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cell renal cell carcinoma by
modulating the tumour
immune microenvironment
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Bo Zhang® and Yinyin Wang™

‘Department of Traditional Chinese Medicines (TCMs) Pharmaceuticals, School of Traditional Chinese
Pharmacy, China Pharmaceutical University, Nanjing, China, 2Sichuan Industrial Institute of Antibiotics,
School of Pharmacy, Chengdu University, Chengdu, China, *Department of General Surgery, Affiliated
Hospital of Nanjing University of Chinese Medicine, Nanjing, China

Background: Clear cell renal cell carcinoma (ccRCC) is the most common
subtype of kidney cancer, often diagnosed at advanced stages due to a lack of
reliable early biomarkers. Recent studies suggest that the traditional Chinese
medicine (TCM) body constitution, particularly the Yang-Deficiency Constitution
(YDC), may influence tumour development by altering the immune
microenvironment. However, the mechanistic connection between YDC and
ccRCC prognosis remains largely unexplored.

Objective: This study aims to elucidate the impact of YDC on the immune
landscape and clinical outcomes of ccRCC and to identify novel prognostic
biomarkers and potential herbal therapeutic agents guided by YDC characteristics.
Methods: We integrated bulk transcriptomic data from 12 YDC-classified
individuals and 530 ccRCC patients, alongside single-cell RNA-seq profiles
from one PBMC and two ccRCC tumour samples. Through differential
expression analysis, WGCNA, and machine learning-based survival modelling,
we identified YDC-related biomarkers and assessed their immunological
relevance using ESTIMATE, CIBERSORT, and CellChat. A gene expression-
based scoring framework (GSVA) was developed to systematically prioritize
622 herbal ingredient perturbations for their potential survival benefits. Key
ingredients were further validated through molecular docking and
experimental assays.

Results: Patients with YDC-associated ccRCC exhibited poorer survival. Nine
intersecting genes were screened and used to construct a prognostic model,
whereby seven key biomarkers—MXD3, PLCB2, CCDC88B, DEF6, IFNG,
TBC1D10C, and PLEKHN1—were significantly influenced the prognosis of renal
cancer. These genes were found to modulate immune cell populations,
particularly CD8" T cells, Tregs, and M1 macrophages, with IFNG serving as a
central regulatory hub. Baicalein was identified and validated as a promising
therapeutic agent targeting IFNG.
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Conclusion: This study highlights the crucial role of YDC in shaping the immune
microenvironment and influencing survival in ccRCC. By integrating
constitution-based stratification, immune profiling, and herbal medicine
screening, we offer a unique framework for biomarker discovery and propose
baicalein as a potential YDC-targeted adjuvant therapy.

clear cell real cell carcinoma (ccRCC), pre-diagnosis biomarkers, immuneinfiltration,
tumor immune microenvironment, therapeutic intervention, Yang-
deficiencyconstitution (YDC)

Introduction

Clear cell renal cell carcinoma (ccRCC) is the most common
and aggressive subtype of kidney cancer, accounting for
approximately 70-90% of all renal malignancies (1). Despite
progress in diagnostic imaging and molecular testing, ccRCC is
frequently diagnosed at advanced stages due to its pronounced
molecular heterogeneity and lack of reliable early biomarkers.
According to the theory of oncology, biomarkers play essential
roles in early detection, risk stratification, prognosis, and
therapeutic decision-making (2, 3). For example, HER2 serves as
a key biomarker in breast cancer (4), while EGFR mutations guide
the development of targeted therapies in non-small cell lung cancer
(NSCLC) (5). However, the identification of robust and clinically
actionable biomarkers in ccRCC remains challenging, primarily due
to limited preclinical validation and the complex biological
landscape of the disease (6).

Beyond genetic mutations, the tumour immune
microenvironment (TIME) has emerged as a crucial determinant
of ccRCC progression and therapeutic response. Immune cell
infiltration, cytokine signaling, and stromal interactions
collectively shape tumour behaviour by promoting angiogenesis,
immune suppression, and metastasis (7). The advent of immune
checkpoint inhibitors (ICIs) has significantly improved outcomes in
ccRCC by restoring antitumor immunity; however, response rates
remain variable, and the mechanisms underlying immune evasion
are incompletely understood (8). This variability underscores the
need to integrate host-specific factors into immune-based
prognostic models.

One such host factor is body constitution; a concept rooted in
traditional Chinese medicine (TCM) that categorizes individuals
into distinct physiological types with differential susceptibility to
disease. Among the nine classical TCM constitutions, the Yang-
Deficiency Constitution (YDC) has garnered attention for its
association with immune dysfunction and metabolic impairment
(9-12). Clinically, individuals with YDC typically exhibit cold
intolerance, coldness in the hands, feet, stomach, and waist, a
preference for warm food and drinks, and an increased
susceptibility to cold exposure; whereas secondary manifestations
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often include watery stool, whitish skin, nocturia, a pale and tender
tongue, and a tendency toward obesity (Table 1) (13). Furthermore,
the kidney is central to energy metabolism, fluid regulation, and
immune balance—functions that closely parallel endocrine and
immunological mechanisms recognized in modern medicine (14,
15). Specifically, YDC is characterized by reduced mitochondrial
activity, impaired glucose and lipid metabolism, and weakened
adaptive immune responses (16), suggesting a potential role in
shaping the tumour immune microenvironment and affecting
cancer progression (17).

Emerging evidence supports the relevance of constitutional types
in cancer biology. For instance, patients with Yang-deficiency or
Phlegm-Dampness constitutions report higher levels of cancer-
associated fatigue and systemic inflammation (18). Constitution-
guided herbal interventions, such as Tao Hong Si Wu Tang, have
demonstrated efficacy in modulating epithelial-mesenchymal
transition, angiogenesis, and immune responses in preclinical
cancer models (19). Furthermore, constitution types have been
linked to disease phenotypes in non-oncologic conditions, such as
mild cognitive impairment (20), further supporting their value for
patient stratification and precision treatment.

Despite increasing interest in constitution theory, the
mechanistic connection between YDC and the TIME in c¢cRCC
remains largely unexplored. Given the immunogenic nature of
ccRCC, YDC may influence tumour evolution and patient
outcomes through immune modulation. However, the underlying
molecular networks and therapeutic implications of this
relationship are not yet well defined. In this study, we
systematically investigated the role of YDC in shaping the
immune microenvironment and survival outcomes in ccRCC. As
shown in Figure 1, we integrated transcriptomic and single-cell
RNA-seq data to identify YDC-associated gene signatures (YDGs)
and applied machine learning approaches to evaluate their
prognostic relevance. Functional characterization of these genes
was conducted using immune deconvolution tools (CIBERSORT,
ESTIMATE) and cell-cell communication analysis (CellChat),
revealing their regulatory roles in immune cell infiltration and
signaling. To translate these findings into potential therapeutic
strategies, we developed a Gene Set Variation Analysis (GSVA)-
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based scoring system to prioritize 622 herbal ingredients with
predicted benefits on YDC-related signatures. Top candidates
were validated via molecular docking simulations and in
vitro assays.

Collectively, our study highlights the clinical importance of
YDC in ccRCC by linking constitution-specific immune
dysregulation to poor prognosis. We also propose a novel
constitution-guided approach for biomarker discovery and herbal
compound screening, offering alternative therapeutic strategies for
precision oncology.

Materials and methods
Dataset acquisition

Bulk RNA-seq profiles of individuals with YDC and typical
controls were obtained from the Gene Expression Omnibus (GEO)
(GSE87474, n=20) (21). The ccRCC transcriptomic dataset (n =
534) was accessed via the UCSC Xena platform. Single-cell RNA-
seq (scRNA-seq) data were collected from peripheral blood
mononuclear cells (PBMCs) of a healthy donor (GSE115189) and
two ccRCC tumour samples (GSE152938) (22). Differentially
expressed genes (DEGs) related to 622 herbal ingredients were
retrieved from the HERB (23) and ITCM (24) databases.

Differential gene expression and functional
enrichment analysis in Yang deficiency
samples

DEGs in YDC samples were identified using the limma package
(25) in R, applying a threshold of |log,FC| > 2.5 and P< 0.05 due to
relatively small cohort distributions and to minimize false positives
for the subsequent pathway analyses. Functional enrichment
analyses were conducted to reveal the biological relevance of these
DEGs. Gene Ontology (GO), Kyoto Encyclopaedia of Genes and
Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA)
were employed using the clusterProfiler package to identify
enriched biological pathways.

