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drives poor outcomes in clear
cell renal cell carcinoma by
modulating the tumour
immune microenvironment
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Yingnan Zhang1, Jiaqi Yao1, Huanhuan Lu1, Guowei Zhou3,
Bo Zhang2* and Yinyin Wang1*

1Department of Traditional Chinese Medicines (TCMs) Pharmaceuticals, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing, China, 2Sichuan Industrial Institute of Antibiotics,
School of Pharmacy, Chengdu University, Chengdu, China, 3Department of General Surgery, Affiliated
Hospital of Nanjing University of Chinese Medicine, Nanjing, China
Background: Clear cell renal cell carcinoma (ccRCC) is the most common

subtype of kidney cancer, often diagnosed at advanced stages due to a lack of

reliable early biomarkers. Recent studies suggest that the traditional Chinese

medicine (TCM) body constitution, particularly the Yang-Deficiency Constitution

(YDC), may influence tumour development by altering the immune

microenvironment. However, the mechanistic connection between YDC and

ccRCC prognosis remains largely unexplored.

Objective: This study aims to elucidate the impact of YDC on the immune

landscape and clinical outcomes of ccRCC and to identify novel prognostic

biomarkers and potential herbal therapeutic agents guided by YDC characteristics.

Methods: We integrated bulk transcriptomic data from 12 YDC-classified

individuals and 530 ccRCC patients, alongside single-cell RNA-seq profiles

from one PBMC and two ccRCC tumour samples. Through differential

expression analysis, WGCNA, and machine learning-based survival modelling,

we identified YDC-related biomarkers and assessed their immunological

relevance using ESTIMATE, CIBERSORT, and CellChat. A gene expression-

based scoring framework (GSVA) was developed to systematically prioritize

622 herbal ingredient perturbations for their potential survival benefits. Key

ingredients were further validated through molecular docking and

experimental assays.

Results: Patients with YDC-associated ccRCC exhibited poorer survival. Nine

intersecting genes were screened and used to construct a prognostic model,

whereby seven key biomarkers—MXD3, PLCB2, CCDC88B, DEF6, IFNG,

TBC1D10C, and PLEKHN1—were significantly influenced the prognosis of renal

cancer. These genes were found to modulate immune cell populations,

particularly CD8+ T cells, Tregs, and M1 macrophages, with IFNG serving as a

central regulatory hub. Baicalein was identified and validated as a promising

therapeutic agent targeting IFNG.
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Conclusion: This study highlights the crucial role of YDC in shaping the immune

microenvironment and influencing survival in ccRCC. By integrating

constitution-based stratification, immune profiling, and herbal medicine

screening, we offer a unique framework for biomarker discovery and propose

baicalein as a potential YDC-targeted adjuvant therapy.
KEYWORDS
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Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common

and aggressive subtype of kidney cancer, accounting for

approximately 70–90% of all renal malignancies (1). Despite

progress in diagnostic imaging and molecular testing, ccRCC is

frequently diagnosed at advanced stages due to its pronounced

molecular heterogeneity and lack of reliable early biomarkers.

According to the theory of oncology, biomarkers play essential

roles in early detection, risk stratification, prognosis, and

therapeutic decision-making (2, 3). For example, HER2 serves as

a key biomarker in breast cancer (4), while EGFR mutations guide

the development of targeted therapies in non-small cell lung cancer

(NSCLC) (5). However, the identification of robust and clinically

actionable biomarkers in ccRCC remains challenging, primarily due

to limited preclinical validation and the complex biological

landscape of the disease (6).

Beyond gene t i c muta t ions , the tumour immune

microenvironment (TIME) has emerged as a crucial determinant

of ccRCC progression and therapeutic response. Immune cell

infiltration, cytokine signaling, and stromal interactions

collectively shape tumour behaviour by promoting angiogenesis,

immune suppression, and metastasis (7). The advent of immune

checkpoint inhibitors (ICIs) has significantly improved outcomes in

ccRCC by restoring antitumor immunity; however, response rates

remain variable, and the mechanisms underlying immune evasion

are incompletely understood (8). This variability underscores the

need to integrate host-specific factors into immune-based

prognostic models.

One such host factor is body constitution; a concept rooted in

traditional Chinese medicine (TCM) that categorizes individuals

into distinct physiological types with differential susceptibility to

disease. Among the nine classical TCM constitutions, the Yang-

Deficiency Constitution (YDC) has garnered attention for its

association with immune dysfunction and metabolic impairment

(9–12). Clinically, individuals with YDC typically exhibit cold

intolerance, coldness in the hands, feet, stomach, and waist, a

preference for warm food and drinks, and an increased

susceptibility to cold exposure; whereas secondary manifestations
02
often include watery stool, whitish skin, nocturia, a pale and tender

tongue, and a tendency toward obesity (Table 1) (13). Furthermore,

the kidney is central to energy metabolism, fluid regulation, and

immune balance—functions that closely parallel endocrine and

immunological mechanisms recognized in modern medicine (14,

15). Specifically, YDC is characterized by reduced mitochondrial

activity, impaired glucose and lipid metabolism, and weakened

adaptive immune responses (16), suggesting a potential role in

shaping the tumour immune microenvironment and affecting

cancer progression (17).

Emerging evidence supports the relevance of constitutional types

in cancer biology. For instance, patients with Yang-deficiency or

Phlegm-Dampness constitutions report higher levels of cancer-

associated fatigue and systemic inflammation (18). Constitution-

guided herbal interventions, such as Tao Hong Si Wu Tang, have

demonstrated efficacy in modulating epithelial–mesenchymal

transition, angiogenesis, and immune responses in preclinical

cancer models (19). Furthermore, constitution types have been

linked to disease phenotypes in non-oncologic conditions, such as

mild cognitive impairment (20), further supporting their value for

patient stratification and precision treatment.

