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Background: Small cell carcinoma of the esophagus (SCCE) is a rare and highly

aggressive malignancy with limited therapeutic options and poor prognosis. The

paucity of clinical specimens and lack of established experimental models have

hindered a comprehensive understanding of its cellular heterogeneity and

tumor microenvironment.

Methods: We performed single-cell RNA sequencing on SCCE samples, and

integrated them with publicly available scRNA-seq datasets from esophageal

squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), and

adjacent normal tissues (NT) from ESCC and EAC cases. An integrative

transcriptomic analysis was conducted to identify cell types, infer malignant

states, reconstruct differentiation trajectories, evaluate immune landscapes, and

investigate fibroblast subtypes and cell–cell communication networks.

Results: SCCE tumors were characterized by a predominance of malignant

epithelial cells and exhibited a profoundly immunosuppressed phenotype, with

reduced immune infiltration and widespread downregulation of immune

checkpoint genes. Malignant epithelial cells showed pronounced

chromosomal instability and were classified into three transcriptionally distinct

subtypes with divergent di fferent iat ion tra jector ies . The tumor

microenvironment featured a complex stromal compartment, with enrichment

of extracellular matrix fibroblasts (eCAFs) characterized by elevated ELF3

regulatory activity, and collagen-driven signaling predominantly mediated by

inflammatory CAFs (iCAFs). SCCE also showed the most intricate cell–cell

communication network among esophageal cancer subtypes.

Conclusion: Our single-cell atlas offers a detailed view of the cellular

heterogeneity and microenvironmental complexity of SCCE, highlighting its

distinct tumor architecture, immune exclusion, and stromal reprogramming.

These findings provide a valuable resource for understanding SCCE biology

and form a basis for future mechanistic and exploratory biological investigations.
KEYWORDS

small cell carcinoma of the esophagus, single-cell RNA sequencing, heterogeneity,
cancer-associated fibroblasts, immune suppression
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Introduction

Small cell carcinoma of the esophagus (SCCE) is a rare and

highly aggressive neuroendocrine malignancy, accounting for less

than 3% of all esophageal cancers (1, 2). It is marked by rapid

progression, early metastasis, and poor clinical outcomes, with most

patients presenting at an advanced stage and a median survival of

only 8 to 13 months (3). Due to its rarity, SCCE currently lacks

established treatment guidelines, and clinical management often

relies on treatment approaches developed for small cell lung cancer

(SCLC). However, small cell carcinomas arising from different

tissues exhibit distinct biological characteristics, and treatment

responses may not be directly transferable across cancer types (4).

The scarcity of fresh tumor samples, the absence of established

experimental models, and limited genomic data have collectively

impeded a deeper understanding of SCCE pathogenesis and

potential therapeutic vulnerabilities.

While recent advances in single-cell technologies have

illuminated cellular heterogeneity and microenvironmental

complexity across various solid tumors (5, 6), SCCE remains

poorly characterized at this resolution. Prior studies using bulk

transcriptomic or genomic profiling have identified recurrent

mutations and limited immune infiltration in SCCE (7, 8), but

lack the granularity to resolve intratumoral heterogeneity or cell-

type-specific alterations. A recent single-cell study has provided

valuable insights into the SCCE ecosystem (9); however, further

analyses are needed to refine our understanding of its epithelial

diversity, stromal heterogeneity, and immune landscape.

Notably, SCCE may exhibit distinct cellular programs and

microenvironmental characteristics compared to SCLC, despite

sharing the same histological classification. In addition to these

differences, the cellular origin of SCCE remains incompletely

understood. While SCCE exhibits neuroendocrine differentiation

similar to SCLC, it is unclear whether these tumors arise from a

distinct neuroendocrine lineage within the esophageal epithelium or

through transdifferentiation from other esophageal cell types.

Emerging evidence suggests that neuroendocrine features in

epithelial cancers, including those of the gastrointestinal tract,

may arise through lineage plasticity mechanisms such as

transcriptional reprogramming and transdifferentiation (10).

However, direct evidence regarding the ontogeny of SCCE is

lacking due to the scarcity of relevant models and longitudinal

tissue data. Single-cell transcriptomic profiling offers a valuable

approach to explore such lineage relationships and may offer

insights into the developmental trajectories and differentiation

programs of SCCE. Therefore, high-resolution characterization of

SCCE is essential to elucidate its cellular origin, define its epithelial

architecture, and dissect stromal–immune features, all of which

may offer foundational insights for future therapeutic development.

To address this need, we performed single-cell RNA sequencing

on SCCE tumor tissues to generate a high-resolution cellular atlas of

this rare malignancy. Through integrative analysis of tumor,

stromal, and immune compartments, we identified the molecular

subtypes of malignant epithelial cells, mapped the composition and

functional states of tumor-infiltrating immune cells, and
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characterized distinct cancer-associated fibroblast (CAF) subtypes

along with their associated signaling activities. In particular, we

uncovered an immunosuppressive microenvironment and a

complex fibroblast-driven signaling network distinctive to SCCE.

These findings provide a framework for understanding the cellular

and molecular features that define the unique biology of SCCE.
Materials and methods

Sample collection and dataset composition

Single-cell RNA sequencing data were obtained from a total of

23 esophageal tissue samples, encompassing three histological

subtypes: EAC, ESCC, and SCCE, as well as NT derived from

ESCC- and EAC-associated samples. Among them, three SCCE

tumor samples were newly generated in-house using single-nucleus

RNA sequencing (snRNA-seq) from formalin-fixed paraffin-

embedded (FFPE) tissue blocks sourced from The Fourth

Hospital of Hebei Medical University. For each FFPE specimen,

25-mm tissue curls were collected into a tube before serial sectioning

for the Chromium Single Cell Gene Expression Flex (scFFPE-seq)

workflow (10x Genomics). Three such curls (75 mm total) were

pooled and processed as a single replicate.

The remaining 20 samples were derived from publicly available

single-cell datasets. Seven ESCC tumors and their paired NT

samples were obtained from the GSE145370 dataset (11), while

four EAC tumors and two NT samples were retrieved from the

GSE222078 dataset (12). All public datasets were preprocessed and

deemed suitable for downstream analyses.
Library preparation and sequencing

For each SCCE sample, three 25-mm FFPE curls (75 mm total)

were dissociated using the Bioyou® Nuclei Isolation Kit for FFPE

Tissue (Shanghai Biotechnology Corporation). Approximately

600,000 nuclei were isolated, washed, and counted. Libraries were

constructed according to the Chromium Single Cell Gene

Expression Flex User Guide (10x Genomics, CG000477).

