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Background: Small cell carcinoma of the esophagus (SCCE) is a rare and highly
aggressive malignancy with limited therapeutic options and poor prognosis. The
paucity of clinical specimens and lack of established experimental models have
hindered a comprehensive understanding of its cellular heterogeneity and
tumor microenvironment.

Methods: We performed single-cell RNA sequencing on SCCE samples, and
integrated them with publicly available scRNA-seq datasets from esophageal
squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAC), and
adjacent normal tissues (NT) from ESCC and EAC cases. An integrative
transcriptomic analysis was conducted to identify cell types, infer malignant
states, reconstruct differentiation trajectories, evaluate immune landscapes, and
investigate fibroblast subtypes and cell-cell communication networks.

Results: SCCE tumors were characterized by a predominance of malignant
epithelial cells and exhibited a profoundly immunosuppressed phenotype, with
reduced immune infiltration and widespread downregulation of immune
checkpoint genes. Malignant epithelial cells showed pronounced
chromosomal instability and were classified into three transcriptionally distinct
subtypes with divergent differentiation trajectories. The tumor
microenvironment featured a complex stromal compartment, with enrichment
of extracellular matrix fibroblasts (eCAFs) characterized by elevated ELF3
regulatory activity, and collagen-driven signaling predominantly mediated by
inflammatory CAFs (iCAFs). SCCE also showed the most intricate cell-cell
communication network among esophageal cancer subtypes.

Conclusion: Our single-cell atlas offers a detailed view of the cellular
heterogeneity and microenvironmental complexity of SCCE, highlighting its
distinct tumor architecture, immune exclusion, and stromal reprogramming.
These findings provide a valuable resource for understanding SCCE biology
and form a basis for future mechanistic and exploratory biological investigations.

small cell carcinoma of the esophagus, single-cell RNA sequencing, heterogeneity,
cancer-associated fibroblasts, immune suppression

01 frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672587/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672587/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672587/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672587/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1672587/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1672587&domain=pdf&date_stamp=2025-10-08
mailto:47100214@hebmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1672587
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1672587
https://www.frontiersin.org/journals/immunology

Yin et al.

Introduction

Small cell carcinoma of the esophagus (SCCE) is a rare and
highly aggressive neuroendocrine malignancy, accounting for less
than 3% of all esophageal cancers (1, 2). It is marked by rapid
progression, early metastasis, and poor clinical outcomes, with most
patients presenting at an advanced stage and a median survival of
only 8 to 13 months (3). Due to its rarity, SCCE currently lacks
established treatment guidelines, and clinical management often
relies on treatment approaches developed for small cell lung cancer
(SCLC). However, small cell carcinomas arising from different
tissues exhibit distinct biological characteristics, and treatment
responses may not be directly transferable across cancer types (4).
The scarcity of fresh tumor samples, the absence of established
experimental models, and limited genomic data have collectively
impeded a deeper understanding of SCCE pathogenesis and
potential therapeutic vulnerabilities.

While recent advances in single-cell technologies have
illuminated cellular heterogeneity and microenvironmental
complexity across various solid tumors (5, 6), SCCE remains
poorly characterized at this resolution. Prior studies using bulk
transcriptomic or genomic profiling have identified recurrent
mutations and limited immune infiltration in SCCE (7, 8), but
lack the granularity to resolve intratumoral heterogeneity or cell-
type-specific alterations. A recent single-cell study has provided
valuable insights into the SCCE ecosystem (9); however, further
analyses are needed to refine our understanding of its epithelial
diversity, stromal heterogeneity, and immune landscape.
Notably, SCCE may exhibit distinct cellular programs and
microenvironmental characteristics compared to SCLC, despite
sharing the same histological classification. In addition to these
differences, the cellular origin of SCCE remains incompletely
understood. While SCCE exhibits neuroendocrine differentiation
similar to SCLC, it is unclear whether these tumors arise from a
distinct neuroendocrine lineage within the esophageal epithelium or
through transdifferentiation from other esophageal cell types.
Emerging evidence suggests that neuroendocrine features in
epithelial cancers, including those of the gastrointestinal tract,
may arise through lineage plasticity mechanisms such as
transcriptional reprogramming and transdifferentiation (10).
However, direct evidence regarding the ontogeny of SCCE is
lacking due to the scarcity of relevant models and longitudinal
tissue data. Single-cell transcriptomic profiling offers a valuable
approach to explore such lineage relationships and may offer
insights into the developmental trajectories and differentiation
programs of SCCE. Therefore, high-resolution characterization of
SCCE is essential to elucidate its cellular origin, define its epithelial
architecture, and dissect stromal-immune features, all of which
may offer foundational insights for future therapeutic development.

To address this need, we performed single-cell RNA sequencing
on SCCE tumor tissues to generate a high-resolution cellular atlas of
this rare malignancy. Through integrative analysis of tumor,
stromal, and immune compartments, we identified the molecular
subtypes of malignant epithelial cells, mapped the composition and
functional states of tumor-infiltrating immune cells, and
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characterized distinct cancer-associated fibroblast (CAF) subtypes
along with their associated signaling activities. In particular, we
uncovered an immunosuppressive microenvironment and a
complex fibroblast-driven signaling network distinctive to SCCE.
These findings provide a framework for understanding the cellular
and molecular features that define the unique biology of SCCE.

Materials and methods
Sample collection and dataset composition

Single-cell RNA sequencing data were obtained from a total of
23 esophageal tissue samples, encompassing three histological
subtypes: EAC, ESCC, and SCCE, as well as NT derived from
ESCC- and EAC-associated samples. Among them, three SCCE
tumor samples were newly generated in-house using single-nucleus
RNA sequencing (snRNA-seq) from formalin-fixed paraffin-
embedded (FFPE) tissue blocks sourced from The Fourth
Hospital of Hebei Medical University. For each FFPE specimen,
25-pm tissue curls were collected into a tube before serial sectioning
for the Chromium Single Cell Gene Expression Flex (scFFPE-seq)
workflow (10x Genomics). Three such curls (75 um total) were
pooled and processed as a single replicate.

The remaining 20 samples were derived from publicly available
single-cell datasets. Seven ESCC tumors and their paired NT
samples were obtained from the GSE145370 dataset (11), while
four EAC tumors and two NT samples were retrieved from the
GSE222078 dataset (12). All public datasets were preprocessed and
deemed suitable for downstream analyses.

Library preparation and sequencing

For each SCCE sample, three 25-um FFPE curls (75 um total)
were dissociated using the Bioyou® Nouclei Isolation Kit for FFPE
Tissue (Shanghai Biotechnology Corporation). Approximately
600,000 nuclei were isolated, washed, and counted. Libraries were
constructed according to the Chromium Single Cell Gene
Expression Flex User Guide (10x Genomics, CG000477).
Sequencing was performed on an Illumina NovaSeq 6000
platform using paired-end 150 bp reads (2x150 bp).