Despite increasing interest in constitution theory, the

mechanistic connection between YDC and the TIME in ccRCC

remains largely unexplored. Given the immunogenic nature of

ccRCC, YDC may influence tumour evolution and patient

outcomes through immune modulation. However, the underlying

molecular networks and therapeutic implications of this

relationship are not yet well defined. In this study, we

systematically investigated the role of YDC in shaping the

immune microenvironment and survival outcomes in ccRCC. As

shown in Figure 1, we integrated transcriptomic and single-cell

RNA-seq data to identify YDC-associated gene signatures (YDGs)

and applied machine learning approaches to evaluate their

prognostic relevance. Functional characterization of these genes

was conducted using immune deconvolution tools (CIBERSORT,

ESTIMATE) and cell–cell communication analysis (CellChat),

revealing their regulatory roles in immune cell infiltration and

signaling. To translate these findings into potential therapeutic

strategies, we developed a Gene Set Variation Analysis (GSVA)-
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based scoring system to prioritize 622 herbal ingredients with

predicted benefits on YDC-related signatures. Top candidates

were validated via molecular docking simulations and in

vitro assays.

Collectively, our study highlights the clinical importance of

YDC in ccRCC by linking constitution-specific immune

dysregulation to poor prognosis. We also propose a novel

constitution-guided approach for biomarker discovery and herbal

compound screening, offering alternative therapeutic strategies for

precision oncology.
Materials and methods

Dataset acquisition

Bulk RNA-seq profiles of individuals with YDC and typical

controls were obtained from the Gene Expression Omnibus (GEO)

(GSE87474, n=20) (21). The ccRCC transcriptomic dataset (n =

534) was accessed via the UCSC Xena platform. Single-cell RNA-

seq (scRNA-seq) data were collected from peripheral blood

mononuclear cells (PBMCs) of a healthy donor (GSE115189) and

two ccRCC tumour samples (GSE152938) (22). Differentially

expressed genes (DEGs) related to 622 herbal ingredients were

retrieved from the HERB (23) and ITCM (24) databases.
Differential gene expression and functional
enrichment analysis in Yang deficiency
samples

DEGs in YDC samples were identified using the limma package

(25) in R, applying a threshold of |log2FC| > 2.5 and P< 0.05 due to

relatively small cohort distributions and to minimize false positives

for the subsequent pathway analyses. Functional enrichment

analyses were conducted to reveal the biological relevance of these

DEGs. Gene Ontology (GO), Kyoto Encyclopaedia of Genes and

Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA)

were employed using the clusterProfiler package to identify

enriched biological pathways.
Weighted gene co-expression network
analysis in Yang deficiency samples

Weighted Gene Co-expression Network Analysis (WGCNA)

was performed using the wgcnapackage in R to identify YDC-

associated gene modules (26). The workflow included: (1)

hierarchical clustering of samples to detect outliers, (2)

determination of soft-thresholding power and adjacency matrix

construction, (3) conversion into a topological overlap matrix

(TOM), (4) module identification via dynamic tree-cutting

(minimum module size = 30), and (5) correlation analysis

between modules and the YDC phenotype to identify hub genes

for downstream analysis.
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Identification of shared signature genes
between YDC and ccRCC

DEGs from the ccRCC and YDC datasets were intersected to

identify shared biomarkers. Gene–gene correlation networks were

constructed using igraph and ggraph (27), retaining edges with a

Spearman correlation coefficient greater than 0.3. Functional

modules were identified using the Louvain community detection

algorithm (28) to highlight gene clusters with co-expression

patterns. These DEGs were used to quantify the degree of YDC

traits in ccRCC samples, thereby providing a semi-quantitative

approach to define the YDC cohort. The DEGs associated with

YDC were compiled into gene sets for gene set variation analysis

(GSVA). Followed by calculating the resulting enrichment scores,

which were then used to quantify the transcriptional activity of

YDC-related molecular patterns in each ccRCC patient. Patients

were subsequently stratified into high- and low-score groups based

on the median GSVA score, and survival analyses were performed

to assess the association between YDC-related transcriptional

signatures and clinical outcomes.
Survival analysis using LASSO-cox
regression

The overlapping genes between YDC and ccRCC were subjected

to prognostic evaluation using LASSO-Cox regression (29) via the

glmnet package (30). Cross-validation determined the optimal

regularization parameter (l). A predictive risk score for each

patient was calculated:

Risk   Scorei =op
j=1bj  *   xij (1)

Where bj is the LASSO-derived coefficient for the gene j and xij
is its expression in sample i. Patients were stratified into high- and

low-risk groups for Kaplan–Meier survival analysis using the

ggsurvplot package.
Random forest-based survival analysis

A random survival forest model was built using the

randomForestSRC package (31), with overall survival and status

as outcomes and gene expression profiles as input. The model was

selected due to its high predictive performance among multiple

models for breast cancer survival, along with an accuracy of 96%

and an area under the curve (AUC) of 0.93 (32). Furthermore, the

model required minimal data preprocessing, was resilient to

outliers, and could effectively identify important predictors that

inform personalized clinical decision-making, which fulfilled the

main idea of the topic (33). In addition, the RSF model provided

more individualized survival curves and captured non-constant

hazard dynamics over time after comparison with Cox and

Support Vector Machine (SVM) models, which is crucial for

personalized treatment planning (34). Feature importance was

assessed, and the individual prognostic value of each gene was
frontiersin.org
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further evaluated using univariate Cox regression (35), receiver

operating characteristic (ROC) curves (AUC), and Kaplan–

Meier plots.
Construction of a prognostic prediction
model for clinical survival probability at
different time intervals

A prognostic nomogram was developed to predict 1-, 2-, and 3-

year survival by integrating expression levels of selected biomarkers
Frontiers in Immunology 04
into a multivariate Cox model. Calibration plots were used to assess

the predictive accuracy. Decision curve analysis (DCA) (36)

evaluated clinical net benefit across probability thresholds.
Immune microenvironment analysis of
ccRCC samples on cell type proportion

The ESTIMATE algorithm (37) was applied to calculate

immune and stromal scores in ccRCC samples. CIBERSORT (38)

was used to estimate the relative abundance of 22 immune cell
FIGURE 1

Overview of the study design. (A) Functional analysis of ccRCC and YDC. (B) Identification of potential prognostic biomarkers and construction of a
predictive survival model followed by immune microenvironment characterization using CIBERSORT and CellChat. (C) Screening and experimental
validation of herbal compounds with potential to prolong ccRCC survival using GSVA scoring, molecular docking, and in vitro assays.
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types. Spearman correlation analysis was conducted to examine

relationships between prognostic biomarkers and immune cell

infiltration. To validate immune associations, immune phenotypic

scores (IPS) from The Cancer Immunome Atlas (39) were analysed,

stratifying samples by CTLA-4/PD-1 responsiveness.
Gene expression distribution and
bioactivity enrichment of biomarker genes
on SC-Seq of ccRCC samples

