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Background: Pancreatic cancer (PC) is characterized by an exceptionally poor

prognosis, primarily attributable to its aggressive metastatic behavior and high

recurrence rates. Liver metastasis is the predominant distant metastasis model of

PC. Moreover, invasion and metastasis of PC are closely associated with the

remodeling or loss of basement membrane (BM). Consequently, identifying

pivotal genes involved in PC liver metastasis (PCLM) and BM could pave the

way for more effective and precise targeted therapies. This study aims to

construct a prognostic model based on PCLM and BM-related genes, while

also validating the association between this model and the immune

microenvironment of PC, as well as its predictive value for the efficacy of

chemotherapy and immunotherapy.

Methods: Transcriptomic, mutation, and clinical data were retrieved from the

TCGA, ICGC, and GEO databases. Core prognostic genes were identified through

single-cell (sc) and bulk transcriptomic sequencing data combined with WGCNA

analysis. The prognostic model was established using machine learning

algorithms and multivariate Cox regression analyses. Specifically, the TCGA-

PAAD cohort was utilized as the training set while the PACA-AU cohort served as

the validation set. The performance of this model was assessed in both the

training and validation sets. Additionally, the associations between the model and

tumor mutation burden (TMB) as well as tumor immunity were evaluated using

multiple immunity databases. Additionally, the predictive capacity of the model

regarding the efficacy of chemotherapy, immunotherapy, and targeted therapy

was also assessed. Finally, the expression of COL7A1 was knockdown in cancer-

associated fibroblasts (CAFs) in PC to explore its role in PC progression.

Results: 30 PCLM and BM-related prognostic genes were preliminarily identified

integrating sc and bulk transcriptomic sequencing data. Through machine

learning algorithms and multivariate Cox regression analysis, six signatures,

including COL7A1, ITGA6, ITGA7, ITGB5, ITGB7 and NTN4, were subsequently

utilized to construct a prognostic model. This model demonstrated superior

prognostic performance compared with conventional clinicopathological

variables. Immune analysis revealed that the infiltration levels of M0

macrophages and Treg cells were significantly elevated in the high-risk group,
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whereas the infiltration levels of CD8+T cells and gdT cells were significantly

reduced. Moreover, the high-risk group exhibited higher TMB and poorer survival

outcomes. Additionally, the high-risk group showed a higher TIDE and a lower

IPS score, indicating less effective immunotherapy response. Furthermore, the

high-risk group displayed significantly higher IC50 values for common PC

chemotherapeutics, suggesting reduced chemotherapeutic efficacy. Notably,

scRNA-seq analysis indicated that COL7A1, which has not been systematically

investigated in PC previously, predominantly expressed in fibroblasts. Specifically,

CAFs exhibited significantly higher expression levels of COL7A1 compared to

normal pancreatic fibroblasts, and COL7A1 knockdown in CAFs markedly

reduced the migratory capacity of PC cells while enhancing their

chemosensitivity to gemcitabine.

Conclusion: This study developed and rigorously validated an innovative

prognostic model for PC. This model, incorporating pivotal genes of PCLM and

BM, may also serve as potential tool for predicting the tumor immune

microenvironment and therapeutic efficacy. Notably, COL7A1, which was

demonstrated to be vital in PC metastasis in this study, warrants further

investigation in future research.
KEYWORDS
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Introduction

Pancreatic cancer (PC) is currently the fourth leading cause of

cancer-related deaths in the US and is projected to become the

second leading cause by 2030 (1, 2). Despite decades of efforts, the

5-year overall survival (OS) rate has only increased from 4% to 13%,

with more than half of patients presenting metastatic disease at

diagnosis, resulting in dismal prognosis (1). Liver metastasis is a

common mode of dissemination for PC and is associated with an

even worse outcome (3). The underlying mechanisms of pancreatic

cancer liver metastasis (PCLM) are complicated, with the

interaction between tumor cells and the tumor microenvironment

(TME) being a vital factor contributing to PCLM and treatment

resistance (4). Gemcitabine plus nab-paclitaxel and FOLFIRINOX

remain the standard first-line therapies for metastatic PC (5, 6).

However, conventional chemotherapies have limited efficacy in PC,

particularly in PCLM, with only 1% of patients surviving beyond 5

years (7). Immunotherapy, while highly effective in treating various

cancers, has shown limited success in PC. Pembrolizumab

demonstrates efficacy only in a small subset of patients with

microsatellite instability-high (MSI-H) PC (8). A phase II trial

combining dual immune checkpoint inhibitors with gemcitabine

plus nab-paclitaxel also yielded unsatisfactory results (9).The

immunosuppressive nature of the TME and low tumor mutation

burden may contribute to the failure of immunotherapy in PC (10).

Additionally, targeted therapy based on specific biomarkers can

only benefit certain subgroups of PC patients (11). Therefore,
02
developing models to identify patients who are most likely to

benefit from these therapies will enhance precision medicine

approaches for PC and reduce unnecessary medical costs.

The basement membrane (BM) is a thin, dense layer of

extracellular matrix (ECM) that plays a critical role in normal

tissue development and function (12). The two primary

components of BM, laminin and collagen IV, are responsible for

transmitting cellular signals and maintaining structural integrity.

Epithelial tumor cells must invade BM to achieve blood and

lymphatic metastasis, which accounts for the majority of cancer-

related deaths (13). Mechanistically, protease-dependent BM

degradation, such as matrix metalloproteinases (MMPs), cysteine

proteases, and serine proteases, not only weakens its barrier

function but also enhances cell migration through signaling

pathways activated by cleavage products (14). Additionally,

heterotypic cell interactions, including those involving immune

cells, fibroblasts, and myoepithelial cells, can degrade or remodel

the BM, thereby promoting tumor cell metastasis via various

signaling pathways (15–17). Previous studies have highlighted the

role of BM-related genes in the progression and prognosis of PC.

Lin et al. constructed and validated a seven-gene BM-related model

that accurately predicts outcomes in PC patients and explored the

malignant behavior of TINAG expression (18). Subsequently,

Zhang et al. identified DSG3, MET, and PLAU to construct a PC

prognostic model that not only predicted patient survival but also

correlated with specific immune cell infiltration. They further

validated the efficacy of their model using an external cohort (19).
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Despite these advances, there remains a lack of research combining

liver metastasis and BM-related genes using bulk and single-cell

transcriptomic data to develop a comprehensive and effective

prognostic model for PC.

Immune cell infiltration in TME has been extensively reported

to play a critical role in PC metastasis and immunotherapy

outcomes. Tumor-associated neutrophils (TANs) can facilitate

PCLM via multiple mechanisms, including angiogenesis, immune

suppression and escape, as well as epithelial-mesenchymal

transition (EMT) (20). Additionally, the M2 phenotype of tumor-

associated macrophages (TAMs) enhances tumor cell migration,

invasion, and self-renewal. However, disrupting the gal-9/dectin-1

interaction on the surface of M2 macrophages can reduce

regulatory T cel l (Treg) infi l trat ion and reverse the

immunosuppressive tumor microenvironment, thereby inhibiting

tumor growth (21). PC is often considered an immunologically

‘cold’ tumor due to its poor response to immunotherapy (22). The

ineffectiveness of immune checkpoint blockade (ICB) in PC is

attributed to the low proportion of tumor-infiltrating T cells and

the low tumor mutation burden (TMB) in PCs (23, 24).

Nevertheless, a small subset of PC patients may benefit

significantly from ICB therapy due to their unique patterns of

immune cell infiltration. Thus, developing a model to predict the

TME status in PC patients could aid in personalized treatment

strategies and improve therapeutic efficacy.

Previous studies have indicated the critical role of BM-related

genes in predicting TME status and synthetic therapy responses.

