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Background: Lumbar disc degeneration, a primary cause of chronic low back
pain, is closely linked to inflammatory responses and the immune
microenvironment; however, its underlying mechanisms remain
poorly understood.

Methods: This study integrated scRNA-seq and bulk RNA-seq data to identify
macrophage subpopulations in degenerative tissues and constructed co-
expression modules using hdWGCNA. Functional enrichment was explored
through GO, KEGG, and GSEA analyses. A panel of 101 machine learning
algorithms was employed to screen diagnostic genes, with ROC curves used
for validation. A combined diagnostic model for LDD risk was developed based
on the expression profiles of the diagnostic genes. Additionally, immune
infiltration was assessed via CIBERSORT, potential therapeutic compounds
were identified and validated through molecular docking, and animal
experiments were performed to verify the reliability of the results.

Results: Single-cell analysis identified a pro-inflammatory macrophage
subpopulation enriched in degenerative tissues. hdWGCNA revealed highly
correlated black and blue modules, which were primarily associated with
“immune signaling—matrix remodeling,” as indicated by enrichment analysis.
Machine learning approaches screened key genes, including CDK1 and
COL4A2, from these modules. ROC analysis confirmed the strong diagnostic
performance of these genes, and the combined diagnostic model based on them
demonstrated excellent predictive capability for LDD risk. Immune infiltration
analysis highlighted a close association between the key genes and the yoT cell—
neutrophil axis. Molecular docking suggested that RO 3306 and AR234960 may
serve as potential therapeutic agents. gPCR and Western blot experiments
validated the expression of the key genes and the possible effects of
these compounds.
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Conclusion: This study elucidates the genetic signatures associated with
macrophages and their immune regulatory mechanisms in LDD, identifies
potential diagnostic biomarkers and therapeutic targets, and proposes new
strategies for precision intervention.

lumbar disc degeneration, single-cell RNA sequencing, machine learning, immune
microenvironment, hdWGCNA

1 Introduction

Lumbar disc degeneration (LDD) is one of the leading causes of
chronic low back pain. Its prevalence rises substantially with age,
severely compromising patients’ quality of life and representing a
significant global public health concern. Epidemiological data
indicate that approximately 80% of individuals experience some
degree of low back pain during their lifetime, with LDD accounting
for the majority of these cases (1).

Recent studies have increasingly highlighted the critical role of
immune-inflammatory responses in the onset and progression of LDD,
particularly the infiltration of immune cells—such as monocytes,
macrophages, and T cells—into the nucleus pulposus region (2).
Macrophages contribute to extracellular matrix (ECM) degradation
and sensitize pain pathways through the secretion of pro-inflammatory
cytokines (e.g, IL-1B, TNF-o) and matrix metalloproteinases (e.g.,
MMP-9, MMP-13). Consequently, they are considered key regulatory
factors in the early stages of LDD (3). However, immune cells within
LDD tissues exhibit substantial heterogeneity, and the functions and
regulatory mechanisms of various subpopulations at different stages
remain incompletely understood. This knowledge gap has hindered the
advancement of immune-targeted therapies for LDD.

Single-cell RNA sequencing (scRNA-seq) has recently been
applied extensively to the study of various tissues and diseases,
providing single-cell resolution for dissecting the cellular
composition, states, and trajectories within tissues. This technology
offers new opportunities to investigate immune heterogeneity in LDD
(4). At the same time, bulk RNA sequencing remains a pivotal tool in
clinical subgroup analyses, differential gene expression studies, and the
estimation of immune infiltration. Integrating scRNA-seq with bulk
RNA-seq data not only allows precise identification of critical cellular
subpopulations but also validates candidate genes at the tissue level,
representing a key direction in multi-omics research (5). Moreover,

Abbreviations: LDD, lumbar disc degeneration; scRNA-seq, single-cell RNA
sequencing; UMAP, uniform manifold approximation and projection;
hdWGCNA, high-dimensional weighted gene co-expression network analysis;
GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; GSEA,
Gene Set Enrichment Analysis; RF, random forest; AUC, area under the curve;
ROC, receiver operating characteristic; SHAP, Shapley additive explanation;
qPCR, quantitative polymerase chain reaction; WB, Western blot; DCA,

decision curve analysis; ECM, extracellular matrix.
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machine learning has emerged as an effective tool for identifying
diagnostic biomarkers and developing predictive models from high-
dimensional transcriptomic data. Algorithms such as LASSO, SVM,
and random forests enhance the accuracy and generalizability of
feature selection for gene prediction (6). By integrating public
databases with molecular docking approaches, potential therapeutic
targets among existing compounds can be screened, thereby
accelerating the development of targeted interventions (7).

Therefore, this study aims to systematically analyze the immune
microenvironment of degenerative nucleus pulposus tissues by
integrating scRNA-seq and bulk RNA-seq data. We construct co-
expression modules based on a weighted co-expression network
and explore their biological significance through pathway
enrichment analyses. Machine learning algorithms are employed
to identify diagnostic genes and establish diagnostic models.
Additionally, immune infiltration analysis and drug screening are
combined to uncover novel immune regulatory mechanisms in
LDD and to identify molecular targets with diagnostic and
therapeutic potential, thereby providing a theoretical foundation
for precision treatment of LDD.