Weighted gene co-expression network
analysis in Yang deficiency samples

Weighted Gene Co-expression Network Analysis (WGCNA)
was performed using the wgcnapackage in R to identify YDC-
associated gene modules (26). The workflow included: (1)
hierarchical clustering of samples to detect outliers, (2)
determination of soft-thresholding power and adjacency matrix
construction, (3) conversion into a topological overlap matrix
(TOM), (4) module identification via dynamic tree-cutting
(minimum module size = 30), and (5) correlation analysis
between modules and the YDC phenotype to identify hub genes
for downstream analysis.
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Identification of shared signature genes
between YDC and ccRCC

DEGs from the ccRCC and YDC datasets were intersected to
identify shared biomarkers. Gene-gene correlation networks were
constructed using igraph and ggraph (27), retaining edges with a
Spearman correlation coefficient greater than 0.3. Functional
modules were identified using the Louvain community detection
algorithm (28) to highlight gene clusters with co-expression
patterns. These DEGs were used to quantify the degree of YDC
traits in ccRCC samples, thereby providing a semi-quantitative
approach to define the YDC cohort. The DEGs associated with
YDC were compiled into gene sets for gene set variation analysis
(GSVA). Followed by calculating the resulting enrichment scores,
which were then used to quantify the transcriptional activity of
YDC-related molecular patterns in each ccRCC patient. Patients
were subsequently stratified into high- and low-score groups based
on the median GSVA score, and survival analyses were performed
to assess the association between YDC-related transcriptional

signatures and clinical outcomes.

Survival analysis using LASSO-cox
regression

The overlapping genes between YDC and ccRCC were subjected
to prognostic evaluation using LASSO-Cox regression (29) via the
glmnet package (30). Cross-validation determined the optimal
regularization parameter (A). A predictive risk score for each
patient was calculated:

Risk Score; = Eleﬂj X (1)

Where f3; is the LASSO-derived coefficient for the gene j and x;;
is its expression in sample i. Patients were stratified into high- and
low-risk groups for Kaplan-Meier survival analysis using the
ggsurvplot package.

Random forest-based survival analysis

A random survival forest model was built using the
randomPForestSRC package (31), with overall survival and status
as outcomes and gene expression profiles as input. The model was
selected due to its high predictive performance among multiple
models for breast cancer survival, along with an accuracy of 96%
and an area under the curve (AUC) of 0.93 (32). Furthermore, the
model required minimal data preprocessing, was resilient to
outliers, and could effectively identify important predictors that
inform personalized clinical decision-making, which fulfilled the
main idea of the topic (33). In addition, the RSF model provided
more individualized survival curves and captured non-constant
hazard dynamics over time after comparison with Cox and
Support Vector Machine (SVM) models, which is crucial for
personalized treatment planning (34). Feature importance was
assessed, and the individual prognostic value of each gene was
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Cell experiments

Overview of the study design. (A) Functional analysis of ccRCC and YDC. (B) Identification of potential prognostic biomarkers and construction of a
predictive survival model followed by immune microenvironment characterization using CIBERSORT and CellChat. (C) Screening and experimental
validation of herbal compounds with potential to prolong ccRCC survival using GSVA scoring, molecular docking, and in vitro assays.

further evaluated using univariate Cox regression (35), receiver
operating characteristic (ROC) curves (AUC), and Kaplan-
Meier plots.

Construction of a prognostic prediction
model for clinical survival probability at
different time intervals

A prognostic nomogram was developed to predict 1-, 2-, and 3-
year survival by integrating expression levels of selected biomarkers
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into a multivariate Cox model. Calibration plots were used to assess
the predictive accuracy. Decision curve analysis (DCA) (36)
evaluated clinical net benefit across probability thresholds.

Immune microenvironment analysis of
ccRCC samples on cell type proportion
The ESTIMATE algorithm (37) was applied to calculate

immune and stromal scores in ccRCC samples. CIBERSORT (38)
was used to estimate the relative abundance of 22 immune cell
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types. Spearman correlation analysis was conducted to examine
relationships between prognostic biomarkers and immune cell
infiltration. To validate immune associations, immune phenotypic
scores (IPS) from The Cancer Immunome Atlas (39) were analysed,
stratifying samples by CTLA-4/PD-1 responsiveness.

Gene expression distribution and
bioactivity enrichment of biomarker genes
on SC-Seq of ccRCC samples

Two single-cell datasets derived from PBMCs and ccRCC
samples were utilized to investigate cellular activity and gene
expression dynamics. Two scRNA-seq datasets were analysed
using Seurat (40) for normalization, dimensionality reduction
(principal component analysis, PCA), and clustering (uniform
manifold approximation and projection, UMAP). Low-quality
cells with<200 or >5, 000 detected genes or mitochondrial content
>10% were removed. Cell-type annotation was performed using
SingleR (41) or PBMCs and CellMarker (42) for ccRCC tumours.
Cell types were annotated by calculating the average expression of
known biomarker genes in each cluster and matching them to
established immune and tumour marker sets from the CellMarker
databases. Clusters showing the highest marker concordance were
assigned cell identities. Only markers with log,FC > 0.25, P < 0.05,
and min.pct > 0.1 were retained. Activity of YDC-related gene
signatures in PBMCs was assessed via AddModuleScore (43) while
the Area Under the Curve cell (AUCell) (44) quantified signature
activity in ccRCC single cells based on AUC scores.

Cellchat analysis to explore the dynamics
of cellular interaction of biomarker genes
on SC-Seq of ccRCC samples

To investigate intercellular communication patterns among
immune and stromal cells, we employed the CellChat from the R
package (45) using single-cell transcriptomic data. We constructed
a CellChat object using the normalized expression matrix and cell-
type annotations and inferred cell-cell communication networks
based on a curated ligand-receptor interaction database. The
interactions between cell types were quantified and visualized
using circle plots. To explore immune-related signaling, we
focused on the prognostic gene-related signaling pathway, where
communication probabilities and ligand-receptor interactions were
evaluated and visualized through chord plots and dot plots.
Furthermore, the role of each cell type in the pathway, as sender,
receiver, mediator, or influencer, was assessed. Lastly, a heatmap
summarizing outgoing and incoming signal strengths was
generated to highlight the dominant signaling populations. All
analyses and visualizations were performed using the standard
CellChat workflow and its built-in plotting functions.
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Screening for therapeutic herbal
ingredients using GSVA

Herbal ingredient-associated gene sets were retrieved from
HERB and ITCM. Firstly, the DEGs obtained from the HERB
database were analysed using the limma package, while genes from
the ITCM database were directly retrieved. To minimize false
positives, only differentially expressed genes (DEGs) with P < 0.05
were used. The resulting genes were curated and compiled into
herb-specific gene sets for enrichment analysis. GSVA was used to
evaluate enrichment scores of these gene sets within each sample.
For sample j, the enrichment score s;; for herb j was calculated as:

Skj = maxr(Pin(r) - Pout(r)) (2)

where (P;,(r) and P,,(r)) represent empirical cumulative
distribution functions (ECDFs) for gene expression ranks inside
and outside gene set Gy, respectively. This score summarizes the
pathway activity of herbal ingredients across samples. Top-ranking
ingredients were considered for downstream therapeutic validation.

Molecular docking simulation to confirm
the binding between the potential
ingredient and the targeted biomarkers

To validate the therapeutic potential of the identified compound,
molecular docking simulations were performed. The 3D structural
data of the herbal-derived compound baicalein were obtained from
the PubChem chemical substance database (46). At the same time,
the crystal structure of the key biomarker protein IFNG was retrieved
from the RCSB Protein Data Bank (47). Protein-ligand docking
simulations were conducted using PYMOL and AutoDock Tools (48),
and the binding affinity between baicalein and IFNG was estimated to
assess their potential interaction.

Cell experimental validation

Cell lines and culture conditions

The human renal carcinoma cell line 786-O (purchased from
Nanjing Runyan Biotechnology Co., Ltd.) was routinely cultured
under sterile conditions at 37°C in a humidified atmosphere
containing 5% CO,. Cells were grown in RPMI-1640 medium
supplemented with 10% heat-inactivated fetal bovine serum (FBS)
and 1% penicillin-streptomycin. Cell lines were passaged upon
reaching 80-90% confluence using 0.25% trypsin-EDTA solution
and subculture at appropriate seeding densities. Culture medium
was refreshed every 2-3 days, and cells were routinely monitored
for morphology and mycoplasma contamination.

Cell viability assays
786-0 cells were plated in 96-well microplates (5 x 10* cells/
well) containing 100 UL complete growth medium and incubated
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for 12-16 hr at 37°C under 5% CO, to achieve cellular adhesion.
After adherence confirmation, cells were treated with gradient
concentrations of baicalein or vehicle control (0.1% DMSO) for
specified durations. At the treatment endpoint, 10 pL of CCK-8
solution (MedChemExpress, Shanghai, China) was added to each
well without replacing the medium. Plates were subjected to orbital
agitation (30 sec, 100 rpm) to ensure reagent dispersion and then
further incubated at 37°C and 5% CO, for precisely 2 hours. Optical
density was subsequently quantified at dual wavelengths (450 nm
test; 650 nm reference) using a Varioskan LUX microplate reader
(Thermo Scientific) to correct for nonspecific absorption.

