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cell transcriptomic data reveals a
novel signature related to liver
metastasis and basement
membrane in pancreatic cancer
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and Yizhi Wang™

‘Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang
University School of Medicine, Hangzhou, Zhejiang, China, 2Key Laboratory of Precision Diagnosis
and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou,
Zhejiang, China

Background: Pancreatic cancer (PC) is characterized by an exceptionally poor
prognosis, primarily attributable to its aggressive metastatic behavior and high
recurrence rates. Liver metastasis is the predominant distant metastasis model of
PC. Moreover, invasion and metastasis of PC are closely associated with the
remodeling or loss of basement membrane (BM). Consequently, identifying
pivotal genes involved in PC liver metastasis (PCLM) and BM could pave the
way for more effective and precise targeted therapies. This study aims to
construct a prognostic model based on PCLM and BM-related genes, while
also validating the association between this model and the immune
microenvironment of PC, as well as its predictive value for the efficacy of
chemotherapy and immunotherapy.

Methods: Transcriptomic, mutation, and clinical data were retrieved from the
TCGA, ICGC, and GEO databases. Core prognostic genes were identified through
single-cell (sc) and bulk transcriptomic sequencing data combined with WGCNA
analysis. The prognostic model was established using machine learning
algorithms and multivariate Cox regression analyses. Specifically, the TCGA-
PAAD cohort was utilized as the training set while the PACA-AU cohort served as
the validation set. The performance of this model was assessed in both the
training and validation sets. Additionally, the associations between the model and
tumor mutation burden (TMB) as well as tumor immunity were evaluated using
multiple immunity databases. Additionally, the predictive capacity of the model
regarding the efficacy of chemotherapy, immunotherapy, and targeted therapy
was also assessed. Finally, the expression of COL7Al was knockdown in cancer-
associated fibroblasts (CAFs) in PC to explore its role in PC progression.
Results: 30 PCLM and BM-related prognostic genes were preliminarily identified
integrating sc and bulk transcriptomic sequencing data. Through machine
learning algorithms and multivariate Cox regression analysis, six signatures,
including COL7A1L, ITGAG, ITGA7, ITGBS5, ITGB7 and NTN4, were subsequently
utilized to construct a prognostic model. This model demonstrated superior
prognostic performance compared with conventional clinicopathological
variables. Immune analysis revealed that the infiltration levels of MO
macrophages and Treg cells were significantly elevated in the high-risk group,
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whereas the infiltration levels of CD8+T cells and y3T cells were significantly
reduced. Moreover, the high-risk group exhibited higher TMB and poorer survival
outcomes. Additionally, the high-risk group showed a higher TIDE and a lower
IPS score, indicating less effective immunotherapy response. Furthermore, the
high-risk group displayed significantly higher IC50 values for common PC
chemotherapeutics, suggesting reduced chemotherapeutic efficacy. Notably,
scRNA-seq analysis indicated that COL7A1, which has not been systematically
investigated in PC previously, predominantly expressed in fibroblasts. Specifically,
CAFs exhibited significantly higher expression levels of COL7Al compared to
normal pancreatic fibroblasts, and COL7Al knockdown in CAFs markedly
reduced the migratory capacity of PC cells while enhancing their
chemosensitivity to gemcitabine.

Conclusion: This study developed and rigorously validated an innovative
prognostic model for PC. This model, incorporating pivotal genes of PCLM and
BM, may also serve as potential tool for predicting the tumor immune
microenvironment and therapeutic efficacy. Notably, COL7A1, which was
demonstrated to be vital in PC metastasis in this study, warrants further
investigation in future research.

pancreatic cancer, liver metastasis, basement membrane, prognostic model,
immunotherapy response, SCRNA-seq

Introduction

Pancreatic cancer (PC) is currently the fourth leading cause of
cancer-related deaths in the US and is projected to become the
second leading cause by 2030 (1, 2). Despite decades of efforts, the
5-year overall survival (OS) rate has only increased from 4% to 13%,
with more than half of patients presenting metastatic disease at
diagnosis, resulting in dismal prognosis (1). Liver metastasis is a
common mode of dissemination for PC and is associated with an
even worse outcome (3). The underlying mechanisms of pancreatic
cancer liver metastasis (PCLM) are complicated, with the
interaction between tumor cells and the tumor microenvironment
(TME) being a vital factor contributing to PCLM and treatment
resistance (4). Gemcitabine plus nab-paclitaxel and FOLFIRINOX
remain the standard first-line therapies for metastatic PC (5, 6).
However, conventional chemotherapies have limited efficacy in PC,
particularly in PCLM, with only 1% of patients surviving beyond 5
years (7). Immunotherapy, while highly effective in treating various
cancers, has shown limited success in PC. Pembrolizumab
demonstrates efficacy only in a small subset of patients with
microsatellite instability-high (MSI-H) PC (8). A phase II trial
combining dual immune checkpoint inhibitors with gemcitabine
plus nab-paclitaxel also yielded unsatisfactory results (9).The
immunosuppressive nature of the TME and low tumor mutation
burden may contribute to the failure of immunotherapy in PC (10).
Additionally, targeted therapy based on specific biomarkers can
only benefit certain subgroups of PC patients (11). Therefore,
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developing models to identify patients who are most likely to
benefit from these therapies will enhance precision medicine
approaches for PC and reduce unnecessary medical costs.

The basement membrane (BM) is a thin, dense layer of
extracellular matrix (ECM) that plays a critical role in normal
tissue development and function (12). The two primary
components of BM, laminin and collagen IV, are responsible for
transmitting cellular signals and maintaining structural integrity.
Epithelial tumor cells must invade BM to achieve blood and
lymphatic metastasis, which accounts for the majority of cancer-
related deaths (13). Mechanistically, protease-dependent BM
degradation, such as matrix metalloproteinases (MMPs), cysteine
proteases, and serine proteases, not only weakens its barrier
function but also enhances cell migration through signaling
pathways activated by cleavage products (14). Additionally,
heterotypic cell interactions, including those involving immune
cells, fibroblasts, and myoepithelial cells, can degrade or remodel
the BM, thereby promoting tumor cell metastasis via various
signaling pathways (15-17). Previous studies have highlighted the
role of BM-related genes in the progression and prognosis of PC.
Lin et al. constructed and validated a seven-gene BM-related model
that accurately predicts outcomes in PC patients and explored the
malignant behavior of TINAG expression (18). Subsequently,
Zhang et al. identified DSG3, MET, and PLAU to construct a PC
prognostic model that not only predicted patient survival but also
correlated with specific immune cell infiltration. They further
validated the efficacy of their model using an external cohort (19).
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Despite these advances, there remains a lack of research combining
liver metastasis and BM-related genes using bulk and single-cell
transcriptomic data to develop a comprehensive and effective
prognostic model for PC.

Immune cell infiltration in TME has been extensively reported
to play a critical role in PC metastasis and immunotherapy
outcomes. Tumor-associated neutrophils (TANs) can facilitate
PCLM via multiple mechanisms, including angiogenesis, immune
suppression and escape, as well as epithelial-mesenchymal
transition (EMT) (20). Additionally, the M2 phenotype of tumor-
associated macrophages (TAMs) enhances tumor cell migration,
invasion, and self-renewal. However, disrupting the gal-9/dectin-1
interaction on the surface of M2 macrophages can reduce
regulatory T cell (Treg) infiltration and reverse the
immunosuppressive tumor microenvironment, thereby inhibiting
tumor growth (21). PC is often considered an immunologically
‘cold’ tumor due to its poor response to immunotherapy (22). The
ineffectiveness of immune checkpoint blockade (ICB) in PC is
attributed to the low proportion of tumor-infiltrating T cells and
the low tumor mutation burden (TMB) in PCs (23, 24).
Nevertheless, a small subset of PC patients may benefit
significantly from ICB therapy due to their unique patterns of
immune cell infiltration. Thus, developing a model to predict the
TME status in PC patients could aid in personalized treatment
strategies and improve therapeutic efficacy.