Sequencing was performed on an Illumina NovaSeq 6000

platform using paired-end 150 bp reads (2×150 bp).
Single-nucleus RNA-seq data processing,
clustering, and annotation

Raw sequencing data (FASTQ files) were processed using the

Cell Ranger multi-pipeline (v7.1.0, 10x Genomics) with the Human

Transcriptome Probe Set reference. Gene-barcode matrices were

generated for each sample by UMI counting and background

barcode filtering. The resulting expression matrices were

imported into the Seurat package (v5.1.0) in R (v4.4.1) for quality

control and downstream analysis (13). Cells with fewer than 200 or

more than 6,000 detected genes were excluded. Additionally, cells
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with a mitochondrial gene content of more than 10% were filtered

out, determined by the PercentageFeatureSet function. The

NormalizeData function was used to normalize gene expression

data, and highly variable genes were pinpointed while accounting

for the mean–variance relationship. Data integration across samples

was performed using FindIntegrationAnchors and IntegrateData.

UMAP plots before and after integration are presented in

Supplementary Figure 1 to visualize batch correction

performance. The integrated data were scaled and subjected to

principal component analysis (PCA), with the top 30 principal

components retained. A shared nearest neighbor (SNN) graph was

then constructed, followed by graph-based clustering using the

Louvain algorithm. Clustering resolution was systematically

optimized between 0.1 and 1.0, and a resolution of 0.4 was

selected for downstream analysis. The resulting clusters were

visualized using Uniform Manifold Approximation and

Projection (UMAP) (14).

For subpopulation analyses, clustering was repeated on selected

subsets of cells after rescaling and dimensionality reduction.

Cluster-specific differentially expressed genes (DEGs) were

identified using the FindAllMarkers function in Seurat with

parameters set to logfc.threshold = 0.25, min.pct = 0.25, and

only.pos = TRUE. An adjusted p-value below 0.05 indicated that

the genes were statistically significant. Initial cell type annotation

was performed using the SingleR package (15), followed by manual

refinement based on the expression of canonical marker genes and

reference to established literature and previously published single-

cell datasets.
CNV-based identification of malignant
epithelial cells

Large-scale chromosomal copy number variation (CNV) was

estimated using the inferCNV package (v1.20.0) (16). Epithelial

cells from the NT group were selected as the reference population.

The CNV score for each epithelial cell was computed by comparing

its gene expression pattern across chromosomal positions with that

of the reference group. To further refine the classification, the top

5% of epithelial cells with the highest CNV scores within each

pathological group were extracted, and their average expression

profiles were used to compute Pearson correlation coefficients

between each remaining epithelial cell and this high-CNV subset.

Epithelial cells were ultimately classified as malignant if both of the

following criteria were met: a CNV score greater than 0.001 and a

correlation coefficient with the high-CNV group greater than 0.5.

Cells not meeting both thresholds were considered non-malignant.

This dual-criterion strategy enabled a robust delineation of

malignant epithelial populations based on both chromosomal

aberration patterns and transcriptional similarity.
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Pathway enrichment and functional
scoring

Pathway analysis was performed using Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment and Gene Set Variation

Analysis (GSVA) (17). KEGG analysis was carried out with the

clusterProfiler package (v4.12.6) (18). GSVA was implemented

using the GSVA package (v1.52.3), with Hallmark gene sets

obtained from the Molecular Signatures Database (MSigDB

v7.5.1) (19). Module scores were computed using the

AddModuleScore function in Seurat. Gene sets related to

epithelial–mesenchymal transition (EMT), angiogenesis, antigen

presentation, interferon response, and inflammation were sourced

from MSigDB. At the same time, additional modules such as

Macrophage_M1 and Macrophage_M2 were curated from

previously published studies (20).
Differentiation scoring and pseudotime
trajectory analysis

To evaluate the differentiation potential of malignant epithelial

subpopulations in SCCE, the CytoTRACE2 (v1.0.0) package was

applied to epithelial cells from the SCCE group (21). Differentiation

scores were calculated and compared across malignant subclusters

to assess their relative developmental states. The Monocle2

(v2.32.0) package was used to construct pseudotime trajectories

based on highly variable genes (22). Dimensionality reduction was

performed using the DDRTree method, and cells were ordered

along a developmental continuum with non-malignant epithelial

cells designated as the biological root. This approach enabled the

inference of transcriptional progression among malignant epithelial

subpopulations in SCCE.
Transcription factor regulatory network
analysis

Transcription factor regulatory network analysis was conducted

using the pySCENIC pipeline (v0.12.1) (23), following the standard

workflow previously described. Gene regulatory networks were

initially inferred using GRNBoost2, which identified candidate

transcription factor–target gene co-expression modules. These

modules were then refined through cisTarget motif enrichment

analysis to define high-confidence regulons. AUCell was used to

calculate both regulon activity scores (RAS) for individual cells and

regulon specificity scores (RSS) across cell groups. All steps were

executed using default settings unless otherwise specified. The

resulting matrices were imported into R and visualized with the

SCENIC package (v1.3.1) (24).
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Cell–cell communication analysis

Cell–cell communication networks were inferred using the

CellChat R package (v1.6.1). Normalized gene expression matrices

and predefined cell type annotations were used as input. The

analysis focused on intercellular communication between

malignant epithelial cells and other major cell populations. The

standard CellChat workflow was followed, including the

identification of overexpressed genes, prediction of biologically

significant ligand–receptor interactions, and computation of

intercellular communication probabilities. The built-in human

ligand–receptor database in CellChat was used for signaling

inference. Group-specific analyses were conducted to evaluate

differences in communication patterns across histological

subtypes. All analyses were performed using default parameters

unless otherwise specified. Visualization of inferred signaling

networks was carried out using the built-in visualization functions

in CellChat (25).
Statistical analysis

All statistical analyses were conducted with R (v4.4.1). Non-

parametric tests were used throughout the study. Group

comparisons were conducted using the Wilcoxon rank-sum test

or the Kruskal–Wallis test, as appropriate. Spearman’s rank

correlation coefficient was applied to evaluate associations

between continuous variables , including CNV scores,

differentiation scores, and gene expression levels. Unless

otherwise specified, a two-sided p-value of less than 0.05 was used

to define statistical significance.
Results

Single-cell transcriptomic landscape of
esophageal tissues across histological
subtypes

To characterize the cellular heterogeneity of esophageal tissues,

we performed an integrative single-cell RNA sequencing analysis

across from four histological types: NT, EAC, ESCC, and SCCE.

Following standard preprocessing, dimensionality reduction, and

clustering, we identified ten major cell populations, including

epithelial cells, fibroblasts, mast cells, plasma cells, neutrophils,

macrophages, dendritic cells (DCs), T cells, B cells, and NK cells

(Figure 1A). Cell type annotation was guided by canonical marker

gene expression patterns (Figure 1B).

UMAP projections of each histological subtype revealed distinct

cellular distributions, with SCCE samples showing a marked

enrichment of epithelial cells and a corresponding depletion of

immune populations compared to other subtypes (Figure 1C). In

line with these observations, compositional analysis revealed a

significantly higher proportion of epithelial cells in SCCE. In

contrast, immune subsets, such as T cells and macrophages, were
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more prevalent in NT and ESCC samples (Figure 1D). Quantitative

comparisons further confirmed significant differences in cell-type

composition across histological groups, particularly within

epithelial and T cell compartments (Figure 1E).