Cell apoptosis and cycle distribution analysis

Following baicalein incubation, 786-O cells were harvested and
resuspended to generate a single-cell suspension. Cells were pelleted
via centrifugation (1000 x g, 3 min). After supernatant aspiration,
the cell pellet was washed once with 1 mL ice-cold phosphate-
buffered saline (PBS), transferred to a 1.5 mL microcentrifuge tube,
and centrifuged again to form a pellet. After supernatant removal,
the cells were fixed by dropwise addition of 1 mL ice-cold 70%
ethanol under gentle agitation and then incubated at 4°C for a
minimum of 30 minutes. Fixed cells were recovered by
centrifugation (1000 x g, 3 min). Following careful aspiration of
the ethanol, the cell pellet was resuspended in 0.5 mL of propidium
iodide (PI) Staining Solution (Beyotime Biotechnology, Shanghai,
China) and incubated at 37 °C in the dark for 30 min. Stained
samples were maintained at 4 °C in the dark until analysis.
Apoptosis assessment was performed by quantifying Relative
Fluorescence Units (RFU) using 488 nm excitation with
Varioskan LUX (Thermo). Cell cycle distribution was analyzed
using the BriCyte® E6 flow cytometer (Mindray), and subsequent
quantification of cell cycle phases was performed using ModFit LT
5.0 software.

Statistical analysis

All analyses were performed using R version 4.4.2. Gene
correlations were assessed using either Spearman or Pearson
correlation coefficients, as appropriate. Survival analyses were
conducted using Kaplan-Meier estimation and Cox proportional
hazards regression. Unless otherwise specified, a p-value< 0.05 was
considered statistically significant.

Results

Biological characteristics of Yang-
deficiency constitution

To elucidate the biological characteristics of the YDC, we
analysed RNA-seq data from 12 individuals with YDC and eight
healthy controls using the GSE87474 dataset. Differential
expression analysis revealed 29, 555 differentially expressed genes
(DEGs) in YDC samples compared to healthy individuals
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(Figure 2A, Supplementary Table 1). GO enrichment analysis
indicated that these DEGs are predominantly involved in
ribonucleoprotein complex biogenesis, protein-RNA complex
organization, and mitochondrial inner membrane organization
(Figure 2B). KEGG pathway analysis further demonstrated that
YDC is associated with altered biological functions in pathways
such as amyotrophic lateral sclerosis, lipid metabolism,
atherosclerosis, Salmonella infection, and the TNF signaling
pathway (Figure 2C). Additionally, GSEA highlighted significant
enrichment in immune- and cancer-related pathways, including the
B cell receptor signaling pathway, cancer pathways, and systemic
lupus erythematosus (Figure 2D). These results collectively suggest
a potential link between YDC and cancer development
and progression.

To further identify gene modules closely associated with the
YDC phenotype, we employed WGCNA, which clustered genes
into 29 modules based on topological overlap (Figure 2E). Among
these, the MEpink module exhibited the strongest correlation with
the YDC trait (r = 0.98, P< 0.01), and thus was chosen for further
interpretation. (Figure 2F). Moreover, genes in this module show
distinct expression across samples (Figure 2G). Notably,
chemokines such as CXCR4 and CCL20, both located within the
pink module, are known to promote carcinogenesis, angiogenesis,
and the survival of cancer cells. Elevated CCL20 expression has also
been associated with poor prognosis in hepatocellular carcinoma
(HCC) patients following curative resection (49, 50). These findings
support the involvement of pink module genes in cancer-related
pathological processes. This association was further corroborated by
a strong positive correlation between module membership (MM)
and both the YDC trait and gene significance (GS), with a Pearson
correlation coefficient of R = 1.0 and p = 7.5¢’** (Figure 2H).

In summary, our integrative RNA-seq analysis of YDC and
healthy individuals identified significant dysregulation in immune
and cancer-associated pathways. We also identified a key gene
module comprising 2, 058 genes—referred to hereafter as the
YDC signature genes—that may play critical roles in the onset
and progression of cancer in individuals with a Yang-
deficiency Constitution.

Association between YDC and ccRCC and
their pre-diagnostic biomarker genes

Having established that YDC significantly influences the
survival of patients with ¢ccRCC, we further explored the
functional association between YDC and ccRCC. A total of 1, 047
DEGs were identified when comparing ccRCC samples to healthy
controls (Figure 3A, Supplementary Table 2). Among these, 21
genes overlapped with those associated with YDC (Figure 3B),
highlighting a potential mechanistic link.

Survival analysis revealed that ccRCC patients with YDC
exhibited significantly poorer prognosis (Figure 3C), further
supporting a functional association between YDC and disease
progression. Functional enrichment analysis using the Metascape
database showed that these 21 overlapping genes were significantly
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Transcriptomic profiling of YDC. (A) Volcano plot showing differentially expressed genes (DEGs) in YDC versus healthy controls (|log,FC| > 2.5,
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(GS) for hub gene identification.

involved in bile salt, organic acid, metal ion, and amine compound
transport, as well as in monocarboxylic acid transport, positive
regulation of cell adhesion, circulatory system processes, and the
Ras signalling pathway (Supplementary Figure 1).

Gene co-expression network analysis of the 21 YDC-associated
genes revealed two major gene clusters (Figure 3D). The first
cluster, comprising TNFSF14, LILRBI1, PLCL1, CYP4F2, and
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VEGFA, was primarily associated with immune regulation and
inflammatory signaling, suggesting an immunological component
to YDC in ccRCC. The second cluster, including SLC16A7,
ATP1A1, RGS1, MAL, and PADI1, was enriched in
transmembrane transport and metabolic processes, indicating a
potential link between YDC and metabolic reprogramming.
Notably, PAK6 and TMEM30B appeared in both clusters and
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highlighting ccRCC-relevant pathways.

may serve as key regulatory hubs connecting immune and
metabolic pathways. Pathway enrichment analysis based on the
KEGG database further demonstrated that these genes were
significantly enriched in pathways related to organismal systems,
metabolism, human diseases, environmental information
processing, and cellular processes. Specifically, the renal cell
carcinoma pathway, T cell receptor signaling pathway, linoleic
acid metabolism, and VEGF signaling pathway—each previously
implicated in ccRCC—were prominently enriched (Figure 3E).

By integrating the signature genes associated with YDC and
ccRCC, we identified nine overlapping candidate genes: MXD3,
DEF6, IFNG, TBC1D10C, CCDC88B, ITGAD, PLEKHN1, PLCB2,
and FUT7 (Figure 4A).

Collectively, these findings highlight the potential biological
relevance of YDC in the pathogenesis and progression of ccRCC,
with the nine overlapping genes identified as candidate signature
genes associated with YDC-mediated regulation of ccRCC.

Evaluation of pre-diagnostic biomarker
genes and predictive model for ccRCC
survival risk

To evaluate the prognostic potential of these genes, we
employed LASSO regression analysis to determine the optimal
regularization parameter (A) and identify genes with significant
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survival relevance. Cross-validation results indicated that the
minimum partial likelihood deviance occurred around log(A) =
-6 (Figure 4B), confirming all nine genes as non-zero contributors
to the predictive model. The coefficient trajectories demonstrated
that several genes maintained non-zero coefficients despite
increasing regularization (Figure 4C), indicating their stability
and prognostic robustness.

Subsequently, a random forest model was constructed to
quantify gene importance and assess predictive performance. The
model’s prediction error decreased rapidly within the first 100
decision trees and stabilized after approximately 200 trees
(Figure 4D). Finally, the 500 trees were selected as the final model
parameter to ensure a stable estimation. Using this approach, the
nine genes were scored by their contribution to model prediction.
Then, Kaplan-Meier survival analysis further demonstrated that
patients in the high-risk group, as the risk scores had been evaluated
by Equation 1 - classified based on the risk scores derived from these
genes—had significantly worse survival than those in the low-risk
group (log-rank test, P< 0.001) (Figure 4E). Additionally, MXD3
was identified as the most critical prognostic gene, with the highest
variable importance score (20) and a hazard ratio (HR) of 1.63 (P <
0.001) (Figures 4F, G). DEF6 and IFNG also ranked highly,
suggesting strong associations with survival outcomes.

ROC curve analysis confirmed the diagnostic efficacy of
individual biomarkers, with MXD3 achieving the highest area
under the curve (AUC = 0.70, P < 0.001). Most genes exhibited
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moderate but statistically significant discriminatory power
(Figure 4H, Supplementary Figure 2). All nine genes were
significantly associated with overall survival (HR > 1, P< 0.001),
further validating their prognostic potential.

To enhance the clinical utility of the identified biomarkers, we
constructed a gene-based nomogram model for predicting 3-year
survival risk in ccRCC (Figure 4]). The nomogram assigns a
weighted score to each gene, with the total score corresponding to
estimated survival probability. Calibration plots demonstrated
strong concordance between predicted and observed survival
rates, especially for 1-year predictions, indicating robust model
calibration (Figure 4K).

