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sequencing and machine
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macrophage-associated
genetic signatures in
lumbar disc degeneration
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Danyang Li1, Xiaowei Xiang3* and Junchen Zhu1*
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Medicine, Hefei, Anhui, China, 2The First Affiliated Hospital of University of Science and Technology of
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Background: Lumbar disc degeneration, a primary cause of chronic low back

pain, is closely linked to inflammatory responses and the immune

microenvironment; however , i ts underly ing mechanisms remain

poorly understood.

Methods: This study integrated scRNA-seq and bulk RNA-seq data to identify

macrophage subpopulations in degenerative tissues and constructed co-

expression modules using hdWGCNA. Functional enrichment was explored

through GO, KEGG, and GSEA analyses. A panel of 101 machine learning

algorithms was employed to screen diagnostic genes, with ROC curves used

for validation. A combined diagnostic model for LDD risk was developed based

on the expression profiles of the diagnostic genes. Additionally, immune

infiltration was assessed via CIBERSORT, potential therapeutic compounds

were identified and validated through molecular docking, and animal

experiments were performed to verify the reliability of the results.

Results: Single-cell analysis identified a pro-inflammatory macrophage

subpopulation enriched in degenerative tissues. hdWGCNA revealed highly

correlated black and blue modules, which were primarily associated with

“immune signaling–matrix remodeling,” as indicated by enrichment analysis.

Machine learning approaches screened key genes, including CDK1 and

COL4A2, from these modules. ROC analysis confirmed the strong diagnostic

performance of these genes, and the combined diagnostic model based on them

demonstrated excellent predictive capability for LDD risk. Immune infiltration

analysis highlighted a close association between the key genes and the gdT cell–

neutrophil axis. Molecular docking suggested that RO 3306 and AR234960 may

serve as potential therapeutic agents. qPCR and Western blot experiments

validated the expression of the key genes and the possible effects of

these compounds.
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ROC, receiver operating characteristic; SHAP, Shapley

qPCR, quantitative polymerase chain reaction; WB,
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Conclusion: This study elucidates the genetic signatures associated with

macrophages and their immune regulatory mechanisms in LDD, identifies

potential diagnostic biomarkers and therapeutic targets, and proposes new

strategies for precision intervention.
KEYWORDS

lumbar disc degeneration, single-cell RNA sequencing, machine learning, immune
microenvironment, hdWGCNA
1 Introduction

Lumbar disc degeneration (LDD) is one of the leading causes of

chronic low back pain. Its prevalence rises substantially with age,

severely compromising patients’ quality of life and representing a

significant global public health concern. Epidemiological data

indicate that approximately 80% of individuals experience some

degree of low back pain during their lifetime, with LDD accounting

for the majority of these cases (1).

Recent studies have increasingly highlighted the critical role of

immune-inflammatory responses in the onset and progression of LDD,

particularly the infiltration of immune cells—such as monocytes,

macrophages, and T cells—into the nucleus pulposus region (2).

Macrophages contribute to extracellular matrix (ECM) degradation

and sensitize pain pathways through the secretion of pro-inflammatory

cytokines (e.g., IL-1b, TNF-a) and matrix metalloproteinases (e.g.,

MMP-9, MMP-13). Consequently, they are considered key regulatory

factors in the early stages of LDD (3). However, immune cells within

LDD tissues exhibit substantial heterogeneity, and the functions and

regulatory mechanisms of various subpopulations at different stages

remain incompletely understood. This knowledge gap has hindered the

advancement of immune-targeted therapies for LDD.

Single-cell RNA sequencing (scRNA-seq) has recently been

applied extensively to the study of various tissues and diseases,

providing single-cell resolution for dissecting the cellular

composition, states, and trajectories within tissues. This technology

offers new opportunities to investigate immune heterogeneity in LDD

(4). At the same time, bulk RNA sequencing remains a pivotal tool in

clinical subgroup analyses, differential gene expression studies, and the

estimation of immune infiltration. Integrating scRNA-seq with bulk

RNA-seq data not only allows precise identification of critical cellular

subpopulations but also validates candidate genes at the tissue level,

representing a key direction in multi-omics research (5). Moreover,
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machine learning has emerged as an effective tool for identifying

diagnostic biomarkers and developing predictive models from high-

dimensional transcriptomic data. Algorithms such as LASSO, SVM,

and random forests enhance the accuracy and generalizability of

feature selection for gene prediction (6). By integrating public

databases with molecular docking approaches, potential therapeutic

targets among existing compounds can be screened, thereby

accelerating the development of targeted interventions (7).

Therefore, this study aims to systematically analyze the immune

microenvironment of degenerative nucleus pulposus tissues by

integrating scRNA-seq and bulk RNA-seq data. We construct co-

expression modules based on a weighted co-expression network

and explore their biological significance through pathway

enrichment analyses. Machine learning algorithms are employed

to identify diagnostic genes and establish diagnostic models.

Additionally, immune infiltration analysis and drug screening are

combined to uncover novel immune regulatory mechanisms in

LDD and to identify molecular targets with diagnostic and

therapeutic potential, thereby providing a theoretical foundation

for precision treatment of LDD.

2 Materials and methods

2.1 Data acquisition

Data were retrieved from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/), including scRNA-seq data from

GSE244889 and bulk RNA-seq data from GSE124272 and GSE23130

for downstream analyses (8, 9). In total, 17 LDD samples and 18

control samples were included: GSE244889 comprised 3 LDD and 4

control samples, GSE124272 included 8 LDD and 8 controls, and

GSE34095 contained 6 LDD and 6 controls. Additionally, GSE124272

was designated as the training set, and GSE34095 as the validation set.

