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Introduction: Post-infectious irritable bowel syndrome (PI-IBS) is a functional

gastrointestinal disorder that develops after intestinal infection. A follow-up study

after a waterborne outbreak of gastroenteritis indicated involvement of specific

genetic var iants including toll- l ike receptor (TLR)9, although its

pathophysiological role remains unclear.

Methods: To investigate the role of TLR9 in PI-IBS, Citrobacter rodentium was

administered to wild-type (WT), and TLR2, 4, and 9 knockout (KO) mice. Six

weeks after infection, visceral sensitivity was evaluated using barostat-based

colorectal distention. Additional assessments include histological inflammation,

intestinal permeability, gut microbiota, and colonic gene expression.

Results: Only TLR9 KO mice developed significant visceral hyperalgesia despite

findings indicating mild mucosal inflammation in the acute colitis phase and lack

of persistent low-grade inflammation with hyperpermeability in the recovered

phase. Microbiota analysis and fecal microbiota transfer demonstrated partial

involvement of gut dysbiosis in PI-IBS development. Additionally, microarray,

PCR, and immunohistochemistry findings showed that the expression levels of

the bradykinin B1 and B2 receptors (BDKRB1 and BDKRB2) in colonic epithelium

were significantly higher in infected TLR9 KO mice as compared to WT mice.

Furthermore, administration of BDKRB1 antagonist R715 and BDKRB2 antagonist

HOE 140 significantly suppressed visceral hyperalgesia.

Conclusion: TLR9 deficiency leads to bradykinin receptor upregulation in the

colonic epithelium following infectious colitis, contributing to the development

of PI-IBS. Inhibition of these receptors alleviated visceral pain, indicating that

bradykinin receptor antagonists may offer a novel therapeutic strategy for PI-IBS.
KEYWORDS

post-infectious irritable bowel syndrome, Citrobacter rodentium, Toll-like receptor 9,
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1 Introduction

Irritable bowel syndrome (IBS) is a functional gastrointestinal

disorder characterized by chronic abdominal pain along with bowel

movement disturbance, including diarrhea, constipation, or both

(1). The global prevalence of IBS is approximately 10% in normal

populations, though that varies largely depending on geographic

factors and diagnostic criteria (2). Various investigations have been

conducted to seek the cause of IBS from multiple perspectives, such

as genetic predisposition, diet, mucosal inflammation, brain-gut-

microbiota axis, stress, and anxiety (3–7). However, several details

regarding the pathogenesis of IBS remain unclear and causal

treatment is not currently available for clinical settings. Despite

this being a nonfatal disorder, affected patients have significantly

reduced quality of life (8) and the high prevalence of IBS has

become a socioeconomic problem (9, 10). Thus, clarification of IBS

pathogenesis and development of novel treatment strategies are

considered to be urgent issues.

Some patients who previously had normal bowel habits develop

IBS symptoms after acute gastroenteritis, a condition known as

postinfectious IBS (PI-IBS) (11), with the diarrhea-dominant

phenotype more commonly seen in PI-IBS cases (12, 13).

Campylobacter jejuni, Salmonella, Shigella, and Escherichia coli

are pathogens known to frequently cause PI-IBS in humans (14–

17), while young age, female gender, psychological factors such as

anxiety and depression, and severity of intestinal inflammation are

thought to be risk factors for its development (18). Although details

related to pathogenesis are not fully understood, a large number of

clinical and basic studies suggest that PI-IBS is a multifactorial

disorder, in which environmental factors such as infection can be a

trigger in individuals possessing particular genetic variants (12).

As for genetics issues in PI-IBS cases, a follow-up study

performed after a waterborne outbreak of gastroenteritis in

Walkerton, Canada demonstrated that single nucleotide

polymorphisms in Toll-like receptor (TLR)9, Interleukin (IL)-6,

and Cadherin-1 were independent genetic risk factors for PI-IBS

development (19). However, it has not been further clarified how

these genetic mutations, especially TLR9, are involved in the

pathogenesis of IBS. TLR9 is an innate immune-related receptor

that recognizes unmethylated cytosine-phosphate-guanosine

(CpG)-DNA from bacteria and viruses (20). Even though CpG-

DNA is scarce in mammals and mostly methylated, TLR9 can

recognize microbial-specific unmethylated CpG-DNA in the

human body and abnormal response targeting of self-DNA by

TLR9 can trigger development of autoimmune diseases, such as

psoriasis, autoimmune arthritis, and ulcerative colitis (21–24).

However, to the best of our knowledge, there is no study available

that investigated in detail TLR9 signaling in functional intestinal

diseases including IBS. The present investigation was conducted to

examine the role of TLR9 signaling in the pathogenesis of PI-IBS

and develop new IBS therapeutic strategies.
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2 Materials and methods

2.1 Animals

C57BL/6J WT mice were purchased from Charles River

Laboratories Japan (Yokohama, Kanagawa, Japan), and TLR2,

TLR4, and TLR9 KO mice from Oriental Bio Service (Kyoto,

Japan). Mice were bred under specific pathogen-free conditions at

the animal facility of Shimane University School of Medicine, then

maintained in plastic cages at 20-22°C with a 12-hour light/dark

cycle, and provided with food and water. Eight- to nine-week-old

mice were used in the experiments. Mice were euthanized by carbon

dioxide (CO2) inhalation using the gradual-fill (displacement)

method (100% CO2; 40% of chamber volume per minute), in

accordance with the 2020 AVMA Guidelines for the Euthanasia

of Animals. Unconsciousness was confirmed by loss of righting

reflex; flow was maintained for 5 min after respiratory arrest, and

death was ensured by cervical dislocation.
2.2 C. rodentium infection

C. rodentium (DBS100, 51459™, ATCC, Manassas, Virginia,

USA) was cultured overnight in medium composed of 5 mL of

Luria-Bertani (LB) broth (Becton, Dickinson and Company,

Franklin Lakes, New Jersey, USA) at 37°C, with rotation at 150

rpm. Sixteen hours later, 1 mL was obtained and added to 99 mL of

fresh LB medium (Becton, Dickinson and Company), then

incubated for another four hours. After centrifugation at 2, 500

rpm for 10 minutes, phosphate-buffered saline (PBS) was added to

dissolve the pellets, resulting in 5.0×109 colony forming units

(CFU)/mL. Mice were administered 1.0×109 CFU (200 mL) of C.
rodentium or the same amount of PBS using oral gavage.
2.3 Evaluation of VMR to colorectal
distention with rectal balloon dilation