Single-nucleus RNA-seq data processing,
clustering, and annotation

Raw sequencing data (FASTQ files) were processed using the
Cell Ranger multi-pipeline (v7.1.0, 10x Genomics) with the Human
Transcriptome Probe Set reference. Gene-barcode matrices were
generated for each sample by UMI counting and background
barcode filtering. The resulting expression matrices were
imported into the Seurat package (v5.1.0) in R (v4.4.1) for quality
control and downstream analysis (13). Cells with fewer than 200 or
more than 6,000 detected genes were excluded. Additionally, cells
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with a mitochondrial gene content of more than 10% were filtered
out, determined by the PercentageFeatureSet function. The
NormalizeData function was used to normalize gene expression
data, and highly variable genes were pinpointed while accounting
for the mean-variance relationship. Data integration across samples
was performed using FindIntegrationAnchors and IntegrateData.
UMAP plots before and after integration are presented in
Supplementary Figure 1 to visualize batch correction
performance. The integrated data were scaled and subjected to
principal component analysis (PCA), with the top 30 principal
components retained. A shared nearest neighbor (SNN) graph was
then constructed, followed by graph-based clustering using the
Louvain algorithm. Clustering resolution was systematically
optimized between 0.1 and 1.0, and a resolution of 0.4 was
selected for downstream analysis. The resulting clusters were
visualized using Uniform Manifold Approximation and
Projection (UMAP) (14).

For subpopulation analyses, clustering was repeated on selected
subsets of cells after rescaling and dimensionality reduction.
Cluster-specific differentially expressed genes (DEGs) were
identified using the FindAllMarkers function in Seurat with
parameters set to logfc.threshold = 0.25, min.pct = 0.25, and
only.pos = TRUE. An adjusted p-value below 0.05 indicated that
the genes were statistically significant. Initial cell type annotation
was performed using the SingleR package (15), followed by manual
refinement based on the expression of canonical marker genes and
reference to established literature and previously published single-
cell datasets.

CNV-based identification of malignant
epithelial cells

Large-scale chromosomal copy number variation (CNV) was
estimated using the inferCNV package (v1.20.0) (16). Epithelial
cells from the NT group were selected as the reference population.
The CNV score for each epithelial cell was computed by comparing
its gene expression pattern across chromosomal positions with that
of the reference group. To further refine the classification, the top
5% of epithelial cells with the highest CNV scores within each
pathological group were extracted, and their average expression
profiles were used to compute Pearson correlation coefficients
between each remaining epithelial cell and this high-CNV subset.
Epithelial cells were ultimately classified as malignant if both of the
following criteria were met: a CNV score greater than 0.001 and a
correlation coefficient with the high-CNV group greater than 0.5.
Cells not meeting both thresholds were considered non-malignant.
This dual-criterion strategy enabled a robust delineation of
malignant epithelial populations based on both chromosomal
aberration patterns and transcriptional similarity.
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Pathway enrichment and functional
scoring

Pathway analysis was performed using Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment and Gene Set Variation
Analysis (GSVA) (17). KEGG analysis was carried out with the
clusterProfiler package (v4.12.6) (18). GSVA was implemented
using the GSVA package (v1.52.3), with Hallmark gene sets
obtained from the Molecular Signatures Database (MSigDB
v7.5.1) (19). Module scores were computed using the
AddModuleScore function in Seurat. Gene sets related to
epithelial-mesenchymal transition (EMT), angiogenesis, antigen
presentation, interferon response, and inflammation were sourced
from MSigDB. At the same time, additional modules such as
Macrophage_M1 and Macrophage M2 were curated from
previously published studies (20).

Differentiation scoring and pseudotime
trajectory analysis

To evaluate the differentiation potential of malignant epithelial
subpopulations in SCCE, the CytoTRACE2 (v1.0.0) package was
applied to epithelial cells from the SCCE group (21). Differentiation
scores were calculated and compared across malignant subclusters
to assess their relative developmental states. The Monocle2
(v2.32.0) package was used to construct pseudotime trajectories
based on highly variable genes (22). Dimensionality reduction was
performed using the DDRTree method, and cells were ordered
along a developmental continuum with non-malignant epithelial
cells designated as the biological root. This approach enabled the
inference of transcriptional progression among malignant epithelial
subpopulations in SCCE.

Transcription factor regulatory network
analysis

Transcription factor regulatory network analysis was conducted
using the pySCENIC pipeline (v0.12.1) (23), following the standard
workflow previously described. Gene regulatory networks were
initially inferred using GRNBoost2, which identified candidate
transcription factor-target gene co-expression modules. These
modules were then refined through cisTarget motif enrichment
analysis to define high-confidence regulons. AUCell was used to
calculate both regulon activity scores (RAS) for individual cells and
regulon specificity scores (RSS) across cell groups. All steps were
executed using default settings unless otherwise specified. The
resulting matrices were imported into R and visualized with the
SCENIC package (v1.3.1) (24).
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Cell-cell communication analysis

Cell-cell communication networks were inferred using the
CellChat R package (v1.6.1). Normalized gene expression matrices
and predefined cell type annotations were used as input. The
analysis focused on intercellular communication between
malignant epithelial cells and other major cell populations. The
standard CellChat workflow was followed, including the
identification of overexpressed genes, prediction of biologically
significant ligand-receptor interactions, and computation of
intercellular communication probabilities. The built-in human
ligand-receptor database in CellChat was used for signaling
inference. Group-specific analyses were conducted to evaluate
differences in communication patterns across histological
subtypes. All analyses were performed using default parameters
unless otherwise specified. Visualization of inferred signaling
networks was carried out using the built-in visualization functions
in CellChat (25).

Statistical analysis

All statistical analyses were conducted with R (v4.4.1). Non-
parametric tests were used throughout the study. Group
comparisons were conducted using the Wilcoxon rank-sum test
or the Kruskal-Wallis test, as appropriate. Spearman’s rank
correlation coefficient was applied to evaluate associations
between continuous variables, including CNV scores,
differentiation scores, and gene expression levels. Unless
otherwise specified, a two-sided p-value of less than 0.05 was used
to define statistical significance.

Results

Single-cell transcriptomic landscape of
esophageal tissues across histological
subtypes

To characterize the cellular heterogeneity of esophageal tissues,
we performed an integrative single-cell RNA sequencing analysis
across from four histological types: NT, EAC, ESCC, and SCCE.
Following standard preprocessing, dimensionality reduction, and
clustering, we identified ten major cell populations, including
epithelial cells, fibroblasts, mast cells, plasma cells, neutrophils,
macrophages, dendritic cells (DCs), T cells, B cells, and NK cells
(Figure 1A). Cell type annotation was guided by canonical marker
gene expression patterns (Figure 1B).