Zhang et al. demonstrated that a BM-related prognostic model,

comprising DSG3, MET, and PLAU, was associated with immune

cell infiltration and the efficacy of chemotherapy and

immunotherapy (19). Additionally, The study of Zhou et al.

developed another BM-related gene scoring system to predict the

immune microenvironment and treatment outcomes (25).

However, whether immune cell infiltration in the TME can

modulate BM to enhance PCLM remains unclear. Therefore, it is

essential to construct a model integrating metastasis and BM-

related genes to improve personalized immunotherapies and

enhance the prognosis of PC patients. In this study, we developed

a prognostic model based on metastasis and BM-related genes that

can effectively predict the prognosis, immune microenvironment,

and therapeutic outcomes for PC patients. This model may assist

clinicians in providing personalized treatment strategies.
Methods and materials

Data obtainment

RNA-Seq data from 182 patients with pancreat ic

adenocarcinoma (PAAD) were obtained from the TCGA database

(https://portal.gdc.cancer.gov/), comprising 178 tumor samples and

4 matched normal pancreatic tissue samples. Transcriptomic data

from normal pancreatic tissues of 167 individuals were retrieved

from the GTEx database (https://www.gtexportal.org). Gene

expression microarray datasets (GSE71729 and GSE34153) and
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single-cel l RNA sequencing datasets (GSE154778 and

GSE197177) were downloaded from the GEO repository (http://

www.ncbi.nlm.nih.gov/geo). Gene expression profiles for the

PACA_AU cohort were acquired from the ICGC data portal

(http://xena.ucsc.edu). A total of 178 TCGA_PAAD patients with

complete clinical and transcriptomic data were designated as the

training cohort, while 255 patients from the PACA_AU cohort were

used as the independent validation cohort. Batch effects between

TCGA_PAAD and PACA_AU datasets were corrected using the

sva R package. Additionally, 224 BM-related genes were extracted

from a previous study (26). Detailed characteristics of all datasets

included were summarized in Supplementary Table S1.
Identification of liver metastasis and BM
related genes

To ensure robust identification of candidate genes exhibiting

consistent differential expression across single-cell, bulk, primary,

and metastatic contexts, both bulk and single-cell RNA sequencing

data from primary and metastatic pancreatic tissues were integrated

to identify genes associated with PCLM. The analytical workflow

was as follows: Initial quality control of scRNA-seq data was

performed using the following thresholds: 1, 000 ≤ nCount_RNA

≤ 30, 000, 200 ≤ nFeature_RNA ≤ 10, 000, percent.mt ≤ 20%, and

percent.rb ≤ 50%. Subsequently, a resolution parameter of 1.5 was

applied in the RNA_snn algorithm for cell clustering. Cell cluster

visualization was conducted using both t-SNE and UMAP

dimensionality reduction techniques. Cluster annotation was

performed using the SingleR R package (Version 2.6.0) and

manual curation based on canonical marker gene expression,

including CD3D, CD3E, TRAC (T cells), KLRD1, GNLY, NKG7

(NK cells), CD19, CD79A, MS4A1 (B cells), EPCAM, KRT18,

KRT19 (epithelial cells), CD68, CD163 (macrophages/

monocytes), COL1A1, COL3A1 (fibroblasts), VWF, PECAM1,

PLPP1 (endothelial cells), KIT, TPSAB1, TPSB2 (mast cells).

WGCNA (Version 1.72-5) was employed to identify co-

expression modules associated with PCLM in the GSE71729 and

GSE34153 datasets. The optimal b parameter was determined using

the pickSoftThreshold function based on Pearson correlation

coefficients. Subsequently, co-expression modules were

constructed using the blockwiseModules function. Furthermore,

the weighted adjacency matrix was transformed into a topological

overlap matrix (TOM), and the corresponding dissimilarity matrix

was calculated as (1-TOM). The dynamic tree cutting approach was

employed to conduct the module identification. The TOM type was

set to “unsigned, “ and a minimummodule size of 30 was applied to

ensure the identification of biologically meaningful functional

modules. Differentially expressed genes (DEGs) between primary

tumor cells and liver metastatic cells were identified using the Seurat

package (Version 5.1.0) in scRNA-seq datasets. Additionally, DEGs

between normal pancreatic tissues and PC tissues, as well as

between primary and metastatic tumor tissues, were analyzed

using the limma R package (Version 3.60.3) in bulk RNA-

seq datasets.
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Construction and validation of a novel
prognostic model

To develop a novel prognostic model of PC based on

metastasis-associated BM genes, a combination of 10 machine

learning algorithms (CoxBoost, Lasso, stepwise Cox, plsRcox,

Ridge, Enet, survival support vector machine (SurvivalSVM),

generalized boosted regression models (GBMs), supervised

principal components (SuperPC) and random forest (RSF)) were

employed to screen for prognostic genes using Mime1 R (Version

0.0.0.9000) package. The detailed parameters of the 10 machine

learning algorithms are provided in the original code and

Supplementary Table S2. Subsequently, the gene coefficients were

calculated using multivariate Cox regression analysis. The risk score

for each patient was determined using the following formula: Risk

score=S (Coef×Exp). Thereafter, patients in the training cohort

were stratified into high- and low-risk groups based on the median

value of the risk score. The same formula and cutoff value were also

applied to stratify patients in the validation cohort. Then, a

nomogram including AJCC tumor-node-metastasis (TNM)

staging, grade, gender, age and risk score was constructed. To

evaluate the accuracy and consistency of the prognostic model,

receiver operating characteristic (ROC) curves, calibration curves,

and decision curve analysis (DCA) curves were analyzed using the

timeROC (Version 0.4), ggDCA (Version 1.2), survival (Version

3.6-4), and rms R (Version 6.9-0) packages.
Functional enrichment and gene set
enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes

Genomes (KEGG) analyses were conducted to compare the high-

and low-risk groups of patients with PC using the clusterProfiler

(Version 4.12.0) and enrichplot (Version 1.24.0) R packages. The

enriched pathways in both the high- and low-risk groups were also

identified using gene set enrichment analyses (GSEA) using the

aforementioned R packages and The top5 signaling pathways were

presented for each group. Additionally, the correlations between

risk scores, prognostic genes, and KEGG pathways in tumors were

analyzed using Gene Set Variation Analysis (GSVA) with the GSVA

(Version 2.1.3) R package.
Tumor mutation burden and drug
sensitivity analyses

The mutation information of patients was retrieved from TCGA

database. The gene mutation status in high- and low-risks group

were analyzed using maftools (Version 2.20.0) R package. The

survival analysis between different risks and tumor mutation

burden (TMB) were explored via suvminer (Version 0.4.9) R

package. The drug sensitivity analysis between high- and low-risk

groups was performed by oncoPredict (Version 1.2) R package.
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Immune microenvironment analysis and
immunotherapy

The single-sample GSEA (ssGSEA) algorithm was used to

quantify the abundance of 16 immune cell types in each PC

sample through GSVA (Version 2.1.3) R package (27). The

immune profiles of the high- and low-risk groups were further

characterized by applying multiple algorithms, including xCell (28),

Estimating the Proportion of Immune and Cancer cells (EPIC) (29),

Cell-type Identification By Estimating Relative Subsets Of RNA

Transcripts (CIBERSORT) (30), Quantifying Tumor Immune

Signature Events (QUANTISEQ) (31), and Microenvironment

Cell Populations (MCP) counter (32). Additionally, the

differential expression of immune checkpoint genes between the

two groups was assessed to evaluate treatment sensitivity.

Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE)

data for the TCGA cohort in both high- and low-risk groups were

analyzed to acquire TIDE scores, immune exclusion scores,

dysfunction scores, IPS scores, and MDSC scores through the

TIDE website (http://tide.dfci.harvard.edu/) and then visualized

through ggplot2 (Version 3.5.2) R package (33, 34).
Cell culture and clinical specimens

PANC-1 and BxPC-3 PC cell lines were obtained from the

American Type Culture Collection (ATCC, Manassas, VA, USA).