Five weeks after infection, mice were anesthetized

intraperitoneally using medetomidine hydrochloride at 0.3 mg/kg,

midazolam at 4 mg/kg, and butorphanol tartrate at 5 mg/kg, and

electrode implantation in the abdominal wall was performed.

Measurements of VMR to colorectal distention were performed

one week later, with the animal held in a mouse holder to prevent

movement and the balloon placed 5 mm from the anus. Then, 10-

second distention was performed three times with one-minute

intervals in each mouse at four different levels of balloon pressure

(15, 30, 45, and 60 mmHg) controlled by use of a Distender Series

IIR Dual Balloon Barostat System (G&J Electronics, Toronto,

Ontario, Canada). Obtained data was analyzed with the Analyze

II software package (Starmedical, Tokyo, Japan). Values for
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electromyographic activity above the baseline value were obtained,

with each value noted with balloon dilation subtracted from that

without dilation. Three values were obtained at each pressure level,

with median values used for statistical analysis. The bradykinin B1

receptor antagonist R715 was obtained from MedChemExpress

(Monmouth Junction, New Jersey, USA; Cat. No. HY-103290).

The bradykinin B2 receptor antagonist HOE 140 (icatibant) was

obtained from TOCRIS, part of Bio-Techne (Bristol, UK; Cat. No.

3014; purchased via Funakoshi, Tokyo, Japan). Solutions were

prepared fresh on the day of use according to the

manufacturers’ datasheets.
2.4 Histological analysis of mouse colons

Following assessment of VMR, the mice were euthanized. The

distal colon was removed and fixed with 10% neutral buffered

formalin, then tissue sections were stained with hematoxylin and

eosin. Histological damage score included severity of epithelial

damage (0-3), degree of inflammatory cell infiltration (0-3), and

presence or absence of goblet cell depletion (0-1). Crypt length

measurements were obtained as the mean of 10 well-oriented crypts

from all mice. The histological evaluations were evaluated in a

blinded manner (25–27).
2.5 Evaluation of colonic inflammation
using reverse transcription polymerase
chain reaction

Total RNA was isolated from the distal colon using an RNeasy

Micro Kit (QIAGEN, Venlo, Nederland). First-strand

complementary DNA was synthesized from 1 µg of total RNA

using M-MLV Reverse Transcriptase (Invitrogen, Waltham,

Massachusetts, USA), according to the manufacturer ’s

instructions. Quantitative reverse-transcription polymerase chain

reaction examinations were performed with a Mastercycler EP

realplex 2S system (Eppendorf, Hamburg, Germany) using SYBR

Green quantitative PCR SuperMix (Invitrogen, Waltham,

Massachusetts, USA) to quantify gene expression. The following

PCR primers were used in this study (28–30). Il1b-F

GAAATGCCACCTTTTGACAGTG and Il1b-R TGGATG

CTCTCATCAGGACAG; Il6-F CTGCAAGAGACTTCCATCCAG

and Il6-R AGTGGTATAGACAGGTCTGTTGG; Tnfa-F ACCCTC

ACACTCAGATCATCTTCTC and Tnfa-R TGAGATCCAT

GCCGTTGG; Il10-F GTCATCGATTTCTCCCCTGTG and Il10-

R CCTTGTAGACACCTTGGTCTTGG; Bdkrb1-F CCCC

TCCCAACATCACCTC and Bdkrb1-R GGACAGGACTA

AAAGGTTCCCC; Bdkrb2-F GGGTTTCTGTCGGTGCATGA

and Bdkrb2-R TTGTGTGGTGACGTTGAACAT; Gapdh-F GGT

CGGTGTGAACGGATTTG and Gapdh-R TGTAGACCATG

TAGTTGAGGTCA. The results are expressed as relative to the

housekeeping gene Gapdh.
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2.6 Microarray analysis

Total RNA was prepared from distal colon samples obtained

from C. rodentium-treated WT and TLR9 KO mice as described

above. RNA samples were sent to Filgen (Aichi, Japan), where DNA

microarray analysis was performed as previously described (29).

Based on the results of altered gene expression, pathway analysis

was performed with a Microarray Data Analysis Tool

Ver.3.2 (Filgen).
2.7 Determination of intestinal permeability

FITC-dextran with a molecular weight of 4 kDa (Chondrex,

Woodinville, Washington, USA) was used to evaluate intestinal

permeability. Food was not given for four hours, then the mice were

orally administered 20 mL/kg FITC-dextran and fasting was

continued for three hours. Following euthanasia, blood was

obtained from the right atrium. Blood samples were centrifuged

at 10, 000 rpm for 10 minutes to collect plasma and fluorescence

was measured with a GloMax® Discover Microplate Reader

(Promega Corporation, Madison, Wisconsin, USA) using 96-well

plates with excitation at 475 nm and emission at 500–550 nm.