UMAP projections of each histological subtype revealed distinct
cellular distributions, with SCCE samples showing a marked
enrichment of epithelial cells and a corresponding depletion of
immune populations compared to other subtypes (Figure 1C). In
line with these observations, compositional analysis revealed a
significantly higher proportion of epithelial cells in SCCE. In
contrast, immune subsets, such as T cells and macrophages, were
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more prevalent in NT and ESCC samples (Figure 1D). Quantitative
comparisons further confirmed significant differences in cell-type
composition across histological groups, particularly within
epithelial and T cell compartments (Figure 1E).

Further analysis of transcriptional alterations revealed that
SCCE samples exhibited a distinct transcriptomic profile. The
distribution of differentially expressed genes (DEGs) across cell
types was visualized in UMAP space, highlighting widespread gene
expression remodeling in SCCE (Figure 1F, right). A heatmap of the
top 20 DEGs per group demonstrated subtype-specific gene
signatures, with SCCE displaying a unique pattern of upregulated
and downregulated genes compared to other histological subtypes
(Figure 1G). Collectively, these findings delineate the cellular
complexity and transcriptional heterogeneity across esophageal
cancer subtypes, with SCCE exhibiting a particularly distinctive
molecular and cellular profile. Representative hematoxylin and
eosin (H&E) staining images of EAC, ESCC, and SCCE tissues
further illustrate the histological distinctions among the three
cancer subtypes (Supplementary Figure 2).

Malignant epithelial cell identification and
functional characterization

To investigate epithelial cell heterogeneity across esophageal
cancer subtypes, we performed inferCNV analysis using epithelial
cells from NT as the reference. The resulting heatmap revealed
pronounced CNVs in SCCE, characterized by widespread
chromosomal amplifications and deletions, in contrast to the
more modest alterations observed in EAC and ESCC (Figure 2A).
SCCE epithelial cells exhibited significantly higher CN'V scores than
those from EAC and ESCC, as shown in the boxplot (Figure 2B).
Notably, the density plot revealed a broader and bimodal
distribution of CNV scores in SCCE, indicative of greater
intratumoral heterogeneity in chromosomal alterations. In
contrast, EAC and ESCC displayed relatively narrow, unimodal
patterns (Figure 2C). Further analysis of the most frequently
amplified genomic region in SCCE identified chromosome 19 as
the predominant site, with extensive amplification signals spanning
multiple genes (Figure 2D).

Scatter plots of CNV scores versus correlation coefficients
revealed a clear separation between malignant and non-malignant
epithelial cells. Cells exhibiting both high CNV burden and strong
correlation with the high-CNV reference subset were classified as
malignant, a pattern consistently observed across EAC, ESCC, and
SCCE samples (Figure 2E). Violin plots further confirmed that
malignant cells exhibited significantly higher CNV scores than non-
malignant cells within each histological subtype (Figure 2F).

We next assessed functional phenotypes of malignant epithelial
cells by comparing key biological pathway scores across EAC,
ESCC, and SCCE. SCCE cells demonstrated significantly higher
scores for epithelial-mesenchymal transition (EMT), proliferation,
and angiogenesis compared to the other subtypes (all P < 0.0001),
consistent with a more aggressive and metastatic phenotype. In
contrast, antigen presentation scores were markedly reduced in
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FIGURE 1
Single-cell transcriptomic landscape of esophageal tissues across histological subtypes. (A) UMAP plot showing the clustering of all cells into ten
major cell types. (B) Dot plot illustrating canonical marker gene expression across identified cell types. (C) UMAP projections of cells from each
histological subtype, highlighting differences in cellular composition. (D) Stacked bar plots showing the proportion of each cell type within individual
samples. (E) Box plots comparing the relative abundance of selected cell types across histological groups. (F) Left: UMAP plot indicating cell origin by
histological subtype. Right: UMAP plot colored by the number of DEGs identified in each cell type across groups. (G) Heatmap displaying the top 20
differentially expressed genes for each histological group across all cell types.

SCCE, suggesting impaired antigen-presenting capacity
(Figure 2G). Correlation analysis within SCCE further revealed
that CNV scores were positively associated with EMT but negatively
correlated with antigen presentation capacity (Figure 2H).

To further investigate functional differences among malignant
epithelial cells across pathological subtypes, we conducted GSVA
enrichment analysis. SCCE cells exhibited prominent enrichment in
pathways associated with mitotic spindle, angiogenesis, and EMT.
In contrast, ESCC cells were enriched in immune-linked and
metabolic pathways, including the interferon response, the
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reactive oxygen species (ROS) pathway, DNA repair, the
MTORCI signaling pathway, and oxidative phosphorylation. EAC
cells partially overlapped with ESCC in metabolic programs but
displayed generally weaker pathway enrichment overall (Figure 2I).

To further validate the neuroendocrine (NE) identity of SCCE
and investigate relevant regulatory pathways, we calculated an NE
signature score using canonical NE markers, including ASCLI,
NEURODI, NKX2-1, INSM1, CHGA, CHGB, NCAMI, and SYP.
As shown in Figure 2], SCCE exhibited significantly elevated NE
scores compared to EAC and ESCC, reinforcing its distinct small
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revealing nine transcriptionally distinct subclusters. (B) Violin plots showi

biological programs were evaluated: EMT, CNV, antigen presentation, and proliferation. Statistical comparisons were performed using the Wilcoxon

rank-sum test. ****p < 0.0001. (C) Heatmap of functional scores, definin
(clusters 0, 3). (D) Heatmap showing the top-ranking TFs distinguishing t

representative TFs across the nine malignant epithelial subclusters. (F) Heatmap of top 10 DEGs in each cluster, supporting the three-state
classification. (G) UMAP feature plots showing the expression of representative marker genes across malignant epithelial cells. (H) Violin plots of

NEUROGS3, POU2F3, and SCGN expression across subclusters. (I) Heatm
SCCE samples.