Two single-cell datasets derived from PBMCs and ccRCC

samples were utilized to investigate cellular activity and gene

expression dynamics. Two scRNA-seq datasets were analysed

using Seurat (40) for normalization, dimensionality reduction

(principal component analysis, PCA), and clustering (uniform

manifold approximation and projection, UMAP). Low-quality

cells with<200 or >5, 000 detected genes or mitochondrial content

>10% were removed. Cell-type annotation was performed using

SingleR (41) or PBMCs and CellMarker (42) for ccRCC tumours.

Cell types were annotated by calculating the average expression of

known biomarker genes in each cluster and matching them to

established immune and tumour marker sets from the CellMarker

databases. Clusters showing the highest marker concordance were

assigned cell identities. Only markers with log2FC > 0.25, P < 0.05,

and min.pct > 0.1 were retained. Activity of YDC-related gene

signatures in PBMCs was assessed via AddModuleScore (43) while

the Area Under the Curve cell (AUCell) (44) quantified signature

activity in ccRCC single cells based on AUC scores.
Cellchat analysis to explore the dynamics
of cellular interaction of biomarker genes
on SC-Seq of ccRCC samples

To investigate intercellular communication patterns among

immune and stromal cells, we employed the CellChat from the R

package (45) using single-cell transcriptomic data. We constructed

a CellChat object using the normalized expression matrix and cell-

type annotations and inferred cell–cell communication networks

based on a curated ligand–receptor interaction database. The

interactions between cell types were quantified and visualized

using circle plots. To explore immune-related signaling, we

focused on the prognostic gene-related signaling pathway, where

communication probabilities and ligand–receptor interactions were

evaluated and visualized through chord plots and dot plots.

Furthermore, the role of each cell type in the pathway, as sender,

receiver, mediator, or influencer, was assessed. Lastly, a heatmap

summarizing outgoing and incoming signal strengths was

generated to highlight the dominant signaling populations. All

analyses and visualizations were performed using the standard

CellChat workflow and its built-in plotting functions.
Frontiers in Immunology 05
Screening for therapeutic herbal
ingredients using GSVA

Herbal ingredient–associated gene sets were retrieved from

HERB and ITCM. Firstly, the DEGs obtained from the HERB

database were analysed using the limma package, while genes from

the ITCM database were directly retrieved. To minimize false

positives, only differentially expressed genes (DEGs) with P < 0.05

were used. The resulting genes were curated and compiled into

herb-specific gene sets for enrichment analysis. GSVA was used to

evaluate enrichment scores of these gene sets within each sample.

For sample j, the enrichment score skj for herb j was calculated as:

skj = maxr(Pin(r) − Pout(r))   (2)

where (Pin(r)   and   Pout(r)) represent empirical cumulative

distribution functions (ECDFs) for gene expression ranks inside

and outside gene set Gk, respectively. This score summarizes the

pathway activity of herbal ingredients across samples. Top-ranking

ingredients were considered for downstream therapeutic validation.
Molecular docking simulation to confirm
the binding between the potential
ingredient and the targeted biomarkers

To validate the therapeutic potential of the identified compound,

molecular docking simulations were performed. The 3D structural

data of the herbal-derived compound baicalein were obtained from

the PubChem chemical substance database (46). At the same time,

the crystal structure of the key biomarker protein IFNG was retrieved

from the RCSB Protein Data Bank (47). Protein–ligand docking

simulations were conducted using PyMOL and AutoDock Tools (48),

and the binding affinity between baicalein and IFNGwas estimated to

assess their potential interaction.
Cell experimental validation

Cell lines and culture conditions
The human renal carcinoma cell line 786-O (purchased from

Nanjing Runyan Biotechnology Co., Ltd.) was routinely cultured

under sterile conditions at 37°C in a humidified atmosphere

containing 5% CO2. Cells were grown in RPMI-1640 medium

supplemented with 10% heat-inactivated fetal bovine serum (FBS)

and 1% penicillin-streptomycin. Cell lines were passaged upon

reaching 80-90% confluence using 0.25% trypsin-EDTA solution

and subculture at appropriate seeding densities. Culture medium

was refreshed every 2–3 days, and cells were routinely monitored

for morphology and mycoplasma contamination.
Cell viability assays
786-O cells were plated in 96-well microplates (5 × 10³ cells/

well) containing 100 mL complete growth medium and incubated
frontiersin.org
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for 12–16 hr at 37°C under 5% CO2 to achieve cellular adhesion.

After adherence confirmation, cells were treated with gradient

concentrations of baicalein or vehicle control (0.1% DMSO) for

specified durations. At the treatment endpoint, 10 mL of CCK-8

solution (MedChemExpress, Shanghai, China) was added to each

well without replacing the medium. Plates were subjected to orbital

agitation (30 sec, 100 rpm) to ensure reagent dispersion and then

further incubated at 37°C and 5% CO2 for precisely 2 hours. Optical

density was subsequently quantified at dual wavelengths (450 nm

test; 650 nm reference) using a Varioskan LUX microplate reader

(Thermo Scientific) to correct for nonspecific absorption.

Cell apoptosis and cycle distribution analysis
Following baicalein incubation, 786-O cells were harvested and

resuspended to generate a single-cell suspension. Cells were pelleted

via centrifugation (1000 × g, 3 min). After supernatant aspiration,

the cell pellet was washed once with 1 mL ice-cold phosphate-

buffered saline (PBS), transferred to a 1.5 mL microcentrifuge tube,

and centrifuged again to form a pellet. After supernatant removal,

the cells were fixed by dropwise addition of 1 mL ice-cold 70%

ethanol under gentle agitation and then incubated at 4°C for a

minimum of 30 minutes. Fixed cells were recovered by

centrifugation (1000 × g, 3 min). Following careful aspiration of

the ethanol, the cell pellet was resuspended in 0.5 mL of propidium

iodide (PI) Staining Solution (Beyotime Biotechnology, Shanghai,

China) and incubated at 37 °C in the dark for 30 min. Stained

samples were maintained at 4 °C in the dark until analysis.