Moreover, DCA demonstrated that the nomogram offers a
greater net clinical benefit across a threshold probability range of
0.25 to 0.60 (Figure 4I), underscoring the clinical applicability of the
seven most predictive genes in long-term survival estimation.

In summary, these findings highlight nine YDC-related genes as
promising pre-diagnostic biomarkers for evaluating long-term
survival risk in ccRCC patients. Building on this, we developed
and validated a prognostic model based on YDC-associated gene
expression, providing a robust and clinically applicable tool for
survival risk prediction in ccRCC.

Immune infiltration analyses of prognostic
genes in the ccRCC cohort

To investigate the potential immune-related mechanisms through
which YDC influences the prognosis of ccRCC, we conducted
comprehensive analyses of the immune microenvironment. Given
the central role of immune dysregulation in tumour progression, we
utilized single-cell transcriptomic data to examine the immune
context of prognostic biomarkers.

First, we applied the ESTIMATE algorithm to infer the
proportions of stromal and immune components in the tumour
microenvironment based on gene expression data. The analysis
revealed significantly elevated immune, stromal, and composite
ESTIMATE scores in ¢cRCC samples compared to healthy
controls (Figure 5A-C, P < 0.001), indicating a profoundly altered
tumour microenvironment in ccRCC. To further characterize the
immune cell composition, we employed the CIBERSORT algorithm
to deconvolute the bulk transcriptomic profiles into 22 distinct
immune cell types (Figure 5D). ccRCC tissues exhibited increased
infiltration of immune effector and regulatory cells, including CD8"*
T cells, regulatory T cells (Tregs), monocytes, and M1 macrophages
(Figure 5E, P < 0.001). In contrast, healthy samples displayed higher
levels of naive B cells, activated NK cells, and resting dendritic cells.

To explore the relationship between immune infiltration and
our identified prognostic genes, we performed Spearman
correlation analyses to assess the association between gene
expression and immune cell infiltration scores. The YDC-related
prognostic genes demonstrated strong positive correlations with
key immune subsets (Figure 5F, P < 0.001). Similarly, NK cells
activated showed a positive correlation with IFNG, TBC1D10C,
CCDC88B, and DEF6 (Figure 5F, P < 0.001). For example, CD8* T
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cell and Treg infiltration levels were positively correlated with most
biomarkers, while NK cell activation showed significant correlations
with IENG, TBC1D10C, CCDC88B, and DEF6. These findings
suggest that the identified genes may serve as modulators of
immune cell recruitment and inflammatory signaling in the
tumour microenvironment.

To validate these findings, we used IPS from the external TCIA
database. Samples were stratified into high-IPS and low-IPS groups,
and gene expression was compared across groups (Supplementary
Table 3). All nine prognostic biomarkers were significantly upregulated
in the high-IPS group (Figure 5G, P < 0.001), reinforcing their
association with enhanced immune responsiveness.

Taken together, our immune infiltration analyses suggest
that these YDC-associated biomarkers may influence ccRCC
patient survival by modulating the immune microenvironment,
particularly through the regulation of CD8" T cells, Tregs, and
M1 macrophages.

Single-cell resolution of biomarker
expression and functional enrichment

To gain a high-resolution view of the immune-related functions
of the prognostic biomarkers, we analysed single-cell RNA
sequencing (scRNA-seq) data from PBMCs and c¢cRCC tumour
samples. In the PBMC dataset, 3, 372 cells were classified into 10
significant immune populations, including CD8" T cells, CD4" T
cells, B cells, NK cells, dendritic cells, monocytes, neutrophils,
progenitors, basophils, and general T cell subsets (Figure 6A).
Using a manually curated gene set based on YDC-related DEGs,
we calculated enrichment scores for each cell type using the
AddModuleScore function. Monocytes and neutrophils exhibited
the highest module scores (Figures 6B-C), suggesting their
involvement in YDC-associated immune alterations.

Similarly, analysis of 20, 599 cells from ccRCC tumour tissues
revealed that YDC-related gene sets were significantly enriched in
CD8" T cells, NK cells, T cells, and macrophages (Figures 6D-E),
with the strongest signals in T cells and NK cells (Figures 6F-G).
These enrichment points to the critical involvement of these
immune cell types in mediating YDC-related effects within the
tumour microenvironment.

Examining the distribution of individual prognostic genes across
cell types further supported their immune relevance (Figures 6F-H,
Supplementary Figure 3). For instance, TBC1D10C was highly
expressed in NK cells, Tregs, and T cells, while DEF6 showed
strong expression in NK cells and Tregs. These expression patterns
suggest a likely role for these genes in modulating the immune
response and inflammation within the tumour niche.

Together, these findings reveal that the seven YDC-related
prognostic genes are not only functionally associated with
immune infiltration but are also preferentially expressed in key
immune cell subsets at the single-cell level. This highlights their
potential role in immune remodelling and tumour progression
in ccRCC.
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Cellular and molecular interactions of
prognostic biomarkers in the tumour
microenvironment

To elucidate the cellular and molecular dynamics of biomarker
interactions within the ¢ccRCC tumour microenvironment, we
conducted CellChat analysis using single-cell RNA sequencing
data (GEO152938). Understanding these interactions is essential
for uncovering pathogenic mechanisms and identifying novel
therapeutic targets.

The overall cell-cell communication network revealed extensive
crosstalk among immune and stromal cell populations (Figure 7A).
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Among these, monocytes and macrophages emerged as central
hubs—monocytes exhibited the highest number of interactions,
while macrophages demonstrated the strongest interaction weights
(Figure 7B), suggesting their dominant regulatory roles in the
ccRCC immune milieu.

Notably, IFNG, one of the identified prognostic biomarkers,
was found to be the primary ligand initiating interferon-y (IFN-v)
signaling, particularly mediating interactions between NK cells and
CD8" T cells (Figure 7B). In this signaling axis, monocytes and
macrophages functioned as key receptors, forming a pivotal
regulatory loop in innate-adaptive immunity. Quantitative
ligand-receptor interaction analysis further confirmed a high
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FIGURE 7

Cell-cell communication and IFNG signalling in the ccRCC tumour microenvironment. (A, B) Intercellular communication networks based on
interaction number and strength. (C) Key ligand—receptor interactions identified across cell populations. (D) Expression levels of IFNG, IFNGR1, and
IFNGR2 in different cell types. (E) Summary of IFN-II pathway interaction scores. (F) Outgoing and incoming signalling roles of the IFN-II pathway.

communication probability for the IFNG-IFNGR1/2 pair
(Figure 7C), underscoring the central role of IFNG in modulating
immune responses.

Functional role mapping revealed that monocytes
were not only dominant signal receivers but also strong
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influencers, whereas NK cells primarily served as signal
senders and influencers (Figure 7D). This dynamic suggests
a feedback mechanism in which IFNG derived from NK cells
activates monocytes, contributing to an inflammatory
tumour microenvironment.
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Expression analysis of IFNG and its receptors corroborated
these findings: IFNG was highly expressed in NK and CD8" T cells,
while its receptors (IFNGR1 and IFNGR2) were broadly distributed
across monocytes, macrophages, fibroblasts, and endothelial cells
(Figure 7E). Heatmap analysis of IFN-II signaling strength revealed
prominent communication from NK and CD8" T cells toward
monocytes and macrophages (Figure 7F), reinforcing the centrality
of IFNG-mediated signaling in shaping the immune landscape
of ccRCC.

Collectively, these findings highlight IFNG as both a key
prognostic biomarker and a functional orchestrator of
intercellular immune communication within the ccRCC tumour
microenvironment, particularly by coordinating crosstalk between
innate and adaptive immune components.

Identification of herbal medicines targeting
prognostic biomarkers to improve ccRCC
outcomes and experimental validation

Building upon the identification of nine prognostic biomarkers
associated with YDC and c¢cRCC, we aimed to identify herbal
medicines capable of modulating the expression of these
biomarkers to improve clinical outcomes.

A high-throughput screening was performed using perturbation
data for 622 herbal medicines and their active compounds, curated
from the HERB and ITCM databases. To prioritize candidate
compounds, we computed an importance score derived from
GSVA, evaluating the enrichment of YDC-related and ccRCC
gene signature across herbal ingredients by Equation 2 (Figure 8A).
Compounds with negative enrichment scores—indicating inverse
regulation of disease-associated genes—were considered potential
therapeutic candidates. Notably, scutellarin and baicalein emerged
as top candidates, demonstrating robust and consistent
downregulation of YDC- and ccRCC-associated gene signatures
(Figures 8B, C).

To assess mechanistic plausibility, molecular docking analyses
were conducted to evaluate the binding affinity of these compounds
with interferon gamma (IFNG), one of the key hub genes identified
in our prognostic model. Scutellarin was predicted to bind within
the active site of IFNG stably. Similarly, baicalein formed multiple
hydrogen bonds—particularly with GLN-168 and LYS-175—
indicating a favourable binding conformation and strong
molecular interaction (Figure 8D and Table 2). These in silico
findings suggest that both compounds may modulate IFNG activity,
thereby influencing immune-related signaling pathways and
survival outcomes in ccRCC.