2 Materials and methods
2.1 Data acquisition

Data were retrieved from the GEO database (https://
www.ncbi.nlm.nih.gov/geo/), including scRNA-seq data from
GSE244889 and bulk RNA-seq data from GSE124272 and GSE23130
for downstream analyses (8, 9). In total, 17 LDD samples and 18
control samples were included: GSE244889 comprised 3 LDD and 4
control samples, GSE124272 included 8 LDD and 8 controls, and
GSE34095 contained 6 LDD and 6 controls. Additionally, GSE124272
was designated as the training set, and GSE34095 as the validation set.
Clinical phenotype information was also retrieved.

2.2 Single-cell RNA sequencing data
processing and cell annotation

The raw scRNA-seq data were processed using the standard
workflow of the Seurat package (v4.0) in R. Quality control criteria
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were set as follows: each cell was required to express at least 200
genes, and the proportion of mitochondrial gene expression could
not exceed 20%. Batch effects were corrected using the Harmony
algorithm (v0.1.0) following normalization and identification of
highly variable genes. Subsequently, principal component analysis
(PCA) and UMAP were performed for dimensionality reduction
and clustering to obtain robust cell subpopulation classifications.
Clusters were annotated based on canonical marker genes reported
in the literature to identify major cell types, including nucleus
pulposus and immune cells. Based on the initial clustering results,
immune cells were further re-clustered for detailed subpopulation
analysis. The polarization states of macrophage subtypes were
identified according to the expression of canonical marker genes:
MI-type macrophages were characterized by high expression of
CD86, NOS2, IL1B, TNF, and CXCL10; M2-type macrophages by
high expression of CDI163, CD206 (MRCI), ARGI, IL10, and
TGFpI; and unpolarized (M0) macrophages by low expression of
both M1 and M2 signature markers. These classifications served as
the basis for downstream functional analyses of macrophage
subpopulations (10, 11).

2.3 High-dimensional weighted gene co-
expression network analysis

Based on the previously identified macrophage subpopulations
(M1, M2, and unpolarized types), this study applied high-
dimensional weighted gene co-expression network analysis
(hdWGCNA, v0.2.0) to identify key gene modules associated with
lumbar disc degeneration. The expression matrix of macrophage
subsets was extracted from the Seurat object and normalized using
variance-stabilizing transformation (VST). A hierarchical clustering
tree of genes was constructed using a dynamic hybrid cutting
algorithm, with the minimum module size set to 30 genes.
Module eigengenes (MEs) were then calculated to represent the
overall expression profile of each module, and module detection
was optimized by setting the dynamic cut parameter to deepSplit =
2. The soft-thresholding power was determined according to the
scale-free topology criterion (R* > 0.8) to ensure conformity to
scale-free network properties. Subsequently, correlations between
module eigengenes and the degeneration phenotype (degenerative
vs. normal groups) were computed to identify significantly
associated modules (|[R| > 0.5, p < 0.05, FDR-adjusted). The
spatial expression patterns of these modules were further
validated by UMAP mapping in Seurat v4.0. Hub genes within
each module were defined as those with module membership
(kME) > 0.8, indicating a Pearson correlation coefficient greater
than 0.8 with the module eigengene and implying a core regulatory
role within the module. Finally, hub genes from the key modules
were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses to elucidate the
critical regulatory networks underlying macrophage polarization
during LDD (12).
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2.4 Functional enrichment analysis and
GSEA

The clusterProfiler package (version 4.0) was used to perform
GO and KEGG pathway enrichment analyses on the screened hub
genes, revealing their biological functions (13). Gene set enrichment
analysis (GSEA) was conducted to determine whether predefined
gene sets were enriched at the top or bottom of the ranked gene list,
indicating upregulation or downregulation of the corresponding
genes. The GSEA R package was applied to cluster the hub gene
expression data and to assess enrichment relationships with key
pathways (e.g., HALLMARK, Reactome), thereby evaluating
potential mechanisms.

2.5 Machine learning feature selection and
diagnostic model construction

In this study, a total of 101 machine learning models were
assessed for diagnostic performance on the gene expression
datasets. Five-fold cross-validation (5-fold CV) was employed to
select the top five models with the highest area under the receiver
operating characteristic curve (AUC). Subsequently, feature
importance analysis based on the Random Forest (RF) algorithm
was performed to identify a set of key biomarker genes (importance
score > 20). For the XGBoost model, hyperparameter optimization
was conducted with a focus on tuning core parameters, including
the learning rate, maximum tree depth, and number of boosting
rounds. In an independent validation dataset, the robustness of the
top-performing models (rf, xgbTree, and ranger) was further
confirmed through ROC curve analysis and DeLong’s test.
Additionally, a two-layer Stacking ensemble model was
constructed, integrating the rf and xgbTree algorithms, with
logistic regression employed as the meta-classifier. All models
were trained using an identical feature space, and performance
was evaluated using AUC, F1-score, and accuracy as key metrics. To
prevent overfitting, early stopping and nested cross-validation
(nested CV) strategies were implemented. Finally, prediction
probability distribution analysis and SHAP value interpretation
were applied to elucidate the contribution patterns of key genes
to model predictions (14, 15).