FITC-dextran concentrations were calculated with a standard

concentration curve ranging from 0 to 12.5 µg/mL.
2.8 Immunohistochemistry

Immunohistochemical staining was performed as previously

described (31). The primary antibodies used were rabbit anti-

Bdkrb1 (1:1000, Bioss, Boston, MA, USA, BS8675R), rabbit anti-

Bdkrb2 (1:1000, Bioss, Boston, MA, USA, BS2422R), guinea-pig

anti-keratin8/18 (1:3000, Progen Biotechnik, Heidelberg, Germany,

GP11), and Alexa Fluor 647 rabbit PGP9.5 (1:200, Abcam,

Cambridge, UK, AB_196173). The secondary antibodies were

Alexa Fluor 488 donkey anti-rabbit IgG (1:800, Life Technologies,

Carlsbad, CA, USA) and Alexa Fluor 594 donkey anti-guinea pig

(1:800, Jackson ImmunoResearch Inc., West Grove, PA, USA).

Stained tissues were observed using a confocal microscope

(LSM800; Zeiss, Oberkochen, Germany).
2.9 Fecal bacteria analysis

Bacterial DNA was extracted from stool samples using a

NucleoSpin® DNA Stool kit (MACHEREY-NAGEL GmbH & Co.

KG, Dueren, Germany), according to the manufacturer’s

instructions, and stored at −80°C until use. The V3–V4 region of

bacterial 16S rRNA was amplified by PCR using specific primers

with the following sequences: forward primer, 5′-TCGTCGGCAG
CGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWG

CAG-3′; reverse primer, 5′-GTCTCGTGGGCTCGGAGATGTG
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TATAAGAGACAGGACTACHVGGGTATCTAATCC-3′. The

amplicon was purified with AMPure XP beads, then a barcode

sequence was added to each amplicon using an Illumina Nextera XT

Index kit, ver. 2 (Illumina, San Diego, California, USA) for labeling

and to distinguish the samples. The barcoded library was purified as

described above, then diluted to 4 nmol/L in 10 mmol/L of Tris-HCl

(pH 8.0). Five microliters of each diluted sample was pooled and

then further diluted to 6 pmol/L using buffer from the respective

sequencing kit. This sample DNA library was applied to an MiSeq

Reagent kit, ver. 3 (Illumina) and sequenced with a 2×300-bp paired

end using the kit and spiked with 5% PhiX control DNA (6 pmol/L).

Annotation and calculation of obtained sequences were processed

using 16S Metagenomics Database Creator, ver. 1.0.0.
2.10 Fecal microbiota transplantation

Donor feces were obtained from TLR9 KO mice at six weeks

after C. rodentium infection, then stored at -80°C until fecal

microbiota transplantation (FMT). Prior to FMT, gut microbiota

in recipient was depleted using a three-day treatment with a broad-

spectrum antibiotic cocktail, including oral administration of

vancomycin (100 µL, 5 mg/mL) and metronidazole (100 µL, 10

mg/mL), as well as supplementation of drinking water with

ampicillin (1 g/L) and neomycin (0.5 g/L), as previously described

(32–34). FMT was performed one day after completion of antibiotic

treatment,. Frozen stool samples were suspended in PBS at a ratio of

15 mL/gram of feces, then 200 mL of fecal slurry was administered

twice into each recipient mouse by oral gavage, with a 72-hour

interval between administrations.
2.11 Statistics

Statistical analyses were performed with GraphPad Prism 9

(GraphPad Software, San Diego, California, USA). Student’s t test

was used to compare means of two groups, and one-way or two-way

ANOVA to compare means of multiple groups. Tukey’s and Holm-

Sidak’s multiple comparisons testing was conducted for post hoc

analysis. The level of statistical significance was set at p < 0.05.
3 Results

3.1 Citrobacter rodentium induces colonic
inflammation in acute phase

A previous clinical follow-up study suggested that TLR9

dysfunction is a potential mechanism involved in development

PI-IBS (19), thus we sought to determine the role of TLR9

signaling in mice with and after resolution of infectious colitis.
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Acute colitis was induced in wild-type (WT), TLR2 knockout (KO),

TLR4 KO, and TLR9 KO mice by administrating the mouse

pathogen C. rodentium, then colitis severity was evaluated based

on body weight changes, pathology, and mucosal cytokine gene

expression at two weeks after infection (acute phase). All mice

without C. rodentium infection steadily gained body weight, while

those administered the pathogen showed various body weight

changes dependent on the absence of a particular TLR, with

severe, moderate, and mild weight loss noted in the WT, TLR2

KO, and TLR4 KO groups, respectively (Figure 1A). On the other

hand, TLR9 KO mice did not show significant body weight loss

following C. rodentium infection (Figure 1A). Consistent with the

effects on body weight, colons from C. rodentium-infected WT and

TLR2 KO mice were significantly shortened and thick, whereas

infected TLR4 KO and TLR9 KOmice showed only mild shortening

and thickness (Figure 1B). Histological findings indicated that C.

rodentium infection induced massive inflammatory cell infiltration

with marked edema and colonic hyperplasia, which resulted in

increased crypt length, in the colons of the examined mouse types

(Figure 2A), while histological damage score and crypt length were

not different among any of those infected with C. rodentium

(Figure 2B). Furthermore, RT-PCR assay findings showed

significantly increased proinflammatory cytokine gene expressions

in the colons of all mice, especially the WT group (Figure 2C).