Apoptosis assessment was performed by quantifying Relative

Fluorescence Units (RFU) using 488 nm excitation with

Varioskan LUX (Thermo). Cell cycle distribution was analyzed

using the BriCyte® E6 flow cytometer (Mindray), and subsequent

quantification of cell cycle phases was performed using ModFit LT

5.0 software.
Statistical analysis

All analyses were performed using R version 4.4.2. Gene

correlations were assessed using either Spearman or Pearson

correlation coefficients, as appropriate. Survival analyses were

conducted using Kaplan–Meier estimation and Cox proportional

hazards regression. Unless otherwise specified, a p-value< 0.05 was

considered statistically significant.
Results

Biological characteristics of Yang-
deficiency constitution

To elucidate the biological characteristics of the YDC, we

analysed RNA-seq data from 12 individuals with YDC and eight

healthy controls using the GSE87474 dataset. Differential

expression analysis revealed 29, 555 differentially expressed genes

(DEGs) in YDC samples compared to healthy individuals
Frontiers in Immunology 06
(Figure 2A, Supplementary Table 1). GO enrichment analysis

indicated that these DEGs are predominantly involved in

ribonucleoprotein complex biogenesis, protein-RNA complex

organization, and mitochondrial inner membrane organization

(Figure 2B). KEGG pathway analysis further demonstrated that

YDC is associated with altered biological functions in pathways

such as amyotrophic lateral sclerosis, lipid metabolism,

atherosclerosis, Salmonella infection, and the TNF signaling

pathway (Figure 2C). Additionally, GSEA highlighted significant

enrichment in immune- and cancer-related pathways, including the

B cell receptor signaling pathway, cancer pathways, and systemic

lupus erythematosus (Figure 2D). These results collectively suggest

a potential link between YDC and cancer development

and progression.

To further identify gene modules closely associated with the

YDC phenotype, we employed WGCNA, which clustered genes

into 29 modules based on topological overlap (Figure 2E). Among

these, the MEpink module exhibited the strongest correlation with

the YDC trait (r = 0.98, P< 0.01), and thus was chosen for further

interpretation. (Figure 2F). Moreover, genes in this module show

distinct expression across samples (Figure 2G). Notably,

chemokines such as CXCR4 and CCL20, both located within the

pink module, are known to promote carcinogenesis, angiogenesis,

and the survival of cancer cells. Elevated CCL20 expression has also

been associated with poor prognosis in hepatocellular carcinoma

(HCC) patients following curative resection (49, 50). These findings

support the involvement of pink module genes in cancer-related

pathological processes. This association was further corroborated by

a strong positive correlation between module membership (MM)

and both the YDC trait and gene significance (GS), with a Pearson

correlation coefficient of R = 1.0 and p = 7.5e-23 (Figure 2H).

In summary, our integrative RNA-seq analysis of YDC and

healthy individuals identified significant dysregulation in immune

and cancer-associated pathways. We also identified a key gene

module comprising 2, 058 genes—referred to hereafter as the

YDC signature genes—that may play critical roles in the onset

and progression of cancer in individuals with a Yang-

deficiency Constitution.
Association between YDC and ccRCC and
their pre-diagnostic biomarker genes

Having established that YDC significantly influences the

survival of patients with ccRCC, we further explored the

functional association between YDC and ccRCC. A total of 1, 047

DEGs were identified when comparing ccRCC samples to healthy

controls (Figure 3A, Supplementary Table 2). Among these, 21

genes overlapped with those associated with YDC (Figure 3B),

highlighting a potential mechanistic link.

Survival analysis revealed that ccRCC patients with YDC

exhibited significantly poorer prognosis (Figure 3C), further

supporting a functional association between YDC and disease

progression. Functional enrichment analysis using the Metascape

database showed that these 21 overlapping genes were significantly
frontiersin.org
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involved in bile salt, organic acid, metal ion, and amine compound

transport, as well as in monocarboxylic acid transport, positive

regulation of cell adhesion, circulatory system processes, and the

Ras signalling pathway (Supplementary Figure 1).

Gene co-expression network analysis of the 21 YDC-associated

genes revealed two major gene clusters (Figure 3D). The first

cluster, comprising TNFSF14, LILRB1, PLCL1, CYP4F2, and
Frontiers in Immunology 07
VEGFA, was primarily associated with immune regulation and

inflammatory signaling, suggesting an immunological component

to YDC in ccRCC. The second cluster, including SLC16A7,

ATP1A1, RGS1, MAL, and PADI1, was enr iched in

transmembrane transport and metabolic processes, indicating a

potential link between YDC and metabolic reprogramming.

Notably, PAK6 and TMEM30B appeared in both clusters and
FIGURE 2

Transcriptomic profiling of YDC. (A) Volcano plot showing differentially expressed genes (DEGs) in YDC versus healthy controls (|log2FC| > 2.5,
P < 0.05). (B) Gene Ontology (GO) enrichment analysis of DEGs. (C) KEGG pathway enrichment of DEGs. (D) GSEA analysis revealing pathway
enrichment in YDC. (E) Gene co-expression modules derived from WGCNA. (F) Correlation between modules and YDC phenotype to identify the
key module. (G) Heatmap of gene expression from the YDC-associated module. (H) Scatter plot of module membership (MM) and gene significance
(GS) for hub gene identification.
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may serve as key regulatory hubs connecting immune and

metabolic pathways. Pathway enrichment analysis based on the

KEGG database further demonstrated that these genes were

significantly enriched in pathways related to organismal systems,

metabolism, human diseases, environmental information

processing, and cellular processes. Specifically, the renal cell

carcinoma pathway, T cell receptor signaling pathway, linoleic

acid metabolism, and VEGF signaling pathway—each previously

implicated in ccRCC—were prominently enriched (Figure 3E).