To experimentally validate the antitumor potential of baicalein,
we conducted in vitro assays using human renal carcinoma 786-O
cells. A CCK-8 cell viability assay revealed that baicalein
significantly inhibited cell proliferation in a dose-dependent
manner, with a half-maximal inhibitory concentration (ICs) of
26.14 uM (Figure 8E). Flow cytometric analysis further
demonstrated a marked increase in apoptotic cell populations
following baicalein treatment at concentrations of 10, 25, and 50
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UM (Figure 8]), indicating that baicalein not only suppresses cell
proliferation but also promotes apoptosis.

To further elucidate the mechanism of growth inhibition, we
analyzed cell cycle distribution. Untreated 786-O cells exhibited a
balanced distribution among G1, S, and G2/M phases (Figure 8F).
Following baicalein treatment (Figures 8G-I), a dose-dependent
accumulation of cells in the G1 phase was observed, increasing from
55.13% =+ 1.21% (control) to 72.40% + 1.39% at 50 uM (Figure 8K).
This was accompanied by a corresponding reduction in S and G2/M
populations, suggesting that baicalein induces G1 phase arrest,
thereby inhibiting DNA synthesis and mitotic progression. These
findings demonstrate that baicalein exerts a dual anti-tumor effect
in ccRCC cells by inhibiting proliferation through G1 phase arrest
and promoting apoptosis.

Collectively, our integrative analysis and experimental
validation underscore the therapeutic potential of baicalein as a
promising natural compound that targets YDC-related biomarkers
for the improved management of ccRCC.

Discussion

In this study, we systematically explored the prognostic value of
YDC in ccRCC, integrating transcriptomic profiling, machine
learning algorithms, immune landscape deconvolution, and
herbal medicine screening. Our results highlight that YDC is not
only a clinically relevant constitutional phenotype but also exerts a
profound influence on the tumour immune microenvironment
(TIME) and survival outcomes in patients with ccRCC.

We identified a robust gene signature associated with YDC that
stratifies patient survival risk and demonstrates strong predictive
power across multiple cohorts. Notably, these YDC-related genes
(YDGs) exhibit immune cell-type specificity and are functionally
enriched in immune modulation, cell adhesion, bile acid transport,
and Ras signalling—biological processes that are frequently
dysregulated in ccRCC (51). These findings suggest that YDC
may drive tumour-promoting phenotypes via immune
dysregulation, metabolic reprogramming, and chronic
inflammation, offering a constitution-based framework for
precision oncology. Complementary pathway enrichment and
GSEA analyses revealed that individuals with YDC show elevated
activity in chemical carcinogenesis, ROS and lipid metabolism, TNF
signalling, and ribosome biogenesis—pathways associated with
metabolic abnormalities, oxidative stress, immune suppression,
and tumour proliferation (52-57). Moreover, enrichment in B-cell
receptor (BCR) signalling and systemic lupus erythematosus (SLE)-
related gene sets suggests a heightened inflammatory state and
potential autoimmunity risk, both of which are epidemiologically
linked to renal cancer (58, 59). YDC-related genes were particularly
enriched in pathways regulating bile salt transport, cell adhesion,
and Ras signalling—all of which are crucial for maintaining renal
homeostasis and are commonly dysregulated in ccRCC (60, 61).

Importantly, the identified YDGs are not only prognostically
significant but also mechanistically linked to TIME modulation.
Through CIBERSORT and single-cell RNA sequencing analyses, we
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FIGURE 8

Identification and experimental validation of herbal therapeutics targeting YDC—-ccRCC biomarkers. (A) Workflow for GSVA-based herbal compound
screening. (B-C) Regulatory activity of candidate herbal compounds on YDC and ccRCC-related signatures. (D) Molecular docking between IFNG
and baicalein, showing stable binding. (E) Dose-dependent inhibition of 786-O cell proliferation by baicalein (CCK-8 assay). (F-I) Cell cycle analysis
following 24h baicalein treatment (10, 25, 50 uM). (J) Apoptosis induction in 786-O cells after baicalein exposure, assessed via Pl staining.

(K) Quantification of apoptosis and cell cycle arrest. Data shown as mean + SD (n = 3). ***P< 0.001 vs. control.

observed elevated infiltration of CD8" T cells, T regulatory cells
(Tregs), NK cells, and M2 macrophages in the YDC subgroup.
While CD8" T cells typically confer anti-tumour immunity, their
activity is often impaired under nutrient-deprived and
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immunosuppressive microenvironments - a hallmark of ccRCC
(62). Several YDGs—including IFNG, CCDC88B, DEF6, PLCB2,
and TBC1D10C—were found to modulate key immune functions,
such as antigen presentation, TCR signalling, macrophage

15 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1673579
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Kho et al.

TABLE 1 Diagnosis standard for yang-deficient and balanced
constitution (21)

Balanced
constitution

Type of

Yang-deficient

Constitution constitution

Main features Cold intolerance Vigorous
Without Yang-deficient

related symptoms

Chilly in the extremities
and lower back

Favor warmth, including
hot beverages
Vulnerable to cold

Loose stool
Propensity to gain weight
Frequent urination

Secondary features Good appetite

Good sleep

Healthy body posture
Fair or pale complexion

Soft and pale tongue

activation, and cytokine production (63-67). Furthermore, IFNG
emerged as a central immunoregulatory hub, mediating both
immune activation (via MHC-I and chemokine induction) and
immune exhaustion under chronic stimulation (68). These insights
reinforce the hypothesis that YDC reflects a constitution-driven
immunometabolism state that shapes tumour progression and
responsiveness to immune-based therapies. This positions YDC
as not just a prognostic indicator, but a potentially actionable factor
in tailoring ccRCC treatment strategies.

Furthermore, our study presents a novel and unique panel of
prognostic biomarkers that capture the dynamic interactions
between body constitution, the tumour, and its immune
microenvironment. Using LASSO and random forest models, we
identified nine YDGs with superior stratification ability compared
to conventional biomarkers. These genes, such as MXD3, DEF6,
and PLEKHN], are implicated in processes including DNA repair,
lipid metabolism, epithelial-mesenchymal transition (EMT), and
immune suppression (69-71). Their enrichment in specific immune
cell populations (T cells and macrophages) underscores their role in
modulating TIME and promoting tumour immune evasion.

In addition to providing a prognostic framework, we also
developed an innovative herbal compound screening strategy

TABLE 2 Summary of molecular docking results of baicalein and INFG
protein.

Intermolecular

Binding energy

(kcal/mol) energy (kcal/mol)
1 -5.37 -7.46
2 -5.30 -7.39
3 -5.05 -7.14
4 -4.90 -6.99
5 -4.85 -6.94
6 -4.83 -6.92
7 -4.80 -6.89
8 -471 -6.80
9 -431 -6.61
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tailored to YDC biology. By integrating transcriptomic
perturbation profiles from over 600 herbal medicines, we
prioritized compounds that reverse the YDC-related gene
expression signature. Two leading candidates, baicalein and
scutellarin, demonstrated consistent suppression of disease-related
pathways and strong binding affinity to IFNG, confirmed by
molecular docking. Functional validation further demonstrated
that baicalein inhibited ccRCC cell proliferation, induced G1-
phase cell cycle arrest, and promoted apoptosis, thereby
supporting its therapeutic potential in targeting both immune
modulation and tumour survival mechanisms (72).

Despite the promising findings, several limitations should be
taken into consideration. First, our analyses relied heavily on
transcriptomic data from public databases, which may introduce
cohort-specific biases and statistical robustness. In order to address
this issue, we applied empirical Bayes moderation and module-
based co-expression analysis to reduce bias; however, future
validation may require balanced cohorts. Second, although YDC
was analysed as a dominant constitutional type, body constitution is
multifaceted, and future studies should explore its interaction with
other TCM syndromes. In addition, the acknowledgement of RNA-
seq transcriptomic data was insufficient in capturing protein-level
regulation. Consequently, proteomic and immunohistochemical
validation of the biomarkers will be essential in future discovery.
The uneven cohort distribution and subjective selection of the
machine-learning models might contribute to potentially biased
conclusions. Therefore, future analytical workflows should
incorporate multiple machine learning models and adopt more
stringent thresholds to enhance the objectivity and robustness of the
results. Baicalein was computationally identified as a potential
compound targeting YDC-related genes, as the current study did
not include in vitro or in vivo validation to confirm whether
baicalein modulates IFNG expression or signalling pathways.
Future mechanistic studies, such as cell-based assays, will be
necessary to verify this regulatory mechanism. The
pharmacodynamics and synergistic effects of herbal compounds
remain underexplored due to incomplete data on ingredient-target
interactions. Comprehensive in vivo validation and mechanistic
investigations are warranted to elucidate the therapeutic value of
these compounds fully.