Further analysis of transcriptional alterations revealed that

SCCE samples exhibited a distinct transcriptomic profile. The

distribution of differentially expressed genes (DEGs) across cell

types was visualized in UMAP space, highlighting widespread gene

expression remodeling in SCCE (Figure 1F, right). A heatmap of the

top 20 DEGs per group demonstrated subtype-specific gene

signatures, with SCCE displaying a unique pattern of upregulated

and downregulated genes compared to other histological subtypes

(Figure 1G). Collectively, these findings delineate the cellular

complexity and transcriptional heterogeneity across esophageal

cancer subtypes, with SCCE exhibiting a particularly distinctive

molecular and cellular profile. Representative hematoxylin and

eosin (H&E) staining images of EAC, ESCC, and SCCE tissues

further illustrate the histological distinctions among the three

cancer subtypes (Supplementary Figure 2).
Malignant epithelial cell identification and
functional characterization

To investigate epithelial cell heterogeneity across esophageal

cancer subtypes, we performed inferCNV analysis using epithelial

cells from NT as the reference. The resulting heatmap revealed

pronounced CNVs in SCCE, characterized by widespread

chromosomal amplifications and deletions, in contrast to the

more modest alterations observed in EAC and ESCC (Figure 2A).

SCCE epithelial cells exhibited significantly higher CNV scores than

those from EAC and ESCC, as shown in the boxplot (Figure 2B).

Notably, the density plot revealed a broader and bimodal

distribution of CNV scores in SCCE, indicative of greater

intratumoral heterogeneity in chromosomal alterations. In

contrast, EAC and ESCC displayed relatively narrow, unimodal

patterns (Figure 2C). Further analysis of the most frequently

amplified genomic region in SCCE identified chromosome 19 as

the predominant site, with extensive amplification signals spanning

multiple genes (Figure 2D).

Scatter plots of CNV scores versus correlation coefficients

revealed a clear separation between malignant and non-malignant

epithelial cells. Cells exhibiting both high CNV burden and strong

correlation with the high-CNV reference subset were classified as

malignant, a pattern consistently observed across EAC, ESCC, and

SCCE samples (Figure 2E). Violin plots further confirmed that

malignant cells exhibited significantly higher CNV scores than non-

malignant cells within each histological subtype (Figure 2F).

We next assessed functional phenotypes of malignant epithelial

cells by comparing key biological pathway scores across EAC,

ESCC, and SCCE. SCCE cells demonstrated significantly higher

scores for epithelial–mesenchymal transition (EMT), proliferation,

and angiogenesis compared to the other subtypes (all P < 0.0001),

consistent with a more aggressive and metastatic phenotype. In

contrast, antigen presentation scores were markedly reduced in
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SCCE, suggesting impaired antigen-presenting capacity

(Figure 2G). Correlation analysis within SCCE further revealed

that CNV scores were positively associated with EMT but negatively

correlated with antigen presentation capacity (Figure 2H).

To further investigate functional differences among malignant

epithelial cells across pathological subtypes, we conducted GSVA

enrichment analysis. SCCE cells exhibited prominent enrichment in

pathways associated with mitotic spindle, angiogenesis, and EMT.

In contrast, ESCC cells were enriched in immune-linked and

metabolic pathways, including the interferon response, the
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reactive oxygen species (ROS) pathway, DNA repair, the

MTORC1 signaling pathway, and oxidative phosphorylation. EAC

cells partially overlapped with ESCC in metabolic programs but

displayed generally weaker pathway enrichment overall (Figure 2I).

To further validate the neuroendocrine (NE) identity of SCCE

and investigate relevant regulatory pathways, we calculated an NE

signature score using canonical NE markers, including ASCL1,

NEUROD1, NKX2-1, INSM1, CHGA, CHGB, NCAM1, and SYP.

As shown in Figure 2J, SCCE exhibited significantly elevated NE

scores compared to EAC and ESCC, reinforcing its distinct small
FIGURE 1

Single-cell transcriptomic landscape of esophageal tissues across histological subtypes. (A) UMAP plot showing the clustering of all cells into ten
major cell types. (B) Dot plot illustrating canonical marker gene expression across identified cell types. (C) UMAP projections of cells from each
histological subtype, highlighting differences in cellular composition. (D) Stacked bar plots showing the proportion of each cell type within individual
samples. (E) Box plots comparing the relative abundance of selected cell types across histological groups. (F) Left: UMAP plot indicating cell origin by
histological subtype. Right: UMAP plot colored by the number of DEGs identified in each cell type across groups. (G) Heatmap displaying the top 20
differentially expressed genes for each histological group across all cell types.
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FIGURE 2

Identification and functional characterization of malignant epithelial cells across esophageal cancer subtypes. (A) Heatmap showing inferred CNV
profiles of epithelial cells based on NT as the reference. (B) Box plot displaying CNV scores of epithelial cells across EAC, ESCC, and SCCE samples.
(C) Density plot illustrating the distribution of CNV scores in each subtype. (D) Genomic view of inferred CNV signals, highlighting amplified genes
along chromosome 19. (E) Scatter plots of CNV scores versus correlation values, used to distinguish malignant and non-malignant epithelial cells
based on defined thresholds. (F) Violin plots comparing CNV scores between malignant and non-malignant epithelial cells within each subtype. (G)
Violin plots showing EMT, proliferation, angiogenesis, and antigen presentation scores of malignant cells across the three subtypes. (H) Spearman
correlation analysis between CNV scores and functional phenotypes in malignant epithelial cells from SCCE. (I) Heatmap of GSVA pathway
enrichment scores in malignant epithelial cells across EAC, ESCC, and SCCE. (J) Violin plots comparing neuroendocrine (NE) signature scores and
the activity of Wnt, Notch, and Hippo signaling pathways in malignant epithelial cells across EAC, ESCC, and SCCE. *Statistical comparisons in (F, G)
were performed using the Wilcoxon rank-sum test. ****p < 0.0001.
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cell–like phenotype. We next assessed the activity of signaling

pathways closely associated with NE differentiation and tumor

progression, namely the Wnt, Notch, and Hippo pathways. SCCE

cells demonstrated markedly increased Wnt signaling activity, but

reduced Notch and Hippo pathway activity, relative to the other

subtypes. These findings highlight subtype-specific regulatory

programs that may contribute to the aggressive biological

behavior of SCCE.
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In-depth characterization of molecular
heterogeneity in malignant epithelial cells
of SCCE