By integrating the signature genes associated with YDC and

ccRCC, we identified nine overlapping candidate genes: MXD3,

DEF6, IFNG, TBC1D10C, CCDC88B, ITGAD, PLEKHN1, PLCB2,

and FUT7 (Figure 4A).

Collectively, these findings highlight the potential biological

relevance of YDC in the pathogenesis and progression of ccRCC,

with the nine overlapping genes identified as candidate signature

genes associated with YDC-mediated regulation of ccRCC.
Evaluation of pre-diagnostic biomarker
genes and predictive model for ccRCC
survival risk

To evaluate the prognostic potential of these genes, we

employed LASSO regression analysis to determine the optimal

regularization parameter (l) and identify genes with significant
Frontiers in Immunology 08
survival relevance. Cross-validation results indicated that the

minimum partial likelihood deviance occurred around log(l) ≈

−6 (Figure 4B), confirming all nine genes as non-zero contributors

to the predictive model. The coefficient trajectories demonstrated

that several genes maintained non-zero coefficients despite

increasing regularization (Figure 4C), indicating their stability

and prognostic robustness.

Subsequently, a random forest model was constructed to

quantify gene importance and assess predictive performance. The

model’s prediction error decreased rapidly within the first 100

decision trees and stabilized after approximately 200 trees

(Figure 4D). Finally, the 500 trees were selected as the final model

parameter to ensure a stable estimation. Using this approach, the

nine genes were scored by their contribution to model prediction.

Then, Kaplan–Meier survival analysis further demonstrated that

patients in the high-risk group, as the risk scores had been evaluated

by Equation 1 - classified based on the risk scores derived from these

genes—had significantly worse survival than those in the low-risk

group (log-rank test, P< 0.001) (Figure 4E). Additionally, MXD3

was identified as the most critical prognostic gene, with the highest

variable importance score (20) and a hazard ratio (HR) of 1.63 (P <

0.001) (Figures 4F, G). DEF6 and IFNG also ranked highly,

suggesting strong associations with survival outcomes.

ROC curve analysis confirmed the diagnostic efficacy of

individual biomarkers, with MXD3 achieving the highest area

under the curve (AUC = 0.70, P < 0.001). Most genes exhibited
FIGURE 3

Association of YDC with ccRCC progression and survival. (A) Volcano plot showing DEGs in ccRCC versus healthy tissues (|log2FC| > 2.5, P < 0.05).
(B) Venn diagram showing overlapping genes between ccRCC and YDC-related DEGs. (C) Kaplan–Meier survival analysis of ccRCC patients stratified
by YDC activity. (D) Gene co-expression network of common DEGs associated with YDC and ccRCC. (E) KEGG enrichment of overlapping genes,
highlighting ccRCC-relevant pathways.
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FIGURE 4

Identification and validation of YDC-related prognostic biomarkers in ccRCC. (A) Overlapping genes from WGCNA and DEGs were used for
biomarker discovery. (B) Feature selection via LASSO regression with cross-validation. (C) LASSO coefficient profiles showing how each gene’s
regression coefficient changes with increasing L1 penalty. (D) Error rate trend with increasing tree number in LASSO. (E) Kaplan–Meier curves for
high- vs. low-expression groups. (F) Feature importance scores of selected biomarkers. (G) Hazard ratio estimates of biomarker genes. (H)
Diagnostic performance of MXD3 via ROC analysis. (I) Decision curve analysis evaluating model performance across time points. (J) Nomogram for
predicting individual survival probability. (K) Calibration curves assessing nomogram accuracy for 3-year survival.
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moderate but statistically significant discriminatory power

(Figure 4H, Supplementary Figure 2). All nine genes were

significantly associated with overall survival (HR > 1, P< 0.001),

further validating their prognostic potential.

To enhance the clinical utility of the identified biomarkers, we

constructed a gene-based nomogram model for predicting 3-year

survival risk in ccRCC (Figure 4J). The nomogram assigns a

weighted score to each gene, with the total score corresponding to

estimated survival probability. Calibration plots demonstrated

strong concordance between predicted and observed survival

rates, especially for 1-year predictions, indicating robust model

calibration (Figure 4K).

Moreover, DCA demonstrated that the nomogram offers a

greater net clinical benefit across a threshold probability range of

0.25 to 0.60 (Figure 4I), underscoring the clinical applicability of the

seven most predictive genes in long-term survival estimation.

In summary, these findings highlight nine YDC-related genes as

promising pre-diagnostic biomarkers for evaluating long-term

survival risk in ccRCC patients. Building on this, we developed

and validated a prognostic model based on YDC-associated gene

expression, providing a robust and clinically applicable tool for

survival risk prediction in ccRCC.
Immune infiltration analyses of prognostic
genes in the ccRCC cohort

To investigate the potential immune-related mechanisms through

which YDC influences the prognosis of ccRCC, we conducted

comprehensive analyses of the immune microenvironment. Given

the central role of immune dysregulation in tumour progression, we

utilized single-cell transcriptomic data to examine the immune

context of prognostic biomarkers.

First, we applied the ESTIMATE algorithm to infer the

proportions of stromal and immune components in the tumour

microenvironment based on gene expression data. The analysis

revealed significantly elevated immune, stromal, and composite

ESTIMATE scores in ccRCC samples compared to healthy

controls (Figure 5A-C, P < 0.001), indicating a profoundly altered

tumour microenvironment in ccRCC. To further characterize the

immune cell composition, we employed the CIBERSORT algorithm

to deconvolute the bulk transcriptomic profiles into 22 distinct

immune cell types (Figure 5D). ccRCC tissues exhibited increased

infiltration of immune effector and regulatory cells, including CD8+

T cells, regulatory T cells (Tregs), monocytes, and M1 macrophages

(Figure 5E, P < 0.001). In contrast, healthy samples displayed higher

levels of naïve B cells, activated NK cells, and resting dendritic cells.

To explore the relationship between immune infiltration and

our identified prognostic genes, we performed Spearman

correlation analyses to assess the association between gene

expression and immune cell infiltration scores. The YDC-related

prognostic genes demonstrated strong positive correlations with

key immune subsets (Figure 5F, P < 0.001). Similarly, NK cells

activated showed a positive correlation with IFNG, TBC1D10C,

CCDC88B, and DEF6 (Figure 5F, P < 0.001). For example, CD8+ T
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cell and Treg infiltration levels were positively correlated with most

biomarkers, while NK cell activation showed significant correlations

with IFNG, TBC1D10C, CCDC88B, and DEF6. These findings

suggest that the identified genes may serve as modulators of

immune cell recruitment and inflammatory signaling in the

tumour microenvironment.