J
il
|

AsCL1 ’
T L w0 . i Q
AR g \‘\ §;§ L I§ ;

POU2F3

N 008« |—>d 8| —>v odfi«—]

“OMAP_1 «: SCCE_A B: SCCE_P y: SCCE_N

ng the distribution of functional scores across the nine subclusters. Four key

g three molecular states: o (clusters 2, 4, 6), B (clusters 1, 5, 7, 8), and y
he three molecular states. (E) Violin plots displaying the expression of

ap displaying NEUROG3, POU2F3, and SCGN expression across individual

cell-like phenotype. We next assessed the activity of signaling
pathways closely associated with NE differentiation and tumor
progression, namely the Wnt, Notch, and Hippo pathways. SCCE
cells demonstrated markedly increased Wnt signaling activity, but
reduced Notch and Hippo pathway activity, relative to the other
subtypes. These findings highlight subtype-specific regulatory
programs that may contribute to the aggressive biological
behavior of SCCE.
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In-depth characterization of molecular
heterogeneity in malignant epithelial cells
of SCCE

We further dissected the intratumoral heterogeneity of SCCE by
focusing on malignant epithelial cells and performing subclustering
analysis. UMAP visualization revealed nine distinct transcriptional
subpopulations (Figure 3A). Functional assessment of each cluster
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demonstrated significant variation in key biological programs,
including EMT, proliferation, CNV, and antigen presentation
(Figure 3B). A heatmap of four key biological scores revealed
distinct functional patterns across clusters, allowing classification
into three molecular states: o (clusters 2, 4, 6), B (clusters 1, 5, 7, 8),
and 7y (clusters 0, 3) (Figure 3C). High EMT and moderate
proliferation scores characterized the o state; the B state exhibited
uniformly high EMT scores but low antigen activity, while the y
state showed elevated proliferation and CNV scores along with the
lowest antigen presentation capacity. To further support the
functional classification of epithelial subclusters, we examined the
expression of canonical NE markers, including ASCL1, NEURODI,
CHGA, NCAMI1, and SYP, across all nine epithelial clusters. As
shown in Supplementary Figure 3, clusters 2, 4, and 6 exhibited
markedly elevated NE marker expression, supporting their
annotation as NE-positive tumor cells. In contrast, clusters 1, 5, 7,
and 8 showed minimal expression of NE markers, consistent with
NE-negative phenotypes. Notably, clusters 0 and 3 also
demonstrated moderate expression of selected NE markers,
suggesting the presence of partial or heterogeneous NE
differentiation within the v state.

We next explored the transcriptional regulatory landscape
underlying these subpopulations by analyzing transcription factor
(TF) activity. A heatmap of the top-ranking TFs demonstrated
state-specific regulatory profiles, clearly distinguishing the o, 3, and
vy states (Figure 3D). Notably, Several Wnt-related TFs such as
TP63, JUNB, FOS, and FOSL2 showed preferential activity in the 8
state. Consistent with this pattern, B state cells exhibited
significantly higher Wnt signaling scores than the o and vy states
(P < 0.0001; Supplementary Figure 4). Violin plots further
highlighted representative TFs preferentially active in each state
(Figure 3E). Consistently, heatmap analysis of the top 10
differentially expressed genes per cluster reaffirmed the presence
of three transcriptionally distinct subtypes, each defined by unique
signature gene expression patterns (Figure 3F).

Based on the transcriptional and regulatory profiles, ASCLI,
POU2F3, and NEUROGS3 were identified as representative markers
of the o, B, and 7 states, respectively. These markers exhibited
distinct spatial distributions in UMAP space (Figure 3G), and violin
plots confirmed their subtype-specific expression (Figure 3H).
Accordingly, we defined three molecular phenotypes of SCCE:
SCCE_N (NEUROG3"), SCCE_P (POU2F3"), and SCCE_A
(ASCL1"). Finally, we examined gene expression patterns across
individual SCCE samples. We found that each patient could be
unambiguously classified into one of the three molecular types,
indicating inter-patient heterogeneity aligned with the
transcriptional subtypes (Figure 3I).

Trajectory analysis reveals distinct
differentiation routes and molecular
programs of SCCE epithelial cells

To delineate the differentiation hierarchy of SCCE epithelial
cells, we performed pseudotime trajectory analysis, including both
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malignant and non-malignant epithelial subsets. The resulting
trajectory exhibited a clear bifurcation, with the SCCE_P cells
concentrated at the root, suggesting that this subtype may
represent a common progenitor-like population (Figures 4A, B).
In contrast, SCCE_N and SCCE_A cells occupied distinct terminal
branches, corresponding to divergent differentiation trajectories.
This pattern was further supported by the distribution of
pseudotime states and values (Figures 4C, D), where State 1
aligned with SCCE_P, and States 2 and 3 corresponded to
SCCE_N and SCCE_A, respectively.

Expression dynamics of key subtype-defining genes along
pseudotime further supported this model. POU2F3 was highly
expressed at the root, whereas NEUROG3 and ASCL1 exhibited
branch-specific upregulation toward the SCCE_N and SCCE_A
termini, respectively (Figure 4E). Consistently, CytoTRACE
analysis revealed the highest differentiation potential in SCCE_P
cells, followed by SCCE_N and SCCE_A, indicating progressive
maturation along both lineages (Figures 4F-H), which suggests a
progressive maturation along both trajectories.

We next investigated the dynamics of branch-specific gene
expression. NEUROG3 and ASCL1 expression progressively
increased along the SCCE_N and SCCE_A branches, respectively,
whereas POU2F3 expression declined along both trajectories
(Figure 4I). Branch-specific gene module analysis revealed
distinct transcriptional programs (Figure 4]). Genes enriched
along the P-to-N trajectory were associated with stemness,
cell projection, and T cell differentiation, whereas those along the
P-to-S trajectory were linked to epithelial development,
extracellular matrix remodeling, and neurodevelopmental
processes (Figure 4K).

Together, these results suggest that malignant epithelial cells in
SCCE originate from a progenitor-like SCCE_P state and diverge
along two distinct differentiation trajectories, giving rise to SCCE_N
and SCCE_A subtypes with unique transcriptional profiles and
functional programs.

Immune landscape analysis reveals
distinctive lymphoid and myeloid
remodeling in SCCE

To delineate the immune microenvironment across esophageal
cancer subtypes, we conducted a detailed analysis of tumor-
infiltrating lymphoid and myeloid cells. T/NK cells were clustered
into eight transcriptionally distinct subpopulations based on UMAP
projection, including CD4_Tn, CD4_Trm, CD4_Tex, CD4_Treg,
CD8_Tex, CD8_Tem, and NK cells (Figure 5A). Signature markers
for each subset, such as FOXP3 (CD4_Treg), GZMK (CD8_Tem),
and CXCL13 (CD4_Tex), were confirmed by dot plot analysis
(Figure 5B). The distribution of these subsets varied across
pathological groups. Notably, CD4_Trm cells were markedly
enriched in SCCE compared to other histological types and
represented the most abundant T/NK subset in this group
(Figure 5C). Quantitative comparisons further confirmed a
significantly higher proportion of CD4_Trm cells in SCCE (p =

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1672587
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Yin et al. 10.3389/fimmu.2025.1672587

A celltype « Malignant + Nonmalignant B ypiype oo wcre. s sz e G State- 1- 2.3 D Pseudotime NI

SCCEM  SO0ELPY - SOCEF3 - SOCEAY - SOCEAY

« o ; o o

g - iz 2 £

g H i H H

g g g £ g

£ H

3o 3, 8. 3.

