg2) to produce urea and L-ornithine (Orn), or it is

utilized for protein biosynthesis (27). Nitric oxide synthases use Arg
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to generate nitric oxide, a key antimicrobial and signaling molecule

(28). Arginase-1 activity has long been recognized as an important

immunoregulatory mechanism, particularly in M2 macrophages and

MDSCs within the tumor context (29). In neutrophils, arginine

metabolism is altered, with a marked upregulation of ARG1 (30).

This upregulation is driven by the TME and is particularly prominent

in the formation of MDSCs, which are key mediators of immune

suppression in tumors (31). Moreover, ARG1 activity is linked to the

formation of NETs, which further promote immune evasion and

tumor progression (32).

Neutrophils can be classified into two main phenotypes: the

antitumor N1 phenotype and the protumor N2 phenotype. N1

neutrophils directly kill tumor cells via the production of reactive

oxygen species (ROS) and reactive nitrogen species (RNS), whereas

N2 neutrophils promote tumor progression by facilitating

angiogenesis, metastasis, and immune suppression (33).

Additionally, polymorphonuclear myeloid-derived suppressor cells

(PMN-MDSCs), a subset of immature neutrophils, contribute to

tumor progression through immune suppression, tissue remodeling,

and angiogenesis (34, 35). Recent advances in scRNA-seq have

unveiled the considerable heterogeneity of TANs, revealing distinct

transcriptomic signatures associated with disease progression and

patient prognosis (36). Understanding the molecular mechanisms

governing neutrophil polarization and reprogramming in the TME is

crucial for identifying new therapeutic strategies that can modulate

the immune landscape of LIHC.

This study aims to explore the role of arginine metabolism in

neutrophil polarization within the LIHC TME. While previous

single-cell studies have described the heterogeneity of TANs, the

metabolic drivers underlying this diversity remain poorly

understood. Here, we leverage scRNA-seq not merely to catalog

cell states, but to dissect how arginine metabolism reprograms

neutrophil differentiation, functional plasticity, and their

contribution to tumor progression. Ultimately, our research seeks

to identify novel biomarkers and therapeutic targets that can

modulate the immune landscape of LIHC, with a focus on

improving patient outcomes through targeted metabolic and

immune interventions.
Materials and methods

Data acquisition and processing

Transcriptomic data for LIHC were obtained from the Xena

database (https://xena.ucsc.edu/), comprising RNA expression

profiles and corresponding clinical data for 374 tumor samples

and 50 adjacent normal samples. The data were normalized to

Transcripts Per Million (TPM) and log2-transformed for

subsequent analysis. Additional validation was performed using

RNA data from the GEO database (https://www.ncbi.nlm.nih.gov/

gds/?term=) (GSE39791), which includes 72 tumor and 72 adjacent

normal samples.

Single-cell RNA sequencing datasets were retrieved from GEO

database (GSE149614 and GSE290925), including 8 adjacent
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normal and 12 tumor samples. Data processing and analysis were

performed using R, and Seurat was employed for quality control,

normalization, and clustering. Cells were filtered based on the

following criteria: mitochondrial gene content <20%, blood cell

content <3%. To exclude potential doublets and multiplets, we

enforced an upper threshold for both UMI counts (20,000) and the

number of genes detected (6,000). A lower threshold (UMI > 200,

genes > 200) was applied to remove empty droplets and low-quality

cells. Normalization was performed using NormalizeData, and

high-variable genes were identified using FindVariableFeatures

(top 2,000 genes). Batch effect correction was implemented using

Harmony. For dimensionality reduction and clustering, UMAP and

the Louvain algorithm were applied, respectively. Differential gene

expression between clusters was identified using FindAllMarkers

with criteria of p-value <0.05, log2 fold change >0.25, and

expression ratio >0.1.

Arginine metabolism-related gene sets were obtained from the

Molecular Signatures Database (MsigDB), specifically the

GOBP_ARGININE_METABOLIC_PROCESS.v2025.1.Hs.gmt file

(https://www.gsea-msigdb.org/gsea/msigdb/human/geneset/

GOBP_ARGININE_METABOLIC_PROCESS.html). This gene set

was used to calculate arginine metabolism scores for the single-

cell data.

All the data in this study were sourced from a public database

and no additional ethical approval was required. This study adhered

to relevant regulations in the acquisition and processing of data.
Cell annotation

Cells were annotated based on canonical marker genes for

specific cell types. Hepatocytes were identified by markers

EPCAM, KRT18, KRT19, and ALB; fibroblasts by DCN, THY1,

COL1A1, and COL1A2; endothelial cells by PECAM1, CLDN5,

FLT1, and RAMP2; T cells by CD3D, CD3E, CD3G, and TRAC; NK

cells by NKG7, GNLY, NCAM1, and KLRD1; B cells by CD79A,

IGHM, IGHG3, and IGHA2; plasma cells by JCHAIN; myeloid cells

by LYZ, MARCO, CD68, and FCGR3A; mast cells by KIT, MS4A2,

GATA2; and neutrophils by FCGR3B and CSF3R. UMAP and

bubble plots were generated to visualize the expression of these

markers across the dataset.
Neutrophil subgroup analysis

Neutrophils were isolated from the dataset based on the expression

of neutrophil-specific marker genes (“FCGR3B”, “CSF3R”) using the

Seurat subset function. The arginine metabolism scores for each

neutrophil were calculated using the UCell algorithm, based on the

GOBP_ARGININE_METABOLIC_PROCESS gene set. The

neutrophil population was then divided into three distinct subgroups

based on their arginine metabolism scores: HAS, DTAS, and LAS.