Previous studies have indicated the critical role of BM-related
genes in predicting TME status and synthetic therapy responses.
Zhang et al. demonstrated that a BM-related prognostic model,
comprising DSG3, MET, and PLAU, was associated with immune
cell infiltration and the efficacy of chemotherapy and
immunotherapy (19). Additionally, The study of Zhou et al.
developed another BM-related gene scoring system to predict the
immune microenvironment and treatment outcomes (25).
However, whether immune cell infiltration in the TME can
modulate BM to enhance PCLM remains unclear. Therefore, it is
essential to construct a model integrating metastasis and BM-
related genes to improve personalized immunotherapies and
enhance the prognosis of PC patients. In this study, we developed
a prognostic model based on metastasis and BM-related genes that
can effectively predict the prognosis, immune microenvironment,
and therapeutic outcomes for PC patients. This model may assist
clinicians in providing personalized treatment strategies.

Methods and materials
Data obtainment

RNA-Seq data from 182 patients with pancreatic
adenocarcinoma (PAAD) were obtained from the TCGA database
(https://portal.gdc.cancer.gov/), comprising 178 tumor samples and
4 matched normal pancreatic tissue samples. Transcriptomic data
from normal pancreatic tissues of 167 individuals were retrieved
from the GTEx database (https://www.gtexportal.org). Gene
expression microarray datasets (GSE71729 and GSE34153) and
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single-cell RNA sequencing datasets (GSE154778 and
GSE197177) were downloaded from the GEO repository (http://
www.ncbi.nlm.nih.gov/geo). Gene expression profiles for the
PACA_AU cohort were acquired from the ICGC data portal
(http://xena.ucsc.edu). A total of 178 TCGA_PAAD patients with
complete clinical and transcriptomic data were designated as the
training cohort, while 255 patients from the PACA_AU cohort were
used as the independent validation cohort. Batch effects between
TCGA_PAAD and PACA_AU datasets were corrected using the
sva R package. Additionally, 224 BM-related genes were extracted
from a previous study (26). Detailed characteristics of all datasets
included were summarized in Supplementary Table S1.

Identification of liver metastasis and BM
related genes

To ensure robust identification of candidate genes exhibiting
consistent differential expression across single-cell, bulk, primary,
and metastatic contexts, both bulk and single-cell RNA sequencing
data from primary and metastatic pancreatic tissues were integrated
to identify genes associated with PCLM. The analytical workflow
was as follows: Initial quality control of scRNA-seq data was
performed using the following thresholds: 1, 000 < nCount_RNA
< 30, 000, 200 < nFeature_RNA < 10, 000, percent.mt < 20%, and
percent.rb < 50%. Subsequently, a resolution parameter of 1.5 was
applied in the RNA_snn algorithm for cell clustering. Cell cluster
visualization was conducted using both t-SNE and UMAP
dimensionality reduction techniques. Cluster annotation was
performed using the SingleR R package (Version 2.6.0) and
manual curation based on canonical marker gene expression,
including CD3D, CD3E, TRAC (T cells), KLRD1, GNLY, NKG7
(NK cells), CD19, CD79A, MS4A1 (B cells), EPCAM, KRT18,
KRT19 (epithelial cells), CD68, CD163 (macrophages/
monocytes), COL1A1, COL3A1 (fibroblasts), VWEF, PECAMI,
PLPP1 (endothelial cells), KIT, TPSABI, TPSB2 (mast cells).
WGCNA (Version 1.72-5) was employed to identify co-
expression modules associated with PCLM in the GSE71729 and
GSE34153 datasets. The optimal 3 parameter was determined using
the pickSoftThreshold function based on Pearson correlation
coefficients. Subsequently, co-expression modules were
constructed using the blockwiseModules function. Furthermore,
the weighted adjacency matrix was transformed into a topological
overlap matrix (TOM), and the corresponding dissimilarity matrix
was calculated as (1-TOM). The dynamic tree cutting approach was
employed to conduct the module identification. The TOM type was
set to “unsigned, “ and a minimum module size of 30 was applied to
ensure the identification of biologically meaningful functional
modules. Differentially expressed genes (DEGs) between primary
tumor cells and liver metastatic cells were identified using the Seurat
package (Version 5.1.0) in scRNA-seq datasets. Additionally, DEGs
between normal pancreatic tissues and PC tissues, as well as
between primary and metastatic tumor tissues, were analyzed
using the limma R package (Version 3.60.3) in bulk RNA-
seq datasets.
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Construction and validation of a novel
prognostic model

To develop a novel prognostic model of PC based on
metastasis-associated BM genes, a combination of 10 machine
learning algorithms (CoxBoost, Lasso, stepwise Cox, plsRcox,
Ridge, Enet, survival support vector machine (SurvivalSVM),
generalized boosted regression models (GBMs), supervised
principal components (SuperPC) and random forest (RSF)) were
employed to screen for prognostic genes using Mimel R (Version
0.0.0.9000) package. The detailed parameters of the 10 machine
learning algorithms are provided in the original code and
Supplementary Table S2. Subsequently, the gene coefficients were
calculated using multivariate Cox regression analysis. The risk score
for each patient was determined using the following formula: Risk
score=X (CoefxExp). Thereafter, patients in the training cohort
were stratified into high- and low-risk groups based on the median
value of the risk score. The same formula and cutoff value were also
applied to stratify patients in the validation cohort. Then, a
nomogram including AJCC tumor-node-metastasis (TNM)
staging, grade, gender, age and risk score was constructed. To
evaluate the accuracy and consistency of the prognostic model,
receiver operating characteristic (ROC) curves, calibration curves,
and decision curve analysis (DCA) curves were analyzed using the
timeROC (Version 0.4), ggDCA (Version 1.2), survival (Version
3.6-4), and rms R (Version 6.9-0) packages.

Functional enrichment and gene set
enrichment analyses

Gene Ontology (GO) and Kyoto Encyclopedia of Genes
Genomes (KEGG) analyses were conducted to compare the high-
and low-risk groups of patients with PC using the clusterProfiler
(Version 4.12.0) and enrichplot (Version 1.24.0) R packages. The
enriched pathways in both the high- and low-risk groups were also
identified using gene set enrichment analyses (GSEA) using the
aforementioned R packages and The top5 signaling pathways were
presented for each group. Additionally, the correlations between
risk scores, prognostic genes, and KEGG pathways in tumors were
analyzed using Gene Set Variation Analysis (GSVA) with the GSVA
(Version 2.1.3) R package.