These results indicate that C. rodentium induces acute colitis in all

types of mice, though the TLR9 KO group appeared to have milder

mucosal inflammation as compared to the others. Although Dunlop

et al. demonstrated that intestinal hyperpermeability is associated

with deterioration of colitis and development of IBS symptoms (35),

in the present study, C. rodentium infection did not increase

mucosal permeability in TLR9 KO mice or the other types of

mice examined (Supplementary Figure S1).
3.2 TLR9-deficient mice develop PI-IBS
after recovery from C. rodentium infection

Previous reports have noted that C. rodentium-induced acute

colitis was totally recovered within 21–28 days with spontaneous

elimination of C. rodentium in the presence of normal mucosal

immunity (36). Thus, we conducted a parallel study to evaluate

IBS features at six weeks after infection when the mice had fully

recovered from C. rodentium-induced colitis. Consistent with

the aforementioned body weight changes, C. rodentium-infected

WT and TLR2 KO mice showed poor weight gain during the first

two weeks after infection, which then rapidly recovered after the

acute colitis phase (Figure 3A), while neither TLR4 KO nor TLR9

KO mice showed body weight loss throughout the observation

period. Importantly, there was no significant difference

regarding final body weight ratio among the groups of infected

mice after five weeks (recovered phase) (Figure 3A). Next,
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visceral sensitivity in the mice after six weeks was examined with

use of a barostat, which allowed for quantitative assessments of

the severity of IBS features. Interestingly, only TLR9 KO mice

infected with C. rodentium developed significant visceral

hyperalgesia (Figure 3B, Supplementary Figures S2, S3), while

TLR2 KO and TLR4 KO, as well as WT mice did not show

visceral hypersensitivity even after resolution of C. rodentium
Frontiers in Immunology 05
infection (Figure 3B). Additionally, there was no difference

noted for C. rodentium-induced visceral hypersensitivity in

TLR9 KO mice based on gender (Supplementary Figure S3).

Together, these results indicate that C. rodentium can induce PI-

IBS in the absence of signaling by the TLR9, but not in the

absence by that of TLR2 or 4, which does not appear to depend

on the severity of acute inflammation.
FIGURE 1

C. rodentium induced acute colitis within two weeks. C. rodentium (1.0×109 colony forming units) or phosphate-buffered saline (PBS) was
administered to wild-type (WT), Toll-like receptor (TLR)2 knockout (KO), TLR4 KO, and TLR9 KO mice (n=6/group) on day 1. (A) Body weight was
measured every other day. (B) Mice were euthanized 14 days after C. rodentium infection and colon length measured. Values were obtained using
Student’s t test and are presented as the mean. *p <0.05, †p <0.01, as compared with PBS group.
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3.3 Mechanistic insights into pathogenesis
of PI-IBS in TLR9 KO mice

Previous reports have suggested that persistent low-grade

mucosal inflammation, intestinal hyperpermeability, and changes
Frontiers in Immunology 06
in intestinal microbiota (dysbiosis) are key factors for development

of PI-IBS (13, 17, 35, 37–41), thus these potential mechanisms were

further investigated in mice with or without PI-IBS in the present

study. Histological damage scores and crypt length measurements

showed that severe colitis seen after two weeks was ameliorated in
FIGURE 2

Histological analysis and cytokine profiles of C. rodentium-infected mice in acute phase. C. rodentium or PBS was administered to WT, TLR2 KO,
TLR4 KO, and TLR9 KO mice (n=6/group), then colon assessment was performed 14 days after infection. (A) Histological analysis of distal colon
sections. Hematoxylin-eosin staining; original magnification: ×100. Scale bar = 100 mm. (B) Histological damage score and crypt length were
determined on day 14. (C) RT-PCR assays for Il1b, Il6, Tnfa, and Il10 were performed using distal colon tissues, then obtained gene expression values
were normalized based on Gapdh. Values were obtained using a one-way ANOVA test and are presented as the mean. *p <0.05, †p <0.01, ¶p <0.005,
‡p <0.001, §p <0.0001. Tukey’s multiple comparisons test was used for post hoc analysis.
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all samples obtained after six weeks, while levels of mucosal

inflammation were all similar regardless of the TLR status in the

mice (Figures 4A, B). Similarly, as compared with samples obtained

after two weeks (Figure 2C), both proinflammatory and regulatory
Frontiers in Immunology 07
cytokine gene levels in colons of C. rodentium-infected mice were

downregulated and had returned to basal levels, while the mucosal

cytokine profile was also not significantly different among any of the

TLR mutation types (Figure 4C). Moreover, the FITC-dextran assay
frontiersin.or
FIGURE 3

C. rodentium induced visceral sensitivity in TLR9 KO mice. C. rodentium or PBS was administered to WT, TLR2 KO, TLR4 KO, and TLR9 KO mice
(n=12/group) on day 1. (A) Body weight was measured every other day until the endpoint (day 35). Values were obtained using Student’s t test and
are presented as the mean. *p <0.05, †p <0.01, as compared with PBS group. (B) Five weeks after infection, mice were anesthetized and electrodes
implanted in the abdominal wall, then evaluation of visceromotor response (VMR) to colorectal distention was performed at six weeks after infection.
Four different levels of pressure (15, 30, 45, and 60 mmHg) were used for balloon dilation in each mouse. A 10-second distention was performed
three times with one-minute intervals at each pressure and the median value used. Values were obtained using a two-way ANOVA test and are
presented as the mean ± SEM. *p <0.05, †p <0.01, §p <0.0001, as compared with PBS group. Tukey’s multiple comparisons test was used for post
hoc analysis.
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results demonstrated that C. rodentium-treated TLR9 KO as well as

the other infected mice did not have increased intestinal

permeability (Supplementary Figure S4).