These cutoff values were determined empirically by identifying

significant points of change in the distribution of arginine

metabolism scores.
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CytoTRACE analysis

To assess the differentiation potential of neutrophil subgroups,

the CytoTRACE method was applied. CytoTRACE is a

computational tool that estimates the differentiation potential of

single cells based on gene expression data. For each neutrophil

subgroup, the CytoTRACE score was calculated, which reflects the

relative differentiation potential of individual cells.
MiloR and Ro/e analysis

To quantitatively assess the spatial distribution and differential

abundance of neutrophil subgroups in tumor and adjacent normal

tissues, we performed MiloR and Ro/e analyses on the single-

cell data.

MiloR analysis was employed to identify statistically significant

differences in the local cellular neighborhoods of neutrophil

subgroups between conditions (tumor vs. normal). Briefly, we

first constructed a k-nearest neighbor (KNN) graph of all cells in

the integrated dataset. The value of k was set to 50 to define a

sufficiently large local neighborhood. Neighborhoods were then

sampled by randomly selecting 100 representative index cells. For

each neutrophil subgroup (HAS, DTAS, LAS), we tested for

differential abundance between tumor and normal tissues within

these neighborhoods using a negative binomial generalized linear

model (GLM). A false discovery rate (FDR) of 5% was applied to

correct for multiple hypothesis testing.

Ro/e (Ratio of observed to expected) analysis was used to quantify

the enrichment or depletion of cell type interactions beyond random

chance. We first constructed a contingency table of cell type counts

across the KNN graph (with k=50). The “observed” count was the

actual number of edges between a neutrophil subgroup and every

other cell type. The “expected” count was calculated based on the

product of their overall abundances, representing the number of

edges expected if cell types were randomly distributed. The Ro/e value

was then calculated as Ro/e = Observed/Expected. An Ro/e value >

1.1 was interpreted as a significant attraction (enrichment) between

two cell types, while a value < 0.9 was interpreted as a significant

repulsion (depletion). These analyses were performed separately for

the tumor and normal tissue microenvironments to reveal context-

specific interaction patterns.
Pagwas analysis

To further investigate the functional role of neutrophil

subgroups in the context of arginine metabolism, Pagwas analysis

was performed. Pagwas is a pathway-based analysis tool that

integrates gene expression profiles with pathway-specific scores,

allowing for the exploration of biological pathways associated with

arginine metabolism in different neutrophil subgroups. The analysis

evaluated the relationship between arginine metabolism scores and

TRS scores, offering insights into the activation of key biological

pathways in neutrophils with varying arginine metabolic states.
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Pseudotime analysis

Pseudotime analysis of neutrophil subgroups was performed

using the monocle2 package. The DDRTree algorithm was used for

dimensionality reduction to infer the differentiation trajectory of

neutrophils. Default parameters were used for all other steps, and

the resulting pseudotime trajectories were visualized to assess the

differentiation states of neutrophils from HAS, DTAS, and LAS.
Cell-cell communication analysis

Cell-cell communication between neutrophils and other cell types

was analyzed using the CellChat package. Normalized gene expression

matrices were imported into CellChat to construct the communication

networks. Overexpressed genes and interactions were identified using

identifyOverExpressedGenes and identifyOverExpressedInteraction

functions. Potential ligand-receptor interactions were predicted using

computeCommunProb and filterCommunication. Communication

networks were visualized using the aggregateNet function.
Gene set scoring

Arginine metabolism scores for individual neutrophils were

calculated using four different methods: AUCell, UCell,

AddModuleScore, and Singscore. These methods were employed

to compute a comprehensive metabolism score for each cell, which

was used to categorize neutrophils into the three subgroups (HAS,

DTAS, and LAS). These scores were correlated with functional

pathways to assess potential biological impacts.
Machine learning-based gene identification

To identify key genes associated with neutrophil polarization

influenced by arginine metabolism, seven machine learning

algorithms were applied: Decision Trees, Random Forests, GBM,

Boruta, ABESS, XGBoost, and LASSO. Results from all models were

integrated using Upset analysis, identifying genes consistently

selected across algorithms.
Clinical sample collection and processing

Primary tumor tissues and matched adjacent normal tissues (≥3

cm from the tumor margin) were collected from five liver

hepatocellular carcinoma (LIHC) patients who underwent

surgical resection at Sichuan Provincial People’s Hospital between

May 2022 and April 2024. Fresh samples were snap-frozen in liquid

nitrogen and stored at −80 °C for subsequent analysis. The study

was approved by the Institutional Ethics Committee of Sichuan

Provincial People’s Hospital, and written informed consent was

obtained from all participants.
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RNA extraction and qRT-PCR analysis

Total RNA was extracted from tissue samples using TRIzol

reagent (Invitrogen, USA) following the manufacturer’s protocol.