Tumor mutation burden and drug
sensitivity analyses

The mutation information of patients was retrieved from TCGA
database. The gene mutation status in high- and low-risks group
were analyzed using maftools (Version 2.20.0) R package. The
survival analysis between different risks and tumor mutation
burden (TMB) were explored via suvminer (Version 0.4.9) R
package. The drug sensitivity analysis between high- and low-risk
groups was performed by oncoPredict (Version 1.2) R package.
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Immune microenvironment analysis and
immunotherapy

The single-sample GSEA (ssGSEA) algorithm was used to
quantify the abundance of 16 immune cell types in each PC
sample through GSVA (Version 2.1.3) R package (27). The
immune profiles of the high- and low-risk groups were further
characterized by applying multiple algorithms, including xCell (28),
Estimating the Proportion of Immune and Cancer cells (EPIC) (29),
Cell-type Identification By Estimating Relative Subsets Of RNA
Transcripts (CIBERSORT) (30), Quantifying Tumor Immune
Signature Events (QUANTISEQ) (31), and Microenvironment
Cell Populations (MCP) counter (32). Additionally, the
differential expression of immune checkpoint genes between the
two groups was assessed to evaluate treatment sensitivity.
Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE)
data for the TCGA cohort in both high- and low-risk groups were
analyzed to acquire TIDE scores, immune exclusion scores,
dysfunction scores, IPS scores, and MDSC scores through the
TIDE website (http://tide.dfci.harvard.edu/) and then visualized
through ggplot2 (Version 3.5.2) R package (33, 34).

Cell culture and clinical specimens

PANC-1 and BxPC-3 PC cell lines were obtained from the
American Type Culture Collection (ATCC, Manassas, VA, USA).
PANC-1 cells were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM, Hyclone, Logan, UT, USA), whereas BxPC-3
cells were maintained in Roswell Park Memorial Institute (RPMI)
1640 medium (Hyclone, Logan, UT, USA) supplemented with 10%
fetal bovine serum (FBS, Gibco, CA, USA) under standard culture
conditions (37 °C, 5% CO,). In addition, PC tissues and their
corresponding normal pacnreatic tissues were collected from
patients who underwent surgical resection at the Second Affiliated
Hospital of Zhejiang University (SAHZU) and were used for
further analysis.

Extraction of pancreatic cancer-associated
fibroblasts

Surgically resected PC tissues and adjacent normal pancreatic
tissues were collected and immediately immersed in phosphate-
buffered saline (PBS). The tissues were then thoroughly washed five
times in a 50 ml tube using 10-20 ml of PBS per wash.
Subsequently, ophthalmic scissors were used to carefully remove
adipose tissue and other non-target tissues surrounding the PC and
normal pancreatic tissues. The specimens were cut into 1-2 mm?®
fragments and transferred into a 0.1% type II collagenase
solution.The digestion was carried out at 37 °C in a shaker
incubator with 5% CO, for 4 hours. Following digestion, the
suspension was filtered through a 4 pm cell strainer to remove
undigested tissue debris, and the filtrate was collected in a 15 mL
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centrifuge tube. The sample was centrifuged at 1000 rpm for 5
minutes, washed twice with PBS, and the supernatant was
discarded. The isolated cancer-associated fibroblasts (CAFs) were
cultured in 6-well plates containing DMEM supplemented with
20% FBS and a penicillin-streptomycin solution. The cells were used
for cytological experiments after 3-6 passages.

CAFs transfection

CAFs were cultured in 24-well plates and transfected with
previously RNA interference lentiviral vectors (Genechem, China)
or a negative control (empty plasmid) for 24h. The lentiviral
interference sequences used were as follows: COL7A1-shRNA
(134364-1): GGAAACTCCACTTGCTGTTCC;COL7A1-shRNA
(134365-2):GCAGCTCATCTGTCACCATTA; COL7A1-shRNA
(134366-1): GCATCCAGCTACATCCTATCC. Following
transfection, the medium was replaced with complete culture
medium, and cells were cultured for an additional week.
Subsequently, the medium was changed to complete medium
supplemented with puromycin. After 72 hours, fluorescence
intensity was assessed under a fluorescence microscope, and visible
cellular fluorescence indicated successful transfection. As the lentivirus
conferred puromycin resistance, stable lentiviral-expressing cell lines
were selected by puromycin supplementation in the culture medium.
During this period, cells were gradually passaged from 24-well plates
to 12-well plates and finally to 6-well plates due to confluence.

Co-culture of PC cells and CAFs

PC cells (PANC-1, BxPC-3) and CAFs were resuspended to a
concentration of 1x10° cells/mL in DMEM complete medium. The
PC cells and CAFs were then co-cultured in a 6-well plate transwell
system with a pore size of 0.4 um (Corning, USA) (Figure 1A). A total
of 200 ul of CAF suspension was added to the upper chamber, and 800
ul of PC cell suspension was seeded into the lower well of the plate.

qRT-PCR

Total RNA was extracted from CAFs using TRIzol Reagent
(15596026; Ambion, Life Technologies, Carlsbad, CA, USA),
followed by first-strand ¢cDNA synthesis using a First-Strand
Synthesis System for qRT-PCR (A6001, Promega, Madison,
USA). The resulting cDNA was quantified by real-time PCR on a
Veriti 96-well Thermal Cycler (4375786; Applied Biosystems,
Foster City, CA, USA). Amplification was performed using a
StepOnePlusTM Real-Time PCR System (Applied Biosystems)
according to the manufacturer’s instructions. The forward primer
sequence for COL7Al is 5-GTTGGAGAGAAAGGTGACGAGG-
3’, and the reverse primer sequence is 3’-TGGTCTCCCT
TTTCACCCACAG-5. GAPDH was used as the internal
reference gene, with the following primer sequences: forward
primer 5-GTCTCCTCTGACTTCAACAGCG-3’, reverse primer

Frontiers in Immunology

10.3389/fimmu.2025.1671956

3’-ACCACCCTGTTGCTGTAGCCAA-5’. Relative expression
levels were normalized to GAPDH and calculated using the
-2*ACT method.

Western blot analyses

The detailed procedures of western blot analyses were
analogous to our previous study (35). The primary antibodies
employed were as follows: rabbit anti-COL7A1 (1:600 dilution;
19799-1-AP, Proteintech, Chicago, IL, USA) and rabbit anti-f3-actin
(1:1000 dilution; ab8226, Abcam, Cambridge, UK).

Wound healing assay

The processed cells were seeded in 6-well plates at a density of
3x10° cells/well in FBS-free medium. When cells reached 70-80%
confluence, sterile pipette tips were used to scratch and form a
“wound”. The cells were then incubated for 24 hours, after which
wound closure was observed and images were captured using a
DFC300FX microscope (Leica, Jena, Germany). The width of the
wound and the number of migrated cells were quantified using
Image ] software (NIH, Bethesda, MD, USA).

Transwell assay

PC cells were seeded in the upper chambers of a transwell system
(pore size: 8 m; Corning, USA) at a density of 2x10° cells per well in
200 pl of serum-free DMEM, whereas CAFs were cultured in the lower
chambers at a density of 1x10° cells per well in 800 ul of complete
DMEM. Following 24 hours of incubation, the cells were fixed and
stained with crystal violet for 15 mins. Cell migration was assessed by
capturing images under a microscope and counting cells in five
randomly selected fields of view. The cell number was further
obtained using Image J software (NTH, Bethesda, MD, USA).

Colony formation assay

500 preprocessed PC cells were seeded into each well of a 6-well
plate and cultured in a cell incubator for 14 days. Following this, the cells
were fixed with 4% paraformaldehyde for 20 minutes and subsequently
stained with crystal violet for 10 minutes. After staining, the excess dye
was removed by washing three times with phosphate-buffered saline
(PBS). The resulting colonies were photographed and quantified using
Image J software (NIH, Bethesda, MD, USA).