As for dysbiosis following C. rodentium infection, gut

microbiota from all groups of mice at six weeks after infection

demonstrated similar findings, with no significant differences at the

phylum level noted (Supplementary Figure S5). On the other hand,
Frontiers in Immunology 08
the proportions of Clostridiaceae_1 at the family level and

Clostridium_sensu_stricto at the genus level were greater in TLR9

KO mice as compared to those in the other types of mice

(Supplementary Figures S6A-D). We also confirmed that C.

rodentium was not detected at the species level in any mice at the

six-week timepoint. To further investigate whether dysbiosis is a

cause or consequence of PI-IBS, microbiota transplantation (FMT)
FIGURE 4

Histological analysis and cytokine profiles of C. rodentium-infected mice in recovered phase. (A) Distal colons from WT, TLR2 KO, TLR4 KO, and
TLR9 KO mice with or without C. rodentium infection (n=12/group) were evaluated histologically on week six. Hematoxylin-eosin staining; original
magnification: ×100. Scale bar = 100 mm. (B) Histological damage scores and crypt length of distal colon specimens. (C) RT-PCR assays for Il1b, Il6,
Tnfa, and Il10 were performed using the distal colon tissues and the values of gene expression were normalized based on Gapdh. Values were
obtained with a one-way ANOVA test and are presented as the mean. N.S., not significant.
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was performed using feces from infected TLR9 KO mice

(Supplementary Figure S7). Those stool samples induced a

modest increase in VMR in response to colorectal distention in

TLR9 KO mice, but not in WT mice, at a distention pressure of 60

mmHg, though the difference did not reach statistical significance

(Supplementary Figure S8A). Together, these gut microbial analyses

indicate that intestinal dysbiosis is partially implicated as a causal

factor in development of PI-IBS in C. rodentium-treated TLR9

KO mice.
3.4 Bradykinin receptors upregulated in C.
rodentium-infected TLR9 KO mice

The molecular mechanism was further examined by microarray

analysis in colon samples from C. rodentium-infected WT and

TLR9 KO mice, which revealed significant differences between

those mice for several pathways (Table 1). Among the altered

pathways, we focused on peptide G protein-coupled receptors

(GPCRs), as those represent important pathways in pain

sensation. Moreover, upregulation of the Bdkrb2 gene in the

peptide GPCRs pathway is known to be involved in the

pathogenesis of visceral hyperalgesia (42–44). Bradykinin is

produced in the kinin-kallikrein system in plasma and tissues,

which has a variety of physiological functions including

circulation regulation, vasodilation, edema, inflammation, and

pain (45). Bradykinin receptor, a G-protein-coupled receptor, is

expressed in nociceptors, macrophages, fibroblasts, and mast cells.

Bradykinin receptor B1 (Bdkrb1) is upregulated during

inflammation, while bradykinin receptor B2 (Bdkrb2) is

homeostatically expressed and normally induces physiological

effects (46). Bdkrb2 is involved in the pathogenesis of hereditary

angioedema, with affected individuals showing severe abdominal

pain as well as swelling of the skin. In the present study, expression

levels of bradykinin receptors in intestinal tissues were examined

using RT-PCR assay. Bdkrb2 was not upregulated by C. rodentium

infection in any of the mice groups in the acute phase, while only
Frontiers in Immunology 09
TLR9 KO mice showed an increase in Bdkrb2 expression in the

recovered phase. However, Bdkrb1 was significantly upregulated in

all mice groups following C. rodentium infection, though TLR9 KO

group alone showed persistent high expression levels of Bdkrb1 in

the recovered phase (Figures 5A, B; Supplementary Figure S9).

These observations are consistent with findings noted in a previous

report described above (46), and also indicate that an increase in

Bdkrb2 expression occurs during recovery from infection and

Bdkrb1 levels are not downregulated in susceptible hosts.

Moreover, FMT-treated TLR9 KO mice exhibited higher Bdkrb2

but not Bdkrb1 levels compared with FMT-treated WT mice

(Supplementary Figure 8B), indicating that dysbiosis can, at least

in part, increase Bdkrb2, though only in susceptible hosts. Next,

immunofluorescence staining was used to determine localization of

bradykinin receptors in the intestine. Bdkrb1 and Bdkrb2 were

found to be predominantly expressed in mucosal epithelium, but

not the enteric nervous system. Notably, Bdkrb2 exhibited a much

greater intensity in infected TLR9 KO as compared to infected WT

mice (Figure 6). These findings indicate that C. rodentium can

induce persistent upregulation of bradykinin receptors in colon

epithelium in the absence of TLR9, which might be one of the

mechanisms related to development of PI-IBS noted in the

present mice.
3.5 Therapeutic efficacy of selective
bradykinin B1/B2 receptor antagonists for
PI-IBS

Based on the results obtained showing increased expression of

intestinal bradykinin receptors in C. rodentium-treated TLR9 KO

mice, the effects of R715 and HOE 140, selective antagonists of

Bdkrb1 and 2, respectively, for treatment of PI-IBS were examined.

HOE 140 has a similar affinity to bradykinin and is clinically used

for a type of hereditary angioedema (47–50). Two hours prior to

evaluation of VMR to colorectal distention, each agent was

separately administered intraperitoneally into C. rodentium-
TABLE 1 Pathway analysis.

Pathway Upregulated genes Downregulated genes p value

Striated muscle contraction Tnnt2, Myh1, Mybpc1, Myh8, Myom1, Myl9 0.000079

Adar1 editing deficiency immune response Oasl2, Rsad2, Slfn4, Zbp1, Ifit1, Ddx60 Nfkbia 0.000156

Chemokine signaling pathway Cxcr4, Cxcr5
Ppbp, Prkcb, Plcb4, Cxcl5,
Ccl21c, Nfkbia, Ccl21a

0.003339

Retinol metabolism Sult1a1, Rbp2 Aldh1a3, Rbp1 0.003425

Urea cycle and metabolism of amino groups Arg1, Acy1, Ckm 0.003793

SRF and miRs in smooth muscle differentiation
and proliferation

Mir143, Myocd 0.023374

Peptide GPCRs Bdkrb2, Cxcr4 Npy6r, Tacr2 0.025956

B cell receptor signaling pathway Ptprc, Bank1, Cr2 Prkcb, Atp2b4, Nfkbia 0.040079
Mouse Gene ST (Filgen, Aichi, Japan) assays were performed with colonic samples from C. rodentium-treated Toll-like receptor (TLR)9 knockout (KO) mice and wild-type (WT) mice. Based on
the results of altered gene expression, pathway analysis was additionally performed using a Microarray Data Analysis Tool Ver. 3.2 software (Filgen) to classify the data into functional subgroups.
Up- and down-regulated genes with a p value less than 0.05 are listed.
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treated TLR9 KO mice (1 mg/kg). Interestingly, a single injection of