2.6 Evaluation of diagnostic performance
of hub genes

To assess the diagnostic potential of the identified hub genes in
distinguishing LDD samples from controls, we first extracted the
expression matrices of these target hub genes in the training set and
visualized differential expression using box plots. Wilcoxon rank-
sum tests were conducted to determine significance levels, which
were indicated with asterisks. Subsequently, ROC curves were
generated using the pROC package, with gene expression values
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as predictors and group labels as response variables. AUC values
were calculated for each gene, and ROC curves were plotted to
evaluate diagnostic accuracy (16). The same procedure was applied
to the validation set for confirmation.

2.7 Nomogram construction, model
calibration, and decision curve analysis

A combined diagnostic model was constructed by integrating
the expression profiles of CDK1 and COL4A2. A logistic regression
model was constructed using the rms package, and a nomogram
was plotted to visualize the relative contributions of each gene to
disease risk. Model performance was evaluated with the Hosmer-
Lemeshow test (g = 10) and bootstrap-based calibration (1,000
resamplings) to assess fit and predictive accuracy. To further
evaluate clinical applicability, decision curve analysis (DCA) was
performed. The Firth correction was applied to mitigate small-
sample bias, and 100 bootstrap replicates were used to calculate
confidence intervals of the net benefit, allowing for a comparison of
the clinical utility between the joint model and single-gene models
across various decision thresholds (17).

2.8 Immune cell infiltration analysis

CIBERSORT, a widely used method based on linear support
vector regression for deconvolving immune cell expression
matrices, was applied to quantify infiltrating immune cell subsets
using bulk RNA-seq data. Proportions of immune cell subsets,
including macrophages, T cells, and NK cells, were compared
between LDD and control groups. Additionally, the correlation
between key gene expression and specific immune cell
subpopulations was analyzed to explore potential
immunoregulatory roles. The reliability of the CIBERSORT
results was further validated using the xCell algorithm (18).

2.9 Drug target screening and molecular
docking

The PubMed database was searched using the keywords
“CDK1” and “COL4A2” to identify potential therapeutic agents
for these conditions. Molecular docking analyses were performed
using AutoDock Vina to model the binding interactions between
key proteins (CDK1, COL4A2) and candidate drugs (AR234960,
RO 3306), and binding energies and molecular compatibility were
evaluated (19).

2.10 Reagents

Cell culture media and related reagents: o-MEM medium -
Gibco (Thermo Fisher Scientific, Waltham, MA, USA); DMEM
medium - Gibco (Thermo Fisher Scientific, Waltham, MA, USA);
DMEM/F12 medium - Gibco (Thermo Fisher Scientific, USA); fetal
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bovine serum (FBS) - Gibco (Thermo Fisher Scientific, USA);
penicillin-streptomycin solution — Gibco (Thermo Fisher Scientific,
USA); CCK-8 assay kit — Dojindo Laboratories (Kumamoto, Japan);
collagenase type II — Sigma-Aldrich (Merck KGaA, Germany).

Reagents for molecular biology and protein experiments: EZ-
press RNA Purification Kit - EZBioscience (B0004D, USA);
PrimeScript RT Reagent Kit - TaKaRa (RR037A, Japan); SYBR
Green qPCR Master Mix - TaKaRa (RR420A, Japan); RIPA lysis
buffer containing protease and phosphatase inhibitors — Thermo
Fisher Scientific (USA); 10% SDS-PAGE gel - Cwbiotech (Beijing,
China); PVDF membrane - Thermo Fisher Scientific (USA);
blocking buffer - Epizyme (Shanghai, China); ECL detection
reagent (KF8003) — Affinity (Jiangsu, China).

Antibodies: COL4A2 (Collagen Type IV Alpha 2 Chain, 1:1000) -
Proteintech (#14695-1-AP, RRID: AB_10699877); CDK1 (Cyclin-
Dependent Kinase 1, 1:1000) - Proteintech (#19532-1-AP, RRID:
AB_2881388); MMP3 (Matrix Metalloproteinase 3, 1:1000) -
Proteintech (#17873-1-AP, RRID: AB_2138307); SRGN (Serglycin,
1:1000) - Thermo Fisher Scientific (#PA5-113692, RRID:
AB_2884207); HRP-conjugated anti-mouse IgG (H+L, 1:5000) -
Proteintech (#SA00001-1, RRID: AB_2722565); HRP-conjugated
anti-rabbit IgG (H+L, 1:5000) - Proteintech (#SA00001-2,
RRID: AB_2722564).

2.11 Isolation and culture of primary
nucleus pulposus cells

Male C57BL/6] mice aged 4-6 weeks were obtained from SPF
(Beijing) Biotechnology Co., Ltd. (license number: SCXK [Beijing]
2021-0011). All experimental protocols were approved by the Ethics
Committee of the Laboratory Animal Center, The First Affiliated
Hospital of the University of Science and Technology of China
(approval No. 2023-N(A)-183, May 2023). After euthanasia, the
mouse caudal vertebrae were immediately placed in pre-cooled
sterile PBS. Under a dissecting microscope, intervertebral disc tissues
were isolated, and nucleus pulposus tissues were carefully dissected and
collected. The tissues were digested in 0.2% collagenase type I at 37 °C
with gentle agitation for 4-6 hours. Following digestion, cells were
collected by centrifugation (1000 rpm, 5 min), and the supernatant was
discarded. The cell pellet was resuspended in DMEM/F12 complete
medium supplemented with 10% FBS and 1% penicillin-streptomycin,
and cultured at 37 °C in a humidified atmosphere containing 5% CO,.
After cell attachment, non-adherent cells were removed by replacing
with fresh medium. When cells displayed stable morphology and
healthy growth, they were passaged, and second to third passages (P2-
P3) were used for all subsequent experiments to ensure phenotypic and
functional consistency.