RNA concentration and purity were assessed with a NanoDrop

2000 spectrophotometer (Thermo Fisher Scientific, USA).

Complementary DNA (cDNA) was synthesized using the

PrimeScript RT Reagent Kit (Takara, Japan). qRT-PCR was

performed on a QuantStudio 5 Real-Time PCR System (Applied

Biosystems, USA) with SYBR Premix Ex Taq (Takara, Japan).

PADI4 mRNA expression was normalized to GAPDH using the

2^−DDCt method, and reactions were conducted in triplicate.
Cell culture and characterization

Human liver cancer cell lines (HuH-7, Hep G2, SNU-886, Hep

3B2.1-7, SNU-387) and the non-tumorigenic human liver cell line

LO2 were obtained from authenticated cell banks and verified by

STR profiling. All cell lines were mycoplasma-free. Cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM; Gibco,

USA) with 10% fetal bovine serum (FBS; Gibco) and 1% penicillin-

streptomycin, maintained at 37 °C in a 5% CO2 incubator. When

cells reached 80% confluency, total RNA was extracted and PADI4

mRNA levels were assessed by qRT-PCR in triplicate using

independent biological replicates.
siRNA transfection

siRNA targeting PADI4 and a non-targeting control siRNA

were synthesized and dissolved in nuclease-free water at a final

concentration of 10 mM. SNU-886 and SNU-387 cells were seeded

in 6-well plates (2 × 105 cells/well) and transfected with 50 nM

siRNA and 5 mL of Lipofectamine 3000 reagent (Invitrogen, USA)

in Opti-MEM medium (Gibco, USA). After 6 hours, the

transfection medium was replaced with complete growth

medium. RNA was harvested 48 hours post-transfection, and

knockdown efficiency was confirmed by qRT-PCR, showing a

>70% reduction in PADI4 expression (p < 0.01, Student’s t-test).

All experiments were independently repeated three times.
Cell proliferation assay (CCK-8)

Post-transfection, cells were seeded in 96-well plates (3 × 10³

cells/well) in quintuplicate. Cell proliferation was assessed at 24, 48,

72, and 96 hours post-transfection using the CCK-8 assay (Dojindo,

Japan). At each time point, 10 mL of CCK-8 reagent was added to

each well and incubated for 2 hours at 37 °C. Absorbance at 450 nm

was measured using a Synergy H1 microplate reader (BioTek,

USA). Relative cell viability was calculated by normalizing

absorbance to the 0-hour baseline, and proliferation curves

were plotted.
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Apoptosis assay (flow cytometry)

Apoptosis was analyzed 48 hours post-transfection using the

Annexin V-FITC/PI Apoptosis Detection Kit (BD Biosciences,

USA). Cells were collected, washed with cold PBS, and stained

according to the manufacturer’s protocol. Flow cytometry was

performed using a BD FACSVerse flow cytometer (BD

Biosciences), and data were analyzed with FlowJo software

(version 10). The proportions of early apoptotic (Annexin V+/PI-)

and late apoptotic (Annexin V+/PI+) cells were quantified.
Migration and invasion assays

Cell migration and invasion were assessed using 24-well Transwell

chambers with 8 mm pore-size membranes (Corning, USA). For

migration assays, 5 × 104 cells in 200 mL serum-free DMEM were

added to the upper chamber, and 600 mL DMEM supplemented with

10% FBS was placed in the lower chamber. After 24 hours, non-

migrated cells were removed with a cotton swab, and migrated cells

were fixed with 4% paraformaldehyde, stained with 0.1% crystal violet,

and counted in five randomly selected fields under a microscope.

For invasion assays, Transwell membranes were pre-coated with

Matrigel (Corning, USA) diluted 1:8 in DMEM, incubated for 4 hours at

37 °C, and then subjected to the same procedure as the migration assay.
Western blotting

Total protein was extracted using RIPA buffer (Beyotime, China)

supplemented with protease inhibitors (Roche, Switzerland). Protein

concentrations were measured using a BCA protein assay kit

(Thermo Fisher Scientific, USA). Equal amounts of protein (30 mg)
were separated by 10% SDS-PAGE, transferred to PVDF membranes