Cell viability assay

4x10° preprocessed PC cells were seeded into 96-well plates and
incubated for 8 h prior to treatment with various concentrations of
gemcitabine (GEM) (LILLY, France): 0, 1 nM, 10 nM, 100 nM, 1
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(A) Schematic diagram of co-culture of CAFs and PC cells. (B) The mRNA levels of COL7Al between CAFs and normal pancreatic fibroblsts. (C, D)
gRT-PCR and western blot analyses evaluation of COL7A1 lentiviral knockdown efficiency. (E) The results of wound healing assay using PANC-1 and
BxPC-3 PC cells. (F) The results of transwell assay using PANC-1 and BxPC-3 PC cells. (G) IC50 curves under gradient concentration GEM after
COL7A1 knockdown in CAFs co-cultured with in PANC-1 cells. (H) IC50 curves under gradient concentration GEM after COL7A1 knockdown in CAFs
co-cultured with in BxPC-3 cells. * p<0.05; ** p<0.01; *** p<0.001; **** p<0.0001.

UM, 10 uM, 100 uM, and 1 M. After 48 h of drug treatment, CCK-8
kit (Dojindo, Japan) was used to detect cell viability according to the
manufacturer’s instructions. Absorbance was measured at 562 nm.
Dose-response curves were generated by nonlinear regression
analysis (inhibitor, four parameters) using GraphPad Prism 10,
and the half-maximal inhibitory concentration (IC50) was
determined as the drug concentration corresponding to the
steepest slope of the fitted curve.
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Statistical analysis

All statistical analyses were performed using R software (version
4.4.1). The Student’s t test was used to compare means between two
groups. The OS of patients in high- and low-risk groups was
compared using Kaplan-Meier analysis with the log-rank test.
Independent predictors for patient prognosis were identified
through univariate and multivariate Cox regression analyses. The
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Wilcoxon rank-sum test was applied to compare gene expression
levels, as well as variations in TMB, drug sensitivity, immune scores,
TIDE scores, and immunohistochemistry positive score (IPS)
between the two risk groups. Spearman correlation analysis was
used to assess the relationship between these variables. All analyses
were systematically repeated to ensure result reliability. Two-tailed
p-values less than 0.05 were considered statistically significant.

Results

Identification of PCLM and BM-related
genes

Figure 2 shows the workflow chart of the study. Both single-cell
and bulk transcriptional data were utilized to identify PCLM-
related genes. Using the Seurat R package (Version 5.1.0), we
analyzed the single-cell transcriptional datasets GSE154778 and
GSE197177, employing UMAP and tSNE methods to visualize cell
clustering. In GSE154778, we included 10 primary tumor samples
and 6 metastatic tumor samples, whereas in GSE197177, 3 paired
primary and metastatic tumor samples were incorporated
(Figures 3A, 4A and Supplementary Figures S1A, D). The SingleR
R package was used to divide the cells into 19 clusters for
GSE154778 and 24 clusters for GSE197177, respectively
(Figures 3B, 4B and Supplementary Figures S1B, E). Through
manual annotation, five cell types were identified in the
GSE154778 cohort and eight cell types in the GSE197177 cohort
(Figures 3C, 4C and Supplementary Figures S1C, F). Figures 3D, E
illustrate the expression of classical markers across different cell
clusters for manual annotation in GSE154778, while Figures 4D, E
present the corresponding results for GSE197177. Subsequently, we
identified significantly DEGs between primary and metastatic
tumor samples in both datasets using the criteria log2 |Fold
change| > 0.5 and FDR < 0.05. A total of 1861 DEGs were
detected in GSE154778 and 598 in GSE197177, with the volcano
maps displayed in Figures 3F and 4F for the respective cohorts. The
GSE34153 and GSE71729 cohorts were recruited to identify DEGs
between primary and metastatic tumors and to perform WGCNA
analysis. In the WGCNA, the optimal 3 parameters for achieving
scale-free topology were determined to be 6 and 7 for GSE34153
and GSE71729, respectively. Subsequently, a total of 20 and 21 co-
expression modules were identified in GSE34153 and GSE71729,
respectively. The results showed that 1570 DEGs were detected in
the GSE34153 cohort, along with 1184 liver metastasis-associated
co-expression genes derived from WGCNA (Figure 5). In the
GSE71729 cohort, 3832 DEGs were identified, and 2342 co-
expression genes were obtained through WGCNA
(Supplementary Figure S2). Subsequently, we retrieved 349
TCGA-PAAD & GTEx Pancreas patient samples (178 tumor and
171 normal) encompassing 19726 genes from both the TCGA and
GTEx databases. Differential expression analysis was then
conducted using the screening criteria of log2 |Fold change| > 0.5
and FDR < 0.05, yielding a total of 16086 DEGs. Figure 6A displays
the heatmap of the top 50 positively and negatively expressed DEGs
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between PC and normal pancreatic tissues, while Figure 6B
demonstrated the volcano maps of the DEGs. Subsequently, we
identified the intersection of DEGs in GSE154778 and GSE197177,
resulting in 218 common DEGs (Figure 7A). Moreover, we found
732 common DEGs between GSE34153 and GSE71729, as well as
1321 PCLM-related genes through WGCNA (Figures 7B, C).
Finally, by intersecting 224 BM-related genes, 1809 PCLM-related
genes, and 16085 PC-related DEGs, we obtained 30 signature genes
for subsequent analysis (Figure 7D).

Machine learning based integration
develops a novel prognostic model for PC

Initially, we meticulously annotated 30 PCLM and BM-related
genes obtained from our prior analysis within the heatmap of
significantly DEGs between PC and adjacent normal pancreatic
tissues. Among these genes, except for MATN4 and FREMI, the
expression levels of the remaining genes were markedly upregulated
in PC compared to adjacent normal tissues (Figure 8A).
Subsequently, we utilized data from the TCGA database as the
training set and data from the ICGC database as the validation set.
To ensure data consistency, batch effects were removed from both
datasets. Comparisons of PCA plots before and after batch effect
removal demonstrated that the removal process effectively minimized
technical variation (Figures 8B, C). The leave-one-out cross-
validation (LOOCV) framework was employed to optimize a
combination of 10 machine learning algorithms with
hyperparameter tuning using the training set. Thereafter, the C-
index and AUC values for each model were calculated using the
validation set. The optimal model was identified as the combination
of Lasso and Random Survival Forest (RSF), which achieved the
highest average C-index (0.73) and AUC (0.755) among all model
types (Figures 8D, E). Figure 8F displays the detailed C-index and
AUC values of the Lasso+RSF model in both the training and
validation datasets. Compared with previously reported prognostic
models, the model developed in this study demonstrated superior
performance in terms of efficacy across both the TCGA and ICGC
databases (Figure 8G) (36-46). Six consensus genes with prominent
prognostic value were identified, and their gene coefficients were
further calculated in the model. Univariate analysis revealed that all
six genes exhibited significant prognostic value (p<0.05). Specifically,
except for ITGA7, increased expression levels of the remaining five
genes were significantly associated with poorer prognosis in PC
patients (Figure 8H). The gene correlation network diagram
indicates that, apart from ITGA7, the expression levels of the other
five genes display significant positive correlations with one another
(Figure 81). Subsequently, multivariate COX regression analysis was
conducted on these six genes to determine the coefficients for each
prognostic gene. Based on these coefficients, we formulated a
prognostic scoring model as follows: Risk Score = (COL7A1 *
0.126) + (ITGA6 * 0.182) - (ITGA7 * 0.271) + (ITGB5 * 0.346) +
(ITGB7 * 0.344) + (NTN4 * 0.222). The median value of the
prognostic risk scores in the training dataset was used as the cut-off
point to classify patients. We then stratified PC patients in both the
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training set (TCGA dataset) and the validation set (ICGC dataset)
into high-risk and low-risk groups. Kaplan-Meier survival curves for
the overall cohort and the two sub-cohorts consistently demonstrated
that the high-risk group exhibited significantly reduced survival rates
compared to the low-risk group (Figure 9A). Furthermore, the ROC
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curves confirmed the robust prognostic performance of this model at
1-, 2-, and 3-year OS, as evidenced by the relatively high AUC values
(Figure 9B). Additional analysis of the risk curve and survival status
also revealed that patients in the high-risk group had markedly
shortened OS. Moreover, the expression levels of the five genes
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upregulated and downregulated differentially expressed genes (DEGs).