We further dissected the intratumoral heterogeneity of SCCE by

focusing on malignant epithelial cells and performing subclustering

analysis. UMAP visualization revealed nine distinct transcriptional

subpopulations (Figure 3A). Functional assessment of each cluster
FIGURE 3

Molecular heterogeneity and transcriptional subtypes of malignant epithelial cells in SCCE. (A) UMAP plot of malignant epithelial cells in SCCE,
revealing nine transcriptionally distinct subclusters. (B) Violin plots showing the distribution of functional scores across the nine subclusters. Four key
biological programs were evaluated: EMT, CNV, antigen presentation, and proliferation. Statistical comparisons were performed using the Wilcoxon
rank-sum test. ****p < 0.0001. (C) Heatmap of functional scores, defining three molecular states: a (clusters 2, 4, 6), b (clusters 1, 5, 7, 8), and g
(clusters 0, 3). (D) Heatmap showing the top-ranking TFs distinguishing the three molecular states. (E) Violin plots displaying the expression of
representative TFs across the nine malignant epithelial subclusters. (F) Heatmap of top 10 DEGs in each cluster, supporting the three-state
classification. (G) UMAP feature plots showing the expression of representative marker genes across malignant epithelial cells. (H) Violin plots of
NEUROG3, POU2F3, and SCGN expression across subclusters. (I) Heatmap displaying NEUROG3, POU2F3, and SCGN expression across individual
SCCE samples.
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demonstrated significant variation in key biological programs,

including EMT, proliferation, CNV, and antigen presentation

(Figure 3B). A heatmap of four key biological scores revealed

distinct functional patterns across clusters, allowing classification

into three molecular states: a (clusters 2, 4, 6), b (clusters 1, 5, 7, 8),

and g (clusters 0, 3) (Figure 3C). High EMT and moderate

proliferation scores characterized the a state; the b state exhibited

uniformly high EMT scores but low antigen activity, while the g
state showed elevated proliferation and CNV scores along with the

lowest antigen presentation capacity. To further support the

functional classification of epithelial subclusters, we examined the

expression of canonical NE markers, including ASCL1, NEUROD1,

CHGA, NCAM1, and SYP, across all nine epithelial clusters. As

shown in Supplementary Figure 3, clusters 2, 4, and 6 exhibited

markedly elevated NE marker expression, supporting their

annotation as NE-positive tumor cells. In contrast, clusters 1, 5, 7,

and 8 showed minimal expression of NE markers, consistent with

NE-negative phenotypes. Notably, clusters 0 and 3 also

demonstrated moderate expression of selected NE markers,

suggesting the presence of partial or heterogeneous NE

differentiation within the g state.
We next explored the transcriptional regulatory landscape

underlying these subpopulations by analyzing transcription factor

(TF) activity. A heatmap of the top-ranking TFs demonstrated

state-specific regulatory profiles, clearly distinguishing the a, b, and
g states (Figure 3D). Notably, Several Wnt-related TFs such as

TP63, JUNB, FOS, and FOSL2 showed preferential activity in the b
state. Consistent with this pattern, b state cells exhibited

significantly higher Wnt signaling scores than the a and g states

(P < 0.0001; Supplementary Figure 4). Violin plots further

highlighted representative TFs preferentially active in each state

(Figure 3E). Consistently, heatmap analysis of the top 10

differentially expressed genes per cluster reaffirmed the presence

of three transcriptionally distinct subtypes, each defined by unique

signature gene expression patterns (Figure 3F).

Based on the transcriptional and regulatory profiles, ASCL1,

POU2F3, and NEUROG3 were identified as representative markers

of the a, b, and g states, respectively. These markers exhibited

distinct spatial distributions in UMAP space (Figure 3G), and violin

plots confirmed their subtype-specific expression (Figure 3H).

Accordingly, we defined three molecular phenotypes of SCCE:

SCCE_N (NEUROG3+), SCCE_P (POU2F3+), and SCCE_A

(ASCL1+). Finally, we examined gene expression patterns across

individual SCCE samples. We found that each patient could be

unambiguously classified into one of the three molecular types,

indicating inter-patient heterogeneity aligned with the

transcriptional subtypes (Figure 3I).
Trajectory analysis reveals distinct
differentiation routes and molecular
programs of SCCE epithelial cells

To delineate the differentiation hierarchy of SCCE epithelial

cells, we performed pseudotime trajectory analysis, including both
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malignant and non-malignant epithelial subsets. The resulting

trajectory exhibited a clear bifurcation, with the SCCE_P cells

concentrated at the root, suggesting that this subtype may

represent a common progenitor-like population (Figures 4A, B).

In contrast, SCCE_N and SCCE_A cells occupied distinct terminal

branches, corresponding to divergent differentiation trajectories.

This pattern was further supported by the distribution of

pseudotime states and values (Figures 4C, D), where State 1

aligned with SCCE_P, and States 2 and 3 corresponded to

SCCE_N and SCCE_A, respectively.

Expression dynamics of key subtype-defining genes along

pseudotime further supported this model. POU2F3 was highly

expressed at the root, whereas NEUROG3 and ASCL1 exhibited

branch-specific upregulation toward the SCCE_N and SCCE_A

termini, respectively (Figure 4E). Consistently, CytoTRACE

analysis revealed the highest differentiation potential in SCCE_P

cells, followed by SCCE_N and SCCE_A, indicating progressive

maturation along both lineages (Figures 4F–H), which suggests a

progressive maturation along both trajectories.

We next investigated the dynamics of branch-specific gene

expression. NEUROG3 and ASCL1 expression progressively

increased along the SCCE_N and SCCE_A branches, respectively,

whereas POU2F3 expression declined along both trajectories

(Figure 4I). Branch-specific gene module analysis revealed

distinct transcriptional programs (Figure 4J). Genes enriched

along the P-to-N trajectory were associated with stemness,

cell projection, and T cell differentiation, whereas those along the

P-to-S trajectory were linked to epithelial development,

extracellular matrix remodeling, and neurodevelopmental

processes (Figure 4K).

Together, these results suggest that malignant epithelial cells in

SCCE originate from a progenitor-like SCCE_P state and diverge

along two distinct differentiation trajectories, giving rise to SCCE_N

and SCCE_A subtypes with unique transcriptional profiles and

functional programs.
Immune landscape analysis reveals
distinctive lymphoid and myeloid
remodeling in SCCE

To delineate the immune microenvironment across esophageal

cancer subtypes, we conducted a detailed analysis of tumor-

infiltrating lymphoid and myeloid cells. T/NK cells were clustered

into eight transcriptionally distinct subpopulations based on UMAP

projection, including CD4_Tn, CD4_Trm, CD4_Tex, CD4_Treg,

CD8_Tex, CD8_Tem, and NK cells (Figure 5A). Signature markers

for each subset, such as FOXP3 (CD4_Treg), GZMK (CD8_Tem),

and CXCL13 (CD4_Tex), were confirmed by dot plot analysis

(Figure 5B). The distribution of these subsets varied across

pathological groups. Notably, CD4_Trm cells were markedly

enriched in SCCE compared to other histological types and

represented the most abundant T/NK subset in this group

(Figure 5C). Quantitative comparisons further confirmed a

significantly higher proportion of CD4_Trm cells in SCCE (p =
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0.029), whereas CD4_Treg (p = 0.014) and CD8_Tem cells (p =