2.12 Determination of optimal working
concentrations of drugs

To determine the optimal effective concentrations of the CDK1
inhibitor RO 3306 and the candidate compound AR234960, primary
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nucleus pulposus cells were subjected to a cell viability assay (CCK-8
method). Cells were seeded in 96-well plates at a density of 5 x 10°
cells/well. After attachment, the medium was replaced with fresh
medium containing different drug concentrations: RO 3306 group: 0,
1,2.5,5,7.5, and 10 uM; AR234960 group: 0, 10, 25, 50, 75, and 100
uM. Each concentration was tested in six replicate wells, with blank
controls included. After 24 hours of drug treatment, 10 pL of CCK-8
reagent was added to each well and incubated for an additional 2
hours. Absorbance was measured at 450 nm (OD,s). Cell viability
and inhibition rates were calculated, and dose-response curves were
plotted. The concentration maintaining >70% cell viability
(corresponding to 20%-30% inhibition) was defined as the optimal
working concentration for subsequent pharmacodynamic studies.

2.13 IL-1B-induced degenerative model of
nucleus pulposus cells and drug
intervention

To mimic the inflammatory microenvironment of
intervertebral disc degeneration and to evaluate drug efficacy, an
IL-1B-induced degeneration model of nucleus pulposus cells was
established. The experiment included four groups (n = 3 per group):

1. Control group: complete culture medium;

2. Model group (IL-1f): complete medium + 10 ng/mL IL-1f;

3. RO 3306 treatment group: complete medium + 10 ng/mL
IL-1B + RO 3306 (optimal concentration);

4. AR234960 treatment group: complete medium + 10 ng/mL
IL-1B + AR234960 (optimal concentration).

Cells were seeded in 6-well plates or culture dishes, and once cell
confluence reached 70%-80%, the medium was replaced according
to the experimental grouping. All treatments were maintained for
24 hours. After treatment, both cells and supernatants were
collected for subsequent molecular assays (Western blot analysis).

2.14 Annulus fibrosus puncture model

Thirty adult male Sprague-Dawley (SD) rats (212 weeks old,
230-300 g) were obtained from Hangzhou Ziyuan Laboratory
Animal Technology Co., Ltd. (Hangzhou, China; License No.:
SCXK 2019-0004). The sample size was calculated using G*Power
software (version 3.1), with the significance level (o) set at 0.05, the
effect size (d) at 0.8, and the statistical power at 0.82, meeting the
statistical requirements for animal experiments. Animals were
housed under controlled temperature and humidity with free
access to food and water. Under sevoflurane anesthesia, rats were
fixed, and the Co5/Co6 (caudal vertebrae) or L5/L6 (lumbar
vertebrae) segments were selected. Under X-ray guidance, a 21G
puncture needle was inserted percutaneously, penetrating the full
thickness of the annulus fibrosus into the nucleus pulposus
(approximately 2-3 mm depth). The needle was rotated 180° and
left in place for 30 seconds to induce controlled injury. Penicillin
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was administered intramuscularly postoperatively to prevent
infection. Two weeks after surgery, intervertebral disc height was
assessed via X-ray imaging to evaluate the success of the model
induction (20). Western blotting (WB) and quantitative PCR
(qQPCR) were performed on sham, 1-month, 2-month, and 3-
month postoperative groups to measure the expression levels of
CDK1 and COL4A2. All experimental protocols were approved by
the Animal Ethics Committee of the First Affiliated Hospital of the
University of Science and Technology of China (Approval No.:
2023-N(A)-183, May 2023).

2.15 Evaluation of potential drug efficacy

To evaluate the therapeutic efficacy of potential drugs for
lumbar disc degeneration, an SD rat model of LDD was
established. Twelve rats were randomly assigned to four groups
(n = 3 per group): control (saline), RO 3306 monotherapy (5 mg/kg,
once weekly), AR234960 monotherapy (500 mg/kg, twice daily),
and combination therapy. The drug administration protocol was as
follows: the AR234960 group received intraperitoneal injections
twice daily (with a 12-hour interval), the RO 3306 group received
intraperitoneal injections once weekly, and the combination group
received both agents at the same doses but with staggered
administration. All treatments were continued for 4 weeks. After
treatment, spinal cord tissues were collected from each group, and
the expression levels of LDD-associated markers, MMP3 and
SRGN, were examined by Western blot and qPCR (21, 22).

2.16 Quantitative real-time PCR

Total RNA was extracted using the EZ-press RNA Purification
Kit, and 1 ug of RNA was reverse-transcribed into cDNA with the
PrimeScript RT Reagent Kit. Quantitative PCR was performed
using SYBR Green Master Mix, with three technical replicates for
each sample. Amplification was carried out on an ABI 7500 Real-
Time PCR System (Applied Biosystems, USA). Relative gene
expression was calculated using the 2A-AACt method, with
GAPDH as the internal reference. The sequences of the primers
used are listed in Supplementary Table 1.