Clinical phenotype information was also retrieved.
2.2 Single-cell RNA sequencing data
processing and cell annotation

The raw scRNA-seq data were processed using the standard

workflow of the Seurat package (v4.0) in R. Quality control criteria
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were set as follows: each cell was required to express at least 200

genes, and the proportion of mitochondrial gene expression could

not exceed 20%. Batch effects were corrected using the Harmony

algorithm (v0.1.0) following normalization and identification of

highly variable genes. Subsequently, principal component analysis

(PCA) and UMAP were performed for dimensionality reduction

and clustering to obtain robust cell subpopulation classifications.

Clusters were annotated based on canonical marker genes reported

in the literature to identify major cell types, including nucleus

pulposus and immune cells. Based on the initial clustering results,

immune cells were further re-clustered for detailed subpopulation

analysis. The polarization states of macrophage subtypes were

identified according to the expression of canonical marker genes:

M1-type macrophages were characterized by high expression of

CD86, NOS2, IL1B, TNF, and CXCL10; M2-type macrophages by

high expression of CD163, CD206 (MRC1), ARG1, IL10, and

TGFb1; and unpolarized (M0) macrophages by low expression of

both M1 and M2 signature markers. These classifications served as

the basis for downstream functional analyses of macrophage

subpopulations (10, 11).
2.3 High-dimensional weighted gene co-
expression network analysis

Based on the previously identified macrophage subpopulations

(M1, M2, and unpolarized types), this study applied high-

dimensional weighted gene co-expression network analysis

(hdWGCNA, v0.2.0) to identify key gene modules associated with

lumbar disc degeneration. The expression matrix of macrophage

subsets was extracted from the Seurat object and normalized using

variance-stabilizing transformation (VST). A hierarchical clustering

tree of genes was constructed using a dynamic hybrid cutting

algorithm, with the minimum module size set to 30 genes.

Module eigengenes (MEs) were then calculated to represent the

overall expression profile of each module, and module detection

was optimized by setting the dynamic cut parameter to deepSplit =

2. The soft-thresholding power was determined according to the

scale-free topology criterion (R² > 0.8) to ensure conformity to

scale-free network properties. Subsequently, correlations between

module eigengenes and the degeneration phenotype (degenerative

vs. normal groups) were computed to identify significantly

associated modules (|R| > 0.5, p < 0.05, FDR-adjusted). The

spatial expression patterns of these modules were further

validated by UMAP mapping in Seurat v4.0. Hub genes within

each module were defined as those with module membership

(kME) > 0.8, indicating a Pearson correlation coefficient greater

than 0.8 with the module eigengene and implying a core regulatory

role within the module. Finally, hub genes from the key modules

were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses to elucidate the

critical regulatory networks underlying macrophage polarization

during LDD (12).
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2.4 Functional enrichment analysis and
GSEA

The clusterProfiler package (version 4.0) was used to perform

GO and KEGG pathway enrichment analyses on the screened hub

genes, revealing their biological functions (13). Gene set enrichment

analysis (GSEA) was conducted to determine whether predefined

gene sets were enriched at the top or bottom of the ranked gene list,

indicating upregulation or downregulation of the corresponding

genes. The GSEA R package was applied to cluster the hub gene

expression data and to assess enrichment relationships with key

pathways (e.g., HALLMARK, Reactome), thereby evaluating

potential mechanisms.
2.5 Machine learning feature selection and
diagnostic model construction

In this study, a total of 101 machine learning models were

assessed for diagnostic performance on the gene expression

datasets. Five-fold cross-validation (5-fold CV) was employed to

select the top five models with the highest area under the receiver

operating characteristic curve (AUC). Subsequently, feature

importance analysis based on the Random Forest (RF) algorithm

was performed to identify a set of key biomarker genes (importance

score > 20). For the XGBoost model, hyperparameter optimization

was conducted with a focus on tuning core parameters, including

the learning rate, maximum tree depth, and number of boosting

rounds. In an independent validation dataset, the robustness of the

top-performing models (rf, xgbTree, and ranger) was further

confirmed through ROC curve analysis and DeLong’s test.

Additionally, a two-layer Stacking ensemble model was

constructed, integrating the rf and xgbTree algorithms, with

logistic regression employed as the meta-classifier. All models

were trained using an identical feature space, and performance

was evaluated using AUC, F1-score, and accuracy as key metrics. To

prevent overfitting, early stopping and nested cross-validation

(nested CV) strategies were implemented. Finally, prediction

probability distribution analysis and SHAP value interpretation

were applied to elucidate the contribution patterns of key genes

to model predictions (14, 15).
2.6 Evaluation of diagnostic performance
of hub genes

To assess the diagnostic potential of the identified hub genes in

distinguishing LDD samples from controls, we first extracted the

expression matrices of these target hub genes in the training set and

visualized differential expression using box plots. Wilcoxon rank-

sum tests were conducted to determine significance levels, which

were indicated with asterisks. Subsequently, ROC curves were

generated using the pROC package, with gene expression values
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as predictors and group labels as response variables. AUC values

were calculated for each gene, and ROC curves were plotted to

evaluate diagnostic accuracy (16). The same procedure was applied

to the validation set for confirmation.
2.7 Nomogram construction, model
calibration, and decision curve analysis