. | & o -
e 5 7 7 W - 5 5 . £ 3 5 T % - s g
Component 1 Component 1 Component 1 Component 1
NEurocs I pouzrs NI ascL [N CytoTRACE
25000 10 10050006 “000 10

Component 2

Component 2

Component 2

Component 2

5 5 T
Component 1

G H

o % * § § ASCL1 NEUROG3 POU2F3
E - 2 e

e 3
3 s S
r§... D 2 Sample type
= 8L g « Normalpieta
g 2 et e SCCEN
= ’gm- 2 ® SCCEP
3 % k] © SCCE_A
= Sl ...
SCCE_N SCCE_P SCCE_A G 5 fo 5 20 5 0 5 10 15 20 25 6 5 10 15 20 %
B G Peosiorie
J o TUPA TUPN o K
€ >

—TuP/A ---TuPIN

positive regulation of cell development

positive regulation of cell projection organization
stem cell population maintenance

T cell differentiation

maintenance of cell number

epidermis development
skin development
keratinocyte differentiation
epidermal cell differentiation
keratinocyte proliferation

extracellular matrix organization

extracellular structure organization

external encapsulating structure organization
collagen fibril organization

basement membrane organization

Expression

regulation of neuron projection development

i , axonogenesis

g1 - - regulation of nervous system development
regulation of neurogenesis

negative regulation of neuron projection development

synaptic vesicle exocytosis
regulation of hemopoiesis
synaptic vesicle cycle
calcium-ion regulated exocytosis
neurotransmitter secretion

FIGURE 4
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0.029), whereas CD4_Treg (p = 0.014) and CD8_Tem cells (p =  profiling of 28 commonly studied immune checkpoint genes
0.025) were relatively decreased (Figure 5D). In terms of functional ~ revealed a broad downregulation in SCCE, with most checkpoint
states, CD4_Treg cells exhibited elevated regulatory scores, NK cells  ligands and receptors expressed at low levels across nearly all T/NK
showed enhanced cytotoxic activity, and CD8_Tex cells subsets. In contrast, ESCC samples exhibited widespread
demonstrated pronounced exhaustion (Figure 5E). Expression  upregulation of immune checkpoints (Figure 5F).
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FIGURE 5

Comprehensive analysis of tumor-infiltrating lymphoid and myeloid cells across esophageal cancer subtypes. (A) UMAP visualization of T cells and
NK cells reveals eight distinct subpopulations. (B) Dot plot showing canonical marker gene expression across lymphoid subsets. (C) Stacked bar plot
displaying proportional distribution of T/NK subsets across pathological groups. (D) Box plots comparing the proportions of NT, EAC, ESCC, and

SCCE samples within each lymphoid subset. (E) Violin plots showing Treg scores, cytotoxicity scores, and exhaustion scores across subsets. (F)
Heatmap showing expression of 28 immune checkpoint genes across T/NK subsets by histological group. (G) UMAP projection of myeloid cells
identifying seven subpopulations, including M1/M2 macrophages, dendritic cells (cDCs, pDCs, tDCs), mast cells, and neutrophils. (H) Stacked bar plot
showing the distribution of myeloid subsets across pathological subtypes. (I) Box plots comparing the proportions of NT, EAC, ESCC, and SCCE
samples within each myeloid subset. (J) Heatmap showing GSVA scores of representative functional pathways in each myeloid subset. (K) Violin
plots depicting functional scores across myeloid subsets. (L) Heatmap showing expression of 28 immune checkpoint genes across myeloid cell
subsets by histological group. *Statistical comparisons in panels (D, E, 1) were performed using the Wilcoxon rank-sum test. ****p < 0.0001.

In the analysis of myeloid cells, UMAP projection revealed
seven distinct subpopulations: M1 and M2 macrophages,
conventional and plasmacytoid dendritic cells (cDCs and pDCs),
tolerogenic dendritic cells (tDCs), mast cells, and neutrophils
(Figure 5G). Compositional analysis showed a marked decrease in
M1 macrophages and a substantial increase in mast cells and
neutrophils in SCCE relative to other pathological groups, with
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mast cells constituting the most abundant subset in SCCE
(Figure 5H). Although intergroup comparisons did not reach
statistical significance (Figure 5I), the observed compositional
trends were consistent with those noted in Figure 5H. Functional
profiling of myeloid subsets revealed strong enrichment of multiple
immunological pathways in macrophages, particularly in M1-like
cells, including pathways associated with inflammation, antigen
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presentation, and interferon responses (Figure 5]). Violin plots
further illustrated distinct functional patterns among subsets, with
elevated M1 and inflammation scores in M1 macrophages and
increased antigen presentation capacity in ¢DCs (Figure 5K).
Immune checkpoint expression in myeloid cells mirrored the
pattern observed in lymphoid cells, featuring overall
downregulation in SCCE and relatively higher expression levels in
ESCC samples across multiple subtypes (Figure 5L).

Fibroblast heterogeneity and ELF3-
associated transcriptional features in the
SCCE stroma

Unsupervised clustering identified three distinct fibroblast
subtypes, namely myofibroblastic CAFs (myCAFs), inflammatory
CAFs (iCAFs), and extracellular matrix CAFs (eCAFs), as visualized
by UMAP projection (Figure 6A). These subtypes displayed distinct
distribution patterns across cancer types (Figures 6B-D). eCAFs
were absent in EAC, barely detectable in ESCC, but significantly
enriched in SCCE. iCAFs were present in all three groups, with the
highest proportion in EAC, whereas myCAFs predominated in
ESCC. Comparative analysis confirmed that eCAFs comprised a
significantly higher fraction of fibroblasts in SCCE compared to
ESCC and EAC (p = 0.017), highlighting a disease-specific
expansion (Figure 6E).

Differentially expressed genes were identified across the three
CAF subtypes. The top 20 representative markers demonstrated
clear separation among myCAFs, iCAFs, and eCAFs, reflecting
distinct molecular signatures (Supplementary Figure 5A). GO
enrichment analysis indicated functional specialization. myCAFs
were enriched for gene sets related to RNA splicing and mRNA
processing (Supplementary Figure 5B). iCAFs showed upregulation
of genes involved in extracellular matrix organization, collagen
metabolism, and cell-substrate adhesion (Supplementary
Figure 5C). eCAFs were characterized by signatures associated
with mitotic division, cell cycle checkpoint control, and
chromatid segregation, suggesting a proliferative phenotype
(Supplementary Figure 5D). Expression levels of six classical CAF
markers were also examined. CD248, a mechanoresponsive
fibroblast marker associated with immune exclusion and therapy
resistance, showed predominant expression in iCAFs, along with
COLI1A1L, POSTN, and DCN. ACTA2 was mainly expressed in
eCAFs and iCAFs, while IL6 remained low across all subtypes
(Supplementary Figure 6).