(Millipore, USA), and blocked with 5% non-fat milk in TBST for 1

hour. Membranes were incubated overnight at 4 °C with primary

antibodies: anti-cleaved Caspase-3 (1:1000, #9664), anti-E-cadherin

(1:2000, #3195), anti-Bcl-2 (1:1000, #15071), anti-Vimentin (1:1000,

#5741), and anti-b-actin (1:5000, #4970) (all from Cell Signaling

Technology, USA). After washing, membranes were incubated with

HRP-conjugated secondary antibodies (1:5000) for 1 hour. Protein

bands were visualized using enhanced chemiluminescence (ECL,

Millipore) and quantified using ImageJ software.
Statistical analysis

All statistical analyses were conducted using R (version 4.1.3). The

Pearson correlation coefficient was calculated to assess relationships

between continuous variables. The Chi-squared test was applied to

categorical variables, and the Wilcoxon rank-sum test was used for

comparisons of continuous variables. Survival analyses were performed

using the survival and survminer packages, with optimal cutoff values

determined using survminer. Kaplan-Meier curves and Cox regression

analysis were used to assess the prognostic significance of arginine
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metabolism states and identified genes. Statistical significance was set at

a P value of less than 0.05. In figures, asterisks denote statistical

significance as follows: *P < 0.05; **P < 0.01; ***P < 0.001; ****P <

0.0001; "ns" indicates not significant (P ≥ 0.05).
Results

Characterization of the tumor
microenvironment in LIHC using scRNA-
seq

To investigate the cellular landscape of LIHC, we performed

scRNA-seq analysis on 8 adjacent normal and 12 tumor samples.

After quality control and normalization, a total of 160,566 cells across

29 clusters were identified. Cell type annotation was performed based

on canonical marker genes, resulting in the classification of cells into

nine major types: hepatocytes, fibroblasts, endothelial cells, T cells, NK

cells, B cells, plasma cells, myeloid cells, and neutrophils (Figures 1A,

B). The expression of specific cell type markers was visualized using

UMAP (Figures 1C, D), confirming accurate cell type identification.
Altered arginine metabolism in the tumor
microenvironment of LIHC

To explore the role of arginine metabolism in LIHC, we first

calculated the arginine metabolism scores for both bulk RNA-seq and

scRNA-seq datasets using the ssGSEA algorithm. In the bulk datasets,

we observed a significant decrease in arginine metabolism scores in

tumor tissues compared to adjacent normal tissues (Figures 2A, B).

Next, we calculated the arginine metabolism scores for individual cells

within the scRNA-seq dataset using four different methods: AUCell,

UCell, AddModuleScore, and Singscore. While no significant

differences were observed between the scores of different cell

subtypes (Figure 2C), there were notable differences in the scores of

specific cell subpopulations between tumor and adjacent normal

tissues. In tumor tissues, hepatocytes, fibroblasts, endothelial cells,

NK cells, plasma cells, and myeloid cells exhibited significantly lower

arginine metabolism scores compared to adjacent normal tissues

(Figure 2D). Among all cell types, hepatocytes displayed the highest

arginine metabolism scores, both in tumor and normal tissues

(Figures 2E–G). These findings were consistent across all cell types,

highlighting the prominent role of hepatocytes in arginine metabolism

in the liver cancer microenvironment. Similar results were observed in

spatial transcriptomics data, further validating the robustness of these

findings (Figure 2H).
Impact of arginine metabolism on
neutrophil subgroups and their
differentiation in LIHC

Although no significant differences were observed in the arginine

metabolism scores of neutrophils between tumor and adjacent normal
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tissues, neutrophils are known to be highly heterogeneous cells, and

their polarization can be influenced by metabolic states. To further

investigate this, neutrophils were isolated from the scRNA-seq dataset.

Arginine metabolism scores for individual neutrophils were calculated
Frontiers in Immunology 06
using the UCell algorithm. Neutrophils were then classified into three

distinct subgroups based on their arginine metabolism scores: HAS,

DTAS, and LAS (Figures 3A–C). While no obvious differences were

observed across tumor and normal tissues at the overall neutrophil
FIGURE 1

Single-cell characterization of LIHC cellular landscape. (A, B) UMAP plots showing cell clustering and annotation results, identifying 31 clusters with 9
major cell types, including hepatocytes, fibroblasts, endothelial cells, T/NK cells, B cells, plasma cells, myeloid cells, mast cells, and neutrophils. (C, D)
Expression of canonical cell markers across different cell types, visualized by bubble plot and UMAP, indicating the expression levels of specific
markers for each cell type.
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FIGURE 2

Functional analysis of arginine metabolism in LIHC. (A, B) Rain cloud plots showing significant differences in arginine metabolism scores between
tumor and adjacent normal tissues in two bulk datasets (TCGA and GSE39791). (C) Violin plots showing arginine metabolism scores calculated using
four different algorithms (AUCell, UCell, AddModuleScore, and Singscore) in single-cell data. (D) Box plots comparing arginine metabolism scores
between tumor and adjacent normal tissues for each cell type, calculated using UCell. (E-G) UMAP density, UMAP, and probability density heatmaps
illustrating the distribution of arginine metabolism scores across single-cell data. (H) HE and arginine metabolism score heatmaps in spatial
transcriptomics data, validating the expression patterns of arginine metabolism in tissue samples. Asterisks denote statistical significance as follows:
**P < 0.01; ****P < 0.0001; "ns" indicates not significant (P ≥ 0.05).
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level, the classification into subgroups revealed significant differences in