A combined diagnostic model was constructed by integrating

the expression profiles of CDK1 and COL4A2. A logistic regression

model was constructed using the rms package, and a nomogram

was plotted to visualize the relative contributions of each gene to

disease risk. Model performance was evaluated with the Hosmer-

Lemeshow test (g = 10) and bootstrap-based calibration (1,000

resamplings) to assess fit and predictive accuracy. To further

evaluate clinical applicability, decision curve analysis (DCA) was

performed. The Firth correction was applied to mitigate small-

sample bias, and 100 bootstrap replicates were used to calculate

confidence intervals of the net benefit, allowing for a comparison of

the clinical utility between the joint model and single-gene models

across various decision thresholds (17).
2.8 Immune cell infiltration analysis

CIBERSORT, a widely used method based on linear support

vector regression for deconvolving immune cell expression

matrices, was applied to quantify infiltrating immune cell subsets

using bulk RNA-seq data. Proportions of immune cell subsets,

including macrophages, T cells, and NK cells, were compared

between LDD and control groups. Additionally, the correlation

between key gene expression and specific immune cell

subpopu l a t i on s was ana l y z ed to exp lo r e po t en t i a l

immunoregulatory roles. The reliability of the CIBERSORT

results was further validated using the xCell algorithm (18).
2.9 Drug target screening and molecular
docking

The PubMed database was searched using the keywords

“CDK1” and “COL4A2” to identify potential therapeutic agents

for these conditions. Molecular docking analyses were performed

using AutoDock Vina to model the binding interactions between

key proteins (CDK1, COL4A2) and candidate drugs (AR234960,

RO 3306), and binding energies and molecular compatibility were

evaluated (19).
2.10 Reagents

Cell culture media and related reagents: a-MEM medium –

Gibco (Thermo Fisher Scientific, Waltham, MA, USA); DMEM

medium – Gibco (Thermo Fisher Scientific, Waltham, MA, USA);

DMEM/F12 medium – Gibco (Thermo Fisher Scientific, USA); fetal
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bovine serum (FBS) – Gibco (Thermo Fisher Scientific, USA);

penicillin–streptomycin solution – Gibco (Thermo Fisher Scientific,

USA); CCK-8 assay kit – Dojindo Laboratories (Kumamoto, Japan);

collagenase type II – Sigma-Aldrich (Merck KGaA, Germany).

Reagents for molecular biology and protein experiments: EZ-

press RNA Purification Kit – EZBioscience (B0004D, USA);

PrimeScript RT Reagent Kit – TaKaRa (RR037A, Japan); SYBR

Green qPCR Master Mix – TaKaRa (RR420A, Japan); RIPA lysis

buffer containing protease and phosphatase inhibitors – Thermo

Fisher Scientific (USA); 10% SDS-PAGE gel – Cwbiotech (Beijing,

China); PVDF membrane – Thermo Fisher Scientific (USA);

blocking buffer – Epizyme (Shanghai, China); ECL detection

reagent (KF8003) – Affinity (Jiangsu, China).

Antibodies: COL4A2 (Collagen Type IV Alpha 2 Chain, 1:1000) –

Proteintech (#14695-1-AP, RRID: AB_10699877); CDK1 (Cyclin-

Dependent Kinase 1, 1:1000) – Proteintech (#19532-1-AP, RRID:

AB_2881388); MMP3 (Matrix Metalloproteinase 3, 1:1000) –

Proteintech (#17873-1-AP, RRID: AB_2138307); SRGN (Serglycin,

1:1000) – Thermo Fisher Scientific (#PA5-113692, RRID:

AB_2884207); HRP-conjugated anti-mouse IgG (H+L, 1:5000) –

Proteintech (#SA00001-1, RRID: AB_2722565); HRP-conjugated

anti-rabbit IgG (H+L, 1:5000) – Proteintech (#SA00001-2,

RRID: AB_2722564).
2.11 Isolation and culture of primary
nucleus pulposus cells

Male C57BL/6J mice aged 4–6 weeks were obtained from SPF

(Beijing) Biotechnology Co., Ltd. (license number: SCXK [Beijing]

2021-0011). All experimental protocols were approved by the Ethics

Committee of the Laboratory Animal Center, The First Affiliated

Hospital of the University of Science and Technology of China

(approval No. 2023-N(A)-183, May 2023). After euthanasia, the

mouse caudal vertebrae were immediately placed in pre-cooled

sterile PBS. Under a dissecting microscope, intervertebral disc tissues

were isolated, and nucleus pulposus tissues were carefully dissected and

collected. The tissues were digested in 0.2% collagenase type II at 37 °C

with gentle agitation for 4–6 hours. Following digestion, cells were

collected by centrifugation (1000 rpm, 5min), and the supernatant was

discarded. The cell pellet was resuspended in DMEM/F12 complete

medium supplemented with 10% FBS and 1% penicillin–streptomycin,

and cultured at 37 °C in a humidified atmosphere containing 5% CO2.

After cell attachment, non-adherent cells were removed by replacing

with fresh medium. When cells displayed stable morphology and

healthy growth, they were passaged, and second to third passages (P2–

P3) were used for all subsequent experiments to ensure phenotypic and

functional consistency.
2.12 Determination of optimal working
concentrations of drugs

To determine the optimal effective concentrations of the CDK1

inhibitor RO 3306 and the candidate compound AR234960, primary
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nucleus pulposus cells were subjected to a cell viability assay (CCK-8

method). Cells were seeded in 96-well plates at a density of 5 × 10³

cells/well. After attachment, the medium was replaced with fresh

medium containing different drug concentrations: RO 3306 group: 0,

1, 2.5, 5, 7.5, and 10 μM; AR234960 group: 0, 10, 25, 50, 75, and 100

μM. Each concentration was tested in six replicate wells, with blank

controls included. After 24 hours of drug treatment, 10 μL of CCK-8

reagent was added to each well and incubated for an additional 2

hours. Absorbance was measured at 450 nm (OD450). Cell viability

and inhibition rates were calculated, and dose–response curves were

plotted. The concentration maintaining >70% cell viability

(corresponding to 20%–30% inhibition) was defined as the optimal

working concentration for subsequent pharmacodynamic studies.
2.13 IL-1b–induced degenerative model of
nucleus pulposus cells and drug
intervention