Transcription factor analysis based on regulatory specificity
scores (RSS) revealed distinct transcriptional programs in CAFs
across cancer subtypes. The top five transcription factors ranked by
RSS were entirely non-overlapping between EAC, ESCC, and SCCE,
indicating highly divergent regulatory landscapes (Figure 6F). In
SCCE, the highest-ranking transcription factors included E2F1,
ELF3, ATF6B, CREB3L1, and ATF6. Within the eCAF subset,
ELF3 also emerged among the top five transcription factors
based on RSS (Figure 6G). Moreover, ELF3 ranked within the top
20 regulators by transcriptional activity scores (RAS) in
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eCAFs (Figure 6H), further highlighting its prominence. These
findings prompted closer examination of ELF3 expression, which
was significantly elevated in eCAFs compared to other CAF
subtypes (Figure 6I), and most pronounced in SCCE
samples relative to other histological types (Figure 6]).
Functional enrichment analysis of ELF3 target genes revealed
associations with cancer-related pathways, including cadherin
binding, regulation of GTPase activity, and kinase signaling,
underscoring its potential role in fibroblast-mediated tumor
behavior (Figure 6K).

SCCE exhibits distinct intercellular
communication patterns dominated by
collagen signaling and iCAF-mediated
interactions

To explore intercellular communication patterns across
esophageal cancer subtypes, we performed a comprehensive
analysis of cell-cell interactions encompassing ten major cell
lineages: malignant epithelial cells, fibroblasts, T cells, B cells, NK
cells, plasma cells, macrophages, dendritic cells, mast cells, and
neutrophils. Heatmaps depicting interaction strength revealed
distinct subtype-specific signaling landscapes: EAC and ESCC
exhibited relatively focused interaction patterns, whereas SCCE
showed more widespread and uniformly distributed intercellular
signaling (Figures 7A-C). Quantitatively, SCCE demonstrated the
highest number of interactions and the greatest cumulative
interaction strength among the three groups (Figures 7D, E). A
comparative analysis of ligand-receptor pairs revealed that SCCE
exhibited the largest number of total interactions, while only 50
pairs were shared across all histological types, underscoring the
divergent communication networks among the subtypes
(Figure 7F). The top ten ligand-receptor interactions ranked by
subtype-specific scores showed minimal overlap, with SCCE-
enriched interactions predominantly involving multiple
combinations of COL6A/COLIA ligands and SDC1/SDC4
receptors, indicating a distinct ligand-receptor signature in this
subtype (Figure 7G).

Pathway-level analysis further identified the collagen signaling
cascade as the most prominent intercellular communication axis in
SCCE, followed by APP, FN1, and MIF signaling (Figure 7H).
Within the collagen pathway, fibroblasts emerged as the dominant
mediators, with extensive outgoing and incoming interactions
involving multiple immune and stromal cell types, as visualized
by a circle plot and a network centrality heatmap (Figures 71, J).
Further inspection of collagen-related ligand-receptor pairs across
cell types revealed distinct expression patterns, particularly within
fibroblasts. (Figure 7K). Stratified analysis of CAF subtypes revealed
that iCAFs displayed the highest average expression and the
broadest coverage of collagen ligands, whereas eCAFs exhibited
markedly lower expression levels. These findings suggest that iCAFs
may represent the predominant source of extracellular matrix
components involved in collagen-mediated intercellular
signaling (Figure 7L).
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FIGURE 6

SCCE-specific enrichment of eCAFs and associated regulatory activity of ELF3. (A) UMAP plot showing the clustering of all fibroblast cells into three
subtypes. (B) UMAP plots displaying the distribution of fibroblast subtypes across EAC, ESCC, and SCCE samples. (C) Dot plot showing the
expression of representative marker genes for each fibroblast subtype. (D) Stacked bar plot showing the relative abundance of each fibroblast
subtype across cancer types. (E) Box plots comparing the proportion of EAC, ESCC, and SCCE samples within each fibroblast subtypes. Statistical
comparisons were performed using the Wilcoxon rank-sum test. (F) Scatter plots of RSS for transcription factors in EAC, ESCC, and SCCE, with top
five subtype-specific regulators labeled. (G) TFs in eCAFs ranked by RSS, with the top five regulators labeled. (H) Top 20 TFs in eCAFs ranked by RAS.
(I) Violin plot showing ELF3 expression across the three fibroblast subtypes. (J) Violin plot showing ELF3 expression across cancer types. (K) KEGG
pathway enrichment analysis of ELF3 target genes, with top 10 pathways shown.

Discussion

Given the rarity of SCCE, single-cell transcriptomic studies
remain extremely limited. To date, only two such studies have been
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reported. One analyzed treatment-naive and post-chemotherapy
tumor samples from only a single SCCE patient, focusing on
therapy-induced changes (26). The other, more recent study
profiled SCCE tumors and reported key differences in immune
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FIGURE 7
Intercellular communication landscape and collagen signaling features in SCCE. (A—C) Heatmaps showing intercellular interaction strength among
ten major cell types in EAC (A), ESCC (B), and SCCE (C). (D, E) Bar plots comparing the total number of ligand-receptor pairs (D) and cumulative
interaction strength (E) in each subtype. (F) Venn diagram illustrating unique and shared ligand—receptor interactions among the three subtypes. (G)
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infiltration and epithelial lineage (9). While these findings represent
important early efforts, our understanding of the tumor-intrinsic
heterogeneity and microenvironmental interactions in SCCE
remains incomplete.

In this study, we performed an integrative single-cell
transcriptomic analysis of SCCE in comparison with EAC, ESCC,
and NT, aiming to construct a comprehensive cellular atlas of
tumor and microenvironmental heterogeneity. SCCE tumors
exhibited a distinct cellular architecture characterized by
increased epithelial cell fractions, reduced immune infiltration,
and widespread genomic instability. Malignant epithelial cells
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displayed substantial transcriptional heterogeneity, forming three
subtypes with divergent differentiation trajectories. At the
microenvironmental level, SCCE was marked by global
downregulation of immune checkpoint genes, eCAF expansion
associated with upregulation of the transcription factor ELF3, and
intensified collagen signaling predominantly driven by iCAFs.
Collectively, these findings delineate the unique tumor ecosystem
of SCCE and highlight its molecular divergence from other
esophageal cancer subtypes.