(COL7AL, ITGA6, ITGBS5, ITGB7, NTN4) were significantly elevated
in the high-risk group compared to the low-risk group (Figures 9C-
E). PCA and tSNE plots clearly demonstrated that the two risk groups
were distinctly separated, forming two separate clusters (Figures 9F,
G). Moreover, the bar chart indicated that the expression levels of
COL7A1, ITGAS6, ITGB5, ITGB7, and NTN4 were significantly
higher in the high-risk group than in the low-risk group. In
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contrast, ITGA7 showed a markedly reduced expression level in
the high-risk group (Supplementary Figure S3). Additionally, survival
analysis revealed that elevated expression levels of the prognostic
genes, except for ITGA7, were significantly associated with worse
patient outcomes. Conversely, increased expression of ITGA7 was
significantly correlated with better patient prognosis (Supplementary
Figure S4). In addition, we explored the correlation between risk
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(A) The original UMAP plot of GSE197177; (B) The UMAP plot of GSE197177 after simple annotation by the SingleR R package; (C) The UMAP plot of
GSE197177 after manual marker annotation; (D) Dot plot of expression levels of each cell population in manual annotation in GSE197177; (E) Violin
plot of expression levels of each cell population in manual annotation in GSE154778; (F) Volcano plot of GSE197177, showing significantly

upregulated and downregulated differentially expressed genes (DEGs).

scores and clinicalpathological variables. In the TCGA dataset, this
risk score was significantly associated with the tumor stage of PC
patients, whereas in the ICGC dataset, it was strongly correlated with
tumor size. However, this prognostic model showed no significant
correlation with the TNM stage of the tumor in either dataset
(Supplementary Figure S5). This could potentially be attributed to
the heterogeneity between the two datasets.
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Validation and evaluation of the novel
model and the gene set enrichment
analyses

To further validate the prognostic value of the predictive model

we constructed and compare its prognostic performance with other
clinicalpathological variables, we performed univariate and
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multivariate analyses using the TCGA dataset. The results
demonstrated that age, TNM stage, tumor grade, and the risk
score derived from the prognostic model were independent
prognostic factors in the univariate analysis (Figure 10A). In the
subsequent multivariate analysis, only the risk score of the
prognostic model remained an independent prognostic factor
(Figure 10B). Subsequently, we integrated the risk score of the

Frontiers in Immunology

11

prognostic model with relevant clinicalpathological variables (age,
gender, T stage, N stage, M stage, and tumor grade) to develop a
prognostic nomogram (Figure 10C). Further univariate and
multivariate analysis confirmed that the nomogram was an
independent prognostic factor in both univariate and multivariate
analyses (Figures 10D, E). The subsequent ROC analysis revealed
that the nomogram exhibited superior prognostic performance in
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predicting 1-, 2-, and 3-year OS, with an AUC higher than that of
the 6-gene prognostic model alone. Additionally, its prognostic
performance surpassed that of any single clinicalpathological
variable (Figures 10F, G). The subsequent calibration curves,
DCA, and time-dependent C-index curves all indicated that the
nomogram had excellent prognostic predictive accuracy
(Figures 10H-K). In the ICGC dataset, while the overall results
were less satisfactory compared to the training set, similar trends
were observed. This discrepancy might be attributed to sample
heterogeneity, treatment differences and the relatively small size of
training cohort (Supplementary Figure S6). To further explore the
differences in signaling pathways between the high and low-risk
groups, we identified significantly DEGs between these two groups.
Specifically, a total of 2020 upregulated genes and 1098
downregulated genes were detected in the high-risk group
(Figure 11A). These DEGs were subsequently subjected to GO
and KEGG enrichment analyses using the Database for Annotation,
Visualization, and Integrated Discovery (DAVID). The GO analysis
indicated that the DEGs were significantly enriched in biological
processes and molecular functions associated with cell adhesion,
migration, focal adhesion, integrin binding, and collagen-
containing extracellular matrix, all of which are closely linked to
cell invasion and metastasis (Figure 11B). KEGG analysis revealed
that the DEGs were significantly associated with tumor-related
signaling pathways, including the PI3K-Akt signaling pathway,
Hippo signaling pathway, Wnt signaling pathway, and
extracellular matrix (ECM)-receptor interaction (Figure 11C).
Furthermore, GSEA demonstrated that in the high-risk group,
these genes were significantly enriched in pathways related to the
cell cycle, ECM-receptor interaction, focal adhesion, p53 signaling,
and pathways in cancer (Figure 11D). In contrast, the low-risk
group exhibited no significant enrichment in pathways associated
with tumor progression (Figure 11E). Finally, GSVA showed that
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r and adjacent tissues analyzed by the TCGA and GTEx databases.

the genes in the prognostic model were positively associated with
the majority of signaling pathways implicated in tumor progression.
Additionally, the risk score was significantly positively correlated
with the p53 signaling pathway, Notch signaling pathway, and
VEGF signaling pathway, while it was significantly negatively
correlated with the PPAR signaling pathway and calcium
signaling pathway (Figure 11F, Supplementary Figure S7).

Comparison of tumor mutation burden
and drug sensitivity between high and low-
risk groups

Mutations in several key genes are among the critical
contributors to PC development. Subsequently, we analyzed the
tumor mutational profiles of patients in both the high- and low-risk
groups. The somatic mutation burden analysis revealed that 94.12%
of patients in the high-risk group harbored gene mutations,
significantly higher than the 75.95% mutation rate observed in
the low-risk group. Notably, the most frequent mutation types
included missense mutations, nonsense mutations, and frameshift
deletions (Figures 12A, B). A significant positive correlation was
identified between the risk score and tumor mutational burden
(TMB) (R = 0.25, p=0.0011). Moreover, TMB levels were
significantly elevated in the high-risk group compared to the low-
risk group (Figures 12C, D). Survival analysis integrating TMB and
risk score demonstrated that patients with low TMB had a
significantly better prognosis than those with high TMB.
Importantly, patients with both low TMB and low risk scores
exhibited the most favorable survival outcomes (Figures 12E, F).
In the high-risk group, the mutation frequencies of canonical
oncogenes KRAS, TP53, and CDKN2A were significantly higher
than those in the low-risk group. Conversely, no significant
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showing 30 common genes selected.

difference was observed in the mutation frequency of the tumor
suppressor gene SMAD4 between the two groups in our study
(Figures 12G-]). Subsequently, we examined the chemotherapeutic
sensitivity of PC patients across different risk groups. Using the
OncoPredict R package, we assessed the efficacy differences of
commonly used PC chemotherapeutics between high- and low-
risk patients. The results demonstrated that the half-maximal
inhibitory concentration (IC50) values for oxaliplatin,
fluorouracil, gemcitabine, irinotecan, and paclitaxel were
significantly higher in the high-risk group compared to the low-
risk group, suggesting that high-risk patients may be more prone to
developing chemotherapy resistance (Figure 13A). Additionally,
correlation scatter plots revealed a significant positive correlation
between the risk scores of these drugs and their respective IC50
values (Figure 13B). Furthermore, the analysis of expression levels
for several common target genes indicated that EPHA2 and MET
were significantly upregulated in the high-risk group, whereas KIT,
RET, and TEK exhibited significant upregulation in the low-risk
group. These findings suggest that targeted therapeutic drugs
against these gene targets may exhibit differential efficacy among
patients in different risk groups (Figure 13C).
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Analysis of the tumor immune landscape in
high- and low-risk groups