To validate these findings, we used IPS from the external TCIA

database. Samples were stratified into high-IPS and low-IPS groups,

and gene expression was compared across groups (Supplementary

Table 3). All nine prognostic biomarkers were significantly upregulated

in the high-IPS group (Figure 5G, P < 0.001), reinforcing their

association with enhanced immune responsiveness.

Taken together, our immune infiltration analyses suggest

that these YDC-associated biomarkers may influence ccRCC

patient survival by modulating the immune microenvironment,

particularly through the regulation of CD8+ T cells, Tregs, and

M1 macrophages.
Single-cell resolution of biomarker
expression and functional enrichment

To gain a high-resolution view of the immune-related functions

of the prognostic biomarkers, we analysed single-cell RNA

sequencing (scRNA-seq) data from PBMCs and ccRCC tumour

samples. In the PBMC dataset, 3, 372 cells were classified into 10

significant immune populations, including CD8+ T cells, CD4+ T

cells, B cells, NK cells, dendritic cells, monocytes, neutrophils,

progenitors, basophils, and general T cell subsets (Figure 6A).

Using a manually curated gene set based on YDC-related DEGs,

we calculated enrichment scores for each cell type using the

AddModuleScore function. Monocytes and neutrophils exhibited

the highest module scores (Figures 6B-C), suggesting their

involvement in YDC-associated immune alterations.

Similarly, analysis of 20, 599 cells from ccRCC tumour tissues

revealed that YDC-related gene sets were significantly enriched in

CD8+ T cells, NK cells, T cells, and macrophages (Figures 6D-E),

with the strongest signals in T cells and NK cells (Figures 6F-G).

These enrichment points to the critical involvement of these

immune cell types in mediating YDC-related effects within the

tumour microenvironment.

Examining the distribution of individual prognostic genes across

cell types further supported their immune relevance (Figures 6F-H,

Supplementary Figure 3). For instance, TBC1D10C was highly

expressed in NK cells, Tregs, and T cells, while DEF6 showed

strong expression in NK cells and Tregs. These expression patterns

suggest a likely role for these genes in modulating the immune

response and inflammation within the tumour niche.

Together, these findings reveal that the seven YDC-related

prognostic genes are not only functionally associated with

immune infiltration but are also preferentially expressed in key

immune cell subsets at the single-cell level. This highlights their

potential role in immune remodelling and tumour progression

in ccRCC.
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FIGURE 5

Immune microenvironment characterization to prognostic biomarkers. (A-C) Immune, stromal, and ESTIMATE scores in ccRCC versus
healthy tissues (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, Mann-Whitney test). (D) Distribution of 22 immune cell types across
groups. (E) Differential abundance of immune cell types between ccRCC and healthy samples (*P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, n-Whitney test). (F) Spearman correlations between biomarker gene expression and immune cell infiltration. (G)
Comparison on the expression levels of biomarker genes across high and low IPS groups (*P < 0.05, **P < 0.01, ***P < 0.001,
****P < 0.0001, n-Whitney test).
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2025.1673579
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Kho et al. 10.3389/fimmu.2025.1673579
Cellular and molecular interactions of
prognostic biomarkers in the tumour
microenvironment

To elucidate the cellular and molecular dynamics of biomarker

interactions within the ccRCC tumour microenvironment, we

conducted CellChat analysis using single-cell RNA sequencing

data (GEO152938). Understanding these interactions is essential

for uncovering pathogenic mechanisms and identifying novel

therapeutic targets.

The overall cell–cell communication network revealed extensive

crosstalk among immune and stromal cell populations (Figure 7A).
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Among these, monocytes and macrophages emerged as central

hubs—monocytes exhibited the highest number of interactions,

while macrophages demonstrated the strongest interaction weights

(Figure 7B), suggesting their dominant regulatory roles in the

ccRCC immune milieu.

Notably, IFNG, one of the identified prognostic biomarkers,

was found to be the primary ligand initiating interferon-g (IFN-g)
signaling, particularly mediating interactions between NK cells and

CD8+ T cells (Figure 7B). In this signaling axis, monocytes and

macrophages functioned as key receptors, forming a pivotal

regulatory loop in innate–adaptive immunity. Quantitative

ligand–receptor interaction analysis further confirmed a high
FIGURE 6

Single-cell expression patterns and biological roles of prognostic biomarkers. (A) UMAP of annotated cell types in healthy PBMCs. (B, C) Activity
score distribution of YDC-related DEGs in single-cell data. (D) UMAP of cell clusters in the ccRCC single-cell RNA-seq dataset. (E) AUC-based
pathway activity scores for YDC–ccRCC gene sets. (F) UMAP projection of IFNG expression. (G) AUC scores across cell types in the ccRCC single-
cell RNA-seq dataset. (H) Expression and distribution of prognostic biomarkers by cell type.
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communication probability for the IFNG–IFNGR1/2 pair

(Figure 7C), underscoring the central role of IFNG in modulating

immune responses.

Funct ional role mapping revealed that monocytes

were not only dominant signal receivers but also strong
Frontiers in Immunology 13
influencers, whereas NK cells primarily served as signal

senders and influencers (Figure 7D). This dynamic suggests

a feedback mechanism in which IFNG derived from NK cells

activates monocytes, contributing to an inflammatory

tumour microenvironment.
FIGURE 7

Cell–cell communication and IFNG signalling in the ccRCC tumour microenvironment. (A, B) Intercellular communication networks based on
interaction number and strength. (C) Key ligand–receptor interactions identified across cell populations. (D) Expression levels of IFNG, IFNGR1, and
IFNGR2 in different cell types. (E) Summary of IFN-II pathway interaction scores. (F) Outgoing and incoming signalling roles of the IFN-II pathway.
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Expression analysis of IFNG and its receptors corroborated

these findings: IFNG was highly expressed in NK and CD8+ T cells,

while its receptors (IFNGR1 and IFNGR2) were broadly distributed

across monocytes, macrophages, fibroblasts, and endothelial cells

(Figure 7E). Heatmap analysis of IFN-II signaling strength revealed

prominent communication from NK and CD8+ T cells toward

monocytes and macrophages (Figure 7F), reinforcing the centrality

of IFNG-mediated signaling in shaping the immune landscape

of ccRCC.