Collectively, our findings provide a preliminary framework for
predicting survival risk and exploring constitution-guided
therapeutic strategies in ¢ccRCC. While the proposed YDC-based
stratification may offer complementary insights to existing
precision-oncology approaches, its clinical utility remains to be
further validated. Future prospective and experimental studies are
warranted to confirm the translational relevance of these findings
and to evaluate whether constitution-guided interventions can
meaningfully improve patient outcomes.

Conclusions

In summary, this study reveals the prognostic and
immunological relevance of YDC-related traits in ccRCC. By
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integrating bulk and single-cell transcriptomic analyses, we
identified a YDC-associated gene signature with strong predictive
value, particularly MXD3, DEF6, PLCB2, TBCI1D10C, IFNG,
CCDC88B, and PLEKHNI, which are important in immune
modulation as a potential mechanism underlying poor prognosis
in YDC-phenotypic renal cancer patients. Moreover, baicalein was
computationally predicted as a promising herbal compound that
may target YDC-related genes to regulate immune responses and
inhibit tumour progression. While similar integrative approaches
have been explored in related contexts, our work provides an
additional perspective linking traditional constitutional theory
with immune-oncological mechanisms, suggesting a potential
direction for constitution-informed precision medicine in renal
cancer, which requires further clinical and experimental evaluation.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found in the article/Supplementary Material.

Ethics statement

Ethical approval was not required for the studies on humans in
accordance with the local legislation and institutional requirements
because only commercially available established cell lines were used.

Author contributions

BK: Methodology, Writing - original draft, Resources,
Investigation, Formal analysis, Writing - review & editing,
Validation, Data curation. ZZ: Visualization, Formal analysis,
Data curation, Methodology, Writing - review & editing,
Validation. RL: Writing - review & editing, Investigation, Formal
analysis, Conceptualization. YS: Formal analysis, Writing - review
& editing, Investigation. YZ: Formal analysis, Investigation, Writing
- review & editing, Visualization. JY: Formal analysis, Writing -
review & editing, Investigation. HL: Investigation, Writing — review
& editing, Formal analysis. GZ: Resources, Conceptualization,
Writing - review & editing. BZ: Supervision, Writing - review &
editing, Funding acquisition, Project administration. YW: Writing -
review & editing, Methodology, Visualization, Supervision,
Funding acquisition.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
by the Young Scientists Fund of the National Natural Science
Foundation of China Grants (No. 82405199), the Jiangsu
Province Science Foundation for Youths (No. BK20231024), the

Frontiers in Immunology

17

10.3389/fimmu.2025.1673579

National Natural Science Foundation of China (No. 22207012), the
funds for the Tianfu Emei Creative & Leading talents of Sichuan
province (No. 1811), and the Sichuan Provincial Natural Science
Foundation (No. 2025ZNSFSC0747).

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1673579/
full#supplementary-material

SUPPLEMENTARY FIGURE 1
Metascape pathway enrichment of common DEGs between YDC and ccRCC.

SUPPLEMENTARY FIGURE 2
The survival validation of biomarkers. (A-F) ROC curves for prognostic
biomarker validation. (G-M) Survival analyses for individual prognostic genes.

SUPPLEMENTARY FIGURE 3
UMAP projections showing single-cell expression distributions of key

prognostic genes.

SUPPLEMENTARY TABLE 1
Yang deficiency DEGs.

SUPPLEMENTARY TABLE 2
ccRCC DEGs.

SUPPLEMENTARY TABLE 3
ccRCC TCIA clinical data.

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1673579/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1673579/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1673579
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Kho et al.

References

1. Sepe P, Ottini A, Pircher CC, Franza A, Claps M, Guadalupi V, et al.
Characteristics and treatment challenges of non-clear cell renal cell carcinoma.
Cancers (Basel). (2021) 13:2-3. doi: 10.3390/cancers13153807

2. Zhu K, Dai Z, Zhou J. Biomarkers for hepatocellular carcinoma: progression in
early diagnosis, prognosis, and personalized therapy. biomark Res. (2013) 1:10.
doi: 10.1186/2050-7771-1-10

3. Ahmad A, Imran M, Ahsan H. Biomarkers as biomedical bioindicators:
approaches and techniques for the detection, analysis, and validation of novel
biomarkers of diseases. Pharmaceutics. (2023) 15:1630. doi: 10.3390/
pharmaceutics15061630

4. Llombart-Cussac A. Improving decision-making in early breast cancer: who to
treat and how? Breast Cancer Res Treat. (2008) 112:15-24. doi: 10.1007/s10549-008-
0234-8

5. Tan C-S, Gilligan D, Pacey S. Treatment approaches for EGFR-inhibitor-resistant
patients with non-small-cell lung cancer. Lancet Oncol. (2015) 16:e447-59.
doi: 10.1016/S1470-2045(15)00246-6

6. Chatterjee SK, Zetter BR. Cancer biomarkers: knowing the present and predicting
the future. Future Oncol. (2005) 1:37-50. doi: 10.1517/14796694.1.1.37

7. Chew V, Toh HC, Abastado J-P. Immune microenvironment in tumor
progression: characteristics and challenges for therapy. J Oncol. (2012) 2012:608406.
doi: 10.1155/2012/608406

8. Shiravand Y, Khodadadi F, Kashani SMA, Hosseini-Fard SR, Hosseini S,
Sadeghirad H, et al. Immune checkpoint inhibitors in cancer therapy. Curr Oncol.
(2022) 29:3044-60. doi: 10.3390/curroncol29050247

9. Wang Q. Individualized medicine, health medicine, and constitutional theory in
Chinese medicine. Front Med. (2012) 6:1-7. doi: 10.1007/s11684-012-0173-y

10. LiL, Wang Z, Wang J, Zheng Y, Li Y, Wang Q, et al. Enlightenment about using
TCM constitutions for individualized medicine and construction of Chinese-style
precision medicine: research progress with TCM constitutions. Sci China Life Sci.
(2021) p:1-8. doi: 10.1007/s11427-020-1872-7

11. Yung-Cheng L, Li-Li C, Hsiao-Chiao W, Jui-Shan L, Tin-Kwang L, Shu-Chuan
Amy L, et al. The association between traditional Chinese medicine body constitution
deviation and essential hypertension: a case-control study. J Nurs Res. (2021) 29:e160.
doi: 10.1097/JNR.0000000000000442

12. Huang Y-C, Lin C-J, Cheng S-M, Lin C-K, Lin SJ-S, Su Y-C, et al. Using Chinese
body constitution concepts and measurable variables for assessing risk of coronary
artery disease. Evidence-Based Complementary Altern Med. (2019) 2019:8218013.
doi: 10.1155/2019/8218013

13. Wang Q, Yao S. Molecular basis for cold-intolerant yang-deficient constitution
of traditional Chinese medicine. Am | Chin Med. (2008) 36:827-34. doi: 10.1142/
50192415X08006272

14. Tu X, Liu F, Jordan JB, Ye XF, Fu P, Wang F, et al. ‘Huang Qi Elixir’for
proteinuria in patients with diabetic nephropathy: a study protocol for a randomized
controlled pilot trial. Trials. (2013) 14:1-5. doi: 10.1186/1745-6215-14-223

15. Wang Y, Feng Y, Li M, Yang M, Shi G, Xuan Z, et al. Traditional Chinese
medicine in the treatment of chronic kidney diseases: theories, applications, and
mechanisms. Front Pharmacol. (2022) 13:917975. doi: 10.3389/fphar.2022.917975

16. Chen P, Wang B-Y, Zhang P, Li S. Cold and hot syndromes in traditional chinese
medicine: insights from the perspective of immunometabolic homeostasis. World |
Traditional Chin Med. (2024) 10:434-42. doi: 10.4103/wjtcm.wjtcm_53_23

17. Wang Y, Wu X-Y, Wang HH, Li Y-T, Fu Y, Wang J-J, et al. Body constitution
and unhealthy lifestyles in a primary care population at high cardiovascular risk: new
insights for health management. Int ] Gen Med. (2021) p:6991-7001. doi: 10.2147/
IJGM.S329321

18. Deng S-M, Chiu A-F, Wu S-C, Huang Y-C, Huang S-C, Chen S-Y, et al.
Association between cancer-related fatigue and traditional Chinese medicine body
constitution in female patients with breast cancer. J traditional complementary Med.
(2021) 11:62-7. doi: 10.1016/j.jtcme.2020.08.005

19. Jiang H, Li M, Du K, Ma C, Cheng Y, Wang S, et al. Traditional Chinese
Medicine for adjuvant treatment of breast cancer: Taohong Siwu Decoction. Chin Med.
(2021) 16:1-20. doi: 10.1186/s13020-021-00539-7

20. Deng X, Teng J, Nong X, Yu B, Tang L, Liang ], et al. Characteristics of TCM
constitution and related biomarkers for mild cognitive impairment. Neuropsychiatr Dis
Treat. (2021) p:1115-24. doi: 10.2147/NDT.$290692