PANC-1 cells were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM, Hyclone, Logan, UT, USA), whereas BxPC-3

cells were maintained in Roswell Park Memorial Institute (RPMI)

1640 medium (Hyclone, Logan, UT, USA) supplemented with 10%

fetal bovine serum (FBS, Gibco, CA, USA) under standard culture

conditions (37 °C, 5% CO2). In addition, PC tissues and their

corresponding normal pacnreatic tissues were collected from

patients who underwent surgical resection at the Second Affiliated

Hospital of Zhejiang University (SAHZU) and were used for

further analysis.
Extraction of pancreatic cancer-associated
fibroblasts

Surgically resected PC tissues and adjacent normal pancreatic

tissues were collected and immediately immersed in phosphate-

buffered saline (PBS). The tissues were then thoroughly washed five

times in a 50 ml tube using 10–20 ml of PBS per wash.

Subsequently, ophthalmic scissors were used to carefully remove

adipose tissue and other non-target tissues surrounding the PC and

normal pancreatic tissues. The specimens were cut into 1–2 mm³

fragments and transferred into a 0.1% type II collagenase

solution.The digestion was carried out at 37 °C in a shaker

incubator with 5% CO2 for 4 hours. Following digestion, the

suspension was filtered through a 4 mm cell strainer to remove

undigested tissue debris, and the filtrate was collected in a 15 mL
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centrifuge tube. The sample was centrifuged at 1000 rpm for 5

minutes, washed twice with PBS, and the supernatant was

discarded. The isolated cancer-associated fibroblasts (CAFs) were

cultured in 6-well plates containing DMEM supplemented with

20% FBS and a penicillin-streptomycin solution. The cells were used

for cytological experiments after 3–6 passages.
CAFs transfection

CAFs were cultured in 24-well plates and transfected with

previously RNA interference lentiviral vectors (Genechem, China)

or a negative control (empty plasmid) for 24h. The lentiviral

interference sequences used were as follows: COL7A1-shRNA

(134364-1): GGAAACTCCACTTGCTGTTCC;COL7A1-shRNA

(134365-2):GCAGCTCATCTGTCACCATTA; COL7A1-shRNA

(134366-1): GCATCCAGCTACATCCTATCC. Following

transfection, the medium was replaced with complete culture

medium, and cells were cultured for an additional week.

Subsequently, the medium was changed to complete medium

supplemented with puromycin. After 72 hours, fluorescence

intensity was assessed under a fluorescence microscope, and visible

cellular fluorescence indicated successful transfection. As the lentivirus

conferred puromycin resistance, stable lentiviral-expressing cell lines

were selected by puromycin supplementation in the culture medium.

During this period, cells were gradually passaged from 24-well plates

to 12-well plates and finally to 6-well plates due to confluence.
Co-culture of PC cells and CAFs

PC cells (PANC-1, BxPC-3) and CAFs were resuspended to a

concentration of 1×106 cells/mL in DMEM complete medium. The

PC cells and CAFs were then co-cultured in a 6-well plate transwell

system with a pore size of 0.4 mm (Corning, USA) (Figure 1A). A total

of 200 ml of CAF suspension was added to the upper chamber, and 800

ml of PC cell suspension was seeded into the lower well of the plate.
qRT-PCR

Total RNA was extracted from CAFs using TRIzol Reagent

(15596026; Ambion, Life Technologies, Carlsbad, CA, USA),

followed by first-strand cDNA synthesis using a First-Strand

Synthesis System for qRT-PCR (A6001, Promega, Madison,

USA). The resulting cDNA was quantified by real-time PCR on a

Veriti 96-well Thermal Cycler (4375786; Applied Biosystems,

Foster City, CA, USA). Amplification was performed using a

StepOnePlus™ Real-Time PCR System (Applied Biosystems)

according to the manufacturer’s instructions. The forward primer

sequence for COL7A1 is 5’-GTTGGAGAGAAAGGTGACGAGG-

3’, and the reverse primer sequence is 3’-TGGTCTCCCT

TTTCACCCACAG-5’. GAPDH was used as the internal

reference gene, with the following primer sequences: forward

primer 5’-GTCTCCTCTGACTTCAACAGCG-3’, reverse primer
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3’-ACCACCCTGTTGCTGTAGCCAA-5’. Relative expression

levels were normalized to GAPDH and calculated using the

-2DDCT method.
Western blot analyses

The detailed procedures of western blot analyses were

analogous to our previous study (35). The primary antibodies

employed were as follows: rabbit anti-COL7A1 (1:600 dilution;

19799-1-AP, Proteintech, Chicago, IL, USA) and rabbit anti-b-actin
(1:1000 dilution; ab8226, Abcam, Cambridge, UK).
Wound healing assay

The processed cells were seeded in 6-well plates at a density of

3×105 cells/well in FBS-free medium. When cells reached 70-80%

confluence, sterile pipette tips were used to scratch and form a

“wound”. The cells were then incubated for 24 hours, after which

wound closure was observed and images were captured using a

DFC300FX microscope (Leica, Jena, Germany). The width of the

wound and the number of migrated cells were quantified using

Image J software (NIH, Bethesda, MD, USA).
Transwell assay

PC cells were seeded in the upper chambers of a transwell system

(pore size: 8 mm; Corning, USA) at a density of 2×105 cells per well in

200 ml of serum-free DMEM, whereas CAFs were cultured in the lower

chambers at a density of 1×106 cells per well in 800 ml of complete

DMEM. Following 24 hours of incubation, the cells were fixed and

stained with crystal violet for 15 mins. Cell migration was assessed by

capturing images under a microscope and counting cells in five

randomly selected fields of view. The cell number was further

obtained using Image J software (NIH, Bethesda, MD, USA).
Colony formation assay

500 preprocessed PC cells were seeded into each well of a 6-well

plate and cultured in a cell incubator for 14 days. Following this, the cells

were fixed with 4% paraformaldehyde for 20 minutes and subsequently

stained with crystal violet for 10 minutes. After staining, the excess dye

was removed by washing three times with phosphate-buffered saline

(PBS). The resulting colonies were photographed and quantified using

Image J software (NIH, Bethesda, MD, USA).
Cell viability assay

4×103 preprocessed PC cells were seeded into 96-well plates and

incubated for 8 h prior to treatment with various concentrations of

gemcitabine (GEM) (LILLY, France): 0, 1 nM, 10 nM, 100 nM, 1
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mM, 10 mM, 100 mM, and 1 M. After 48 h of drug treatment, CCK-8

kit (Dojindo, Japan) was used to detect cell viability according to the

manufacturer’s instructions. Absorbance was measured at 562 nm.

Dose-response curves were generated by nonlinear regression

analysis (inhibitor, four parameters) using GraphPad Prism 10,

and the half-maximal inhibitory concentration (IC50) was

determined as the drug concentration corresponding to the

steepest slope of the fitted curve.
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Statistical analysis

All statistical analyses were performed using R software (version

4.4.1). The Student’s t test was used to compare means between two

groups. The OS of patients in high- and low-risk groups was

compared using Kaplan-Meier analysis with the log-rank test.