Collectively, these findings highlight IFNG as both a key

prognostic biomarker and a functional orchestrator of

intercellular immune communication within the ccRCC tumour

microenvironment, particularly by coordinating crosstalk between

innate and adaptive immune components.
Identification of herbal medicines targeting
prognostic biomarkers to improve ccRCC
outcomes and experimental validation

Building upon the identification of nine prognostic biomarkers

associated with YDC and ccRCC, we aimed to identify herbal

medicines capable of modulating the expression of these

biomarkers to improve clinical outcomes.

A high-throughput screening was performed using perturbation

data for 622 herbal medicines and their active compounds, curated

from the HERB and ITCM databases. To prioritize candidate

compounds, we computed an importance score derived from

GSVA, evaluating the enrichment of YDC-related and ccRCC

gene signature across herbal ingredients by Equation 2 (Figure 8A).

Compounds with negative enrichment scores—indicating inverse

regulation of disease-associated genes—were considered potential

therapeutic candidates. Notably, scutellarin and baicalein emerged

as top candidates, demonstrating robust and consistent

downregulation of YDC- and ccRCC-associated gene signatures

(Figures 8B, C).

To assess mechanistic plausibility, molecular docking analyses

were conducted to evaluate the binding affinity of these compounds

with interferon gamma (IFNG), one of the key hub genes identified

in our prognostic model. Scutellarin was predicted to bind within

the active site of IFNG stably. Similarly, baicalein formed multiple

hydrogen bonds—particularly with GLN-168 and LYS-175—

indicating a favourable binding conformation and strong

molecular interaction (Figure 8D and Table 2). These in silico

findings suggest that both compounds may modulate IFNG activity,

thereby influencing immune-related signaling pathways and

survival outcomes in ccRCC.

To experimentally validate the antitumor potential of baicalein,

we conducted in vitro assays using human renal carcinoma 786-O

cells. A CCK-8 cell viability assay revealed that baicalein

significantly inhibited cell proliferation in a dose-dependent

manner, with a half-maximal inhibitory concentration (IC50) of

26.14 mM (Figure 8E). Flow cytometric analysis further

demonstrated a marked increase in apoptotic cell populations

following baicalein treatment at concentrations of 10, 25, and 50
Frontiers in Immunology 14
mM (Figure 8J), indicating that baicalein not only suppresses cell

proliferation but also promotes apoptosis.

To further elucidate the mechanism of growth inhibition, we

analyzed cell cycle distribution. Untreated 786-O cells exhibited a

balanced distribution among G1, S, and G2/M phases (Figure 8F).

Following baicalein treatment (Figures 8G–I), a dose-dependent

accumulation of cells in the G1 phase was observed, increasing from

55.13% ± 1.21% (control) to 72.40% ± 1.39% at 50 mM (Figure 8K).

This was accompanied by a corresponding reduction in S and G2/M

populations, suggesting that baicalein induces G1 phase arrest,

thereby inhibiting DNA synthesis and mitotic progression. These

findings demonstrate that baicalein exerts a dual anti-tumor effect

in ccRCC cells by inhibiting proliferation through G1 phase arrest

and promoting apoptosis.

Collectively, our integrative analysis and experimental

validation underscore the therapeutic potential of baicalein as a

promising natural compound that targets YDC-related biomarkers

for the improved management of ccRCC.
Discussion

In this study, we systematically explored the prognostic value of

YDC in ccRCC, integrating transcriptomic profiling, machine

learning algorithms, immune landscape deconvolution, and

herbal medicine screening. Our results highlight that YDC is not

only a clinically relevant constitutional phenotype but also exerts a

profound influence on the tumour immune microenvironment

(TIME) and survival outcomes in patients with ccRCC.

We identified a robust gene signature associated with YDC that

stratifies patient survival risk and demonstrates strong predictive

power across multiple cohorts. Notably, these YDC-related genes

(YDGs) exhibit immune cell-type specificity and are functionally

enriched in immune modulation, cell adhesion, bile acid transport,

and Ras signalling—biological processes that are frequently

dysregulated in ccRCC (51). These findings suggest that YDC

may drive tumour-promoting phenotypes via immune

dysregulation, metabolic reprogramming, and chronic

inflammation, offering a constitution-based framework for

precision oncology. Complementary pathway enrichment and

GSEA analyses revealed that individuals with YDC show elevated

activity in chemical carcinogenesis, ROS and lipid metabolism, TNF

signalling, and ribosome biogenesis—pathways associated with

metabolic abnormalities, oxidative stress, immune suppression,

and tumour proliferation (52–57). Moreover, enrichment in B-cell

receptor (BCR) signalling and systemic lupus erythematosus (SLE)-

related gene sets suggests a heightened inflammatory state and

potential autoimmunity risk, both of which are epidemiologically

linked to renal cancer (58, 59). YDC-related genes were particularly

enriched in pathways regulating bile salt transport, cell adhesion,

and Ras signalling—all of which are crucial for maintaining renal

homeostasis and are commonly dysregulated in ccRCC (60, 61).

Importantly, the identified YDGs are not only prognostically

significant but also mechanistically linked to TIME modulation.

Through CIBERSORT and single-cell RNA sequencing analyses, we
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observed elevated infiltration of CD8+ T cells, T regulatory cells

(Tregs), NK cells, and M2 macrophages in the YDC subgroup.