0.025) were relatively decreased (Figure 5D). In terms of functional

states, CD4_Treg cells exhibited elevated regulatory scores, NK cells

showed enhanced cytotoxic activity, and CD8_Tex cells

demonstrated pronounced exhaustion (Figure 5E). Expression
Frontiers in Immunology 09
profiling of 28 commonly studied immune checkpoint genes

revealed a broad downregulation in SCCE, with most checkpoint

ligands and receptors expressed at low levels across nearly all T/NK

subsets. In contrast, ESCC samples exhibited widespread

upregulation of immune checkpoints (Figure 5F).
FIGURE 4

Differentiation trajectories and evolutionary dynamics of SCCE epithelial cells. (A) Pseudotime trajectory of SCCE epithelial cells colored by cell type.
(B) Pseudotime trajectory labeled by 10 epithelial subclusters. (C) Cells colored by three pseudotime-defined states. (D) Pseudotime trajectory
colored by progression along two distinct directions: from SCCE_P toward SCCE_N (Tu P/N) and toward SCCE_S (Tu P/S). (E) Pseudotime
trajectories of NEUROG3, POU2F3, and SCGN expression. (F) Pseudotime trajectory labeled the CytoTRACE scores. (G) Box plot of CytoTRACE
scores across the three malignant epithelial subtypes. (H) Boxplot of CytoTRACE scores across malignant subclusters, grouped by molecular
subtype. (I) Pseudotime expression trends of NEUROG3, POU2F3, and SCGN across SCCE epithelial cells. (J) Heatmap showing gene expression
changes along the two tumorigenic trajectories. Color scale (blue to red) indicates increasing expression levels. Genes with similar dynamic patterns
were grouped into seven modules. (K) Smoothed expression trends along the two evolutionary paths and functional enrichment analysis of the
seven gene modules.
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In the analysis of myeloid cells, UMAP projection revealed

seven distinct subpopulations: M1 and M2 macrophages,

conventional and plasmacytoid dendritic cells (cDCs and pDCs),

tolerogenic dendritic cells (tDCs), mast cells, and neutrophils

(Figure 5G). Compositional analysis showed a marked decrease in

M1 macrophages and a substantial increase in mast cells and

neutrophils in SCCE relative to other pathological groups, with
Frontiers in Immunology 10
mast cells constituting the most abundant subset in SCCE

(Figure 5H). Although intergroup comparisons did not reach

statistical significance (Figure 5I), the observed compositional

trends were consistent with those noted in Figure 5H. Functional

profiling of myeloid subsets revealed strong enrichment of multiple

immunological pathways in macrophages, particularly in M1-like

cells, including pathways associated with inflammation, antigen
FIGURE 5

Comprehensive analysis of tumor-infiltrating lymphoid and myeloid cells across esophageal cancer subtypes. (A) UMAP visualization of T cells and
NK cells reveals eight distinct subpopulations. (B) Dot plot showing canonical marker gene expression across lymphoid subsets. (C) Stacked bar plot
displaying proportional distribution of T/NK subsets across pathological groups. (D) Box plots comparing the proportions of NT, EAC, ESCC, and
SCCE samples within each lymphoid subset. (E) Violin plots showing Treg scores, cytotoxicity scores, and exhaustion scores across subsets. (F)
Heatmap showing expression of 28 immune checkpoint genes across T/NK subsets by histological group. (G) UMAP projection of myeloid cells
identifying seven subpopulations, including M1/M2 macrophages, dendritic cells (cDCs, pDCs, tDCs), mast cells, and neutrophils. (H) Stacked bar plot
showing the distribution of myeloid subsets across pathological subtypes. (I) Box plots comparing the proportions of NT, EAC, ESCC, and SCCE
samples within each myeloid subset. (J) Heatmap showing GSVA scores of representative functional pathways in each myeloid subset. (K) Violin
plots depicting functional scores across myeloid subsets. (L) Heatmap showing expression of 28 immune checkpoint genes across myeloid cell
subsets by histological group. *Statistical comparisons in panels (D, E, I) were performed using the Wilcoxon rank-sum test. ****p < 0.0001.
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presentation, and interferon responses (Figure 5J). Violin plots

further illustrated distinct functional patterns among subsets, with

elevated M1 and inflammation scores in M1 macrophages and

increased antigen presentation capacity in cDCs (Figure 5K).

Immune checkpoint expression in myeloid cells mirrored the

pattern observed in lymphoid cells , featuring overall

downregulation in SCCE and relatively higher expression levels in

ESCC samples across multiple subtypes (Figure 5L).
Fibroblast heterogeneity and ELF3-
associated transcriptional features in the
SCCE stroma

Unsupervised clustering identified three distinct fibroblast

subtypes, namely myofibroblastic CAFs (myCAFs), inflammatory

CAFs (iCAFs), and extracellular matrix CAFs (eCAFs), as visualized

by UMAP projection (Figure 6A). These subtypes displayed distinct

distribution patterns across cancer types (Figures 6B–D). eCAFs

were absent in EAC, barely detectable in ESCC, but significantly

enriched in SCCE. iCAFs were present in all three groups, with the

highest proportion in EAC, whereas myCAFs predominated in

ESCC. Comparative analysis confirmed that eCAFs comprised a

significantly higher fraction of fibroblasts in SCCE compared to

ESCC and EAC (p = 0.017), highlighting a disease-specific

expansion (Figure 6E).

Differentially expressed genes were identified across the three

CAF subtypes. The top 20 representative markers demonstrated

clear separation among myCAFs, iCAFs, and eCAFs, reflecting

distinct molecular signatures (Supplementary Figure 5A). GO

enrichment analysis indicated functional specialization. myCAFs

were enriched for gene sets related to RNA splicing and mRNA

processing (Supplementary Figure 5B). iCAFs showed upregulation

of genes involved in extracellular matrix organization, collagen

metabolism, and cell–substrate adhesion (Supplementary

Figure 5C). eCAFs were characterized by signatures associated

with mitotic division, cell cycle checkpoint control, and

chromatid segregation, suggesting a proliferative phenotype

(Supplementary Figure 5D). Expression levels of six classical CAF

markers were also examined. CD248, a mechanoresponsive

fibroblast marker associated with immune exclusion and therapy

resistance, showed predominant expression in iCAFs, along with

COL1A1, POSTN, and DCN. ACTA2 was mainly expressed in

eCAFs and iCAFs, while IL6 remained low across all subtypes

(Supplementary Figure 6).

Transcription factor analysis based on regulatory specificity

scores (RSS) revealed distinct transcriptional programs in CAFs

across cancer subtypes. The top five transcription factors ranked by

RSS were entirely non-overlapping between EAC, ESCC, and SCCE,

indicating highly divergent regulatory landscapes (Figure 6F). In

SCCE, the highest-ranking transcription factors included E2F1,

ELF3, ATF6B, CREB3L1, and ATF6. Within the eCAF subset,

ELF3 also emerged among the top five transcription factors

based on RSS (Figure 6G). Moreover, ELF3 ranked within the top

20 regulators by transcriptional activity scores (RAS) in
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eCAFs (Figure 6H), further highlighting its prominence. These

findings prompted closer examination of ELF3 expression, which

was significantly elevated in eCAFs compared to other CAF

subtypes (Figure 6I), and most pronounced in SCCE

samples relative to other histological types (Figure 6J).