To mimic the inflammatory microenvironment of

intervertebral disc degeneration and to evaluate drug efficacy, an

IL-1b–induced degeneration model of nucleus pulposus cells was

established. The experiment included four groups (n = 3 per group):
Fron
1. Control group: complete culture medium;

2. Model group (IL-1b): complete medium + 10 ng/mL IL-1b;
3. RO 3306 treatment group: complete medium + 10 ng/mL

IL-1b + RO 3306 (optimal concentration);

4. AR234960 treatment group: complete medium + 10 ng/mL

IL-1b + AR234960 (optimal concentration).
Cells were seeded in 6-well plates or culture dishes, and once cell

confluence reached 70%–80%, the medium was replaced according

to the experimental grouping. All treatments were maintained for

24 hours. After treatment, both cells and supernatants were

collected for subsequent molecular assays (Western blot analysis).
2.14 Annulus fibrosus puncture model

Thirty adult male Sprague-Dawley (SD) rats (≥12 weeks old,

230–300 g) were obtained from Hangzhou Ziyuan Laboratory

Animal Technology Co., Ltd. (Hangzhou, China; License No.:

SCXK 2019-0004). The sample size was calculated using G*Power

software (version 3.1), with the significance level (a) set at 0.05, the
effect size (d) at 0.8, and the statistical power at 0.82, meeting the

statistical requirements for animal experiments. Animals were

housed under controlled temperature and humidity with free

access to food and water. Under sevoflurane anesthesia, rats were

fixed, and the Co5/Co6 (caudal vertebrae) or L5/L6 (lumbar

vertebrae) segments were selected. Under X-ray guidance, a 21G

puncture needle was inserted percutaneously, penetrating the full

thickness of the annulus fibrosus into the nucleus pulposus

(approximately 2–3 mm depth). The needle was rotated 180° and

left in place for 30 seconds to induce controlled injury. Penicillin
tiers in Immunology 05
was administered intramuscularly postoperatively to prevent

infection. Two weeks after surgery, intervertebral disc height was

assessed via X-ray imaging to evaluate the success of the model

induction (20). Western blotting (WB) and quantitative PCR

(qPCR) were performed on sham, 1-month, 2-month, and 3-

month postoperative groups to measure the expression levels of

CDK1 and COL4A2. All experimental protocols were approved by

the Animal Ethics Committee of the First Affiliated Hospital of the

University of Science and Technology of China (Approval No.:

2023-N(A)-183, May 2023).
2.15 Evaluation of potential drug efficacy

To evaluate the therapeutic efficacy of potential drugs for

lumbar disc degeneration, an SD rat model of LDD was

established. Twelve rats were randomly assigned to four groups

(n = 3 per group): control (saline), RO 3306 monotherapy (5 mg/kg,

once weekly), AR234960 monotherapy (500 mg/kg, twice daily),

and combination therapy. The drug administration protocol was as

follows: the AR234960 group received intraperitoneal injections

twice daily (with a 12-hour interval), the RO 3306 group received

intraperitoneal injections once weekly, and the combination group

received both agents at the same doses but with staggered

administration. All treatments were continued for 4 weeks. After

treatment, spinal cord tissues were collected from each group, and

the expression levels of LDD-associated markers, MMP3 and

SRGN, were examined by Western blot and qPCR (21, 22).
2.16 Quantitative real-time PCR

Total RNA was extracted using the EZ-press RNA Purification

Kit, and 1 mg of RNA was reverse-transcribed into cDNA with the

PrimeScript RT Reagent Kit. Quantitative PCR was performed

using SYBR Green Master Mix, with three technical replicates for

each sample. Amplification was carried out on an ABI 7500 Real-

Time PCR System (Applied Biosystems, USA). Relative gene

expression was calculated using the 2^−DDCt method, with

GAPDH as the internal reference. The sequences of the primers

used are listed in Supplementary Table 1.
2.17 Western blotting

Samples were lysed in RIPA buffer containing protease and

phosphatase inhibitors and incubated on ice for 15 minutes. Lysates

were centrifuged at 14,000 × g for 5 minutes at 4°C, and the

supernatants were collected. Protein concentrations were

determined using a BCA Protein Assay Kit. Equal amounts of

protein were mixed with 5× SDS-PAGE loading buffer, boiled for 5

minutes, and separated by 10% SDS-PAGE, followed by transfer

onto PVDF membranes. Membranes were blocked with 5% non-fat

milk for 1 hour and then incubated overnight at 4°C with primary

antibodies. The next day, membranes were incubated with HRP-
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conjugated secondary antibodies for 2 hours at room temperature.