2.17 Western blotting

Samples were lysed in RIPA buffer containing protease and
phosphatase inhibitors and incubated on ice for 15 minutes. Lysates
were centrifuged at 14,000 x g for 5 minutes at 4°C, and the
supernatants were collected. Protein concentrations were
determined using a BCA Protein Assay Kit. Equal amounts of
protein were mixed with 5x SDS-PAGE loading buffer, boiled for 5
minutes, and separated by 10% SDS-PAGE, followed by transfer
onto PVDF membranes. Membranes were blocked with 5% non-fat
milk for 1 hour and then incubated overnight at 4°C with primary
antibodies. The next day, membranes were incubated with HRP-
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conjugated secondary antibodies for 2 hours at room temperature.
Protein bands were visualized using an ECL detection reagent and
imaged with a chemiluminescence imaging system (Proteinsimple
FluorChem R, USA). Band intensities were quantified using Image]J
software (NIH, USA).

2.18 Statistical analysis

Data differences were analyzed using unpaired t-tests or the
Wilcoxon rank-sum test, as appropriate. Pearson correlation
analysis was performed to assess correlations in tissue expression
levels. All statistical tests were two-tailed, and the Benjamini-
Hochberg method was applied to control the false discovery rate
(FDR) for multiple comparisons. A p-value < 0.05 was considered
statistically significant. All analyses were conducted using R
software (version 4.1.3).

3 Results
3.1 Identification of LDD cell clusters

Single-cell transcriptome analysis was performed on the
GSE244889 dataset. After excluding low-quality cells based on
quality control (QC) standards, the overall QC metrics indicated
good data quality (nFeature_RNA approximately 500 + 50,
nCount_RNA distributed within 400-700), with no significant
batch effects observed (Figure 1A). Dimensionality reduction and
clustering of the processed cells using the UMAP algorithm
identified 28 cell clusters (Supplementary Figure 1). By annotating
the clustering results with classical marker genes retrieved from the
literature (Figure 1E), four significant core cell populations were
identified: endothelial cells, macrophages, erythrocytes, and neural
progenitor cells, each showing distinct boundaries in the UMAP
distribution (Figure 1B). Macrophages were further subdivided into
pro-inflammatory M1, anti-inflammatory M2, and unpolarized
(MO) subgroups. The observed continuum from M1 to M2
indicates a dynamic polarization state within the
microenvironment (Figure 1C). Sample composition analysis
showed that macrophages were significantly enriched in
degenerative samples such as GSM5703913, GSM5703915, and
GSM5703918 (Figure 1D).

3.2 ldentification of immune-cell-
associated modules by hdWGCNA

The hdWGCNA method was applied to construct a disease-
associated regulatory network. First, the soft threshold (B) was
determined based on the scale-free topology criterion, and at B = 5,
the scale-free topology fit exceeded 0.8 (dashed threshold), meeting
the assumptions of a scale-free network (Figure 2A). Under this
parameter, an adjacency matrix was constructed and transformed
into a topological overlap matrix (TOM). Hierarchical clustering
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identified eight co-expression modules (Figure 2B), represented by
turquoise, blue, brown, green, yellow, red, black, and gray. The
module clustering height ranged from 0.60 to 0.90, with the black
module (cluster height > 0.85) exhibiting the strongest cohesiveness.
Module membership (kME) analysis indicated variable co-
regulation strength among modules (Figure 2C). The black
module (kME = 0.80-0.92) and blue module (kME = 0.78-0.87)
exhibited a concentrated distribution, suggesting strong gene co-
regulation within each module; the yellow (kME = 0.55-0.65) and
red modules (kME = 0.60-0.70) displayed relatively dispersed
distributions, indicating potential functional heterogeneity or
participation in multiple pathways. Further spatial expression
mapping (Figure 2D) showed that the turquoise module was
widely distributed across the UMAP space (approximately -2 to
2), the brown module was enriched in specific cell clusters, and the
gray module (expression range —0.25 to 0.5) showed low-level
diftuse expression, consistent with background gene characteristics.

3.3 Functional enrichment of genes in the
blue and black modules

Given the high co-expression and cohesiveness of the black and
blue modules, functional enrichment analysis was conducted on
their 100 hub genes (Supplementary Table 2). GO enrichment
analysis revealed that these genes were significantly enriched in
biological processes such as inflammatory response, extracellular
matrix organization, and cytokine binding (Figure 3A), suggesting
that extracellular matrix remodeling and inflammatory responses
synergistically drive disease progression. KEGG pathway analysis
further revealed strong associations of these genes with pathways
such as T cell activation and collagen catabolism (Figure 3B).
Notably, GSEA analysis indicated significant enrichment of the
HALLMARK\_G2M\_CHECKPOINT pathway (ES = 0.8, Rank <
100), and its activation level was significantly positively correlated
with the expression intensity of the two modules (r > 0.58, p < 0.01)
(Figure 3C), suggesting that abnormal cell cycle regulation may be a
key cooperative mechanism in disease development. Gene
interaction network analysis revealed close functional connections
between the two modules; for example, TGFB1 in the blue module
directly interacts with the collagen-related gene COL4A2 in the
black module, forming an “immune signaling-matrix remodeling”
cross-regulatory axis that provides molecular evidence for the
composite regulatory mechanism of LDD (Figure 3D).