HOE 140 was sufficient to attenuate visceral hyperalgesia in mice

affected by PI-IBS (Figure 7). Furthermore, R715 also showed an

effect on visceral hyperalgesia (Figure 7). It is thus considered that

an antagonist of bradykinin receptors can alleviate abdominal

symptoms in cases of PI-IBS with a TLR9 signaling defect.
4 Discussion

Following acute gastroenteritis caused by a viral, bacterial, or

parasitic infection, 3.6% to 31.6% of affected individuals develop PI-

IBS (13, 14, 41, 51–57). Common features of PI-IBS include chronic

abdominal pain, abnormal bowel movements, and bloating, though

the severity and dominant phenotype of IBS symptoms largely differ

among individuals. It also remains unclear why only certain

populations develop PI-IBS after an intestinal infection. Previous

genome-wide association study results from investigation of a
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waterborne outbreak (19) inspired us to focus on TLR9 signaling

as part of the pathogenesis of PI-IBS. The present results revealed

development of persistent visceral hyperalgesia in TLR9 KO mice

following C. rodentium infection, despite the absence of prolonged

mucosal inflammation or intestinal hyperpermeability. In addition,

they suggest that upregulation of bradykinin receptors, especially

Bdkrb2, is a key factor for development of PI-IBS, indicating its

potential as a target of therapy. Furthermore, alterations in gut

microbiota may also be involved, at least in part, in the pathogenesis

of PI-IBS in a TLR9-deficient state.

TLR9 is an innate immune receptor that recognizes bacterial CpG-

DNA, known to modulate immune responses. Human studies have

shown that genetic polymorphisms in TLR9, rs352139 and rs5743836,

are associated with PI-IBS (19), though their precise impact on TLR9

signaling remains unclear. The present results indicate that these SNPs

may play a pathogenic role in PI-IBS development because of

weakened or diminished TLR9 signaling. Nevertheless, conflicting

findings noted in studies of autoimmune diseases such as systemic
FIGURE 5

Bradykinin receptors upregulated in C. rodentium-infected TLR9 KO mice. Expression levels of (A) bradykinin B1 receptor (Bdkrb1) and (B) B2
receptor (Bdkrb2) in distal colons obtained from WT, TLR2KO, TLR4KO, and TLR9 KO mice with and without C. rodentium infection (n=12/group)
were assessed by RT-PCR at six weeks after infection. Values were obtained with a one-way ANOVA test and are presented as the mean. *p <0.05,
§p <0.0001, as compared with PBS group. Holm-Sidak’s multiple comparisons test was used for post hoc analysis.
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lupus erythematosus (58–61) have implicated both excessive and

attenuated TLR9 signaling levels, thus further investigations are

needed to clarify its precise role in PI-IBS susceptibility.

A major challenge is lack of an animal model that fully

replicates human PI-IBS, as gut microbiota, mucosal immunity,
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diet, and psychological factors differ among species (62). Escherichia

coli and Campylobacter jejuni are pathogens that have been linked

to PI-IBS in humans by causing severe colitis with persistent

mucosal hyperpermeability (35). C. rodentium, a murine

pathogen biologically similar to human enteropathogenic
FIGURE 6

Bdkrb1 and Bdkrb2 expressed in intestinal mucosal epithelium but not enteric nervous system. Immunofluorescence staining was performed with
distal colons from C. rodentium-treated WT or TLR9 KO mice at six weeks after infection. (A) Bdkrb1 and PGP9.5. (B) Bdkrb1 and Keratin8/18.
(C) Bdkrb2 and PGP9.5. (D) Bdkrb2 and Keratin8/18. Original magnification: ×200. Scale bar = 20 mm.
FIGURE 7

Neutralizing Bdkrb1 and Bdkrb2 ameliorate visceral hypersensitivity. R715 (1 mg/kg), HOE 140 (1 mg/kg), or the vehicle was intraperitoneally
administered into C. rodentium-treated TLR9 KO mice (n=3/group) at six weeks after infection. VMR to colorectal distention was evaluated using
rectal balloon dilation at two hours after treatment with R715 or HOE 140. Values were obtained using a two-way ANOVA test and are presented as
the mean ± SEM. *p <0.05, §p <0.0001, as compared with control group. Tukey’s multiple comparisons test was used for post hoc analysis.
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Escherichia coli (36), was chosen for the present study, as it induces

non-lethal acute colitis in mouse strains such as C57BL/6 and

BALB/c (40, 63). Although previous studies have reported that C.

rodentium induced visceral hyperalgesia in normal mice (64–66),

those evaluations were conducted at early time points when

mucosal inflammation likely persisted. In the present study, IBS

features were assessed at six weeks following infection, a time point

considered sufficient for complete recovery from colitis, thus the

findings are considered more appropriate for evaluation of PI-IBS.

As for the mechanism of PI-IBS, persistent low-grade mucosal

inflammation with increased intestinal permeability after

improvement of infection has been reported to contribute to its

features (39, 40, 65). In clinical practice, enterocolitis severity is

thought to be associated with development of PI-IBS (15–17, 67,

68). However, the present findings indicated that visceral

hyperalgesia in C. rodentium-infected TLR9 KO mice was not

associated with the severity of acute colitis, residual mucosal

inflammation, or sustained barrier dysfunction, while WT mice

with more severe inflammation did not develop PI-IBS at six weeks

after the initial infection. Mondelaers et al. reported that visceral

hypersensitivity induced by C. rodentium in Th1-predominant

C57BL/6 WT mice was transient and limited to the acute phase,

whereas Th2-predominant Balb/c mice retained visceral

hypersensitivity up to a later time point despite similar acute

gastroenteritis severity (66). Those findings suggest that a Th2-

skewed immune background may predispose individuals to PI-IBS.