Protein bands were visualized using an ECL detection reagent and

imaged with a chemiluminescence imaging system (Proteinsimple

FluorChem R, USA). Band intensities were quantified using ImageJ

software (NIH, USA).
2.18 Statistical analysis

Data differences were analyzed using unpaired t-tests or the

Wilcoxon rank-sum test, as appropriate. Pearson correlation

analysis was performed to assess correlations in tissue expression

levels. All statistical tests were two-tailed, and the Benjamini–

Hochberg method was applied to control the false discovery rate

(FDR) for multiple comparisons. A p-value < 0.05 was considered

statistically significant. All analyses were conducted using R

software (version 4.1.3).
3 Results

3.1 Identification of LDD cell clusters

Single-cell transcriptome analysis was performed on the

GSE244889 dataset. After excluding low-quality cells based on

quality control (QC) standards, the overall QC metrics indicated

good data quality (nFeature_RNA approximately 500 ± 50,

nCount_RNA distributed within 400–700), with no significant

batch effects observed (Figure 1A). Dimensionality reduction and

clustering of the processed cells using the UMAP algorithm

identified 28 cell clusters (Supplementary Figure 1). By annotating

the clustering results with classical marker genes retrieved from the

literature (Figure 1E), four significant core cell populations were

identified: endothelial cells, macrophages, erythrocytes, and neural

progenitor cells, each showing distinct boundaries in the UMAP

distribution (Figure 1B). Macrophages were further subdivided into

pro-inflammatory M1, anti-inflammatory M2, and unpolarized

(M0) subgroups. The observed continuum from M1 to M2

ind i ca t e s a dynamic po l a r i z a t i on s t a t e w i th in the

microenvironment (Figure 1C). Sample composition analysis

showed that macrophages were significantly enriched in

degenerative samples such as GSM5703913, GSM5703915, and

GSM5703918 (Figure 1D).
3.2 Identification of immune-cell-
associated modules by hdWGCNA

The hdWGCNA method was applied to construct a disease-

associated regulatory network. First, the soft threshold (b) was

determined based on the scale-free topology criterion, and at b = 5,

the scale-free topology fit exceeded 0.8 (dashed threshold), meeting

the assumptions of a scale-free network (Figure 2A). Under this

parameter, an adjacency matrix was constructed and transformed

into a topological overlap matrix (TOM). Hierarchical clustering
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identified eight co-expression modules (Figure 2B), represented by

turquoise, blue, brown, green, yellow, red, black, and gray. The

module clustering height ranged from 0.60 to 0.90, with the black

module (cluster height > 0.85) exhibiting the strongest cohesiveness.

Module membership (kME) analysis indicated variable co-

regulation strength among modules (Figure 2C). The black

module (kME = 0.80–0.92) and blue module (kME = 0.78–0.87)

exhibited a concentrated distribution, suggesting strong gene co-

regulation within each module; the yellow (kME = 0.55–0.65) and

red modules (kME = 0.60–0.70) displayed relatively dispersed

distributions, indicating potential functional heterogeneity or

participation in multiple pathways. Further spatial expression

mapping (Figure 2D) showed that the turquoise module was

widely distributed across the UMAP space (approximately −2 to

2), the brown module was enriched in specific cell clusters, and the

gray module (expression range −0.25 to 0.5) showed low-level

diffuse expression, consistent with background gene characteristics.
3.3 Functional enrichment of genes in the
blue and black modules

Given the high co-expression and cohesiveness of the black and

blue modules, functional enrichment analysis was conducted on

their 100 hub genes (Supplementary Table 2). GO enrichment

analysis revealed that these genes were significantly enriched in

biological processes such as inflammatory response, extracellular

matrix organization, and cytokine binding (Figure 3A), suggesting

that extracellular matrix remodeling and inflammatory responses

synergistically drive disease progression. KEGG pathway analysis

further revealed strong associations of these genes with pathways

such as T cell activation and collagen catabolism (Figure 3B).

Notably, GSEA analysis indicated significant enrichment of the

HALLMARK\_G2M\_CHECKPOINT pathway (ES = 0.8, Rank <

100), and its activation level was significantly positively correlated

with the expression intensity of the two modules (r > 0.58, p < 0.01)

(Figure 3C), suggesting that abnormal cell cycle regulation may be a

key cooperative mechanism in disease development. Gene

interaction network analysis revealed close functional connections

between the two modules; for example, TGFB1 in the blue module

directly interacts with the collagen-related gene COL4A2 in the

black module, forming an “immune signaling–matrix remodeling”

cross-regulatory axis that provides molecular evidence for the

composite regulatory mechanism of LDD (Figure 3D).
3.4 Identification of hub genes via machine
learning

By evaluating the diagnostic performance of 101 machine

learning models on gene expression data, we found that ensemble

tree models (xgbTree, rf, ranger, ada) performed optimally, with

AUCs all reaching 0.900, significantly outperforming traditional

linear models (xgbLinear = 0.850) and basic classifiers (rpart =

0.500) (permutation test P < 0.001, Figure 4A). Feature importance
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analysis identified seven core diagnostic genes, among which the

cell cycle regulatory genes COL4A2 (importance = 100) and

CCNB1 (importance = 76.65) contributed the most, followed by

the mitotic kinase CDK1 (importance = 60.69). In contrast, the

immune-related genes C1QB (29.53) and CD163 (21.81)
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contributed moderately (Figure 4B). Hyperparameter

optimization of the XGBoost model indicated optimal

performance at nrounds = 100, eta = 0.1, and max_depth = 7

(Supplementary Table 3). The learning rate (eta) had the most

significant impact on model performance (h² = 0.73); increasing eta
FIGURE 1

Single-cell transcriptomic analysis identifies cell clusters in LDD. (A) Quality control and normalization results of multiple single-cell batches;
(B) Identification and UMAP spatial distribution of significant cell populations; (C) Fine classification of macrophage functional subsets; (D) Quantitative
analysis of cellular composition heterogeneity across samples; (E) Validation of cell type-specific marker expression.
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FIGURE 2 (Continued)
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hdWGCNA identifies immune cell-related gene modules. (A) Soft-threshold power selection analysis; (B) Gene co-expression dendrogram;
(C) Distribution of module hub genes; (D) Spatial localization map of modules.
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from 0.05 to 0.1 improved AUC by 23.6% (t-test P = 0.008,