3.4 Identification of hub genes via machine
learning

By evaluating the diagnostic performance of 101 machine
learning models on gene expression data, we found that ensemble
tree models (xgbTree, rf, ranger, ada) performed optimally, with
AUGs all reaching 0.900, significantly outperforming traditional
linear models (xgbLinear = 0.850) and basic classifiers (rpart =
0.500) (permutation test P < 0.001, Figure 4A). Feature importance
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FIGURE 1
Single-cell transcriptomic analysis identifies cell clusters in LDD. (A) Quality control and normalization results of multiple single-cell batches;
(B) Identification and UMAP spatial distribution of significant cell populations; (C) Fine classification of macrophage functional subsets; (D) Quantitative
analysis of cellular composition heterogeneity across samples; (E) Validation of cell type-specific marker expression.

analysis identified seven core diagnostic genes, among which the
cell cycle regulatory genes COL4A2 (importance = 100) and
CCNBI (importance = 76.65) contributed the most, followed by
the mitotic kinase CDKI1 (importance = 60.69). In contrast, the
immune-related genes C1QB (29.53) and CD163 (21.81)
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contributed moderately (Figure 4B). Hyperparameter
optimization of the XGBoost model indicated optimal
100, eta = 0.1, and max_depth =

(Supplementary Table 3). The learning rate (eta) had the most

performance at nrounds

significant impact on model performance (* = 0.73); increasing eta
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FIGURE 2 (Continued)

hdWGCNA identifies immune cell-related gene modules. (A) Soft-threshold power selection analysis; (B) Gene co-expression dendrogram;
(C) Distribution of module hub genes; (D) Spatial localization map of modules.

from 0.05 to 0.1 improved AUC by 23.6% (t-test P = 0.008,
Figure 4C). In independent validation, both the RF model
(AUC 0.940) and XGBTree model (AUC 0.935)
demonstrated excellent classification performance, with the RF
model exhibiting the highest Youden index (0.83) and the
XGBTree model showing the best sensitivity (0.94, Figure 4D). By
constructing a stacking ensemble model, the AUC was further
improved to 0.950 (95% CI: 0.927-0.971, Figure 4E). Predicted
probability distributions showed a median of 0.86 (IQR: 0.78-0.92)
in the disease group and 0.12 (IQR: 0.06-0.18) in controls. Only
6.3% overlap occurred within the 0.35-0.48 interval, resulting in a
class separation index (CSI) of 3.84 (Figure 4F). SHAP value
analysis revealed gene-specific contribution patterns, with

COL4A2 exhibiting the most stable contribution (variance
0.002), indicating its reliability as a diagnostic marker (Figure 4G).
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3.5 Evaluation of diagnostic performance
of hub genes

Analysis of the training set revealed that the expression levels of
the cell cycle regulatory gene CDK1 and the extracellular matrix
gene COL4A2 were significantly elevated in patients with lumbar
disc degeneration compared to controls (Figure 5A). This finding
was replicated in an independent validation cohort (Figure 5B). The
upregulation of CDKI suggests dysregulation of cell cycle control
during LDD pathology, while the overexpression of COL4A2
reflects an imbalance in extracellular matrix remodeling. Further
diagnostic performance evaluation (Figures 5C, D) demonstrated
that COL4A2 exhibited superior diagnostic ability in both cohorts,
with area under the receiver operating characteristic curve (AUC)
values of 0.8281 (training set) and 0.7524 (validation set),
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significantly outperforming CDKI1 (training set AUC = 0.7969;
validation set AUC = 0.7321). Notably, COL4A2 demonstrated
better stability across datasets, indicating a higher clinical
translational potential as an LDD diagnostic biomarker.

3.6 Performance of disease prediction
model based on diagnostic genes

Using a logistic regression model (Irm) integrating CDK1 and
COL4A2 expression, we found that each 20-point increase in total
score raised LDD risk by 2.3-fold (95% CI: 1.8-3.1), with excellent
discriminative performance (C-index = 0.84, Figure 6A).
Calibration curves generated via 1000 bootstrap resamples
showed good model fit (Hosmer-Lemeshow test P = 0.863), and
the bias-corrected calibration curve had a mean absolute error
(MAE) of 0.023 relative to the ideal curve, indicating high
concordance between predicted probabilities and observed

incidence (Figure 6B). Decision curve analysis (DCA) indicated
that the dual-gene combination model provided greater net benefit
across thresholds of 0.10-0.30, outperforming single-gene models
as well as universal treatment or no-treatment strategies
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(Figure 6C). These findings suggest that the CDK1 and COL4A2
combination model offers superior clinical discriminative potential
and can avoid 52% of unnecessary invasive examinations.