TLR9 is a key regulator of the innate immune system, and promotes

Th1 differentiation through IL-12 and IFN-g production (69).

Given the role of TLR9 in shaping Th1/Th2 balance, its absence

may lead to a relative Th2 predominance, which could contribute to

the sustained visceral hypersensitivity observed in Balb/c mice.

However, our microarray dataset at the recovery phase did not

reveal significant differences between infected WT and TLR9KO

mice in Th1- or Th2-specific pathways (data not shown), although

further analysis focusing on specific immune profiles is warranted.

Clinical studies have also indicated that individuals with a Th2-

dominant immune profile have increased risk of developing PI-IBS.

A prospective study reported that patients with a Th2-skewed

immune response had a significantly higher likelihood of

developing PI-IBS one year after an episode of infectious

gastroenteritis (70). It is thus suggested that a Th2-dominant

immune dysfunction may contribute not only to features of

in tes t ina l inflammat ion but a l so pers i s tent v i scera l

hypersensitivity, which may link innate immune dysregulation to

PI-IBS susceptibility and should be addressed in future studies. The

present findings indicate that TLR9, rather than other TLRs, has a

specific role in PI-IBS pathogenesis, while its absence may be one of

the risk factors for PI-IBS development in humans.

In addition, gastrointestinal microbiota alterations (dysbiosis) are

frequently seen in IBS patients (39). A previous study found that

Bacteroidetes phylum was abundant in PI-IBS patients (71), while the

present findings showed that the proportion of Bacteroidetes in C.

rodentium-infected TLR9 KO mice was similar to that in the other

groups. Instead, Clostridium_sensu_strictowas increased in TLR9 KO

mice following C. rodentium infection. Li et al. demonstrated that this
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genus was enriched in stool samples from chemically induced post-

inflammatory IBS model rats (60), suggesting a potential link to

visceral hypersensitivity. However, a recent study of PI-IBS in

humans that develops following a Campylobacter infection showed

distinct microbiota changes characterized by reduced levels of

Clostridiales and Ruminococcaceae, along with increased

Proteobacteria, Fusobacteria, and Gammaproteobacteria levels (72).

These different findings highlight the impact of host species, infection

type, and immune background onmicrobiota composition. Although

dysbiosis has often been implicated in the pathogenesis of PI-IBS, the

present FMT results suggest that microbiota changes alone are

insufficient to drive PI-IBS-like symptoms together with Bdkrb

upregulation, as antibiotic-treated WT mice did not exhibit visceral

hypersensitivity after FMT with feces from TLR9 KO mice with PI-

IBS like symptoms. Therefore, it is likely that additional genetic

factors, such as immune response to an intestinal infection or

neuroinflammatory pathways, contribute to development of

IBS symptoms.

Microarray analysis identified bradykinin receptors as potential

mediators of PI-IBS in the TLR9 KO mice. Bradykinin is a well-

established mediator of pain and inflammation that acts through

two receptors; Bdkrb1, induced during inflammation, and Bdkrb2,

which is homeostatically expressed (46). The present results showed

the presence of Bdkrb1/2 in intestinal epithelial cells but not the

en t e r i c n e r vou s s y s t em , wh i ch wa s confi rmed by

immunohistochemistry findings, and also attenuation of visceral

hyperalgesia in TLR9 KO mice by selective inhibition of Bdkrb1/2.

It is thus considered that epithelial changes, rather than neuronal

alterations, may drive visceral hypersensitivity. HOE 140, a selective

Bdkrb2 antagonist, is clinically used as a pharmaceutical agent for

treatment of acute attacks of hereditary angioedema, as it can

effectively reduce pain and swelling. Given this pharmacological

profile, HOE 140 is considered more appropriate for managing

acute pain episodes rather than for prophylactic treatment of IBS-

induced pain. Thus, in PI-IBS cases it is expected to be

therapeutically beneficial for relief of symptoms rather than

prevention of onset of visceral hypersensitivity.

Recent studies have suggested that TLR signaling may play a role

in modulating bradykinin receptor expression. While the specific

mechanism by which TLR9 deficiency increases Bdkrb1/2 expression

remains unclear, prior research has found that TLR2 activation

upregulates bradykinin receptor expression via NF-kB and MAPK

signaling pathways (73). Given that TLR9 and TLR2 share

overlapping downstream signaling cascades, it is plausible that

TLR9 deficiency could indirectly influence bradykinin receptor

expression through compensatory mechanisms involving other

TLRs. Additional investigations will be needed to determine

whether TLR9 directly modulates bradykinin receptor expression

or if other innate immune pathways contribute to this phenomenon.

This study has several limitations. First, tests using alternative

models, such as with a viral or protozoal enteric infection, were not

conducted due to the constraints of our animal facility. Second, the

precise molecular mechanism linking a defect of TLR9 to Bdkrb2

upregulation remains unclear. As TLR9 is not present in intestinal

epithelium (74) where Bdkrb2 is predominantly present, the
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possibility of cell-intrinsic regulation of Bdkrb2 through TLR9

activation would be low. Further examinations will be required to

elucidate its role in PI-IBS pathogenesis. Third, we cannot

definitively localize the site of bradykinin pathway modulation.

Although BDKRB1/2 expression increased predominantly in the

colonic epithelium, contributions from primary sensory neurons/

dorsal root ganglia (DRG) or spinal circuits cannot be excluded, and

our systemic antagonist experiments do not rule out site- specific

effects. Future studies are required to define the locus of action.