Figure 4C). In independent validation, both the RF model

(AUC = 0.940) and XGBTree model (AUC = 0.935)

demonstrated excellent classification performance, with the RF

model exhibiting the highest Youden index (0.83) and the

XGBTree model showing the best sensitivity (0.94, Figure 4D). By

constructing a stacking ensemble model, the AUC was further

improved to 0.950 (95% CI: 0.927–0.971, Figure 4E). Predicted

probability distributions showed a median of 0.86 (IQR: 0.78–0.92)

in the disease group and 0.12 (IQR: 0.06–0.18) in controls. Only

6.3% overlap occurred within the 0.35–0.48 interval, resulting in a

class separation index (CSI) of 3.84 (Figure 4F). SHAP value

analysis revealed gene-specific contribution patterns, with

COL4A2 exhibiting the most stable contribution (variance =

0.002), indicating its reliability as a diagnostic marker (Figure 4G).
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3.5 Evaluation of diagnostic performance
of hub genes

Analysis of the training set revealed that the expression levels of

the cell cycle regulatory gene CDK1 and the extracellular matrix

gene COL4A2 were significantly elevated in patients with lumbar

disc degeneration compared to controls (Figure 5A). This finding

was replicated in an independent validation cohort (Figure 5B). The

upregulation of CDK1 suggests dysregulation of cell cycle control

during LDD pathology, while the overexpression of COL4A2

reflects an imbalance in extracellular matrix remodeling. Further

diagnostic performance evaluation (Figures 5C, D) demonstrated

that COL4A2 exhibited superior diagnostic ability in both cohorts,

with area under the receiver operating characteristic curve (AUC)

values of 0.8281 (training set) and 0.7524 (validation set),
FIGURE 3

Functional enrichment analysis of hub genes. (A) GO enrichment analysis; (B) KEGG pathway analysis; (C) GSEA analysis; (D) Gene co-expression
network visualization.
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FIGURE 4

Workflow and results of machine learning-based hub gene screening and validation. (A) Comparison of top 20 machine learning models ranked by
AUC performance; (B) Key diagnostic genes identified by the random forest (RF) model and their feature importance contributions; (C) Heatmap of
XGBoost hyperparameter optimization showing effects of learning rate, tree depth, and number of iterations on AUC; (D) ROC curves and AUC
performance of RF and xgbTree models on the test set; (E) Prediction probability distribution of base models in LDD and control samples; (F) Density
curves of prediction probabilities for the two sample groups, reflecting model discriminative ability; (G) Dynamic contribution patterns of key genes
across samples based on SHAP value analysis.
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significantly outperforming CDK1 (training set AUC = 0.7969;

validation set AUC = 0.7321). Notably, COL4A2 demonstrated

better stability across datasets, indicating a higher clinical

translational potential as an LDD diagnostic biomarker.
3.6 Performance of disease prediction
model based on diagnostic genes

Using a logistic regression model (lrm) integrating CDK1 and

COL4A2 expression, we found that each 20-point increase in total

score raised LDD risk by 2.3-fold (95% CI: 1.8–3.1), with excellent

discriminative performance (C-index = 0.84, Figure 6A).

Calibration curves generated via 1000 bootstrap resamples

showed good model fit (Hosmer–Lemeshow test P = 0.863), and

the bias-corrected calibration curve had a mean absolute error

(MAE) of 0.023 relative to the ideal curve, indicating high

concordance between predicted probabilities and observed

incidence (Figure 6B). Decision curve analysis (DCA) indicated

that the dual-gene combination model provided greater net benefit

across thresholds of 0.10–0.30, outperforming single-gene models

as well as universal treatment or no-treatment strategies
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(Figure 6C). These findings suggest that the CDK1 and COL4A2

combination model offers superior clinical discriminative potential

and can avoid 52% of unnecessary invasive examinations.
3.7 Immune infiltration analysis

Immune cell quantification, based on the CIBERSORT

algorithm, revealed characteristic changes in the immune cell

composition of the LDD group (Figure 7A). Compared with

controls, the LDD group exhibited a significant 29.5% increase in

the proportion of gd T cells (P = 0.042), which may be involved in

tissue-specific immune responses. Immune infiltration features

displayed high inter-sample heterogeneity (Figure 7B). Cell

interaction network analysis identified key immune regulatory

relationships (Figure 7C): gd T cells were strongly negatively

correlated with neutrophils (r = –0.71, P = 2.1 × 10−6), showed

significant self-activation (r = 0.64, P = 0.002), whereas neutrophils

exhibited self-inhibition (r = –0.45, P = 0.008). This suggests that gd
T cells may suppress neutrophil recruitment by secreting effector

factors, forming a self-limiting inflammatory regulatory loop. Gene-

immune correlation analysis showed (Figure 7D) that COL4A2
FIGURE 5

Diagnostic efficacy evaluation of hub genes. (A) Differential expression analysis of key genes in the training set; (B) Independent validation results in
the validation cohort; (C) ROC curve analysis of diagnostic markers; (D) Independent performance validation in the validation set. * indicates that
there is a correlation between the two, while ns indicates that there is no correlation between them.
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expression negatively correlated with neutrophil infiltration (r = –