functional properties. To assess the differentiation potential of each

subgroup, we applied CytoTRACE, a software tool for predicting cell

differentiation trajectories. The results indicated that neutrophils in the

LAS subgroup had the lowest CytoTRACE scores, suggesting a more

undifferentiated state compared to the HAS and DTAS subgroups

(Figures 3D, E). This finding suggests that neutrophils in the LAS state

are less differentiated and may represent a more “naïve” phenotype,

whereas neutrophils in the HAS state may be more functionally

mature. Further analysis of the distribution of arginine metabolism

scores and differentiation potential within neutrophil subgroups

showed a significant positive correlation between arginine

metabolism scores and CytoTRACE scores (Figures 3F, G). We also

performed monocle2 trajectory analysis to infer the differentiation

pathways of neutrophils. The results revealed distinct trajectories for

the neutrophil subgroups, with HAS neutrophils occupying an earlier

point in the differentiation trajectory, while LAS neutrophils were

positioned later (Figure 3H). To explore the distribution of these

subgroups across different tissue types, we performed MiloR and Ro/

e analyses. These analyses showed that HAS neutrophils were enriched

in normal tissues, while LAS neutrophils were more prominent in

tumor tissues (Figures 3I–K), highlighting the role of arginine

metabolism in neutrophil polarization within the tumor

microenvironment. Finally, Pagwas analysis showed a significant

positive correlation between arginine metabolism scores and TRS

scores (Figures 3L, M), suggesting that arginine metabolism

influences neutrophil polarization and may contribute to the

funct iona l d i fferences observed between tumor and

normal neutrophils.
Distinct cell-cell interactions and pathway
enrichments in neutrophil subgroups of
LIHC

To explore the potential communication between neutrophils

and other cell types within the tumor microenvironment, we used

the CellChat package to construct a cell-cell interaction network.

This analysis revealed notable differences in communication

patterns between the three neutrophil subgroups (HAS, DTAS,

and LAS) and other cell types (Figures 4A, B). Compared to HAS

and LAS, DTAS neutrophils received significantly more incoming

signals from surrounding cells (Figure 4C). In terms of signaling, all

three neutrophil subgroups released common signals such as CXCL,

IL1, VISFATIN, and OSM, while also receiving a shared set of

signals including ANNEXIN, CXCL, and IL1 (Figures 4D, E).

Notably, DTAS neutrophils also received SAA signals, which were

absent in the HAS and LAS subgroups (Figures 4D, E).

Additionally, strong communication was observed between

neutrophils and endothelial cells, specifically through the

NAMPT-INSR interaction, a key signaling axis in tumor

vascularization (Figure 4F). Interestingly, LAS neutrophils

exhibited a unique interaction with other cell types through

SPP1-CD44 signaling, which was not seen in HAS or DTAS

neutrophils (Figure 4F). We also examined pathway enrichment
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using 50 hallmark pathways to identify differential activity between

the HAS and LAS subgroups. The results showed that HAS

neutrophils exhibited higher activity in pathways such as PI3K-

AKT-MTOR signaling, TGF-beta signaling, and several others

associated with immune responses and cell survival (Figure 4G).

In contrast, LAS neutrophils displayed elevated activity in the KRAS

signaling pathway (Figure 4G). Furthermore, using KEGG

metabolic pathways, we observed that DTAS neutrophils

exhibited more active metabolic signaling, suggesting that they

may be more metabolically active compared to the other two

subgroups (Figure 4H).
Gene module profiling and differential
expression in neutrophil subgroups

To investigate the gene modules associated with neutrophil

subgroups, hdWGCNA was used for weighted gene co-expression

network analysis. The power value was set to 7 based on the scale-

free topology criterion (Figure 5A). This analysis identified 10

distinct gene modules, which were subsequently clustered using

hierarchical clustering, and the resulting dendrogram was visualized

(Figures 5B, C). The expression levels of these gene modules were

assessed in the three neutrophil subgroups. Notably, DTAS

neutrophils exhibited high module scores across all identified

gene modules, indicating a more uniformly active gene expression

profile (Figure 5D). In contrast, when comparing HAS and LAS

neutrophils, specific gene modules showed differential expression.

Pink, brown, green, and mengtA modules were expressed at

significantly higher levels in HAS neutrophils compared to LAS

neutrophils (Figure 5D). Differential gene expression analysis

between HAS and LAS neutrophils revealed several key genes that

were more highly expressed in HAS neutrophils (Figure 5E). To

further investigate the functional implications of these findings,

Upset analysis was performed to identify the intersection of HAS-

specific genes and the top four gene modules associated with HAS

neutrophils. This analysis revealed a set of core genes that are highly

expressed in HAS neutrophils and are linked to the four identified

gene modules (Figure 5F).
Predictive gene identification for
neutrophil polarization linked to arginine
metabolism

From the 64 genes identified through the intersection of

hdWGCNA modules and differential gene expression analysis, we

further filtered for genes most significantly associated with arginine

metabolism. A total of 39 genes were selected based on their

correlation with arginine metabolism scores (Figure 6A). To

identify key predictive genes, we applied seven machine learning

algorithms: Decision Trees, Random Forests, GBM, Boruta, ABESS,

XGBoost, and LASSO (Figures 6B–H). Each algorithm ranked the

importance of genes in relation to arginine metabolism. An Upset

analysis was then performed on the gene sets identified by each
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FIGURE 3