21. Yu R, Liu D, Yang Y, Han Y, Li L, Zheng L, et al. Expression profiling-based
clustering of healthy subjects recapitulates classifications defined by clinical observation
in Chinese medicine. ] Genet Genomics. (2017) 44:191-7. doi: 10.1016/j.jgg.2017.01.001

22. Su G, Lv Y, Lu W, Yu Z, Ye Y, Guo B, et al. Single-cell RNA sequencing in
multiple pathologic types of renal cell carcinoma revealed novel potential tumor-
specific markers. Front Oncol. (2021) 11:719564. doi: 10.3389/fonc.2021.719564

23. Fang S, Dong L, Liu L, Guo J, Zhao L, Zhang J, et al. HERB: a high-throughput
experiment-and reference-guided database of traditional Chinese medicine. Nucleic
Acids Res. (2021) 49:D1197-206. doi: 10.1093/nar/gkaal063

Frontiers in Immunology

10.3389/fimmu.2025.1673579

24. Tian S, Zhang ], Yuan S, Wang Q, Lv C, WangJ, et al. Exploring pharmacological
active ingredients of traditional Chinese medicine by pharmacotranscriptomic map in
ITCM. Briefings Bioinf. (2023) 24:bbad027. doi: 10.1093/bib/bbad027

25. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies. Nucleic
Acids Res. (2015) 43:e47-7. doi: 10.1093/nar/gkv007

26. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:1-13. doi: 10.1186/1471-2105-9-559

27. Ognyanova K. Network visualization with R. Network. (2019) 1:T2.

28. De Meo P, Ferrara E, Fiumara G, Provetti A. Generalized louvain method for
community detection in large networks. In: 2011 11th international conference on
intelligent systems design and applications. Cordoba, Spain: IEEE (2011).

29. Shahraki HR, Salehi A, Zare N. Survival prognostic factors of male breast cancer
in Southern Iran: a LASSO-Cox regression approach. Asian Pacific ] Cancer Prev.
(2015) 16:6773-7. doi: 10.7314/APJCP.2015.16.15.6773

30. Simon N, Friedman JH, Hastie T, Tibshirani R. Regularization paths for Cox’s
proportional hazards model via coordinate descent. J Stat software. (2011) 39:1-13.
doi: 10.18637/js5.v039.i05

31. Ehrlinger J. ggRandomForests: random forests for regression. arXiv preprint
arXiv. (2016) 1501:07196.

32. Montazeri M, Montazeri M, Montazeri M, Beigzadeh A. Machine learning
models in breast cancer survival prediction. Technol Health Care. (2016) 24:31-42.
doi: 10.3233/THC-151071

33. Sapir-Pichhadze R, Kaplan B. Seeing the forest for the trees: random forest
models for predicting survival in kidney transplant recipients. Transplantation. (2020)
104:905-6. doi: 10.1097/TP.0000000000002923

34. Kim H, Park T, Jang J, Lee S. Comparison of survival prediction models for
pancreatic cancer: Cox model versus machine learning models. Genomics Inf. (2022)
20:23. doi: 10.5808/gi.22036

35. Christensen E. Multivariate survival analysis using Cox’s regression model.
Hepatology. (1987) 7:1346-58. doi: 10.1002/hep.1840070628

36. Zhang Z, Rousson V, Lee W-C, Ferdynus C, Chen M, Qian X, et al. Decision
curve analysis: a technical note. Ann Trans Med. (2018) 6:308. doi: 10.21037/
atm.2018.07.02

37. Yoshihara K, Shahmoradgoli M, Martinez E, Vegesna R, Kim H, Torres-Garcia
W, et al. Inferring tumour purity and stromal and immune cell admixture from
expression data. Nat Commun. (2013) 4:2612. doi: 10.1038/ncomms3612

38. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773-82. doi: 10.1038/541587-019-0114-2

39. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. (2017)
18:248-62. doi: 10.1016/j.celrep.2016.12.019

40. Hao Y, Hao S, Andersen-Nissen E, Mauck WM, Zheng S, Butler A, et al.
Integrated analysis of multimodal single-cell data. Cell. (2021) 184:3573-3587. €29.
doi: 10.1016/j.cell.2021.04.048

41. Lun A, Andrews JM, Dundar F, Bunis D. Using SingleR to annotate single-cell
RNA-seq data. dim. (2020) 19363:713.

42. HuC,LiT,XuY, Zhang X, Li F, Bai J, et al. CellMarker 2.0: an updated database
of manually curated cell markers in human/mouse and web tools based on scRNA-seq
data. Nucleic Acids Res. (2023) 51:D870-6. doi: 10.1093/nar/gkac947

43. Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. Lineage tracking reveals
dynamic relationships of T cells in colorectal cancer. Nature. (2018) 564:268-72.
doi: 10.1038/s41586-018-0694-x

44. Aibar S, Gonzalez-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H,
Hulselmans G, et al. SCENIC: single—cell regulatory network inference and
clustering. Nat Methods. (2017) 14:1083-6. doi: 10.1038/nmeth.4463

45. Jin S, Plikus MV, Nie Q. CellChat for systematic analysis of cell-cell
communication from single-cell transcriptomics. Nat Protoc. (2025) 20:180-219.
doi: 10.1038/s41596-024-01045-4

46. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, et al. PubChem
substance and compound databases. Nucleic Acids Res. (2016) 44:D1202-13.
doi: 10.1093/nar/gkv951

47. Rose PW, Prlic A, Altunkaya A, Bi C, Bradley AR, Christie CH, et al. The RCSB
protein data bank: integrative view of protein, gene and 3D structural information.
Nucleic Acids Res. (2016) 45:gkw1000. doi: 10.1093/nar/gkw1000

48. Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL
and Autodock/Vina. J computer-aided Mol design. (2010) 24:417-22. doi: 10.1007/
$10822-010-9352-6

49. Slettenaar VI, Wilson JL. The chemokine network: a target in cancer biology?
Advanced Drug delivery Rev. (2006) 58:962-74. doi: 10.1016/j.addr.2006.03.012

frontiersin.org


https://doi.org/10.3390/cancers13153807
https://doi.org/10.1186/2050-7771-1-10
https://doi.org/10.3390/pharmaceutics15061630
https://doi.org/10.3390/pharmaceutics15061630
https://doi.org/10.1007/s10549-008-0234-8
https://doi.org/10.1007/s10549-008-0234-8
https://doi.org/10.1016/S1470-2045(15)00246-6
https://doi.org/10.1517/14796694.1.1.37
https://doi.org/10.1155/2012/608406
https://doi.org/10.3390/curroncol29050247
https://doi.org/10.1007/s11684-012-0173-y
https://doi.org/10.1007/s11427-020-1872-7
https://doi.org/10.1097/JNR.0000000000000442
https://doi.org/10.1155/2019/8218013
https://doi.org/10.1142/S0192415X08006272
https://doi.org/10.1142/S0192415X08006272
https://doi.org/10.1186/1745-6215-14-223
https://doi.org/10.3389/fphar.2022.917975
https://doi.org/10.4103/wjtcm.wjtcm_53_23
https://doi.org/10.2147/IJGM.S329321
https://doi.org/10.2147/IJGM.S329321
https://doi.org/10.1016/j.jtcme.2020.08.005
https://doi.org/10.1186/s13020-021-00539-7
https://doi.org/10.2147/NDT.S290692
https://doi.org/10.1016/j.jgg.2017.01.001
https://doi.org/10.3389/fonc.2021.719564
https://doi.org/10.1093/nar/gkaa1063
https://doi.org/10.1093/bib/bbad027
https://doi.org/10.1093/nar/gkv007
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.7314/APJCP.2015.16.15.6773
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.3233/THC-151071
https://doi.org/10.1097/TP.0000000000002923
https://doi.org/10.5808/gi.22036
https://doi.org/10.1002/hep.1840070628
https://doi.org/10.21037/atm.2018.07.02
https://doi.org/10.21037/atm.2018.07.02
https://doi.org/10.1038/ncomms3612
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1093/nar/gkac947
https://doi.org/10.1038/s41586-018-0694-x
https://doi.org/10.1038/nmeth.4463
https://doi.org/10.1038/s41596-024-01045-4
https://doi.org/10.1093/nar/gkv951
https://doi.org/10.1093/nar/gkw1000
https://doi.org/10.1007/s10822-010-9352-6
https://doi.org/10.1007/s10822-010-9352-6
https://doi.org/10.1016/j.addr.2006.03.012
https://doi.org/10.3389/fimmu.2025.1673579
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Kho et al.