0.52, P = 0.008), while CDK1 expression positively correlated with

gd T cell activation (r = 0.69, P = 0.003). The correlation coefficient

between CIBERSORT and xCell results was 0.74, indicating a strong

positive correlation between the two immune cell infiltration

analysis methods, further supporting the reliability of the

CIBERSORT algorithm (Supplementary Figure 2). To further

validate the diagnostic value of these two key molecules, we

established an LDD rat model. Western blot and qPCR results

showed a time-dependent increase in COL4A2 and CDK1

expression during disease progression (1 month to 3 months;

Figures 7E–I), further confirming their essential roles in

LDD pathogenesis.
3.8 Identification of potential therapeutic
drugs based on diagnostic genes

Through keyword searches in the PubMed database, we

identified potential therapeutic drugs targeting key LDD

molecules, including the CDK1 inhibitor RO 3306 and the

COL4A2 modulator AR234960 (23, 24). Molecular docking

analysis using the CB-DOCK2 platform (https://cadd.labshare.cn/

cb-dock2/) showed binding energies of –6.8 kcal/mol for RO 3306

with CDK1 and –6.3 kcal/mol for AR234960 with COL4A2,
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indicating favorable target-binding properties for both

compounds (Supplementary Table 4). Further molecular docking

simulations with AutoDock Vina revealed that RO 3306 forms

stable interactions with multiple polar active sites on CDK1,

consistent with its ATP-competitive inhibitory mechanism;

meanwhile, AR234960 is predicted to engage hydrogen bonds and

hydrophobic interactions within a potential binding pocket of the

COL4A2 domain, suggesting it may indirectly influence collagen

metabolism by modulating ECM-related signaling (Figures 8A, B).

In vitro experiments revealed that the optimal concentrations of RO

3306 and AR234960 were 5 μM and 50 μM, respectively

(Figures 8C, D), and both compounds were able to reduce the

expression levels of SRGN and MMP3 (Figures 8E–G). In animal

model validation, both AR234960 and RO 3306 monotherapy

groups showed significant reductions in the expression levels of

the LDD markers SRGN and MMP3. Combination therapy led to

further reductions in SRGN and MMP3 compared to monotherapy,

confirming the synergistic therapeutic potential of AR234960 and

RO 3306 in LDD (Figures 8H–L).
4 Discussion

Lumbar disc degeneration is one of the leading causes of

chronic low back pain, with its pathogenesis involving
FIGURE 6

Performance of disease prediction model based on diagnostic genes. (A) Predictive efficacy of gene risk score; (B) Model calibration validation;
(C) Clinical decision curve analysis.
frontiersin.org

https://cadd.labshare.cn/cb-dock2/
https://cadd.labshare.cn/cb-dock2/
https://doi.org/10.3389/fimmu.2025.1671961
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1671961
multifactorial interactions, including ECM degradation,

inflammatory responses, cell cycle dysregulation, and remodeling

of the immune microenvironment (25). Although previous studies

have suggested the involvement of immune cells in the degenerative
Frontiers in Immunology 13
process, the characteristics of immune cell subsets and their

regulatory mechanisms remain incompletely understood. In this

study, we conducted an integrative analysis of single-cell

transcriptomics and bulk RNA-seq data to systematically
FIGURE 7

Immune infiltration analysis. (A) Quantitative analysis of immune cells; (B) Immune infiltration characteristics among samples; (C) Cell interaction
network analysis; (D) Gene–immune correlation analysis; (E–G) Western blot detection of CDK1 and COL4A2 expression levels in LDD rat model at
1, 2, and 3 months post-surgery; (H, I) qPCR detection of CDK1 and COL4A2 mRNA levels at 1, 2, and 3 months post-surgery. Data are presented as
mean ± SD, with experiments repeated three times; *P < 0.05, **P < 0.01, ***P < 0.001, **** indicates that there is a highly significant correlation
between the two (one-way ANOVA with Bonferroni post hoc test).
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FIGURE 8

Screening of potential therapeutic drugs based on diagnostic genes. (A) Molecular docking of RO 3306 with CDK1; (B) Molecular docking of AR234960
with COL4A2; (C, D) Determination of the optimal drug concentrations using the CCK-8 assay; (E–G) Western blotting analysis of MMP3 and SRGN
expression levels in vitro under different treatment conditions; (H–J) Western blotting analysis of MMP3 and SRGN expression levels in animal experiments
following different treatment regimens; (K, L) qPCR analysis of MMP3 and SRGN mRNA levels after different treatment conditions. Data are presented as
mean ± SD, with experiments repeated three times; *P < 0.05, **P < 0.01, ***P < 0.001, **** indicates that there is a highly significant correlation between
the two (one-way ANOVA with Bonferroni post hoc test).
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investigate LDD pathogenesis from the perspectives of immune cell

heterogeneity, molecular marker screening, predictive model

construction, and potential therapeutic targets.

Firstly, our study characterized the immune microenvironment

features of LDD tissues. Single-cell transcriptome analysis revealed

a marked enrichment of macrophages in degenerated discs,

particularly pro-inflammatory M1 macrophages, consistent with

prior reports implicating macrophage-mediated inflammation and

ECM degradation in LDD (26). However, most previous studies

have primarily relied on bulk transcriptomic differential expression

analyses, which are insufficient to elucidate the impact of

intercellular heterogeneity on gene regulation. Integrating single-

cell transcriptomics, hdWGCNA co-expression networks, and

multi-algorithm machine learning, we characterized immune–

matrix regulatory networks at molecular and systems levels. This

integrative approach overcomes limitations of traditional analyses

by accounting for cellular heterogeneity, improving key gene

identification and biological interpretability.