Functional enrichment analysis of ELF3 target genes revealed

associations with cancer-related pathways, including cadherin

binding, regulation of GTPase activity, and kinase signaling,

underscoring its potential role in fibroblast-mediated tumor

behavior (Figure 6K).
SCCE exhibits distinct intercellular
communication patterns dominated by
collagen signaling and iCAF-mediated
interactions

To explore intercellular communication patterns across

esophageal cancer subtypes, we performed a comprehensive

analysis of cell-cell interactions encompassing ten major cell

lineages: malignant epithelial cells, fibroblasts, T cells, B cells, NK

cells, plasma cells, macrophages, dendritic cells, mast cells, and

neutrophils. Heatmaps depicting interaction strength revealed

distinct subtype-specific signaling landscapes: EAC and ESCC

exhibited relatively focused interaction patterns, whereas SCCE

showed more widespread and uniformly distributed intercellular

signaling (Figures 7A–C). Quantitatively, SCCE demonstrated the

highest number of interactions and the greatest cumulative

interaction strength among the three groups (Figures 7D, E). A

comparative analysis of ligand-receptor pairs revealed that SCCE

exhibited the largest number of total interactions, while only 50

pairs were shared across all histological types, underscoring the

divergent communication networks among the subtypes

(Figure 7F). The top ten ligand–receptor interactions ranked by

subtype-specific scores showed minimal overlap, with SCCE-

enriched interactions predominantly involving multiple

combinations of COL6A/COL1A ligands and SDC1/SDC4

receptors, indicating a distinct ligand–receptor signature in this

subtype (Figure 7G).

Pathway-level analysis further identified the collagen signaling

cascade as the most prominent intercellular communication axis in

SCCE, followed by APP, FN1, and MIF signaling (Figure 7H).

Within the collagen pathway, fibroblasts emerged as the dominant

mediators, with extensive outgoing and incoming interactions

involving multiple immune and stromal cell types, as visualized

by a circle plot and a network centrality heatmap (Figures 7I, J).

Further inspection of collagen-related ligand–receptor pairs across

cell types revealed distinct expression patterns, particularly within

fibroblasts. (Figure 7K). Stratified analysis of CAF subtypes revealed

that iCAFs displayed the highest average expression and the

broadest coverage of collagen ligands, whereas eCAFs exhibited

markedly lower expression levels. These findings suggest that iCAFs

may represent the predominant source of extracellular matrix

components involved in collagen-mediated intercellular

signaling (Figure 7L).
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Discussion

Given the rarity of SCCE, single-cell transcriptomic studies

remain extremely limited. To date, only two such studies have been
Frontiers in Immunology 12
reported. One analyzed treatment-naive and post-chemotherapy

tumor samples from only a single SCCE patient, focusing on

therapy-induced changes (26). The other, more recent study

profiled SCCE tumors and reported key differences in immune
FIGURE 6

SCCE-specific enrichment of eCAFs and associated regulatory activity of ELF3. (A) UMAP plot showing the clustering of all fibroblast cells into three
subtypes. (B) UMAP plots displaying the distribution of fibroblast subtypes across EAC, ESCC, and SCCE samples. (C) Dot plot showing the
expression of representative marker genes for each fibroblast subtype. (D) Stacked bar plot showing the relative abundance of each fibroblast
subtype across cancer types. (E) Box plots comparing the proportion of EAC, ESCC, and SCCE samples within each fibroblast subtypes. Statistical
comparisons were performed using the Wilcoxon rank-sum test. (F) Scatter plots of RSS for transcription factors in EAC, ESCC, and SCCE, with top
five subtype-specific regulators labeled. (G) TFs in eCAFs ranked by RSS, with the top five regulators labeled. (H) Top 20 TFs in eCAFs ranked by RAS.
(I) Violin plot showing ELF3 expression across the three fibroblast subtypes. (J) Violin plot showing ELF3 expression across cancer types. (K) KEGG
pathway enrichment analysis of ELF3 target genes, with top 10 pathways shown.
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infiltration and epithelial lineage (9). While these findings represent

important early efforts, our understanding of the tumor-intrinsic

heterogeneity and microenvironmental interactions in SCCE

remains incomplete.

In this study, we performed an integrative single-cell

transcriptomic analysis of SCCE in comparison with EAC, ESCC,

and NT, aiming to construct a comprehensive cellular atlas of

tumor and microenvironmental heterogeneity. SCCE tumors

exhibited a distinct cellular architecture characterized by

increased epithelial cell fractions, reduced immune infiltration,

and widespread genomic instability. Malignant epithelial cells
Frontiers in Immunology 13
displayed substantial transcriptional heterogeneity, forming three

subtypes with divergent differentiation trajectories. At the

microenvironmental level, SCCE was marked by global

downregulation of immune checkpoint genes, eCAF expansion

associated with upregulation of the transcription factor ELF3, and

intensified collagen signaling predominantly driven by iCAFs.

Collectively, these findings delineate the unique tumor ecosystem

of SCCE and highlight its molecular divergence from other

esophageal cancer subtypes.

A defining feature of malignant epithelial cells in SCCE was

pronounced genomic instability, characterized by widespread
FIGURE 7

Intercellular communication landscape and collagen signaling features in SCCE. (A–C) Heatmaps showing intercellular interaction strength among
ten major cell types in EAC (A), ESCC (B), and SCCE (C). (D, E) Bar plots comparing the total number of ligand-receptor pairs (D) and cumulative
interaction strength (E) in each subtype. (F) Venn diagram illustrating unique and shared ligand–receptor interactions among the three subtypes. (G)
Top ten ligand-receptor pairs in each cancer subtype ranked by subtype specificity score. (H) Bar plot displaying the top 15 signaling pathways
ranked by communication strength in SCCE. (I) Circle plot showing the direction and magnitude of interactions between cell populations within the
collagen signaling pathway in SCCE. (J) Heatmap of network centrality scores for each cell type in SCCE collagen signaling. (K) Dot plot showing
expression of collagen pathway–associated ligands and receptors across major cell types in SCCE. (L) Dot plot of collagen ligand expression in three
CAF subtypes.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1672587
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yin et al. 10.3389/fimmu.2025.1672587
chromosomal amplifications and deletions, a pattern also observed

in other neuroendocrine carcinomas (27). Interestingly, SCCE

samples exhibited a bimodal distribution of CNV scores, in

contrast to the unimodal patterns observed in other subtypes,

suggesting the presence of subclonal structures with varying

degrees of genomic alteration. These findings suggest that CNV

heterogeneity may contribute to the molecular and phenotypic

intratumoral diversity observed in SCCE. Functionally, higher

CNV scores were positively associated with EMT and

proliferation signatures, linking genomic instability to more

aggressive tumor behavior, as reported in various malignancies

where elevated CNV burden correlates with invasiveness and poor

prognosis (28, 29). These genomic alterations not only reflect

extensive intratumoral heterogeneity but may also help explain

the aggressive clinical behavior of SCCE, including its rapid

proliferation and early metastatic potential. Moreover, this

genomic instability may underlie the transcriptional divergence

observed among malignant subpopulations, consistent with the

notion that genomic alterations can drive phenotypic

diversification in cancer (30).