Independent predictors for patient prognosis were identified

through univariate and multivariate Cox regression analyses. The
FIGURE 1

(A) Schematic diagram of co-culture of CAFs and PC cells. (B) The mRNA levels of COL7A1 between CAFs and normal pancreatic fibroblsts. (C, D)
qRT-PCR and western blot analyses evaluation of COL7A1 lentiviral knockdown efficiency. (E) The results of wound healing assay using PANC-1 and
BxPC-3 PC cells. (F) The results of transwell assay using PANC-1 and BxPC-3 PC cells. (G) IC50 curves under gradient concentration GEM after
COL7A1 knockdown in CAFs co-cultured with in PANC-1 cells. (H) IC50 curves under gradient concentration GEM after COL7A1 knockdown in CAFs
co-cultured with in BxPC-3 cells. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001.
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Wilcoxon rank-sum test was applied to compare gene expression

levels, as well as variations in TMB, drug sensitivity, immune scores,

TIDE scores, and immunohistochemistry positive score (IPS)

between the two risk groups. Spearman correlation analysis was

used to assess the relationship between these variables. All analyses

were systematically repeated to ensure result reliability. Two-tailed

p-values less than 0.05 were considered statistically significant.
Results

Identification of PCLM and BM-related
genes

Figure 2 shows the workflow chart of the study. Both single-cell

and bulk transcriptional data were utilized to identify PCLM-

related genes. Using the Seurat R package (Version 5.1.0), we

analyzed the single-cell transcriptional datasets GSE154778 and

GSE197177, employing UMAP and tSNE methods to visualize cell

clustering. In GSE154778, we included 10 primary tumor samples

and 6 metastatic tumor samples, whereas in GSE197177, 3 paired

primary and metastatic tumor samples were incorporated

(Figures 3A, 4A and Supplementary Figures S1A, D). The SingleR

R package was used to divide the cells into 19 clusters for

GSE154778 and 24 clusters for GSE197177, respectively

(Figures 3B, 4B and Supplementary Figures S1B, E). Through

manual annotation, five cell types were identified in the

GSE154778 cohort and eight cell types in the GSE197177 cohort

(Figures 3C, 4C and Supplementary Figures S1C, F). Figures 3D, E

illustrate the expression of classical markers across different cell

clusters for manual annotation in GSE154778, while Figures 4D, E

present the corresponding results for GSE197177. Subsequently, we

identified significantly DEGs between primary and metastatic

tumor samples in both datasets using the criteria log2 |Fold

change| ≥ 0.5 and FDR < 0.05. A total of 1861 DEGs were

detected in GSE154778 and 598 in GSE197177, with the volcano

maps displayed in Figures 3F and 4F for the respective cohorts. The

GSE34153 and GSE71729 cohorts were recruited to identify DEGs

between primary and metastatic tumors and to perform WGCNA

analysis. In the WGCNA, the optimal b parameters for achieving

scale-free topology were determined to be 6 and 7 for GSE34153

and GSE71729, respectively. Subsequently, a total of 20 and 21 co-

expression modules were identified in GSE34153 and GSE71729,

respectively. The results showed that 1570 DEGs were detected in

the GSE34153 cohort, along with 1184 liver metastasis-associated

co-expression genes derived from WGCNA (Figure 5). In the

GSE71729 cohort, 3832 DEGs were identified, and 2342 co-

exp r e s s i on gene s we r e ob t a in ed th rough WGCNA

(Supplementary Figure S2). Subsequently, we retrieved 349

TCGA-PAAD & GTEx Pancreas patient samples (178 tumor and

171 normal) encompassing 19726 genes from both the TCGA and

GTEx databases. Differential expression analysis was then

conducted using the screening criteria of log2 |Fold change| ≥ 0.5

and FDR < 0.05, yielding a total of 16086 DEGs. Figure 6A displays

the heatmap of the top 50 positively and negatively expressed DEGs
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between PC and normal pancreatic tissues, while Figure 6B

demonstrated the volcano maps of the DEGs. Subsequently, we

identified the intersection of DEGs in GSE154778 and GSE197177,

resulting in 218 common DEGs (Figure 7A). Moreover, we found

732 common DEGs between GSE34153 and GSE71729, as well as

1321 PCLM-related genes through WGCNA (Figures 7B, C).

Finally, by intersecting 224 BM-related genes, 1809 PCLM-related

genes, and 16085 PC-related DEGs, we obtained 30 signature genes

for subsequent analysis (Figure 7D).
Machine learning based integration
develops a novel prognostic model for PC

Initially, we meticulously annotated 30 PCLM and BM-related

genes obtained from our prior analysis within the heatmap of

significantly DEGs between PC and adjacent normal pancreatic

tissues. Among these genes, except for MATN4 and FREM1, the

expression levels of the remaining genes were markedly upregulated

in PC compared to adjacent normal tissues (Figure 8A).

Subsequently, we utilized data from the TCGA database as the

training set and data from the ICGC database as the validation set.

To ensure data consistency, batch effects were removed from both

datasets. Comparisons of PCA plots before and after batch effect

removal demonstrated that the removal process effectively minimized

technical variation (Figures 8B, C). The leave-one-out cross-

validation (LOOCV) framework was employed to optimize a

combination of 10 machine learning algorithms with

hyperparameter tuning using the training set. Thereafter, the C-

index and AUC values for each model were calculated using the

validation set. The optimal model was identified as the combination

of Lasso and Random Survival Forest (RSF), which achieved the

highest average C-index (0.73) and AUC (0.755) among all model

types (Figures 8D, E). Figure 8F displays the detailed C-index and

AUC values of the Lasso+RSF model in both the training and

validation datasets. Compared with previously reported prognostic

models, the model developed in this study demonstrated superior

performance in terms of efficacy across both the TCGA and ICGC

databases (Figure 8G) (36–46). Six consensus genes with prominent

prognostic value were identified, and their gene coefficients were

further calculated in the model. Univariate analysis revealed that all

six genes exhibited significant prognostic value (p<0.05). Specifically,

except for ITGA7, increased expression levels of the remaining five

genes were significantly associated with poorer prognosis in PC

patients (Figure 8H). The gene correlation network diagram

indicates that, apart from ITGA7, the expression levels of the other

five genes display significant positive correlations with one another

(Figure 8I). Subsequently, multivariate COX regression analysis was

conducted on these six genes to determine the coefficients for each

prognostic gene. Based on these coefficients, we formulated a

prognostic scoring model as follows: Risk Score = (COL7A1 *

0.126) + (ITGA6 * 0.182) - (ITGA7 * 0.271) + (ITGB5 * 0.346) +

(ITGB7 * 0.344) + (NTN4 * 0.222). The median value of the

prognostic risk scores in the training dataset was used as the cut-off

point to classify patients. We then stratified PC patients in both the
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training set (TCGA dataset) and the validation set (ICGC dataset)

into high-risk and low-risk groups. Kaplan-Meier survival curves for

the overall cohort and the two sub-cohorts consistently demonstrated

that the high-risk group exhibited significantly reduced survival rates

compared to the low-risk group (Figure 9A). Furthermore, the ROC
Frontiers in Immunology 08
curves confirmed the robust prognostic performance of this model at

1-, 2-, and 3-year OS, as evidenced by the relatively high AUC values

(Figure 9B). Additional analysis of the risk curve and survival status

also revealed that patients in the high-risk group had markedly

shortened OS. Moreover, the expression levels of the five genes
FIGURE 2

Workflow chart of the study. GO, Gene Ontology; GSEA, gene set enrichment analysis; ICGC, International Cancer Genome Consortium; KEGG,
Kyoto Encyclopedia of Genes and Genomes; PCA, principal component analysis; ROC, receiver operating characteristic; TCGA, The Cancer Genome
Atlas; TIDE, tumor immune dysfunction and exclusion; TMB, tumor mutation burden; t-SNE, t-distributed stochastic neighbor embedding.
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(COL7A1, ITGA6, ITGB5, ITGB7, NTN4) were significantly elevated

in the high-risk group compared to the low-risk group (Figures 9C-

E). PCA and tSNE plots clearly demonstrated that the two risk groups

were distinctly separated, forming two separate clusters (Figures 9F,

G). Moreover, the bar chart indicated that the expression levels of

COL7A1, ITGA6, ITGB5, ITGB7, and NTN4 were significantly

higher in the high-risk group than in the low-risk group. In
Frontiers in Immunology 09
contrast, ITGA7 showed a markedly reduced expression level in

the high-risk group (Supplementary Figure S3). Additionally, survival

analysis revealed that elevated expression levels of the prognostic

genes, except for ITGA7, were significantly associated with worse

patient outcomes. Conversely, increased expression of ITGA7 was

significantly correlated with better patient prognosis (Supplementary

Figure S4). In addition, we explored the correlation between risk
FIGURE 3

(A) The original UMAP plot of GSE154778; (B) The UMAP plot of GSE154778 after simple annotation by the SingleR R package; (C) The UMAP plot of
GSE154778 after manual marker annotation; (D) Dot plot of expression levels of each cell population in manual annotation in GSE154778; (E) Violin
plot of expression levels of each cell population in manual annotation in GSE154778; (F) Volcano plot of GSE154778, showing significantly
upregulated and downregulated differentially expressed genes (DEGs).
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scores and clinicalpathological variables. In the TCGA dataset, this

risk score was significantly associated with the tumor stage of PC

patients, whereas in the ICGC dataset, it was strongly correlated with

tumor size. However, this prognostic model showed no significant

correlation with the TNM stage of the tumor in either dataset

(Supplementary Figure S5). This could potentially be attributed to

the heterogeneity between the two datasets.
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Validation and evaluation of the novel
model and the gene set enrichment
analyses