Neutrophil subgroup analysis based on arginine metabolism. (A–C) UMAP plots of neutrophils, showing arginine metabolism scores and cell
grouping into HAS, DTAS, and LAS. (D, E) CytoTRACE-predicted differentiation potential scatter plots and rain cloud plots comparing differentiation
across the three neutrophil groups. (F, G) FeaturePlot of differentiation potential and arginine metabolism score, showing a positive correlation
between the two parameters. (H) Monocle2 trajectory analysis UMAP plot of neutrophils, visualizing differentiation trajectories based on arginine
metabolism scores. (I–K) MiloR and Ro/e analyses, showing spatial distribution and enrichment of neutrophil subgroups in tumor versus adjacent
normal tissues. (L, M) scPagwas analysis showing the correlation between arginine metabolism scores and TRS scores.
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algorithm, revealing five intersecting genes that were consistently

identified across all algorithms (Figure 6I).
ATP11B and PADI4 as potential biomarkers

Among the five intersecting genes identified, ATP11B and PADI4

have been extensively reported for their roles in tumors. To explore

their expression dynamics, we first analyzed the expression of these

genes in tumor and adjacent normal tissues using single-cell RNA

sequencing data. Our results revealed a significant upregulation of both

genes in tumor tissues (Figures 7A–C), with the lowest expression

observed in the low arginine state (LAS) neutrophil subgroup

(Figure 7D). However, in the TCGA dataset, the expression of these

genes in tumor tissues was significantly decreased (Figures 7E, F). This

discrepancy suggests that bulk tissue analysis may not fully capture the

nuanced expression changes of these genes in distinct cellular contexts.

By examining scRNA-seq data, we observed considerable variation in

the expression of ATP11B and PADI4 within neutrophil populations,

highlighting the importance of single-cell resolution for understanding

these changes (Figure 7G). Using PADI4 expression as a marker, we

separated neutrophils into PADI4+ and PADI4- subgroups for further

analysis. We performed cell-cell communication analysis using the
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CellChat package and identified significant differences in the

communication networks between the two subgroups (Figures 7H, I).

Specifically, PADI4+ neutrophils received more external signaling

compared to PADI4- neutrophils (Figure 7J). Additionally,

communication pathways between PADI4+ neutrophils and other

cell types showed distinct patterns. PADI4+ neutrophils transmitted

stronger ANXA1 − FPR1 signals to myeloid cells, whereas PADI4-

neutrophils were more involved in transmitting CCL3 − CCR1 signals

to myeloid cells (Figure 7K). Furthermore, significant differences were

observed in signal reception between the two subgroups, especially in

their interaction with mast cells (Figure 7L).
Functional validation of PADI4 in LIHC cell
lines

To further investigate the role of PADI4 in LIHC, we first

analyzed its expression in tumor and adjacent normal tissues from

clinical LIHC patient samples. qPCR analysis revealed that PADI4

expression was significantly elevated in tumor tissues compared to

adjacent normal tissues (Figure 8A). Subsequently, we examined

PADI4 expression in various liver cell lines and found that SNU 886

and SNU387 cells exhibited notably higher PADI4 levels compared to
FIGURE 4

Intercellular communication and functional differences in neutrophil subgroups. (A) Communication networks between cell types, with the line thickness on
the left representing the count of interactions and the line thickness on the right representing communication strength (weight). (B) Heatmaps illustrating the
outgoing (left) and incoming (right) signaling patterns across different cell types. (C) Scatter plot comparing outgoing interaction strength (x-axis) versus
incoming interaction strength (y-axis) for each cell type. (D, E) Bubble plots showing the incoming and outgoing communication of each cell type in various
signaling pathways, highlighting key intercellular interactions. (F) Communication bubble plot comparing neutrophils (HAS, DTAS, LAS) with other cell types,
showing differences in signaling interactions. (G) Bar plots illustrating functional differences in 50 hallmark pathways between HAS and LAS neutrophils. (H)
Bubble plot showing the expression of metabolic-related pathways from the KEGG database in HAS, DTAS, and LAS neutrophils.
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the normal liver cell line, LO2 (Figure 8B). Based on these findings,

we selected SNU 886 and SNU387 cells for further functional studies.

To assess the functional impact of PADI4, we knocked down its

expression in both cell lines using siRNA. qPCR confirmed the

successful depletion of PADI4 mRNA in the si-PADI4 groups, with

expression significantly reduced compared to the negative control

group (si-NC; P<0.0001) (Figure 8C). This knockdown led to a

marked reduction in cell proliferation, as evidenced by CCK-8

assay results, indicating that PADI4 contributes to cell growth in

LIHC (Figures 8D, E). Flow cytometry analysis further demonstrated

the effect of PADI4 knockdown on cell apoptosis. Cells with silenced

PADI4 exhibited a significant increase in apoptosis rate compared to

the control group (P<0.0001), suggesting that PADI4 may play a role

in inhibiting apoptotic processes in LIHC (Figures 8F, G).