Building on the pronounced transcriptional heterogeneity

observed in SCCE epithelial cells, we identified three malignant

subtypes: SCCE_N (NEUROG3+), SCCE_P (POU2F3+), and

SCCE_A (ASCL1+), each defined by distinct transcription factor

activity and functional phenotypes. These subtypes exhibited

distinct activity across key biological programs, including EMT,

proliferation, and antigen presentation, indicating functional

diversification beyond conventional histological classification. Our

molecular stratification parallels and expands the subtype

frameworks previously established in SCLC, where malignant

epithelial cells were classified into A-type (ASCL1+), N-type

(NEUROD1+), and P-type (POU2F3+) groups (31, 32). Molecular

subtypes defined by lineage-specific transcription factors have also

been identified in small cell carcinomas of the bladder (33), prostate

(34), and cervix (35). In our study, although the SCCE_P and

SCCE_A subtypes resembled the P-type and A-type defined in

SCLC, the SCCE_N subtype displayed a unique transcriptional

profile not previously reported in small cell carcinomas. These

observations point to both shared and lineage-specific regulatory

programs among small cell malignancies arising from different

tissue origins. Although the clinical implications of SCCE

molecular subtypes remain to be established, their distinct

transcriptional identities provide a foundation for future

mechanistic investigation and biological characterization.

To further dissect the developmental hierarchy of SCCE

epithelial cells, we performed pseudotime trajectory analysis

incorporating both malignant and non-malignant populations.

The analysis revealed a bifurcated lineage structure, with SCCE_P

cells localized at the trajectory root and exhibiting the highest

CytoTRACE scores, consistent with a progenitor-like state. This

observation aligns with prior reports describing P-type cells as early

progenitors in SCLC (36). In contrast, SCCE_N and SCCE_A cells

were distributed along two terminal branches, each associated with

distinct gene expression programs. NEUROG3, a bHLH

transcription factor essential for pancreatic endocrine cell fate and
Frontiers in Immunology 14
known to cooperate with NEUROD1 in a-cell differentiation,

emerged as a defining marker of SCCE_N. This suggests a

neuroendocrine differentiation route distinct from the N-type

subtype commonly described in SCLC (37). Meanwhile, the

SCCE_A subtype was enriched for pathways related to

extracellular matrix organization and neurodevelopment,

potentially representing a more differentiated, stroma-interacting

phenotype. ASCL1 has served as a defining marker for molecular

subtyping in multiple small cell carcinomas, reflecting its central

role in neuroendocrine differentiation (31, 35). Together, these

findings suggest that SCCE molecular subtypes not only capture

static transcriptional identities but also reflect distinct

differentiation trajectories, with implications for tumor plasticity,

therapeutic resistance, and lineage-specific vulnerabilities.

To address the limited number of SCCE samples analyzed, we

explicitly considered the magnitude and consistency of

transcriptional differences across the identified malignant

subtypes. Despite the small cohort, the subtypes SCCE_P,

SCCE_N, and SCCE_A exhibited substantial divergence across

multiple independent analyses. These included distinct functional

signatures such as EMT, proliferation, and antigen presentation;

differences in TF activity measured by RSS and RAS; and separation

along pseudotime-defined differentiation trajectories. The

reproducibility of these findings across orthogonal modalities

suggests that the observed subtype distinctions are unlikely to be

random artifacts, but rather reflect true biological heterogeneity.

While we acknowledge that the small sample size limits the

statistical certainty of our conclusions, the observed effect sizes

provide preliminary support for the biological relevance of

this classification.

Nevertheless, we acknowledge that the small sample size and the

absence of experimental validation models inherently limit the

generalizability of our findings. While the identified subtypes

demonstrate strong internal consistency, the conclusions drawn

may still be influenced by sampling bias or inter-patient variability.

In addition, without supporting evidence from in vitro or in vivo

models, it remains uncertain whether the observed transcriptional

states represent stable phenotypic identities or transient

transcriptional programs. Future studies involving larger patient

cohorts and functional assays will be crucial to confirm the

biological relevance and clinical significance of the SCCE

molecular subtypes proposed in this study.

Beyond tumor-intrinsic alterations, our study revealed a

profoundly immunosuppressive microenvironment in SCCE.

Compared to ESCC and EAC, SCCE tumors exhibited markedly

reduced infiltration of both lymphoid and myeloid compartments,

consistent with an immune-excluded phenotype. Expression of

immune checkpoint genes such as PDCD1, CTLA4, LAG3, and

TIGIT was broadly suppressed across SCCE-infiltrating T cells.

While the presence of these checkpoints is often associated with T

cell exhaustion and may predict responsiveness to ICIs, their

marked downregulation in SCCE suggests a lack of pre-existing

immune activation. This transcriptomic pattern may reflect an

immunologically ‘cold’ tumor phenotype, which has been

associated with limited response to checkpoint blockade in other
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malignancies (38). The above observations were further

supported by functional scoring of immune cell subsets, as well as

GSVA analysis demonstrating global suppression of antigen

presentation, T cell activation, and interferon-related pathways in

SCCE. Our findings are consistent with a recent single-cell study of

SCCE, which similarly reported an immunosuppressive landscape

enriched for regulatory T cells and angiogenesis-associated stromal

niches, particularly within a unique tumor microenvironment

(TME) ecotype highly enriched in SCCE patients (9). Taken

together, these results support the notion that SCCE harbors a

fundamentally distinct tumor-immune ecosystem compared to

other esophageal cancer subtypes.

Previous transcriptomic studies based on bulk RNA sequencing

have suggested a suppressive immune microenvironment in SCCE,

typically characterized by M2 macrophage enrichment and limited

T cell activation (39). However, due to the lack of cellular resolution,

these approaches were unable to resolve cell type specific

alterations. In contrast, our single-cell analysis provided a high-

resolution view of the SCCE tumor microenvironment. Compared

to other esophageal cancer subtypes, SCCE exhibited widespread

downregulation of immune checkpoint genes across both lymphoid

and myeloid compartments, indicative of pervasive immune

dysfunction. Among lymphoid populations, SCCE showed a

marked reduction in cytotoxic CD8+ T cells, along with skewed

CD4+ subset distributions, suggesting a compromised adaptive

immune response. Myeloid populations were similarly affected,

with reduced representation of M1-like macrophages and

dendritic cells, and a relative increase in mast cells and

neutrophils, indicative of a pro-tumor inflammatory state.