The tumor immune microenvironment plays a critical role in
tumor progression, invasion, metastasis, and the response to
immunotherapy. To evaluate the distinct immune landscapes of
high- and low-risk groups, we analyzed differences in TIDE and
IPS scores between these groups.The results demonstrated that TIDE
scores, immune exclusion scores, and MDSC scores were significantly
higher in the high-risk group compared to the low-risk group,
indicating a greater likelihood of immune escape and resistance to
immunotherapy in the high-risk group (Figures 14A-D). In the IPS
analysis, the IPS scores for PD1(+)CTLA4(-) were significantly lower
in the high-risk group than in the low-risk group. Conversely, no
significant differences were observed in the IPS scores for PD1(+)
CTLA4(+), PD1(-)CTLA4(-), and PD1(-)CTLA4(+) between the two
groups. These findings suggested that the high-risk group exhibited
reduced responsiveness to immunotherapy (Figures 14E-H).
Subsequently, ssGSEA immune cell infiltration analysis revealed
that neutrophils and memory B cells exhibited significantly higher
infiltration levels in the high-risk group. In contrast, NK cells, CD8+
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FIGURE 8

(A) The expression of 30 PCLM and BM-related genes in a heat map. (B) PCA plot of training and validation groups before removing batch effect.
(C) PCA plot of training and validation groups after removing batch effect. (D) The C-index values of the training set and validation set for each of
the 100 machine learning prediction models were calculated. (E) The ROC values of the training set and validation set for each of the 100 machine
learning prediction models were calculated. (F) C-index value of Lasso+RSF model in TCGA and ICGC cohort. (G) Forest plots present the C-index
values of our model and previous models in training and validation models. (H) A forest plot shows the prognostic value of 6 related genes in
pancreatic cancer. (I) A gene correlation network map shows the expression correlation among six genes in the prognostic model.

T cells, YT cells, and Treg cells demonstrated significantly elevated
infiltration levels in the low-risk group (Figures 141, J). Additionally,
high-risk scores exhibited significant positive correlations with the
expression levels of immune checkpoints such as CD80, TNFSF9, and
CD40. Conversely, low-risk scores showed significant positive
correlations with the expression of CD200. These findings
suggested that the efficacy of different immune checkpoint
inhibitors might differ across risk groups (Figure 14K). Moreover,
immune function analysis revealed that CCR, immune checkpoint
expression, cytolytic activity, T-cell co-inhibition, and T-cell co-
activation were significantly higher in the low-risk group compared
to the high-risk group (Figure 14L). CIBERSORT database analysis
revealed that the infiltration abundance of MO macrophages,
dendritic cells and monocyte was significantly higher in the high-
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risk group compared to the low-risk group. Conversely, the
infiltration abundance of naive B cells and 0T cells was
significantly lower in the high-risk group than in the low-risk
group. Furthermore, analyses from multiple immune cell
infiltration-related databases demonstrated significant correlations
between immune cell infiltration and the risk scores of the prognostic
model (Supplementary Figure S8). Supplementary Figure S9
illustrated the correlations between six model genes and the
infiltration levels of 22 types of immune cells. The expression of
these model genes (with the exception of ITGA7) is predominantly
significantly positively correlated with macrophage infiltration,
whereas it was significantly negatively correlated with the
infiltration of anti-tumor immune cells, such as activated NK cells
and CD8+ T cells. In contrast, ITGA7 exhibited an opposite pattern.
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FIGURE 9

(A) Kaplan-Meier survival curves showing the OS of high-risk and low-risk g

roups in the total, TCGA and ICGC cohorts; (B) ROC curves of the total,

TCGA and ICGC cohorts; (C) Risk score curves of the total, TCGA and ICGC cohorts; (D) Scatter plots of survival status in the total, TCGA and ICGC

cohorts; (E) Heatmap showing the expression levels of 6 genes in high-risk
(G) tSNE plots of the total, TCGA and ICGC cohorts.

ScRNA-seq analysis of the expression of
COL7ALl and its role in PC malignant
behaviors

Ultimately, we utilized single-cell transcriptome data to analyze

the specific expression patterns and distribution of six model genes
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and low-risk groups; (F) PCA plots of the total, TCGA and ICGC cohorts;

at the single-cell resolution. In the GSE154778 dataset, analysis
demonstrated that COL7A1 and ITGB5 were predominantly
expressed in tumor-associated fibroblasts, ITGA6 was detectable
in both tumor epithelial and endothelial cells, NTN4 was primarily
localized within tumor epithelial cells, whereas ITGA7 and ITGB7
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(A) Univariate analysis of the TCGA cohort; (B) Multivariate analysis of the TCGA cohort; (C) Nomogram for constructing a combined clinical variable
and prognostic model risk score in the TCGA dataset; (D) Univariate analysis of the TCGA cohort, including the nomogram model; (E) Multivariate
analysis of the TCGA dataset, including the nomogram model; (F) ROC curve prediction model for 1-, 2-, and 3-year survival prediction accuracy in
the TCGA cohort; (G) Multivariate ROC curves to plot the prognostic prediction efficacy of gender, age, stage, grade, the risk score of the prognostic
model, and the nomogram; (H) 1-, 2-, and 3-year calibration curves to evaluate the prognostic prediction stability of the nomogram; (I) DCA curves
to show the clinical benefit level of the nomogram model at 1-, 2-, and 3-years; (J) DCA curves to show the corresponding clinical benefits of the
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FIGURE 11

(A) Heatmap of significantly DEGs between high-risk and low-risk groups; (B) GO enrichment analysis plot; (C) KEGG analysis plot; (D) Top 5
significantly enriched signaling pathways in the high-risk group; (E) Significantly enriched signaling pathways in the low-risk group; (F) GSVA analysis
demonstrating the correlation between tumor-related KEGG signaling pathways and model genes.

exhibited relatively low expression levels overall (Figure 15). The
analysis in the GSE197177 dataset showed a high degree of
concordance with that in GSE154778 (Supplementary Figure
S10). In both datasets, the expression patterns and distribution
profiles of the six model genes within tumor cells were
largely consistent.