In conclusion, results obtained in the present study led to

identification of TLR9 as a critical regulator in PI-IBS development,

with Bdkrb2 upregulation also found in the presence of pathobionts.

Notably, findings indicating that Bdkrb1/2 antagonism ameliorates

symptoms suggest a potential therapeutic avenue for PI-IBS

treatment. Future studies are needed explore the broader spectrum

of microbial and immune interactions contributing to PI-IBS

pathogenesis, as well as the clinical applicability of targeting the

bradykinin pathway for symptom relief.
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SUPPLEMENTARY FIGURE 1

C. rodentium did not induce intestinal permeability in acute phase of infection.

Fluorescein isothiocyanate (FITC)-dextran with a molecular weight of 4 kDa was
administered to WT, TLR2 KO, TLR4 KO, and TLR9 KO mice with or without C.

rodentium infection by gavage at two weeks after infection (n=6/group). Blood
was obtained three hours after administration and the FITC-dextran

concentration determined. Values were obtained with a one-way ANOVA test
and are presented as the mean. N.S. indicates not statistically significant.

SUPPLEMENTARY FIGURE 2

Electromyography of C. rodentium-treated TLR9 KO mice. Representative

images showing VMR with 60-mmHg rectal balloon dilation. Left: C.
rodentium-treated WT mouse, right: C. rodentium-treated TLR9 KO mouse.
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SUPPLEMENTARY FIGURE 3

No significant gender differences in VMR to colorectal distention. C.
rodentium or PBS was administered to WT, TLR2 KO, TLR4 KO, and TLR9

KO mice (6 males, 6 females) on day 1. Five weeks after infection, the mice
were anesthetized and electrodes implanted in the abdominal wall, then

evaluation of VMR to colorectal distention was performed at six weeks after

infection. Four different levels of pressure (15, 30, 45, 60 mmHg) were used
for balloon dilation in each mouse. A 10-second distention was performed

three times with one-minute intervals at each pressure level and the median
value determined. Values were obtained using a two-way ANOVA test and are

presented as the mean ± SEM. *p <0.05,
§
p <0.0001, as compared with PBS

group. Tukey’s multiple comparisons test was used for post hoc analysis.

SUPPLEMENTARY FIGURE 4

C. rodentium did not induce intestinal permeability in recovered phase. FITC-

dextran with a molecular weight of 4 kDa was administered to WT, TLR2 KO,
TLR4 KO, and TLR9 KO mice with or without C. rodentium infection by

gavage at six weeks after infection (n=6/group). Blood was obtained three
hours after administration and the FITC-dextran concentration determined.

Values were obtained with a one-way ANOVA test and are presented as the

mean. N.S. indicates not statistically significant.

SUPPLEMENTARY FIGURE 5

Proportion of intestinal microbiota at phylum level. Cecal contents were

obtained from WT, TLR2 KO, TLR4 KO, and TLR9 KO mice with C. rodentium
infection after six weeks. Bacterial DNA was extracted and 16S rRNA assays

were performed. Proportions of intestinal microbiota at the phylum level

are shown.

SUPPLEMENTARY FIGURE 6

Clostridium_sensu_stricto increased inC. rodentium-infected TLR9 KOmice.

Cecal contents were obtained from WT, TLR2 KO, TLR4 KO, and TLR9 KO
mice at six weeks after C. rodentium infection (n=3/group). Bacterial DNA

was then extracted and 16S rRNA testing performed. Shown are bacterial

proportions at the (A) family and (B) genus level. (C) Clostridiaceae_1
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abundance at family level (WT vs. TLR2 KO vs. TLR4 KO vs. TLR9 KO;
0.76%, 0.93%, 2.46%, 4.18%, respectively). (D) Clostridium_sensu_stricto

abundance at genus level (WT vs. TLR2 KO vs. TLR4 KO vs. TLR9 KO;
0.75%, 0.92%, 2.45%, 4.18%, respectively). Values were obtained with a one-

way ANOVA test and are presented as the mean.

SUPPLEMENTARY FIGURE 7

Experimental procedures for determination of visceral hypersensitivity in
mice following fecal microbiota transplantation (FMT). Preexisting gut

microbiota in recipient mice was depleted by a three-day treatment with a
broad-spectrum antibiotic cocktail (oral gavage: vancomycin and

metronidazole, drinking water: ampicillin and neomycin). One day after

antibiotic washout, recipients were administered donor microbiota from
post-infectious TLR9 KO mice by oral gavage twice. Electrode implantation

and visceral sensitivity assessment using a barostat were performed at four
and five weeks, respectively, after FMT.

SUPPLEMENTARY FIGURE 8

Visceral hypersensitivity was not induced by fecal microbiota transplantation

(FMT) from PI-IBS mice. (A) Following FMT with feces obtained from post-
infectious TLR9 KO mice, visceral sensitivity was assessed using a barostat in

the WT and TLR9 KO groups (n=6/group). Values were analyzed by two-way
ANOVA and are presented as mean ± SEM. (B) Expression levels of Bdkrb1 and

Bdkrb2 in distal colons from WT and TLR9 KO mice with FMT (n=6/group)
were assessed by RT-PCR. Values were analyzed using Student’s t-test and

are presented as mean ± SEM. *p <0.05, as compared with WT mice.

SUPPLEMENTARY FIGURE 9

Bdkrb1/2 profiles ofC. rodentium-infectedmice in acute phase.C. rodentium
or PBS was administered to WT, TLR2 KO, TLR4 KO, and TLR9 KO mice (n=6/

group). Expression levels of Bdkrb1 and Bdkrb2 in distal colons were assessed
by RT-PCR. Values were obtained with a one-way ANOVA test and are

presented as the mean. *p <0.05,
‡
p <0.001,

§
p <0.0001, N.S., not

significant as compared with PBS group. Holm-Sidak ’s multiple
comparisons test was used for post hoc analysis.
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