To further validate the prognostic value of the predictive model

we constructed and compare its prognostic performance with other

clinicalpathological variables, we performed univariate and
FIGURE 4

(A) The original UMAP plot of GSE197177; (B) The UMAP plot of GSE197177 after simple annotation by the SingleR R package; (C) The UMAP plot of
GSE197177 after manual marker annotation; (D) Dot plot of expression levels of each cell population in manual annotation in GSE197177; (E) Violin
plot of expression levels of each cell population in manual annotation in GSE154778; (F) Volcano plot of GSE197177, showing significantly
upregulated and downregulated differentially expressed genes (DEGs).
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multivariate analyses using the TCGA dataset. The results

demonstrated that age, TNM stage, tumor grade, and the risk

score derived from the prognostic model were independent

prognostic factors in the univariate analysis (Figure 10A). In the

subsequent multivariate analysis, only the risk score of the

prognostic model remained an independent prognostic factor

(Figure 10B). Subsequently, we integrated the risk score of the
Frontiers in Immunology 11
prognostic model with relevant clinicalpathological variables (age,

gender, T stage, N stage, M stage, and tumor grade) to develop a

prognostic nomogram (Figure 10C). Further univariate and

multivariate analysis confirmed that the nomogram was an

independent prognostic factor in both univariate and multivariate

analyses (Figures 10D, E). The subsequent ROC analysis revealed

that the nomogram exhibited superior prognostic performance in
FIGURE 5

(A) Heatmap of the top 50 upregulated and downregulated DEGs between primary tumors and metastases in GSE34153; (B) Volcano plot of DEGs
between primary tumors and metastases in GSE34153; (C) Selecting the optimal b parameter for WGCNA analysis in GSE34153. (D) System tree
diagram of gene set clusters from WGCNA analysis; (E) Module diagram of co-expressed genes from WGCNA analysis.
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predicting 1-, 2-, and 3-year OS, with an AUC higher than that of

the 6-gene prognostic model alone. Additionally, its prognostic

performance surpassed that of any single clinicalpathological

variable (Figures 10F, G). The subsequent calibration curves,

DCA, and time-dependent C-index curves all indicated that the

nomogram had excellent prognostic predictive accuracy

(Figures 10H-K). In the ICGC dataset, while the overall results

were less satisfactory compared to the training set, similar trends

were observed. This discrepancy might be attributed to sample

heterogeneity, treatment differences and the relatively small size of

training cohort (Supplementary Figure S6). To further explore the

differences in signaling pathways between the high and low-risk

groups, we identified significantly DEGs between these two groups.

Specifically, a total of 2020 upregulated genes and 1098

downregulated genes were detected in the high-risk group

(Figure 11A). These DEGs were subsequently subjected to GO

and KEGG enrichment analyses using the Database for Annotation,

Visualization, and Integrated Discovery (DAVID). The GO analysis

indicated that the DEGs were significantly enriched in biological

processes and molecular functions associated with cell adhesion,

migration, focal adhesion, integrin binding, and collagen-

containing extracellular matrix, all of which are closely linked to

cell invasion and metastasis (Figure 11B). KEGG analysis revealed

that the DEGs were significantly associated with tumor-related

signaling pathways, including the PI3K-Akt signaling pathway,

Hippo signaling pathway, Wnt signaling pathway, and

extracellular matrix (ECM)-receptor interaction (Figure 11C).

Furthermore, GSEA demonstrated that in the high-risk group,

these genes were significantly enriched in pathways related to the

cell cycle, ECM-receptor interaction, focal adhesion, p53 signaling,

and pathways in cancer (Figure 11D). In contrast, the low-risk

group exhibited no significant enrichment in pathways associated

with tumor progression (Figure 11E). Finally, GSVA showed that
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the genes in the prognostic model were positively associated with

the majority of signaling pathways implicated in tumor progression.

Additionally, the risk score was significantly positively correlated

with the p53 signaling pathway, Notch signaling pathway, and

VEGF signaling pathway, while it was significantly negatively

correlated with the PPAR signaling pathway and calcium

signaling pathway (Figure 11F, Supplementary Figure S7).
Comparison of tumor mutation burden
and drug sensitivity between high and low-
risk groups

Mutations in several key genes are among the critical

contributors to PC development. Subsequently, we analyzed the

tumor mutational profiles of patients in both the high- and low-risk

groups. The somatic mutation burden analysis revealed that 94.12%

of patients in the high-risk group harbored gene mutations,

significantly higher than the 75.95% mutation rate observed in

the low-risk group. Notably, the most frequent mutation types

included missense mutations, nonsense mutations, and frameshift

deletions (Figures 12A, B). A significant positive correlation was

identified between the risk score and tumor mutational burden

(TMB) (R = 0.25, p=0.0011). Moreover, TMB levels were

significantly elevated in the high-risk group compared to the low-

risk group (Figures 12C, D). Survival analysis integrating TMB and

risk score demonstrated that patients with low TMB had a

significantly better prognosis than those with high TMB.

Importantly, patients with both low TMB and low risk scores

exhibited the most favorable survival outcomes (Figures 12E, F).

In the high-risk group, the mutation frequencies of canonical

oncogenes KRAS, TP53, and CDKN2A were significantly higher

than those in the low-risk group. Conversely, no significant
FIGURE 6

(A) Heatmap of the top 50 significantly upregulated and downregulated DEGs in pancreatic cancer and adjacent tissues analyzed by the TCGA and
GTEx databases; (B) Volcano plot of significantly DEGs in pancreatic cancer and adjacent tissues analyzed by the TCGA and GTEx databases.
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difference was observed in the mutation frequency of the tumor

suppressor gene SMAD4 between the two groups in our study

(Figures 12G-J). Subsequently, we examined the chemotherapeutic

sensitivity of PC patients across different risk groups. Using the

OncoPredict R package, we assessed the efficacy differences of

commonly used PC chemotherapeutics between high- and low-

risk patients. The results demonstrated that the half-maximal

inhibitory concentration (IC50) values for oxaliplatin,

fluorouracil, gemcitabine, irinotecan, and paclitaxel were

significantly higher in the high-risk group compared to the low-

risk group, suggesting that high-risk patients may be more prone to

developing chemotherapy resistance (Figure 13A). Additionally,

correlation scatter plots revealed a significant positive correlation

between the risk scores of these drugs and their respective IC50

values (Figure 13B). Furthermore, the analysis of expression levels

for several common target genes indicated that EPHA2 and MET

were significantly upregulated in the high-risk group, whereas KIT,

RET, and TEK exhibited significant upregulation in the low-risk

group. These findings suggest that targeted therapeutic drugs

against these gene targets may exhibit differential efficacy among

patients in different risk groups (Figure 13C).
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Analysis of the tumor immune landscape in
high- and low-risk groups

The tumor immune microenvironment plays a critical role in

tumor progression, invasion, metastasis, and the response to

immunotherapy. To evaluate the distinct immune landscapes of

high- and low-risk groups, we analyzed differences in TIDE and

IPS scores between these groups.The results demonstrated that TIDE

scores, immune exclusion scores, andMDSC scores were significantly

higher in the high-risk group compared to the low-risk group,

indicating a greater likelihood of immune escape and resistance to

immunotherapy in the high-risk group (Figures 14A-D). In the IPS

analysis, the IPS scores for PD1(+)CTLA4(-) were significantly lower

in the high-risk group than in the low-risk group. Conversely, no

significant differences were observed in the IPS scores for PD1(+)

CTLA4(+), PD1(-)CTLA4(-), and PD1(-)CTLA4(+) between the two

groups. These findings suggested that the high-risk group exhibited

reduced responsiveness to immunotherapy (Figures 14E-H).