Among the six model genes, the potential role of COL7A1 in PC
progression has rarely been reported before. To investigate its
potential involvement, CAFs were isolated from surgically

Frontiers in Immunology

resected PC tissues and adjacent normal pancreatic tissues. QRT-
PCR analysis revealed that COL7A1 expression was significantly
upregulated in CAFs compared to normal pancreatic fibroblasts
(Figure 1B). Both qRT-PCR and western blotting confirmed the
knockdown efficiency of three shCOL7A1, among which
shCOL7A1-2 exhibited the highest silencing efficiency and was
selected for subsequent functional assays (Figures 1C, D). Wound
healing assays showed that co-culturing PC cells with CAFs
enhanced their migratory capacity, whereas COL7A1 knockdown
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in CAFs largely reversed this effect (Figure 1E). Transwell migration
assays further indicated that COL7A1l knockdown in CAFs
significantly reduced the number of migrated cells (Figure 1F).
Moreover, when COL7A1 was knocked down in CAFs, the IC50
values of PANC-1 and BxPC-3 cells were significantly lower than
those in control groups, indicating increased sensitivity to GEM
(Figures 1G, H). However, although co-culture with CAFs
significantly promoted cell proliferation in colony formation
assays, COL7A1 knockdown in CAFs did not significantly affect
PC cell proliferation, suggesting that COL7A1 does not play a major
role in regulating this process (Supplementary Figure S11).
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Discussion

PC remains a highly lethal malignancy at present, therefore, it is
crucial to identify effective targets for PC treatment and survival
prediction. In this study, we developed a novel prognostic model
based on six PCLM and BM-related genes for prognosis prediction,

identification of immune microenvironment status, and evaluation
of responses to chemotherapy and immunotherapy. We used the
TCGA-PAAD cohort as the training cohort to construct the model
and utilized the PACA_AU cohort as the validation cohort. The
resulting model demonstrated outstanding and robust prognostic
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(A) Drug sensitivity analysis of oxaliplatin, fluorouracil, gemcitabine, irinotecan and paclitaxel in high-risk and low-risk groups; (B) Scatter plot of drug
sensitivity analysis of oxaliplatin, fluorouracil, gemcitabine, irinotecan and paclitaxel in high-risk and low-risk groups; (C) Differences in target gene
expression between high-risk and low-risk groups. ** p<0.01; *** p<0.001; **** p<0.0001.

performance and accuracy through various methods.Furthermore,
enrichment analysis, including GO, KEGG, and GSEA analyses,
revealed distinct pathways enriched in the high- and low-risk
groups. Moreover, six immune-related algorithms, namely, xCell,
CIBERSORT, QUANTISEQ, MCPcounter, EPIC, and ssGSEA,
were employed to assess the immune landscape differences
between the two risk groups. Subsequently, the immunotherapy
responses of the two groups were evaluated using TMB values,
TIDE scores, mutation frequencies, and the expression levels of
immune checkpoint genes. Additionally, the efficacy of common
chemotherapeutics for PC in the two groups was assessed via the
OncoPredict R package, and the expression levels of therapeutic
targets were explored to evaluate the response to targeted therapy.
Finally, the single-cell expression distributions of six prognosis-
related genes were analyzed using two single-cell GEO datasets.
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In this study, a prognostic model was constructed based on six
genes associated with PCLM and BM. These genes have been
extensively reported to play critical roles in cancer progression.
Notably, four of these genes are integrin-related genes. As
transmembrane signaling proteins, integrins are predominantly
implicated in promoting tumor progression. ITGA6 was recently
reported to be overexpressed in platinum (PT)-resistant epithelial
ovarian cancer (EOC), contributing to chemoresistance.
Furthermore, ITGA6 facilitates EOC cell dissemination by
modulating insulin-like growth factor (IGF) expression and
activating the IGFIR and Snail signaling pathways (47).
Additionally, multisite m6A modifications of ITGA6 have been
identified to promote bladder cancer (BCa) progression. The
dCasRx-m6A editor-mediated m6A demethylation of ITGA6
mRNA significantly suppressed BCa cell proliferation and
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FIGURE 14
Differences in (A) TIDE score; (B) Immune dysfunction score; (C) Immune rejection score; (D) MDSC score between high-risk and low-risk groups;
(E-H) IPS scores under different expressions of PD1 and CTLA4 in high-risk and low-risk groups; (I, J) ssGSEA analysis of differences in immune cell
infiltration between high-risk and low-risk groups; (K) Heatmap of the correlation between risk score and immune checkpoint gene expression;
(L) Changes in immune function in high-risk and low-risk groups. * p<0.05; ** p<0.01; *** p<0.001.

migration both in vitro and vivo (48). The role of ITGB7 in
tumorigenesis remains controversial. Zhang et al. reported
decreased ITGB7 expression in tumor-infiltrating CD8+T cells,
with higher expression correlating with improved survival in
colorectal cancer patients, suggesting its role in sustaining
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antitumor immune cell infiltration and inhibiting tumor
progression (49). In contrast, in multiple myeloma (MM),
oncogenic overexpression of ITGB7 in high-risk cases enhances
interactions between malignant plasma B-cells and stromal cells,
leading to cell-adhesion-mediated drug resistance (50). In
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FIGURE 15

(A-F) UMAP plots show the expression of six prognostic model genes in single-cell clusters from the GSE154778 database; (G-L) Violin plots of the
expression of six prognostic model genes in the GSE154778 database; (M) Heatmap of the expression distribution of six prognostic model genes in

Expression Level

Expression Level

the GSE154778 database.

pancreatic cancer (PC), ITGB7 was recently identified as a
candidate gene associated with nab-paclitaxel resistance through
whole-transcriptome sequencing in PC patient-derived organoids
(51). Moreover, ITGB7 has been shown to mediate the oncogenic
function of TRIM2, thereby promoting PC progression (52). In our
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study, we further confirmed ITGB7 expression as a risk factor for
poor survival in PC patients, consistent with its established
oncogenic role. The involvement of ITGB5 in PC progression has
also been recently characterized. Overexpression of N-
acetyltransferase 10 (NAT10) was found to enhance perineural
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invasion (PNI) in PC by stabilizing ITGB5 via N4-acetylcytidine
modification, subsequently activating the ITGB5-pFAK-pSrc
pathway to promote PNI (53). High ITGB5 expression in PC
tissues promotes tumor cell invasion and migration. Additionally,
ITGBS5 contributes to DNA damage repair and activates the MEK/
ERK signaling pathway, thereby conferring intrinsic radiation
resistance (54). ITGA7 exhibits context-dependent expression
patterns across various cancers. Traditionally recognized as a
tumor suppressor, ITGA7 is significantly downregulated in breast
cancer stem cells (BCSCs)-key contributors to therapy resistance
and adverse clinical outcomes. Low ITGA7 expression correlates
with reduced survival in chemotherapy-treated patients,
highlighting its potential as a predictive biomarker for treatment
response (55). Promoter hypermethylation has been shown to
suppress ITGA7 expression, leading to activation of the PI3K/
AKT/NF-xB pathway and enhanced proliferation and migration
in colorectal cancer (56). NTN4, an epigenetically regulated gene,
plays a dual role in cancer metastasis. In clear cell renal cell
carcinoma (ccRCC), NTN4 inhibits tumor progression by
regulating B-catenin expression and nuclear translocation (57).
Conversely, in endometrial cancer, NTN4 exhibits oncogenic
properties. EXOSC5 upregulates NTN4 expression, activating c-
MYC through the integrin $1/FAK/SRC pathway to sustain cancer
stem cell activity (58). Current evidence on COL7A1 in cancer
progression remains limited and largely derived from bioinformatic
studies. As a BM-related prognostic marker, COL7A1l
demonstrated strong prognostic performance and immune
microenvironment predictive capacity in lung cancer (59). It
effectively stratified prognosis in ccRCC and showed robust
prognostic value (60). Ding et al. reported elevated COL7A1
expression in PC, which is associated with patient survival and
specific immune cell infiltration (61). In our study, COL7Al
expression in CAFs was linked to enhanced PC cell migration but
did not significantly influence cell proliferation. This observation
aligns closely with our prior bioinformatic findings, supporting
COL7A1 as a potential therapeutic target for suppressing
PC metastasis.