Additionally, Transwell migration and invasion assays revealed that

PADI4 knockdown significantly reduced both cell migration and

invasion capacities. The number of cells migrating to the lower

chamber of the Transwell insert was considerably lower in the si-

PADI4 group compared to the si-NC group (P<0.0001), and

similarly, fewer cells invaded through the membrane (P<0.01)

(Figures 8H, I). Western blot analysis confirmed the molecular

effects of PADI4 knockdown at the protein level. As expected,

PADI4 protein expression was significantly reduced in the

si-PADI4 group (P<0.05). In addition, we observed changes in

apoptosis and epithelial-mesenchymal transition (EMT) markers:
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the pro-apoptotic protein c-caspase-3 was upregulated, while the

anti-apoptotic protein Bcl-2 was downregulated (P<0.05).

Furthermore, PADI4 knockdown resulted in an upregulation of

E-cadherin and a downregulation of Vimentin (P<0.05), indicating

that PADI4 depletion may inhibit the EMT process, further supporting

its role in tumor progression and metastasis (Figures 8J, K).
Discussion

In this study, we identify three distinct neutrophil subgroups—

HAS, DTAS, and LAS—based on their arginine metabolism profiles

in the LIHC TME. Our analysis reveals that LAS neutrophils,

characterized by low arginine metabolism, are predominantly

enriched in tumor tissues and display a more undifferentiated,

immunosuppressive phenotype. In contrast, HAS neutrophils,

with higher arginine metabolism, are more differentiated and

primarily located in normal tissues, suggesting a potentially anti-

tumor role. Additionally, we identify ATP11B and PADI4 as key

genes involved in regulating neutrophil polarization, providing new

insights into the metabolic reprogramming that drives neutrophil

functional divergence in LIHC.

Arginine metabolism in LIHC presents a paradox: while tumor

cells actively accumulate arginine, the TME is functionally arginine-

deprived (37). Our scRNA-seq data reveal significantly lower
FIGURE 5

Gene module analysis in neutrophil subgroups. (A) Scatter plot selecting power as 7 for the hdWGCNA analysis, determining the optimal power
parameter for module detection. (B) Hierarchical clustering dendrogram of 10 gene modules. (C) kME (module membership) plot for each of the
identified gene modules. (D) Bubble plot showing the expression of 10 gene modules across the three neutrophil subgroups. (E) Volcano plot of
differential gene expression between HAS and LAS neutrophils. (F) Upset analysis of the intersection of highly expressed genes in HAS neutrophils
and the four modules associated with HAS.
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arginine metabolism scores in tumor tissues—particularly in

hepatocytes, fibroblasts, and myeloid cells—consistent with the

repression of the urea cycle and the development of arginine

auxotrophy in tumors (38, 39). However, tumor cells themselves

utilize compensatory mechanisms, such as RBM39-mediated
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asparagine synthesis, to maintain high intracellular arginine levels

(40). This metabolic imbalance likely reflects the spatial

heterogeneity within the TME, where tumor cells sequester

arginine through the transporter SLC7A1, while stromal and

immune cells, particularly neutrophils in the LAS subgroup, face
FIGURE 6

Identification of key arginine metabolism-related genes regulating neutrophil function through machine learning. (A) Lollipop plot showing the
correlation between 39 intersecting genes and arginine metabolism scores. (B-H) Importance ranking of genes using seven machine learning
algorithms (Decision Trees, Random Forest, GBM, Boruta, ABESS, XGBoost, and LASSO). (I) Upset plot of the intersecting genes selected across the
seven machine learning algorithms.
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FIGURE 7

Multi-omics analysis of ATP11B and PADI4 expression and neutrophil polarization. (A–C) Expression patterns of ATP11B and PADI4 across different tissue
types, visualized using bubble plots (A), violin plots (B), and ROC curve analysis for tissue classification (C), all based on single-cell RNA sequencing data.
(D) Expression differences of ATP11B and PADI4 between neutrophil subgroups using bubble plots. (E, F) Expression levels of ATP11B and PADI4 in the
TCGA dataset, shown through violin plots and ROC curve analysis, with tissue type classification results. (G) UMAP plot showing the probability density
distribution of ATP11B and PADI4 expression specifically in neutrophils from the single-cell RNA sequencing data. (H) Communication networks between
neutrophils (stratified by PADI4 expression, PADI4+ vs. PADI4-) and other cell types. (I) Heatmaps illustrating outgoing (left) and incoming (right) signaling
patterns across different cell types, showing the differential signaling activity between PADI4+ and PADI4- neutrophils and their interactions with
surrounding cells. (J) Scatter plot comparing outgoing interaction strength (x-axis) versus incoming interaction strength (y-axis) for each cell type,
illustrating how neutrophil subgroups (PADI4+ and PADI4-) differ in their communication dynamics. (K, L) Bubble plots illustrating ligand-receptor
communication between PADI4+ and PADI4- neutrophils and other cell types.
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FIGURE 8