While CD8+ T cells typically confer anti-tumour immunity, their

activity is often impaired under nutrient-deprived and
Frontiers in Immunology 15
immunosuppressive microenvironments - a hallmark of ccRCC

(62). Several YDGs—including IFNG, CCDC88B, DEF6, PLCB2,

and TBC1D10C—were found to modulate key immune functions,

such as antigen presentation, TCR signalling, macrophage
FIGURE 8

Identification and experimental validation of herbal therapeutics targeting YDC–ccRCC biomarkers. (A) Workflow for GSVA-based herbal compound
screening. (B-C) Regulatory activity of candidate herbal compounds on YDC and ccRCC-related signatures. (D) Molecular docking between IFNG
and baicalein, showing stable binding. (E) Dose-dependent inhibition of 786-O cell proliferation by baicalein (CCK-8 assay). (F-I) Cell cycle analysis
following 24h baicalein treatment (10, 25, 50 mM). (J) Apoptosis induction in 786-O cells after baicalein exposure, assessed via PI staining.
(K) Quantification of apoptosis and cell cycle arrest. Data shown as mean ± SD (n = 3). ***P< 0.001 vs. control.
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activation, and cytokine production (63–67). Furthermore, IFNG

emerged as a central immunoregulatory hub, mediating both

immune activation (via MHC-I and chemokine induction) and

immune exhaustion under chronic stimulation (68). These insights

reinforce the hypothesis that YDC reflects a constitution-driven

immunometabolism state that shapes tumour progression and

responsiveness to immune-based therapies. This positions YDC

as not just a prognostic indicator, but a potentially actionable factor

in tailoring ccRCC treatment strategies.

Furthermore, our study presents a novel and unique panel of

prognostic biomarkers that capture the dynamic interactions

between body constitution, the tumour, and its immune

microenvironment. Using LASSO and random forest models, we

identified nine YDGs with superior stratification ability compared

to conventional biomarkers. These genes, such as MXD3, DEF6,

and PLEKHN1, are implicated in processes including DNA repair,

lipid metabolism, epithelial–mesenchymal transition (EMT), and

immune suppression (69–71). Their enrichment in specific immune

cell populations (T cells and macrophages) underscores their role in

modulating TIME and promoting tumour immune evasion.

In addition to providing a prognostic framework, we also

developed an innovative herbal compound screening strategy
Frontiers in Immunology 16
tailored to YDC biology. By integrating transcriptomic

perturbation profiles from over 600 herbal medicines, we

prioritized compounds that reverse the YDC-related gene

expression signature. Two leading candidates, baicalein and

scutellarin, demonstrated consistent suppression of disease-related

pathways and strong binding affinity to IFNG, confirmed by

molecular docking. Functional validation further demonstrated

that baicalein inhibited ccRCC cell proliferation, induced G1-

phase cell cycle arrest, and promoted apoptosis, thereby

supporting its therapeutic potential in targeting both immune

modulation and tumour survival mechanisms (72).

Despite the promising findings, several limitations should be

taken into consideration. First, our analyses relied heavily on

transcriptomic data from public databases, which may introduce

cohort-specific biases and statistical robustness. In order to address

this issue, we applied empirical Bayes moderation and module-

based co-expression analysis to reduce bias; however, future

validation may require balanced cohorts. Second, although YDC

was analysed as a dominant constitutional type, body constitution is

multifaceted, and future studies should explore its interaction with

other TCM syndromes. In addition, the acknowledgement of RNA-

seq transcriptomic data was insufficient in capturing protein-level

regulation. Consequently, proteomic and immunohistochemical

validation of the biomarkers will be essential in future discovery.

The uneven cohort distribution and subjective selection of the

machine-learning models might contribute to potentially biased

conclusions. Therefore, future analytical workflows should

incorporate multiple machine learning models and adopt more

stringent thresholds to enhance the objectivity and robustness of the

results. Baicalein was computationally identified as a potential

compound targeting YDC-related genes, as the current study did

not include in vitro or in vivo validation to confirm whether

baicalein modulates IFNG expression or signalling pathways.

Future mechanistic studies, such as cell-based assays, will be

necessary to ver i fy this regulatory mechanism. The

pharmacodynamics and synergistic effects of herbal compounds

remain underexplored due to incomplete data on ingredient–target

interactions. Comprehensive in vivo validation and mechanistic

investigations are warranted to elucidate the therapeutic value of

these compounds fully.

Collectively, our findings provide a preliminary framework for

predicting survival risk and exploring constitution-guided

therapeutic strategies in ccRCC. While the proposed YDC-based

stratification may offer complementary insights to existing

precision-oncology approaches, its clinical utility remains to be

further validated. Future prospective and experimental studies are

warranted to confirm the translational relevance of these findings

and to evaluate whether constitution-guided interventions can

meaningfully improve patient outcomes.
Conclusions

In summary, this study reveals the prognostic and

immunological relevance of YDC-related traits in ccRCC. By
TABLE 1 Diagnosis standard for yang-deficient and balanced
constitution (21)

Type of
Constitution

Yang-deficient
constitution

Balanced
constitution

Main features Cold intolerance
Chilly in the extremities
and lower back
Favor warmth, including
hot beverages
Vulnerable to cold

Vigorous
Without Yang-deficient
related symptoms

Secondary features Loose stool
Propensity to gain weight
Frequent urination
Fair or pale complexion
Soft and pale tongue

Good appetite
Good sleep
Healthy body posture
TABLE 2 Summary of molecular docking results of baicalein and INFG
protein.

Run
Binding energy
(kcal/mol)

Intermolecular
energy (kcal/mol)

1 -5.37 -7.46

2 -5.30 -7.39

3 -5.05 -7.14

4 -4.90 -6.99

5 -4.85 -6.94

6 -4.83 -6.92

7 -4.80 -6.89

8 -4.71 -6.80

9 -4.31 -6.61
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integrating bulk and single-cell transcriptomic analyses, we

identified a YDC-associated gene signature with strong predictive

value, particularly MXD3, DEF6, PLCB2, TBC1D10C, IFNG,

CCDC88B, and PLEKHN1, which are important in immune

modulation as a potential mechanism underlying poor prognosis

in YDC-phenotypic renal cancer patients. Moreover, baicalein was

computationally predicted as a promising herbal compound that

may target YDC-related genes to regulate immune responses and

inhibit tumour progression. While similar integrative approaches

have been explored in related contexts, our work provides an

additional perspective linking traditional constitutional theory

with immune-oncological mechanisms, suggesting a potential

direction for constitution-informed precision medicine in renal

cancer, which requires further clinical and experimental evaluation.
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