A defining feature of malignant epithelial cells in SCCE was
pronounced genomic instability, characterized by widespread
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chromosomal amplifications and deletions, a pattern also observed
in other neuroendocrine carcinomas (27). Interestingly, SCCE
samples exhibited a bimodal distribution of CNV scores, in
contrast to the unimodal patterns observed in other subtypes,
suggesting the presence of subclonal structures with varying
degrees of genomic alteration. These findings suggest that CNV
heterogeneity may contribute to the molecular and phenotypic
intratumoral diversity observed in SCCE. Functionally, higher
CNV scores were positively associated with EMT and
proliferation signatures, linking genomic instability to more
aggressive tumor behavior, as reported in various malignancies
where elevated CNV burden correlates with invasiveness and poor
prognosis (28, 29). These genomic alterations not only reflect
extensive intratumoral heterogeneity but may also help explain
the aggressive clinical behavior of SCCE, including its rapid
proliferation and early metastatic potential. Moreover, this
genomic instability may underlie the transcriptional divergence
observed among malignant subpopulations, consistent with the
notion that genomic alterations can drive phenotypic
diversification in cancer (30).

Building on the pronounced transcriptional heterogeneity
observed in SCCE epithelial cells, we identified three malignant
subtypes: SCCE_N (NEUROG3™), SCCE_P (POU2F3"), and
SCCE_A (ASCL1"), each defined by distinct transcription factor
activity and functional phenotypes. These subtypes exhibited
distinct activity across key biological programs, including EMT,
proliferation, and antigen presentation, indicating functional
diversification beyond conventional histological classification. Our
molecular stratification parallels and expands the subtype
frameworks previously established in SCLC, where malignant
epithelial cells were classified into A-type (ASCL1"), N-type
(NEURODL1"), and P-type (POU2F3") groups (31, 32). Molecular
subtypes defined by lineage-specific transcription factors have also
been identified in small cell carcinomas of the bladder (33), prostate
(34), and cervix (35). In our study, although the SCCE_P and
SCCE_A subtypes resembled the P-type and A-type defined in
SCLC, the SCCE_N subtype displayed a unique transcriptional
profile not previously reported in small cell carcinomas. These
observations point to both shared and lineage-specific regulatory
programs among small cell malignancies arising from different
tissue origins. Although the clinical implications of SCCE
molecular subtypes remain to be established, their distinct
transcriptional identities provide a foundation for future
mechanistic investigation and biological characterization.

To further dissect the developmental hierarchy of SCCE
epithelial cells, we performed pseudotime trajectory analysis
incorporating both malignant and non-malignant populations.
The analysis revealed a bifurcated lineage structure, with SCCE_P
cells localized at the trajectory root and exhibiting the highest
CytoTRACE scores, consistent with a progenitor-like state. This
observation aligns with prior reports describing P-type cells as early
progenitors in SCLC (36). In contrast, SCCE_N and SCCE_A cells
were distributed along two terminal branches, each associated with
distinct gene expression programs. NEUROG3, a bHLH
transcription factor essential for pancreatic endocrine cell fate and
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known to cooperate with NEURODI1 in a-cell differentiation,
emerged as a defining marker of SCCE_N. This suggests a
neuroendocrine differentiation route distinct from the N-type
subtype commonly described in SCLC (37). Meanwhile, the
SCCE_A subtype was enriched for pathways related to
extracellular matrix organization and neurodevelopment,
potentially representing a more differentiated, stroma-interacting
phenotype. ASCL1 has served as a defining marker for molecular
subtyping in multiple small cell carcinomas, reflecting its central
role in neuroendocrine differentiation (31, 35). Together, these
findings suggest that SCCE molecular subtypes not only capture
static transcriptional identities but also reflect distinct
differentiation trajectories, with implications for tumor plasticity,
therapeutic resistance, and lineage-specific vulnerabilities.

To address the limited number of SCCE samples analyzed, we
explicitly considered the magnitude and consistency of
transcriptional differences across the identified malignant
subtypes. Despite the small cohort, the subtypes SCCE_P,
SCCE_N, and SCCE_A exhibited substantial divergence across
multiple independent analyses. These included distinct functional
signatures such as EMT, proliferation, and antigen presentation;
differences in TF activity measured by RSS and RAS; and separation
along pseudotime-defined differentiation trajectories. The
reproducibility of these findings across orthogonal modalities
suggests that the observed subtype distinctions are unlikely to be
random artifacts, but rather reflect true biological heterogeneity.
While we acknowledge that the small sample size limits the
statistical certainty of our conclusions, the observed effect sizes
provide preliminary support for the biological relevance of
this classification.

Nevertheless, we acknowledge that the small sample size and the
absence of experimental validation models inherently limit the
generalizability of our findings. While the identified subtypes
demonstrate strong internal consistency, the conclusions drawn
may still be influenced by sampling bias or inter-patient variability.
In addition, without supporting evidence from in vitro or in vivo
models, it remains uncertain whether the observed transcriptional
states represent stable phenotypic identities or transient
transcriptional programs. Future studies involving larger patient
cohorts and functional assays will be crucial to confirm the
biological relevance and clinical significance of the SCCE
molecular subtypes proposed in this study.

Beyond tumor-intrinsic alterations, our study revealed a
profoundly immunosuppressive microenvironment in SCCE.
Compared to ESCC and EAC, SCCE tumors exhibited markedly
reduced infiltration of both lymphoid and myeloid compartments,
consistent with an immune-excluded phenotype. Expression of
immune checkpoint genes such as PDCD1, CTLA4, LAG3, and
TIGIT was broadly suppressed across SCCE-infiltrating T cells.
While the presence of these checkpoints is often associated with T
cell exhaustion and may predict responsiveness to ICIs, their
marked downregulation in SCCE suggests a lack of pre-existing
immune activation. This transcriptomic pattern may reflect an
immunologically ‘cold’ tumor phenotype, which has been
associated with limited response to checkpoint blockade in other
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malignancies (38). The above observations were further
supported by functional scoring of immune cell subsets, as well as
GSVA analysis demonstrating global suppression of antigen
presentation, T cell activation, and interferon-related pathways in
SCCE. Our findings are consistent with a recent single-cell study of
SCCE, which similarly reported an immunosuppressive landscape
enriched for regulatory T cells and angiogenesis-associated stromal
niches, particularly within a unique tumor microenvironment
(TME) ecotype highly enriched in SCCE patients (9). Taken
together, these results support the notion that SCCE harbors a
fundamentally distinct tumor-immune ecosystem compared to
other esophageal cancer subtypes.