Subsequently, ssGSEA immune cell infiltration analysis revealed

that neutrophils and memory B cells exhibited significantly higher

infiltration levels in the high-risk group. In contrast, NK cells, CD8+
FIGURE 7

(A) Venn diagram of significantly DEGs in the GSE154778 and GSE197177 datasets; (B) Venn diagram of significantly DEGs in the GSE71729 and
GSE34153 datasets; (C) Venn diagram of significantly DEGs in the WGCNA analysis of the GSE71729 and GSE34153 datasets; (D) Venn diagram
showing 30 common genes selected.
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T cells, gdT cells, and Treg cells demonstrated significantly elevated

infiltration levels in the low-risk group (Figures 14I, J). Additionally,

high-risk scores exhibited significant positive correlations with the

expression levels of immune checkpoints such as CD80, TNFSF9, and

CD40. Conversely, low-risk scores showed significant positive

correlations with the expression of CD200. These findings

suggested that the efficacy of different immune checkpoint

inhibitors might differ across risk groups (Figure 14K). Moreover,

immune function analysis revealed that CCR, immune checkpoint

expression, cytolytic activity, T-cell co-inhibition, and T-cell co-

activation were significantly higher in the low-risk group compared

to the high-risk group (Figure 14L). CIBERSORT database analysis

revealed that the infiltration abundance of M0 macrophages,

dendritic cells and monocyte was significantly higher in the high-
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risk group compared to the low-risk group. Conversely, the

infiltration abundance of naive B cells and gdT cells was

significantly lower in the high-risk group than in the low-risk

group. Furthermore, analyses from multiple immune cell

infiltration-related databases demonstrated significant correlations

between immune cell infiltration and the risk scores of the prognostic

model (Supplementary Figure S8). Supplementary Figure S9

illustrated the correlations between six model genes and the

infiltration levels of 22 types of immune cells. The expression of

these model genes (with the exception of ITGA7) is predominantly

significantly positively correlated with macrophage infiltration,

whereas it was significantly negatively correlated with the

infiltration of anti-tumor immune cells, such as activated NK cells

and CD8+ T cells. In contrast, ITGA7 exhibited an opposite pattern.
FIGURE 8

(A) The expression of 30 PCLM and BM-related genes in a heat map. (B) PCA plot of training and validation groups before removing batch effect.
(C) PCA plot of training and validation groups after removing batch effect. (D) The C-index values of the training set and validation set for each of
the 100 machine learning prediction models were calculated. (E) The ROC values of the training set and validation set for each of the 100 machine
learning prediction models were calculated. (F) C-index value of Lasso+RSF model in TCGA and ICGC cohort. (G) Forest plots present the C-index
values of our model and previous models in training and validation models. (H) A forest plot shows the prognostic value of 6 related genes in
pancreatic cancer. (I) A gene correlation network map shows the expression correlation among six genes in the prognostic model.
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ScRNA-seq analysis of the expression of
COL7A1 and its role in PC malignant
behaviors

Ultimately, we utilized single-cell transcriptome data to analyze

the specific expression patterns and distribution of six model genes
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at the single-cell resolution. In the GSE154778 dataset, analysis

demonstrated that COL7A1 and ITGB5 were predominantly

expressed in tumor-associated fibroblasts, ITGA6 was detectable

in both tumor epithelial and endothelial cells, NTN4 was primarily

localized within tumor epithelial cells, whereas ITGA7 and ITGB7
FIGURE 9

(A) Kaplan-Meier survival curves showing the OS of high-risk and low-risk groups in the total, TCGA and ICGC cohorts; (B) ROC curves of the total,
TCGA and ICGC cohorts; (C) Risk score curves of the total, TCGA and ICGC cohorts; (D) Scatter plots of survival status in the total, TCGA and ICGC
cohorts; (E) Heatmap showing the expression levels of 6 genes in high-risk and low-risk groups; (F) PCA plots of the total, TCGA and ICGC cohorts;
(G) tSNE plots of the total, TCGA and ICGC cohorts.
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FIGURE 10

(A) Univariate analysis of the TCGA cohort; (B) Multivariate analysis of the TCGA cohort; (C) Nomogram for constructing a combined clinical variable
and prognostic model risk score in the TCGA dataset; (D) Univariate analysis of the TCGA cohort, including the nomogram model; (E) Multivariate
analysis of the TCGA dataset, including the nomogram model; (F) ROC curve prediction model for 1-, 2-, and 3-year survival prediction accuracy in
the TCGA cohort; (G) Multivariate ROC curves to plot the prognostic prediction efficacy of gender, age, stage, grade, the risk score of the prognostic
model, and the nomogram; (H) 1-, 2-, and 3-year calibration curves to evaluate the prognostic prediction stability of the nomogram; (I) DCA curves
to show the clinical benefit level of the nomogram model at 1-, 2-, and 3-years; (J) DCA curves to show the corresponding clinical benefits of the
nomogram model, the risk score of the prognostic model, and other clinical variables; (K) C-index curves to evaluate the prognostic efficacy of the
nomogram, the risk score of the prognostic model, and related clinical variables.
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exhibited relatively low expression levels overall (Figure 15). The

analysis in the GSE197177 dataset showed a high degree of

concordance with that in GSE154778 (Supplementary Figure

S10). In both datasets, the expression patterns and distribution

profiles of the six model genes within tumor cells were

largely consistent.

Among the six model genes, the potential role of COL7A1 in PC

progression has rarely been reported before. To investigate its

potential involvement, CAFs were isolated from surgically
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resected PC tissues and adjacent normal pancreatic tissues. QRT-

PCR analysis revealed that COL7A1 expression was significantly

upregulated in CAFs compared to normal pancreatic fibroblasts

(Figure 1B). Both qRT-PCR and western blotting confirmed the

knockdown efficiency of three shCOL7A1, among which

shCOL7A1–2 exhibited the highest silencing efficiency and was

selected for subsequent functional assays (Figures 1C, D). Wound

healing assays showed that co-culturing PC cells with CAFs

enhanced their migratory capacity, whereas COL7A1 knockdown
FIGURE 11

(A) Heatmap of significantly DEGs between high-risk and low-risk groups; (B) GO enrichment analysis plot; (C) KEGG analysis plot; (D) Top 5
significantly enriched signaling pathways in the high-risk group; (E) Significantly enriched signaling pathways in the low-risk group; (F) GSVA analysis
demonstrating the correlation between tumor-related KEGG signaling pathways and model genes.
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in CAFs largely reversed this effect (Figure 1E). Transwell migration

assays further indicated that COL7A1 knockdown in CAFs

significantly reduced the number of migrated cells (Figure 1F).