3.7 Immune infiltration analysis

Immune cell quantification, based on the CIBERSORT
algorithm, revealed characteristic changes in the immune cell
composition of the LDD group (Figure 7A). Compared with
controls, the LDD group exhibited a significant 29.5% increase in
the proportion of 0 T cells (P = 0.042), which may be involved in
tissue-specific immune responses. Immune infiltration features
displayed high inter-sample heterogeneity (Figure 7B). Cell
interaction network analysis identified key immune regulatory
relationships (Figure 7C): ¥d T cells were strongly negatively
correlated with neutrophils (r = -0.71, P = 2.1 x 107°), showed
significant self-activation (r = 0.64, P = 0.002), whereas neutrophils
exhibited self-inhibition (r = -0.45, P = 0.008). This suggests that yd
T cells may suppress neutrophil recruitment by secreting effector
factors, forming a self-limiting inflammatory regulatory loop. Gene-
immune correlation analysis showed (Figure 7D) that COL4A2
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expression negatively correlated with neutrophil infiltration (r = -
0.52, P = 0.008), while CDK1 expression positively correlated with
Y0 T cell activation (r = 0.69, P = 0.003). The correlation coefficient
between CIBERSORT and xCell results was 0.74, indicating a strong
positive correlation between the two immune cell infiltration
analysis methods, further supporting the reliability of the
CIBERSORT algorithm (Supplementary Figure 2). To further
validate the diagnostic value of these two key molecules, we
established an LDD rat model. Western blot and qPCR results
showed a time-dependent increase in COL4A2 and CDKI1
expression during disease progression (I month to 3 months;
Figures 7E-I), further confirming their essential roles in
LDD pathogenesis.

3.8 Identification of potential therapeutic
drugs based on diagnostic genes

Through keyword searches in the PubMed database, we
identified potential therapeutic drugs targeting key LDD
molecules, including the CDK1 inhibitor RO 3306 and the
COL4A2 modulator AR234960 (23, 24). Molecular docking
analysis using the CB-DOCK2 platform (https://cadd.labshare.cn/
cb-dock2/) showed binding energies of —6.8 kcal/mol for RO 3306
with CDK1 and -6.3 kcal/mol for AR234960 with COL4A2,
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indicating favorable target-binding properties for both
compounds (Supplementary Table 4). Further molecular docking
simulations with AutoDock Vina revealed that RO 3306 forms
stable interactions with multiple polar active sites on CDKI,
consistent with its ATP-competitive inhibitory mechanism;
meanwhile, AR234960 is predicted to engage hydrogen bonds and
hydrophobic interactions within a potential binding pocket of the
COL4A2 domain, suggesting it may indirectly influence collagen
metabolism by modulating ECM-related signaling (Figures 8A, B).
In vitro experiments revealed that the optimal concentrations of RO
3306 and AR234960 were 5 pM and 50 uM, respectively
(Figures 8C, D), and both compounds were able to reduce the
expression levels of SRGN and MMP3 (Figures 8E-G). In animal
model validation, both AR234960 and RO 3306 monotherapy
groups showed significant reductions in the expression levels of
the LDD markers SRGN and MMP3. Combination therapy led to
further reductions in SRGN and MMP3 compared to monotherapy,
confirming the synergistic therapeutic potential of AR234960 and
RO 3306 in LDD (Figures 8H-L).

4 Discussion

Lumbar disc degeneration is one of the leading causes of
chronic low back pain, with its pathogenesis involving
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Immune infiltration analysis. (A) Quantitative analysis of immune cells; (B) Immune infiltration characteristics among samples; (C) Cell interaction
network analysis; (D) Gene—immune correlation analysis; (E—G) Western blot detection of CDK1 and COL4A2 expression levels in LDD rat model at
1, 2, and 3 months post-surgery; (H, 1) gPCR detection of CDK1 and COL4A2 mRNA levels at 1, 2, and 3 months post-surgery. Data are presented as
mean + SD, with experiments repeated three times; *P < 0.05, **P < 0.01, ***P < 0.001, **** indicates that there is a highly significant correlation
between the two (one-way ANOVA with Bonferroni post hoc test).

multifactorial interactions, including ECM degradation, process, the characteristics of immune cell subsets and their
inflammatory responses, cell cycle dysregulation, and remodeling  regulatory mechanisms remain incompletely understood. In this
of the immune microenvironment (25). Although previous studies ~ study, we conducted an integrative analysis of single-cell
have suggested the involvement of immune cells in the degenerative ~ transcriptomics and bulk RNA-seq data to systematically
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investigate LDD pathogenesis from the perspectives of immune cell
heterogeneity, molecular marker screening, predictive model
construction, and potential therapeutic targets.

Firstly, our study characterized the immune microenvironment
features of LDD tissues. Single-cell transcriptome analysis revealed
a marked enrichment of macrophages in degenerated discs,
particularly pro-inflammatory M1 macrophages, consistent with
prior reports implicating macrophage-mediated inflammation and
ECM degradation in LDD (26). However, most previous studies
have primarily relied on bulk transcriptomic differential expression
analyses, which are insufficient to elucidate the impact of
intercellular heterogeneity on gene regulation. Integrating single-
cell transcriptomics, hdWGCNA co-expression networks, and
multi-algorithm machine learning, we characterized immune-
matrix regulatory networks at molecular and systems levels. This
integrative approach overcomes limitations of traditional analyses
by accounting for cellular heterogeneity, improving key gene
identification and biological interpretability.