The efficacy of immunotherapy is heavily contingent upon the
immune landscape of cancer. PC displays an immunologically
“cold” tumor microenvironment (TME), marked by significant
myeloid cells infiltration, a paucity of CD8+T cells, and low
expression of activation markers. These characteristics are
indicative of absent or dysfunctional adaptive T-cell immunity
and contribute to resistance against immune checkpoint blockade
(ICB) (62). Moreover, in addition to its classical oncogenic role,
accumulating evidence highlights that mutant KRAS plays a critical
role in establishing an immunosuppressive TME, which underpins
PC’s resistance to immunotherapy (63). Recently, a study revealed
that combining a KRAS inhibitor with immunotherapy agents in
vivo not only enhanced T-cell infiltration and activation but also
depleted immunosuppressive myeloid cells and alleviated the
immunosuppressive TME in PC, thereby extending the survival
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of an autochthonous PC mouse model (64). Given the limited
efficacy of immunotherapy in PC, predicting the response to
immunotherapy could facilitate the identification of specific
patients who are more likely to benefit from this treatment. In
our study, we developed a novel risk prediction model to evaluate
the response to immunotherapy. Using this model, we observed that
the KRAS mutation rate was significantly higher in the high-risk
group compared to the low-risk group. Additionally, the TIDE
scores were markedly elevated in the high-risk group, suggesting a
poorer response to immunotherapy. Regarding the underlying
mechanism, CD8+ T-cell infiltration was substantially higher in
low-risk PC tissues than in high-risk PC tissues, potentially
contributing to immunotherapy resistance in the high-risk group.
These findings indicate that our model can effectively identify PC
patients who are more likely to benefit from immunotherapy,
thereby enhancing therapeutic outcomes. Numerous recent
studies have underscored the synergistic therapeutic effects of
combining targeted therapy with immunotherapy. TMOD3 was
highly expressed in PC tissues, modulating immunotherapy
resistance. A TMOD?3 inhibitor demonstrated a synergistic effect
with PD-1 antibody in PC treatment (65). Furthermore, high
OSBPL3 expression indicated an immunosuppressive
microenvironment characterized by reduced CD8+T cell
infiltration and increased Treg cells and M2 macrophages, which
might serve as a promising therapeutic target (66). However,
whether the genes in our model can function as targets to
sensitize immunotherapy remains to be further explored.

In the present study, a novel PCLM- and BM-related model was
developed to predict prognosis, immune microenvironment status,
and responses to immunotherapy and chemotherapy, with the aim
of identifying new therapeutic targets for PC. Although this model
demonstrates improved performance and accuracy compared to
previous models, several limitations still remain. First, our findings
primarily rely on data from public databases, which lack real-world
clinical validation to confirm the model’s accuracy and applicability.
Second, the potential for batch effects between datasets caused a less
satisfactory model evaluation effect. This discrepancy might be
attributed to sample heterogeneity, treatment differences and the
relatively small size of training cohort. Therefore, larger and more
diverse cohorts will be needed for further model validation. Third,
although we conducted preliminary cell experiments to support the
bioinformatic analysis, the functional roles and underlying
mechanisms of certain biomarkers identified in this study, such as
COL7AL1, have not been fully validated through in vitro functional
assays or in vivo animal models. Therefore, further experimental
studies are warranted to address these limitations.

Conclusion

In conclusion, a model based on six PCLM and BM-related
genes was developed to effectively predict prognosis, immune
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microenvironment status, and response to immunotherapy.
Therefore, our findings offer promising insights that could assist
physicians in making more accurate and personalized treatment
decisions for patients with PC.
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SUPPLEMENTARY FIGURE 1

(A) The original tSNE plot of GSE197177; (B) The original UMAP plot of
GSE197177; (C) The tSNE plot of GSE197177 after simple annotation by the
SingleR R package; (D) The UMAP plot of GSE197177 after simple annotation
by the SingleR R package; (E) The tSNE plot of GSE197177 after manual marker
annotation; (F) The UMAP plot of GSE197177 after manual marker annotation;
(G) Dot plot of expression levels of each cell population in manual annotation;
(H) Violin plot of expression levels of each cell population in manual
annotation; (I) Volcano plot of GSE154778, showing significantly
upregulated and downregulated differentially expressed genes (DEGs).

SUPPLEMENTARY FIGURE 2

(A) Heatmap of the top 50 upregulated and downregulated DEGs between
primary tumors and metastases in GSE71729; (B) Volcano plot of DEGs
between primary tumors and metastases in GSE71729; (C) Selecting the
optimal B parameter for WGCNA analysis in GSE71729; (D) System tree
diagram of gene set clusters from WGCNA analysis; (E) Module diagram of
co-expressed genes from WGCNA analysis.

SUPPLEMENTARY FIGURE 3
The expression levels of 6 genes in high-risk and low-risk pancreatic cancer
patient groups.

SUPPLEMENTARY FIGURE 4
Kaplan-Meier survival curves of PCLM and BM-related six model genes in
pancreatic cancer patients.

SUPPLEMENTARY FIGURE 5

(A) Correlation analysis of tumor grade and risk score in the TCGA cohort; (B)
Correlation analysis of tumor T stage and risk score in the TCGA cohort; (C)
Correlation analysis of tumor N stage and risk score in the TCGA cohort; (D)
Correlation analysis of tumor M stage and risk score in the TCGA cohort; (E)
Correlation analysis of tumor stage and risk score in the TCGA cohort; (F)
Correlation analysis of tumor grade and risk score in the ICGC cohort; (G)
Correlation analysis of tumor T stage and risk score in the ICGC cohort; (H)
Correlation analysis of tumor N stage and risk score in the ICGC cohort; (1)
Correlation analysis of tumor M stage and risk score in the ICGC cohort; (J)
Correlation analysis of tumor stage and risk score in the ICGC cohort.

SUPPLEMENTARY FIGURE 6

(A) Univariate analysis of the ICGC cohort; (B) Multivariate analysis of the
ICGC cohort; (C) Univariate analysis of the ICGC cohort, including the
nomogram model; (D) Multivariate analysis of the ICGC cohortt, including
the nomogram model; (E) The 1-, 2-, and 3-year survival prediction accuracy
of the ROC curve prediction model of the ICGC dataset; (F) Multivariate ROC
curves were drawn for gender, age, stage, grade, risk score of the prediction
model, and the prognostic prediction efficacy of the nomogram; (G)
Calibration curves for 1-, 2-, and 3-year survival were used to evaluate the
prognostic prediction stability of the nomogram; (H) DCA curves
demonstrated the clinical benefit levels of the nomogram model at 1-, 2-,
and 3-years; (I) DCA curves demonstrated the corresponding clinical benefits
of the nomogram model, risk score of the model, and other clinical variables;
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(J) C-index curves were used to evaluate the prognostic efficacy of the
nomogram, risk score of the prognostic model, and related clinical variables.

SUPPLEMENTARY FIGURE 7
Correlation diagram of six PCLM and BM-related prognostic model genes
with tumor marker signaling pathways.

SUPPLEMENTARY FIGURE 8

(A-C) CIBERSORT was used to analyze the differences in immune cell
infiltration between high-risk and low-risk groups in the TCGA database;
(D) The correlations between immune cell infiltration levels and risk scores in
the TCGA database were analyzed using XCELL, CIBERSORT, QUANTISEQ,
MCPCOUNTER, EPIC and CIBERSORT-ABS. * p<0.05; ** p<0.01; *** p<0.001.
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expression of six prognostic model genes in the GSE197177 database; (M)
Heatmap of the expression distribution of six prognostic model genes in the
GSE197177 database.
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The results of colony formation assay and statistical analysis. ** p<0.01.
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