Altogether, these features collectively point to a suppressed and

functionally imbalanced immune microenvironment in SCCE, in

contrast to the more immune-active landscapes observed in ESCC.

While direct clinical data on SCCE response to ICIs remain scarce,

the transcriptomic profile is characterized by checkpoint

downregulation, impaired antigen presentation, and diminished

cytotoxicity. These features collectively indicate a low-

immunogenic tumor microenvironment. Similar immune

phenotypes have been associated with resistance to immune

checkpoint inhibitors in multiple other cancers (40), and may

partially explain the limited efficacy of ICIs in SCCE. However,

further experimental and clinical validation is needed to confirm

this association.

In addition to immune alterations, our study revealed notable

stromal heterogeneity in SCCE, particularly among CAFs. Among

the identified CAF subtypes, eCAFs were significantly enriched in

SCCE relative to other esophageal cancer subtypes. Transcription

factor analysis identified ELF3 as one of the top-ranked regulons in

eCAFs, implicating it in the regulatory programs of this subtype.

ELF3 is a multifunctional transcription factor known to regulate

epithelial differentiation, EMT, and immune responses in various

malignancies. In colorectal and cholangiocarcinoma models, ELF3

has been shown to modulate cancer cell plasticity and maintain

epithelial barrier integrity (41, 42). However, its role in stromal

compartments remains largely unexplored. Our findings suggest
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that ELF3 ELF3 may contribute to extracellular matrix remodeling

and fibroblast-mediated functions in SCCE, representing a potential

regulatory node in the tumor stroma. Additionally, CD248 showed

predominant expression in iCAFs. This marker was recently

characterized as a feature of mechanoresponsive CAFs that

promote immune exclusion and therapeutic resistance in ESCC,

based on single-cell transcriptomic analysis in the context of

neoadjuvant immunotherapy (43).

Building on these findings, we next examined cell–cell

communication and found that SCCE exhibited the most

complex interaction network among the esophageal cancer

subtypes, characterized by a greater number of interactions,

higher interaction strength, and a largely unique ligand–receptor

repertoire. This signaling complexity is reminiscent of the

interaction-rich microenvironments observed in other CAF-dense

tumors (44, 45). Within SCCE, CAFs emerged as the predominant

signal-sending population, aligning with their abundance and

potential stromal regulatory role. Interestingly, although eCAFs

were specifically enriched in SCCE, it was the iCAFs subtype that

contributed most significantly to outgoing signaling activity,

particularly through the collagen signaling pathway. This finding

may reflect the broader paracrine function of inflammatory CAFs,

which have been implicated in promoting tumor progression in

other cancers via cytokine-mediated activation of NF-kB and

STAT3 signaling (46, 47). These observations suggest a division

of labor among CAF subtypes in SCCE, with eCAFs potentially

driving extracellular matrix remodeling and iCAFs actively

contributing to cell–cell communication through paracrine

signaling pathways such as collagen.

By delineating the cellular architecture of SCCE at single-cell

resolution, our study reveals multiple layers of tumor heterogeneity

with potential clinical relevance. The identification of distinct

malignant subtypes with divergent transcriptional programs and

differentiation trajectories suggests that SCCE comprises

biologically diverse tumor cell populations, which may respond

differently to treatment. In the immune compartment, the immune-

excluded phenotype, characterized by low cytotoxic T cell

infiltration and suppressed checkpoint expression, may contribute

to poor immunotherapy responsiveness. Furthermore, the

expansion of eCAFs and the active paracrine signaling role of

iCAFs via collagen pathways highlight stromal components as

potential modulators of tumor progression and immune evasion.

Collectively, our findings provide a single-cell framework that

defines the cellular diversity and immune suppression in SCCE,

offering a foundation for further mechanistic investigation and

hypothesis-driven research.

Acknowledging the limitations of this study is necessary. First,

the rarity of SCCE poses significant challenges in acquiring

sufficient specimens, which in turn limits opportunities for

experimental validation of key findings, such as chromosome 19

amplifications and molecular subtype classification. Second, the

absence of established in vitro or in vivo models for this rare tumor

type precluded experimental validation of the regulatory

mechanisms identified, such as ELF3-mediated activation of
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cancer-associated fibroblasts. Developing experimental model

representative of SCCE will be critical for future mechanistic

studies. Third, although the proposed molecular subtypes

exhibited distinct biological features, their prognostic relevance

could not be evaluated due to the lack of sufficiently large patient

cohorts for robust survival analyses.
Conclusion

This study presents a comprehensive single-cell atlas of SCCE,

uncovering its distinct tumor architecture, molecular subtypes,

and reprogrammed tumor microenvironment. These findings

advance our understanding of this rare malignancy and provide

a framework for future mechanistic studies and exploratory

biological research.
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SUPPLEMENTARY FIGURE 1

UMAP visualization before and after integration to correct batch effects
across datasets. (A) Pre-integration UMAP shows clear separation of cells

from SCCE, ESCC (GSE145370), and EAC (GSE222078), reflecting potential

batch effects. (B) Post-integration UMAP demonstrates effective alignment of
cells across the three datasets, indicating successful mitigation of

technical noise.

SUPPLEMENTARY FIGURE 2

Histological comparison of three esophageal cancer subtypes.

Representative hematoxylin and eosin (H&E) staining images of EAC, ESCC,

and SCCE, highlighting the distinct histomorphological features of
each subtype.

SUPPLEMENTARY FIGURE 3

Expression of NE markers across malignant epithelial cells of SCCE. Violin
plots showing the expression of five canonical neuroendocrine markers

(ASCL1, NEUROD1, CHGA, NCAM1, and SYP) across nine malignant

epithelial clusters.
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SUPPLEMENTARY FIGURE 4

Wnt signaling activity across SCCE molecular subtypes. Violin plots showing
Wnt signaling scores across the a, b, and g subtypes ofmalignant epithelial cells.

Wnt scores were calculated using the AddModuleScore method. *Statistical
comparison was performed using the Wilcoxon rank-sum test. ****p < 0.0001.

SUPPLEMENTARY FIGURE 5

Transcriptomic and functional differences among CAF subtypes. (A) Bubble
plot showing the top 20 marker genes distinguishing myCAFs, iCAFs, and

eCAFs. Dot size indicates the percentage of cells expressing the gene, and
Frontiers in Immunology 17
color represents average expression level. (B–D) GO enrichment analysis of
differentially expressed genes in myCAFs (B), iCAFs (C), and eCAFs (D). Top
enriched biological processes (BP) are displayed. Dot size represents the
number of genes involved, and color denotes adjusted p-values.

SUPPLEMENTARY FIGURE 6

Expression patterns of canonical CAF markers across fibroblast subtypes.

Violin plots showing the expression patterns of six canonical CAF-associated
markers (ACTA2, CD248, COL1A1, DCN, IL6, and POSTN) across the three

CAF subtypes identified in SCCE.
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