Secondly, hdWGCNA identified gene modules (blue and black)
that were closely associated with disc degeneration, showing
significant enrichment in pathways related to inflammatory
responses, cytokine-receptor interactions, extracellular matrix
remodeling, and T cell activation. Gene interaction network
analysis revealed a close functional relationship between the two
modules. For instance, TGFBI in the blue module directly interacts
with collagen-related genes such as COL4A2 in the black module,
forming an “immune signaling-matrix remodeling” cross-
regulatory axis. This finding suggests that LDD may represent a
pathological process driven by immune responses and perpetuated
through ECM remodeling. Future functional experiments,
including CDK1 knockdown, COL4A2 overexpression, and co-
culture systems, will help verify the causal role of this “immune
signaling-ECM remodeling” axis and provide new insights for
targeted interventions (27).

Thirdly, we employed multiple computational algorithms to
identify key hub genes and evaluate their diagnostic performance.
Screening across 101 machine learning models consistently identified
CDK1 and COL4A2 as pivotal diagnostic genes. CDK1, a key kinase
controlling the G2/M cell cycle transition, may trigger abnormal NP
cell proliferation or apoptosis when overactivated, disrupting tissue
homeostasis (28). COL4A2, a major component of type IV collagen,
plays a crucial role in ECM stability and cell-matrix signaling; its
upregulation has been linked to ECM metabolic imbalance and
structural degeneration (29). Consistent with these biological roles,
ROC curve analysis demonstrated that both genes exhibited strong
discriminative power in both training and validation cohorts (AUC >
0.75). A dual-gene logistic regression model integrating CDK1 and
COL4A2 showed excellent calibration and higher net clinical benefit
than single-gene models within the 0.10-0.50 threshold range,
supporting its translational potential in clinical risk assessment.

Building on these computational findings, we explored potential
therapeutic strategies through drug target prediction and molecular
docking analyses. The selective CDK1 inhibitor RO 3306 effectively
disrupts the G2/M cell cycle transition, thereby regulating NP cell
proliferation and apoptosis. Previous studies have shown that RO

Frontiers in Immunology

15

10.3389/fimmu.2025.1671961

3306 suppresses osteoarthritis-related inflammation by reducing
MMP-13 and IL-6 expression in chondrocytes and synovial
fibroblasts. In contrast, the MAS receptor agonist AR234960 can
indirectly regulate collagen synthesis, including COL1 and COL4
families, via the ERK1/2-CTGF axis (21). Molecular docking
showed stable interactions with low binding energies between the
compounds and their targets, supporting their potential therapeutic
application in LDD.

Although the rat tail puncture model used in this study
effectively recapitulates the degenerative and inflammatory
features of LDD, it cannot fully mirror the biomechanical
complexity and metabolic dynamics of human intervertebral
discs. Nevertheless, this model provides a robust in vivo platform
for assessing gene expression patterns and pharmacological
responses. To further enhance the clinical translational relevance
of our findings, future studies will validate these molecular
mechanisms using human-derived nucleus pulposus and annulus
fibrosus tissues from patients at different stages of degeneration,
thereby achieving closer alignment with human pathology.

Despite the robustness of our analytical framework, certain
limitations should be acknowledged. The sample size of the
scRNA-seq dataset was relatively small, which may limit the
generalizability and completeness of immune cell characterization.
To address this, future studies will incorporate additional publicly
available single-cell transcriptomic datasets and multi-omics
resources to expand cohort size, reduce technical bias, and enhance
reproducibility. Furthermore, since the integrated datasets originated
from different sources and lacked complete clinical baseline
information, potential confounding factors—such as patient age,
degeneration grade, and tissue sampling site—may still influence
the results. To mitigate these effects, batch correction was performed
using the Harmony algorithm, and strict quality control standards
were applied throughout all analyses. Future research will further
increase the cohort size and perform multicenter cross-validation to
improve the robustness and generalizability of the conclusions.

Finally, validation using nucleus pulposus and peripheral blood
samples from LDD patients is warranted to confirm the diagnostic
value of CDK1 and COL4A2, and to further clarify their roles in
disease progression. Additional in vitro functional experiments—
such as siRNA knockdown and overexpression in NP cells—will
help elucidate their regulatory roles in cell cycle control and ECM
homeostasis (30, 31). Moreover, the inferred interactions between
¥d T cells and neutrophils were derived from computational
estimations and thus require further experimental validation.

In summary, by integrating single-cell and bulk transcriptomics
with machine learning and molecular modeling, we elucidated
immune and molecular mechanisms in LDD. Identification of
CDK1 and COL4A2 as key biomarkers highlights their potential
for early diagnosis and immune-targeted therapy.

5 Conclusion

This study integrated single-cell and bulk RNA-seq data to
characterize the immune microenvironment in lumbar disc
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degeneration (LDD). Analysis revealed a marked enrichment of
pro-inflammatory M1 macrophages in degenerated tissues. High-
dimensional weighted gene co-expression network analysis
(hdWGCNA) combined with machine learning identified CDK1
and COL4A2 as key hub genes. A dual-gene predictive model
demonstrated strong diagnostic accuracy (AUC > 0.75) and
potential clinical utility for early risk assessment. Furthermore, in
silico drug prediction and molecular docking indicated stable
interactions between AR234960 and COL4A2, and RO 3306 and
CDKI1, suggesting these compounds as promising targeted
therapeutics. Overall, these results provide new molecular insights
into immune-mediated LDD pathogenesis and highlight CDK1 and
COL4A2 as potential biomarkers and therapeutic targets for
precision diagnosis and treatment.
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