Previous transcriptomic studies based on bulk RNA sequencing
have suggested a suppressive immune microenvironment in SCCE,
typically characterized by M2 macrophage enrichment and limited
T cell activation (39). However, due to the lack of cellular resolution,
these approaches were unable to resolve cell type specific
alterations. In contrast, our single-cell analysis provided a high-
resolution view of the SCCE tumor microenvironment. Compared
to other esophageal cancer subtypes, SCCE exhibited widespread
downregulation of immune checkpoint genes across both lymphoid
and myeloid compartments, indicative of pervasive immune
dysfunction. Among lymphoid populations, SCCE showed a
marked reduction in cytotoxic CD8" T cells, along with skewed
CD4" subset distributions, suggesting a compromised adaptive
immune response. Myeloid populations were similarly affected,
with reduced representation of MI1-like macrophages and
dendritic cells, and a relative increase in mast cells and
neutrophils, indicative of a pro-tumor inflammatory state.
Altogether, these features collectively point to a suppressed and
functionally imbalanced immune microenvironment in SCCE, in
contrast to the more immune-active landscapes observed in ESCC.
While direct clinical data on SCCE response to ICIs remain scarce,
the transcriptomic profile is characterized by checkpoint
downregulation, impaired antigen presentation, and diminished
cytotoxicity. These features collectively indicate a low-
immunogenic tumor microenvironment. Similar immune
phenotypes have been associated with resistance to immune
checkpoint inhibitors in multiple other cancers (40), and may
partially explain the limited efficacy of ICIs in SCCE. However,
further experimental and clinical validation is needed to confirm
this association.

In addition to immune alterations, our study revealed notable
stromal heterogeneity in SCCE, particularly among CAFs. Among
the identified CAF subtypes, eCAFs were significantly enriched in
SCCE relative to other esophageal cancer subtypes. Transcription
factor analysis identified ELF3 as one of the top-ranked regulons in
eCAFs, implicating it in the regulatory programs of this subtype.
ELF3 is a multifunctional transcription factor known to regulate
epithelial differentiation, EMT, and immune responses in various
malignancies. In colorectal and cholangiocarcinoma models, ELF3
has been shown to modulate cancer cell plasticity and maintain
epithelial barrier integrity (41, 42). However, its role in stromal
compartments remains largely unexplored. Our findings suggest
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that ELF3 ELF3 may contribute to extracellular matrix remodeling
and fibroblast-mediated functions in SCCE, representing a potential
regulatory node in the tumor stroma. Additionally, CD248 showed
predominant expression in iCAFs. This marker was recently
characterized as a feature of mechanoresponsive CAFs that
promote immune exclusion and therapeutic resistance in ESCC,
based on single-cell transcriptomic analysis in the context of
neoadjuvant immunotherapy (43).

Building on these findings, we next examined cell-cell
communication and found that SCCE exhibited the most
complex interaction network among the esophageal cancer
subtypes, characterized by a greater number of interactions,
higher interaction strength, and a largely unique ligand-receptor
repertoire. This signaling complexity is reminiscent of the
interaction-rich microenvironments observed in other CAF-dense
tumors (44, 45). Within SCCE, CAFs emerged as the predominant
signal-sending population, aligning with their abundance and
potential stromal regulatory role. Interestingly, although eCAFs
were specifically enriched in SCCE, it was the iCAFs subtype that
contributed most significantly to outgoing signaling activity,
particularly through the collagen signaling pathway. This finding
may reflect the broader paracrine function of inflammatory CAFs,
which have been implicated in promoting tumor progression in
other cancers via cytokine-mediated activation of NF-xB and
STATS3 signaling (46, 47). These observations suggest a division
of labor among CAF subtypes in SCCE, with eCAFs potentially
driving extracellular matrix remodeling and iCAFs actively
contributing to cell-cell communication through paracrine
signaling pathways such as collagen.

By delineating the cellular architecture of SCCE at single-cell
resolution, our study reveals multiple layers of tumor heterogeneity
with potential clinical relevance. The identification of distinct
malignant subtypes with divergent transcriptional programs and
differentiation trajectories suggests that SCCE comprises
biologically diverse tumor cell populations, which may respond
differently to treatment. In the immune compartment, the immune-
excluded phenotype, characterized by low cytotoxic T cell
infiltration and suppressed checkpoint expression, may contribute
to poor immunotherapy responsiveness. Furthermore, the
expansion of eCAFs and the active paracrine signaling role of
iCAFs via collagen pathways highlight stromal components as
potential modulators of tumor progression and immune evasion.
Collectively, our findings provide a single-cell framework that
defines the cellular diversity and immune suppression in SCCE,
offering a foundation for further mechanistic investigation and
hypothesis-driven research.

Acknowledging the limitations of this study is necessary. First,
the rarity of SCCE poses significant challenges in acquiring
sufficient specimens, which in turn limits opportunities for
experimental validation of key findings, such as chromosome 19
amplifications and molecular subtype classification. Second, the
absence of established in vitro or in vivo models for this rare tumor
type precluded experimental validation of the regulatory
mechanisms identified, such as ELF3-mediated activation of
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cancer-associated fibroblasts. Developing experimental model
representative of SCCE will be critical for future mechanistic
studies. Third, although the proposed molecular subtypes
exhibited distinct biological features, their prognostic relevance
could not be evaluated due to the lack of sufficiently large patient
cohorts for robust survival analyses.

Conclusion

This study presents a comprehensive single-cell atlas of SCCE,
uncovering its distinct tumor architecture, molecular subtypes,
and reprogrammed tumor microenvironment. These findings
advance our understanding of this rare malignancy and provide
a framework for future mechanistic studies and exploratory
biological research.
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SUPPLEMENTARY FIGURE 1

UMAP visualization before and after integration to correct batch effects
across datasets. (A) Pre-integration UMAP shows clear separation of cells
from SCCE, ESCC (GSE145370), and EAC (GSE222078), reflecting potential
batch effects. (B) Post-integration UMAP demonstrates effective alignment of
cells across the three datasets, indicating successful mitigation of
technical noise.

SUPPLEMENTARY FIGURE 2

Histological comparison of three esophageal cancer subtypes.
Representative hematoxylin and eosin (H&E) staining images of EAC, ESCC,
and SCCE, highlighting the distinct histomorphological features of
each subtype.

SUPPLEMENTARY FIGURE 3

Expression of NE markers across malignant epithelial cells of SCCE. Violin
plots showing the expression of five canonical neuroendocrine markers
(ASCL1, NEUROD1, CHGA, NCAM1, and SYP) across nine malignant
epithelial clusters.
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SUPPLEMENTARY FIGURE 4

Wnt signaling activity across SCCE molecular subtypes. Violin plots showing
Wnt signaling scores across the a, B, and y subtypes of malignant epithelial cells.
Wnt scores were calculated using the AddModuleScore method. *Statistical
comparison was performed using the Wilcoxon rank-sum test. ****p < 0.0001.

SUPPLEMENTARY FIGURE 5

Transcriptomic and functional differences among CAF subtypes. (A) Bubble
plot showing the top 20 marker genes distinguishing myCAFs, iCAFs, and
eCAFs. Dot size indicates the percentage of cells expressing the gene, and
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