50. Ding X, Wang K, Wang H, Zhang G, Liu Y, Yang Q, et al. High expression of CCL20
is associated with poor prognosis in patients with hepatocellular carcinoma after curative
resection. ] Gastrointestinal Surg. (2012) 16:828-36. doi: 10.1007/s11605-011-1775-4

51. YuR, LiuD, Yang Y, Han Y, Li L, Zheng L, et al. Retracted] expression profiling
of transcriptome and its associated disease risk in yang deficiency constitution of
healthy subjects. Evidence-Based Complementary Altern Med. (2016) 2016:1493098.
doi: 10.1155/2016/1493098

52. Aggarwal V, Tuli HS, Varol A, Thakral F, Yerer MB, Sak K, et al. Role of reactive
oxygen species in cancer progression: molecular mechanisms and recent
advancements. Biomolecules. (2019) 9:735. doi: 10.3390/biom9110735

53. Balkwill F. TNF-o in promotion and progression of cancer. Cancer metastasis
Rev. (2006) 25:409-16. doi: 10.1007/s10555-006-9005-3

54. Long ], Zhang C-J, Zhu N, Du K, Yin Y-F, Tan X, et al. Lipid metabolism and
carcinogenesis, cancer development. Am J Cancer Res. (2018) 8:778.

55. Turi Z, Lacey M, Mistrik M, Moudry P. Impaired ribosome biogenesis:
mechanisms and relevance to cancer and aging. Aging (Albany NY). (2019) 11:2512.
doi: 10.18632/aging.101922

56. Bradley RK, Anczukow O. RNA splicing dysregulation and the hallmarks of
cancer. Nat Rev Cancer. (2023) 23:135-55. doi: 10.1038/s41568-022-00541-7

57. Boland ML, Chourasia AH, Macleod KF. Mitochondrial dysfunction in cancer.
Front Oncol. (2013) 3:292. doi: 10.3389/fonc.2013.00292

58. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB, et al. Chronic
active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature. (2010)
463:88-92. doi: 10.1038/nature08638

59. Song L, Wang Y, Zhang J, Song N, Xu X, Lu Y, et al. The risks of cancer
development in systemic lupus erythematosus (SLE) patients: a systematic review and
meta-analysis. Arthritis Res Ther. (2018) 20:270. doi: 10.1186/s13075-018-1760-3

60. Wettersten HI, Aboud OA, Lara Jr PN, Weiss RH. Metabolic reprogramming in clear
cell renal cell carcinoma. Nat Rev Nephrol. (2017) 13:410-9. doi: 10.1038/nrneph.2017.59

61. Janiszewska M, Primi MC, Izard T. Cell adhesion in cancer: Beyond the migration of
single cells. J Biol Chem. (2020) 295:2495-505. doi: 10.1074/jbc.REV119.007759

62. Reina-Campos M, Scharping NE, Goldrath AW. CD8+ T cell metabolism in infection
and cancer. Nat Rev Immunol. (2021) 21:718-38. doi: 10.1038/s41577-021-00537-8

Frontiers in Immunology

19

10.3389/fimmu.2025.1673579

63. Kennedy JM, Fodil N, Torre S, Bongfen SE, Olivier J-F, Leung V, et al. CCDC88B
is a novel regulator of maturation and effector functions of T cells during pathological
inflammation. J Exp Med. (2014) 211:2519-35. doi: 10.1084/jem.20140455

64. Karachaliou N, Gonzalez-Cao M, Crespo G, Drozdowskyj A, Aldeguer E,
Gimenez-Capitan A, et al. Interferon gamma, an important marker of response to
immune checkpoint blockade in non-small cell lung cancer and melanoma patients.
Ther Adv Med Oncol. (2018) 10:1758834017749748. doi: 10.1177/1758834017749748

65. Ma ], Chen T, Mandelin J, Ceponis A, Miller N, Hukkanen M, et al. Regulation of
macrophage activation. Cell Mol Life Sci CMLS. (2003) 60:2334-46. doi: 10.1007/
s00018-003-3020-0

66. Villagomez FR, Diaz-Valencia JD, Ovalle-Garcia E, Antillon A, Ortega-Blake I,
Romero-Ramirez H, et al. TBC1D10C is a cytoskeletal functional linker that modulates
cell spreading and phagocytosis in macrophages. Sci Rep. (2021) 11:20946. doi: 10.1038/
541598-021-00450-z

67. Wang S, Xie D, Yue H, Li G, Jiang B, Gao Y, et al. Phospholipase C beta2asa key
regulator of tumor progression and epithelial-mesenchymal transition via PI3K/AKT
signaling in renal cell carcinoma. Biomedicines. (2025) 13:304. doi: 10.3390/
biomedicines13020304

68. Alshaker HA, Matalka KZ. IFN-y, IL-17 and TGF-f3 involvement in shaping the
tumor microenvironment: The significance of modulating such cytokines in treating
Malignant solid tumors. Cancer Cell Int. (2011) 11:1-12. doi: 10.1186/1475-2867-11-33

69. ZhangF, LiuL, Wu P, Li S, Wei D. Overexpression of MAX dimerization protein
3 (MXD3) predicts poor prognosis in clear cell renal cell carcinoma. Trans andrology
Urol. (2021) 10:785. doi: 10.21037/tau-20-1187

70. Yuan Z, Zhong Y, Hu H, Zhang W, Wang G. DEF6 has potential to be a
biomarker for cancer prognosis: A pan-cancer analysis. Front Oncol. (2023)
12:1064376. doi: 10.3389/fonc.2022.1064376

71. XuD, Jia M, Yang F, Zhang X, Jiang K. Analyzing the role of TM4SF1 expression
in pancreatic adenocarcinoma: understanding prognostic implications and therapeutic
opportunities. | Gastrointestinal Oncol. (2024) 15:1760. doi: 10.21037/jgo-24-564

72. Chuang T-C, Shao W-S, Hsu S-C, Lee S-L, Kao M-C, Wang V, et al. Baicalein
induces G2/M cell cycle arrest associated with ROS generation and CHK2 activation in
highly invasive human ovarian cancer cells. Molecules. (2023) 28:1039. doi: 10.3390/
molecules28031039

frontiersin.org


https://doi.org/10.1007/s11605-011-1775-4
https://doi.org/10.1155/2016/1493098
https://doi.org/10.3390/biom9110735
https://doi.org/10.1007/s10555-006-9005-3
https://doi.org/10.18632/aging.101922
https://doi.org/10.1038/s41568-022-00541-7
https://doi.org/10.3389/fonc.2013.00292
https://doi.org/10.1038/nature08638
https://doi.org/10.1186/s13075-018-1760-3
https://doi.org/10.1038/nrneph.2017.59
https://doi.org/10.1074/jbc.REV119.007759
https://doi.org/10.1038/s41577-021-00537-8
https://doi.org/10.1084/jem.20140455
https://doi.org/10.1177/1758834017749748
https://doi.org/10.1007/s00018-003-3020-0
https://doi.org/10.1007/s00018-003-3020-0
https://doi.org/10.1038/s41598-021-00450-z
https://doi.org/10.1038/s41598-021-00450-z
https://doi.org/10.3390/biomedicines13020304
https://doi.org/10.3390/biomedicines13020304
https://doi.org/10.1186/1475-2867-11-33
https://doi.org/10.21037/tau-20-1187
https://doi.org/10.3389/fonc.2022.1064376
https://doi.org/10.21037/jgo-24-564
https://doi.org/10.3390/molecules28031039
https://doi.org/10.3390/molecules28031039
https://doi.org/10.3389/fimmu.2025.1673579
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Yang-deficiency constitution drives poor outcomes in clear cell renal cell carcinoma by modulating the tumour immune microenvironment
	Introduction
	Materials and methods
	Dataset acquisition
	Differential gene expression and functional enrichment analysis in Yang deficiency samples
	Weighted gene co-expression network analysis in Yang deficiency samples
	Identification of shared signature genes between YDC and ccRCC
	Survival analysis using LASSO-cox regression
	Random forest-based survival analysis
	Construction of a prognostic prediction model for clinical survival probability at different time intervals
	Immune microenvironment analysis of ccRCC samples on cell type proportion
	Gene expression distribution and bioactivity enrichment of biomarker genes on SC-Seq of ccRCC samples
	Cellchat analysis to explore the dynamics of cellular interaction of biomarker genes on SC-Seq of ccRCC samples
	Screening for therapeutic herbal ingredients using GSVA
	Molecular docking simulation to confirm the binding between the potential ingredient and the targeted biomarkers
	Cell experimental validation
	Cell lines and culture conditions
	Cell viability assays
	Cell apoptosis and cycle distribution analysis

	Statistical analysis

	Results
	Biological characteristics of Yang-deficiency constitution
	Association between YDC and ccRCC and their pre-diagnostic biomarker genes
	Evaluation of pre-diagnostic biomarker genes and predictive model for ccRCC survival risk
	Immune infiltration analyses of prognostic genes in the ccRCC cohort
	Single-cell resolution of biomarker expression and functional enrichment
	Cellular and molecular interactions of prognostic biomarkers in the tumour microenvironment
	Identification of herbal medicines targeting prognostic biomarkers to improve ccRCC outcomes and experimental validation

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