Functional Validation of PADI4 in LIHC. (A) qPCR analysis showing the expression levels of PADI4 in LIHC tumor tissues compared to adjacent
normal tissues. (B) Comparison of PADI4 expression in different LIHC cell lines (HuH-7, Hep G2, SNU-886, Hep 3B2.1-7, SNU-387) relative to the
normal hepatocellular cell line LO2. (C) Validation of PADI4 knockdown in SNU-886 and SNU-387 LIHC cell lines by qRT-PCR. (D, E) CCK-8
proliferation assay demonstrating significantly reduced cell proliferation in PADI4-depleted LIHC cells compared to control cells. (F, G) Flow
cytometry analysis showing a significant increase in apoptosis in PADI4-knockdown SNU-886 cells. (H, I) Transwell migration and invasion assays
revealing a significant reduction in both migration and invasion potential in PADI4-silenced LIHC cells compared to controls. (J, K) Western blot
analysis confirming that PADI4 knockdown results in reduced Bcl-2 expression, increased cleaved caspase-3, and upregulation of E-cadherin, while
downregulating Vimentin, further supporting the role of PADI4 in regulating apoptosis and epithelial-mesenchymal transition (EMT) in LIHC. Asterisks
denote statistical significance as follows: **P < 0.01; ***P < 0.001; ****P < 0.0001; "ns" indicates not significant (P ≥ 0.05).
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arginine depletion (41). This depletion drives immune suppression

and contributes to a pro-tumor environment.

Our study further underscores the crucial role of arginine

metabolism in neutrophil polarization within the LIHC TME. We

observed that neutrophils can be classified into three subgroups based

on their arginine metabolism profiles: HAS, DTAS, and LAS. LAS

neutrophils, characterized by low arginine metabolism, are

predominantly found in tumor tissues and exhibit an undifferentiated

phenotype, with reduced differentiation potential as indicated by lower

CytoTRACE scores. This aligns with observations that neutrophils in

the TME, similar to myeloid-derived suppressor cells (MDSCs), deplete

extracellular arginine to suppress T-cell function (42). These LAS

neutrophils likely contribute to immune suppression and tumor

progression by creating an environment conducive to immune evasion.

In contrast, HAS neutrophils, with higher arginine metabolism, are

more mature and enriched in normal tissues. These neutrophils likely

retain anti-tumor potential, as they show increased expression of

markers associated with pro-inflammatory responses, such as nitric

oxide (NO) production. NO is critical for their anti-tumor activity, as it

enhances phagocytosis and promotes NET formation (43). Thus, a

balance exists between the iNOS-driven pro-inflammatory responses of

HAS neutrophils and the ARG2-dependent immune suppression in

LAS neutrophils. Our data suggest that arginine metabolism serves as a

key determinant in neutrophil functional polarization, where

extracellular arginine availability influences whether neutrophils

adopt a pro-tumor or anti-tumor phenotype.

ATP11B and PADI4 emerge as key regulators of neutrophil

polarization in the LIHC TME. While the role of ATP11B in

neutrophil polarization has been less explored, there is evidence

suggesting that ATP11B may enhance T-cell function by

upregulating and externalizing S1PR1 (44), a mechanism that could

similarly affect neutrophil function. PAD4, on the other hand, plays a

critical role in the formation of NETs (45), which have been implicated

in promoting liver cancer progression and metastasis. Together,

ATP11B and PADI4 not only serve as potential biomarkers for

neutrophil functional modulation but also highlight the complex

interplay between metabolic reprogramming and immune

polarization in the TME. Their differential expression in neutrophil

subgroups provides new insights into how metabolic pathways shape

immune cell behavior, opening up novel therapeutic strategies aimed at

reprogramming the immune microenvironment for more effective

cancer treatments.
Limitations and future directions

Despite the valuable insights from this study, several limitations

should be addressed in future research. First, our analysis relied on

publicly available datasets, whichmay not fully reflect the complexity of

individual patient tumor microenvironments. Validation using clinical

samples or patient-derived models is needed. Second, while we focused

on arginine metabolism, other metabolic pathways and immune cell

interactions in the tumor microenvironment remain unexplored.

Expanding these investigations will provide a more comprehensive

understanding of tumor progression. Although we observed that
Frontiers in Immunology 15
arginine metabolism influences neutrophil phenotypes, our study

does not fully clarify how it affects neutrophil function, warranting

further research. Additionally, scRNA-seq has limitations in detecting

low-abundance transcripts, which may affect the sensitivity of

identifying key regulatory molecules. Future studies incorporating

advanced technologies or complementary methods may help address

this limitation. Finally, longitudinal studies and clinical trials are crucial

to evaluate the potential of biomarkers like PADI4 in predicting disease

progression and therapeutic response in LIHC.

Conclusion

In conclusion, our study highlights the critical role of arginine

metabolism in neutrophil polarization within the LIHC TME. By

influencing neutrophil differentiation and immune function,

metabolic reprogramming serves as a key regulatory mechanism

in tumor progression and immune evasion. Our findings suggest

that targeting arginine metabolism could offer a promising

therapeutic strategy to modulate neutrophil function and improve

cancer treatment outcomes. Further exploration of metabolic

pathways in neutrophils will be essential to optimize strategies

aimed at overcoming the immunosuppressive TME and enhancing

the efficacy of cancer therapies.
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