Moreover, when COL7A1 was knocked down in CAFs, the IC50

values of PANC-1 and BxPC-3 cells were significantly lower than

those in control groups, indicating increased sensitivity to GEM

(Figures 1G, H). However, although co-culture with CAFs

significantly promoted cell proliferation in colony formation

assays, COL7A1 knockdown in CAFs did not significantly affect

PC cell proliferation, suggesting that COL7A1 does not play a major

role in regulating this process (Supplementary Figure S11).
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Discussion

PC remains a highly lethal malignancy at present, therefore, it is

crucial to identify effective targets for PC treatment and survival

prediction. In this study, we developed a novel prognostic model

based on six PCLM and BM-related genes for prognosis prediction,

identification of immune microenvironment status, and evaluation

of responses to chemotherapy and immunotherapy. We used the

TCGA-PAAD cohort as the training cohort to construct the model

and utilized the PACA_AU cohort as the validation cohort. The

resulting model demonstrated outstanding and robust prognostic
FIGURE 12

The relationship between the prognostic model risk score and TMB. A, (B) The top 20 mutated genes in the high- and low-risk groups; (C) TMB in
the high-risk group was significantly higher than that in the low-risk group; (D) The risk score was significantly correlated with TMB; (E, F) TMB and
risk score were significantly associated with poor prognosis. (G) KRAS, (H) TP53, (I) CDKN2A and (J) SMAD4, as the four genes with the highest
mutation rates in pancreatic cancer, showed significant changes in the high- and low-risk groups.
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performance and accuracy through various methods.Furthermore,

enrichment analysis, including GO, KEGG, and GSEA analyses,

revealed distinct pathways enriched in the high- and low-risk

groups. Moreover, six immune-related algorithms, namely, xCell,

CIBERSORT, QUANTISEQ, MCPcounter, EPIC, and ssGSEA,

were employed to assess the immune landscape differences

between the two risk groups. Subsequently, the immunotherapy

responses of the two groups were evaluated using TMB values,

TIDE scores, mutation frequencies, and the expression levels of

immune checkpoint genes. Additionally, the efficacy of common

chemotherapeutics for PC in the two groups was assessed via the

OncoPredict R package, and the expression levels of therapeutic

targets were explored to evaluate the response to targeted therapy.

Finally, the single-cell expression distributions of six prognosis-

related genes were analyzed using two single-cell GEO datasets.
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In this study, a prognostic model was constructed based on six

genes associated with PCLM and BM. These genes have been

extensively reported to play critical roles in cancer progression.

Notably, four of these genes are integrin-related genes. As

transmembrane signaling proteins, integrins are predominantly

implicated in promoting tumor progression. ITGA6 was recently

reported to be overexpressed in platinum (PT)-resistant epithelial

ovarian cancer (EOC), contributing to chemoresistance.

Furthermore, ITGA6 facilitates EOC cell dissemination by

modulating insulin-like growth factor (IGF) expression and

activating the IGF1R and Snail signaling pathways (47).

Additionally, multisite m6A modifications of ITGA6 have been

identified to promote bladder cancer (BCa) progression. The

dCasRx-m6A editor-mediated m6A demethylation of ITGA6

mRNA significantly suppressed BCa cell proliferation and
FIGURE 13

(A) Drug sensitivity analysis of oxaliplatin, fluorouracil, gemcitabine, irinotecan and paclitaxel in high-risk and low-risk groups; (B) Scatter plot of drug
sensitivity analysis of oxaliplatin, fluorouracil, gemcitabine, irinotecan and paclitaxel in high-risk and low-risk groups; (C) Differences in target gene
expression between high-risk and low-risk groups. ** p<0.01; *** p<0.001; **** p<0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1671956
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1671956
migration both in vitro and vivo (48). The role of ITGB7 in

tumorigenesis remains controversial. Zhang et al. reported

decreased ITGB7 expression in tumor-infiltrating CD8+T cells,

with higher expression correlating with improved survival in

colorectal cancer patients, suggesting its role in sustaining
Frontiers in Immunology 20
antitumor immune cell infiltration and inhibiting tumor

progression (49). In contrast, in multiple myeloma (MM),

oncogenic overexpression of ITGB7 in high-risk cases enhances

interactions between malignant plasma B-cells and stromal cells,

leading to cell-adhesion-mediated drug resistance (50). In
FIGURE 14

Differences in (A) TIDE score; (B) Immune dysfunction score; (C) Immune rejection score; (D) MDSC score between high-risk and low-risk groups;
(E-H) IPS scores under different expressions of PD1 and CTLA4 in high-risk and low-risk groups; (I, J) ssGSEA analysis of differences in immune cell
infiltration between high-risk and low-risk groups; (K) Heatmap of the correlation between risk score and immune checkpoint gene expression;
(L) Changes in immune function in high-risk and low-risk groups. * p<0.05; ** p<0.01; *** p<0.001.
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pancreatic cancer (PC), ITGB7 was recently identified as a

candidate gene associated with nab-paclitaxel resistance through

whole-transcriptome sequencing in PC patient-derived organoids

(51). Moreover, ITGB7 has been shown to mediate the oncogenic

function of TRIM2, thereby promoting PC progression (52). In our
Frontiers in Immunology 21
study, we further confirmed ITGB7 expression as a risk factor for

poor survival in PC patients, consistent with its established

oncogenic role. The involvement of ITGB5 in PC progression has

also been recently characterized. Overexpression of N-

acetyltransferase 10 (NAT10) was found to enhance perineural
FIGURE 15

(A-F) UMAP plots show the expression of six prognostic model genes in single-cell clusters from the GSE154778 database; (G-L) Violin plots of the
expression of six prognostic model genes in the GSE154778 database; (M) Heatmap of the expression distribution of six prognostic model genes in
the GSE154778 database.
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invasion (PNI) in PC by stabilizing ITGB5 via N4-acetylcytidine

modification, subsequently activating the ITGB5-pFAK-pSrc

pathway to promote PNI (53). High ITGB5 expression in PC

tissues promotes tumor cell invasion and migration. Additionally,

ITGB5 contributes to DNA damage repair and activates the MEK/

ERK signaling pathway, thereby conferring intrinsic radiation

resistance (54). ITGA7 exhibits context-dependent expression

patterns across various cancers. Traditionally recognized as a

tumor suppressor, ITGA7 is significantly downregulated in breast

cancer stem cells (BCSCs)-key contributors to therapy resistance

and adverse clinical outcomes. Low ITGA7 expression correlates

with reduced survival in chemotherapy-treated patients,

highlighting its potential as a predictive biomarker for treatment

response (55). Promoter hypermethylation has been shown to

suppress ITGA7 expression, leading to activation of the PI3K/

AKT/NF-kB pathway and enhanced proliferation and migration

in colorectal cancer (56). NTN4, an epigenetically regulated gene,

plays a dual role in cancer metastasis. In clear cell renal cell

carcinoma (ccRCC), NTN4 inhibits tumor progression by

regulating b-catenin expression and nuclear translocation (57).

Conversely, in endometrial cancer, NTN4 exhibits oncogenic

properties. EXOSC5 upregulates NTN4 expression, activating c-

MYC through the integrin b1/FAK/SRC pathway to sustain cancer

stem cell activity (58). Current evidence on COL7A1 in cancer

progression remains limited and largely derived from bioinformatic

studies. As a BM-related prognostic marker, COL7A1

demonstrated strong prognostic performance and immune

microenvironment predictive capacity in lung cancer (59). It

effectively stratified prognosis in ccRCC and showed robust

prognostic value (60). Ding et al. reported elevated COL7A1

expression in PC, which is associated with patient survival and

specific immune cell infiltration (61). In our study, COL7A1

expression in CAFs was linked to enhanced PC cell migration but

did not significantly influence cell proliferation. This observation

aligns closely with our prior bioinformatic findings, supporting

COL7A1 as a potential therapeutic target for suppressing

PC metastasis.