Secondly, hdWGCNA identified gene modules (blue and black)

that were closely associated with disc degeneration, showing

significant enrichment in pathways related to inflammatory

responses, cytokine–receptor interactions, extracellular matrix

remodeling, and T cell activation. Gene interaction network

analysis revealed a close functional relationship between the two

modules. For instance, TGFB1 in the blue module directly interacts

with collagen-related genes such as COL4A2 in the black module,

forming an “immune signaling–matrix remodeling” cross-

regulatory axis. This finding suggests that LDD may represent a

pathological process driven by immune responses and perpetuated

through ECM remodeling. Future functional experiments,

including CDK1 knockdown, COL4A2 overexpression, and co-

culture systems, will help verify the causal role of this “immune

signaling–ECM remodeling” axis and provide new insights for

targeted interventions (27).

Thirdly, we employed multiple computational algorithms to

identify key hub genes and evaluate their diagnostic performance.

Screening across 101 machine learning models consistently identified

CDK1 and COL4A2 as pivotal diagnostic genes. CDK1, a key kinase

controlling the G2/M cell cycle transition, may trigger abnormal NP

cell proliferation or apoptosis when overactivated, disrupting tissue

homeostasis (28). COL4A2, a major component of type IV collagen,

plays a crucial role in ECM stability and cell–matrix signaling; its

upregulation has been linked to ECM metabolic imbalance and

structural degeneration (29). Consistent with these biological roles,

ROC curve analysis demonstrated that both genes exhibited strong

discriminative power in both training and validation cohorts (AUC >

0.75). A dual-gene logistic regression model integrating CDK1 and

COL4A2 showed excellent calibration and higher net clinical benefit

than single-gene models within the 0.10–0.50 threshold range,

supporting its translational potential in clinical risk assessment.

Building on these computational findings, we explored potential

therapeutic strategies through drug target prediction and molecular

docking analyses. The selective CDK1 inhibitor RO 3306 effectively

disrupts the G2/M cell cycle transition, thereby regulating NP cell

proliferation and apoptosis. Previous studies have shown that RO
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3306 suppresses osteoarthritis-related inflammation by reducing

MMP-13 and IL-6 expression in chondrocytes and synovial

fibroblasts. In contrast, the MAS receptor agonist AR234960 can

indirectly regulate collagen synthesis, including COL1 and COL4

families, via the ERK1/2–CTGF axis (21). Molecular docking

showed stable interactions with low binding energies between the

compounds and their targets, supporting their potential therapeutic

application in LDD.

Although the rat tail puncture model used in this study

effectively recapitulates the degenerative and inflammatory

features of LDD, it cannot fully mirror the biomechanical

complexity and metabolic dynamics of human intervertebral

discs. Nevertheless, this model provides a robust in vivo platform

for assessing gene expression patterns and pharmacological

responses. To further enhance the clinical translational relevance

of our findings, future studies will validate these molecular

mechanisms using human-derived nucleus pulposus and annulus

fibrosus tissues from patients at different stages of degeneration,

thereby achieving closer alignment with human pathology.

Despite the robustness of our analytical framework, certain

limitations should be acknowledged. The sample size of the

scRNA-seq dataset was relatively small, which may limit the

generalizability and completeness of immune cell characterization.

To address this, future studies will incorporate additional publicly

available single-cell transcriptomic datasets and multi-omics

resources to expand cohort size, reduce technical bias, and enhance

reproducibility. Furthermore, since the integrated datasets originated

from different sources and lacked complete clinical baseline

information, potential confounding factors—such as patient age,

degeneration grade, and tissue sampling site—may still influence

the results. To mitigate these effects, batch correction was performed

using the Harmony algorithm, and strict quality control standards

were applied throughout all analyses. Future research will further

increase the cohort size and perform multicenter cross-validation to

improve the robustness and generalizability of the conclusions.

Finally, validation using nucleus pulposus and peripheral blood

samples from LDD patients is warranted to confirm the diagnostic

value of CDK1 and COL4A2, and to further clarify their roles in

disease progression. Additional in vitro functional experiments—

such as siRNA knockdown and overexpression in NP cells—will

help elucidate their regulatory roles in cell cycle control and ECM

homeostasis (30, 31). Moreover, the inferred interactions between

gd T cells and neutrophils were derived from computational

estimations and thus require further experimental validation.

In summary, by integrating single-cell and bulk transcriptomics

with machine learning and molecular modeling, we elucidated

immune and molecular mechanisms in LDD. Identification of

CDK1 and COL4A2 as key biomarkers highlights their potential

for early diagnosis and immune-targeted therapy.
5 Conclusion

This study integrated single-cell and bulk RNA-seq data to

characterize the immune microenvironment in lumbar disc
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degeneration (LDD). Analysis revealed a marked enrichment of

pro-inflammatory M1 macrophages in degenerated tissues. High-

dimensional weighted gene co-expression network analysis

(hdWGCNA) combined with machine learning identified CDK1

and COL4A2 as key hub genes. A dual-gene predictive model

demonstrated strong diagnostic accuracy (AUC > 0.75) and

potential clinical utility for early risk assessment. Furthermore, in

silico drug prediction and molecular docking indicated stable

interactions between AR234960 and COL4A2, and RO 3306 and

CDK1, suggesting these compounds as promising targeted

therapeutics. Overall, these results provide new molecular insights

into immune-mediated LDD pathogenesis and highlight CDK1 and

COL4A2 as potential biomarkers and therapeutic targets for

precision diagnosis and treatment.
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