The efficacy of immunotherapy is heavily contingent upon the

immune landscape of cancer. PC displays an immunologically

“cold” tumor microenvironment (TME), marked by significant

myeloid cells infiltration, a paucity of CD8+T cells, and low

expression of activation markers. These characteristics are

indicative of absent or dysfunctional adaptive T-cell immunity

and contribute to resistance against immune checkpoint blockade

(ICB) (62). Moreover, in addition to its classical oncogenic role,

accumulating evidence highlights that mutant KRAS plays a critical

role in establishing an immunosuppressive TME, which underpins

PC’s resistance to immunotherapy (63). Recently, a study revealed

that combining a KRAS inhibitor with immunotherapy agents in

vivo not only enhanced T-cell infiltration and activation but also

depleted immunosuppressive myeloid cells and alleviated the

immunosuppressive TME in PC, thereby extending the survival
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of an autochthonous PC mouse model (64). Given the limited

efficacy of immunotherapy in PC, predicting the response to

immunotherapy could facilitate the identification of specific

patients who are more likely to benefit from this treatment. In

our study, we developed a novel risk prediction model to evaluate

the response to immunotherapy. Using this model, we observed that

the KRAS mutation rate was significantly higher in the high-risk

group compared to the low-risk group. Additionally, the TIDE

scores were markedly elevated in the high-risk group, suggesting a

poorer response to immunotherapy. Regarding the underlying

mechanism, CD8+ T-cell infiltration was substantially higher in

low-risk PC tissues than in high-risk PC tissues, potentially

contributing to immunotherapy resistance in the high-risk group.

These findings indicate that our model can effectively identify PC

patients who are more likely to benefit from immunotherapy,

thereby enhancing therapeutic outcomes. Numerous recent

studies have underscored the synergistic therapeutic effects of

combining targeted therapy with immunotherapy. TMOD3 was

highly expressed in PC tissues, modulating immunotherapy

resistance. A TMOD3 inhibitor demonstrated a synergistic effect

with PD-1 antibody in PC treatment (65). Furthermore, high

OSBPL3 express ion indicated an immunosuppress ive

microenvironment characterized by reduced CD8+T cell

infiltration and increased Treg cells and M2 macrophages, which

might serve as a promising therapeutic target (66). However,

whether the genes in our model can function as targets to

sensitize immunotherapy remains to be further explored.

In the present study, a novel PCLM- and BM-related model was

developed to predict prognosis, immune microenvironment status,

and responses to immunotherapy and chemotherapy, with the aim

of identifying new therapeutic targets for PC. Although this model

demonstrates improved performance and accuracy compared to

previous models, several limitations still remain. First, our findings

primarily rely on data from public databases, which lack real-world

clinical validation to confirm the model’s accuracy and applicability.

Second, the potential for batch effects between datasets caused a less

satisfactory model evaluation effect. This discrepancy might be

attributed to sample heterogeneity, treatment differences and the

relatively small size of training cohort. Therefore, larger and more

diverse cohorts will be needed for further model validation. Third,

although we conducted preliminary cell experiments to support the

bioinformatic analysis, the functional roles and underlying

mechanisms of certain biomarkers identified in this study, such as

COL7A1, have not been fully validated through in vitro functional

assays or in vivo animal models. Therefore, further experimental

studies are warranted to address these limitations.
Conclusion

In conclusion, a model based on six PCLM and BM-related

genes was developed to effectively predict prognosis, immune
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microenvironment status, and response to immunotherapy.

Therefore, our findings offer promising insights that could assist

physicians in making more accurate and personalized treatment

decisions for patients with PC.
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SUPPLEMENTARY FIGURE 1

(A) The original tSNE plot of GSE197177; (B) The original UMAP plot of
GSE197177; (C) The tSNE plot of GSE197177 after simple annotation by the

SingleR R package; (D) The UMAP plot of GSE197177 after simple annotation
by the SingleR R package; (E) The tSNE plot of GSE197177 after manual marker

annotation; (F) The UMAP plot of GSE197177 after manual marker annotation;
(G)Dot plot of expression levels of each cell population in manual annotation;

(H) Violin plot of expression levels of each cell population in manual

annotation; (I) Volcano plot of GSE154778, showing significantly
upregulated and downregulated differentially expressed genes (DEGs).

SUPPLEMENTARY FIGURE 2

(A) Heatmap of the top 50 upregulated and downregulated DEGs between
primary tumors and metastases in GSE71729; (B) Volcano plot of DEGs

between primary tumors and metastases in GSE71729; (C) Selecting the

optimal b parameter for WGCNA analysis in GSE71729; (D) System tree
diagram of gene set clusters from WGCNA analysis; (E) Module diagram of

co-expressed genes from WGCNA analysis.

SUPPLEMENTARY FIGURE 3

The expression levels of 6 genes in high-risk and low-risk pancreatic cancer

patient groups.

SUPPLEMENTARY FIGURE 4

Kaplan-Meier survival curves of PCLM and BM-related six model genes in
pancreatic cancer patients.

SUPPLEMENTARY FIGURE 5

(A) Correlation analysis of tumor grade and risk score in the TCGA cohort; (B)
Correlation analysis of tumor T stage and risk score in the TCGA cohort; (C)
Correlation analysis of tumor N stage and risk score in the TCGA cohort; (D)
Correlation analysis of tumor M stage and risk score in the TCGA cohort; (E)
Correlation analysis of tumor stage and risk score in the TCGA cohort; (F)
Correlation analysis of tumor grade and risk score in the ICGC cohort; (G)
Correlation analysis of tumor T stage and risk score in the ICGC cohort; (H)
Correlation analysis of tumor N stage and risk score in the ICGC cohort; (I)
Correlation analysis of tumor M stage and risk score in the ICGC cohort; (J)
Correlation analysis of tumor stage and risk score in the ICGC cohort.

SUPPLEMENTARY FIGURE 6

(A) Univariate analysis of the ICGC cohort; (B) Multivariate analysis of the
ICGC cohort; (C) Univariate analysis of the ICGC cohort, including the

nomogram model; (D) Multivariate analysis of the ICGC cohortt, including

the nomogram model; (E) The 1-, 2-, and 3-year survival prediction accuracy
of the ROC curve prediction model of the ICGC dataset; (F)Multivariate ROC

curves were drawn for gender, age, stage, grade, risk score of the prediction
model, and the prognostic prediction efficacy of the nomogram; (G)
Calibration curves for 1-, 2-, and 3-year survival were used to evaluate the
prognostic prediction stability of the nomogram; (H) DCA curves

demonstrated the clinical benefit levels of the nomogram model at 1-, 2-,
and 3-years; (I) DCA curves demonstrated the corresponding clinical benefits

of the nomogrammodel, risk score of the model, and other clinical variables;
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(J) C-index curves were used to evaluate the prognostic efficacy of the
nomogram, risk score of the prognostic model, and related clinical variables.

SUPPLEMENTARY FIGURE 7

Correlation diagram of six PCLM and BM-related prognostic model genes

with tumor marker signaling pathways.

SUPPLEMENTARY FIGURE 8

(A-C) CIBERSORT was used to analyze the differences in immune cell

infiltration between high-risk and low-risk groups in the TCGA database;
(D) The correlations between immune cell infiltration levels and risk scores in

the TCGA database were analyzed using XCELL, CIBERSORT, QUANTISEQ,

MCPCOUNTER, EPIC and CIBERSORT-ABS. * p<0.05; ** p<0.01; *** p<0.001.
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SUPPLEMENTARY FIGURE 9

The lollipop plot shows the correlation analysis between six model genes and
immune cell infiltration.

SUPPLEMENTARY FIGURE 10

(A-F) UMAP plots show the expression of six prognostic model genes in

single-cell clusters from the GSE197177 database; (G-L) Violin plots of the
expression of six prognostic model genes in the GSE197177 database; (M)
Heatmap of the expression distribution of six prognostic model genes in the
GSE197177 database.

SUPPLEMENTARY FIGURE 11

The results of colony formation assay and statistical analysis. ** p<0.01.
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