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Introduction: COVID-19 has caused over 7 million deaths worldwide since its

onset in 2019, and the virus remains a significant health threat. Identifying

sensitive and specific biomarkers, along with elucidating immune-mediated

mechanisms, is essential for improving the diagnosis, treatment, and

prevention of COVID-19. To predict key molecular markers of COVID-19 using

an established multi-omics framework combined with machine learning models.

Methods: We conducted an integrated analysis of single-cell RNA sequencing

(scRNA-seq), bulk RNA sequencing, and proteomics data to identify critical

biomarkers associated with COVID-19. The multi-omics approach enabled the

characterization of gene expression dynamics and alterations in immune cell

subsets in COVID-19 patients. Machine learning techniques and molecular

docking analyses were employed to identify biomarkers and therapeutic

targets within the disease’s pathophysiological network.

Results: Principal component analysis effectively grouped samples based on

clinical characteristics. Using random forest and SVM-RFE models, we identified

clinical indicators capable of accurately distinguishing COVID-19 patients.

Transcriptomic analysis, including scRNA-seq, highlighted the pivotal role of

CD8+ T cells, and WGCNA identified related module genes. Proteomic analysis,

integrated with machine learning, revealed 36 DEPs. Further investigation

identified several genes associated with monocyte proportions. Correlation

analysis showed that BTD, CFL1, PIGR, and SERPINA3 were strongly linked to

CD8+ T cell abundance in COVID-19 patients. ROC curve analysis demonstrated

that these genes could effectively distinguish between COVID-19 patients and

healthy individuals. Concordant findings from both transcriptomic and

proteomic levels support BTD, CFL1, PIGR, and SERPINA3 as potential auxiliary

diagnostic markers. Finally, AlphaFold-based molecular docking analysis

suggested these biomarkers may also serve as candidate therapeutic targets.
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Discussion: Preliminary findings indicate that BTD, CFL1, PIGR, and SERPINA3 are

vital molecular biomarkers related of CD8+ T cell, providing new insights into the

molecular mechanisms and long-term prevention of COVID-19.
KEYWORDS

multi-omics, scRNA-seq, RNA-seq, biomarkers, COVID-19
GRAPHICAL ABSTRACT

Overview of the study design. The participants were divided into two groups: control group (n=265) and COVID-19 group (n=358). Principal compo-
nent analysis was used to group samples according to clinical characteristics. Selected features were analyzed based on random forest model and
SVM-REF model. By integrating scRNA-seq and RNA-seq data with an analysis of the peripheral plasma proteome, we applied machine learning
models to successfully identify and predict potential biomarkers associated with CD8+ T cell responses in COVID-19 infection. ROC curve analysis
was used to analyze the clinical diagnostic efficacy of inflammatory factors among different groups. The box diagram was used to show the levels of
different inflammatory factors in plasma of different populations.
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Background

Despite a decline in the overall burden of COVID-19, the threat

posed by the virus remains significant and persistent (1, 2). COVID-19,

caused by the zoonotic SARS-CoV-2, continues to spread through

respiratory droplets and direct contact, posing ongoing challenges to

public health (3). Despite the flood of insights into the behavior of the

virus and how to prevent it from causing harm (4, 5), many questions

remain regarding the duration and quality of immunity after

reinfection or vaccination, the impact of coinfections, and optimal

treatment protocols for different populations. Severe COVID-19 is

characterized by pneumonia, lymphopenia, exhausted lymphocytes

and a cytokine storm (6). However, whether this is protective or

pathogenic remains to be determined. Critical COVID-19-related

illnesses continue to occur, and the virus’s impact on immune

function remains insufficiently understood (7). Therefore, identifying

sensitive and specific molecular markers, uncovering key immune

mechanisms, and discovering new therapeutic targets are not only

important but also critically necessary. Continued research is essential

to manage COVID-19 effectively, mitigate its long-term effects, and

prepare for future threats.

The integrated analysis of single cell transcriptome (scRNA-

seq), bulk RNA-seq and proteomics has become a frontier means to

analyze the mechanism of complex diseases and find accurate

biomarkers (8). Single cell transcriptome technology can analyze

the heterogeneity of cells with high resolution, and reveal the gene

expression dynamics of specific cell subsets in microenvironment of

COVID-19 patients (9, 10). However, the sparsity and high noise of

single cell data need to be optimized by preprocessing and

dimensionality reduction clustering, while the bulk transcriptome

data provide the global expression characteristics of transcription

level, and the two can be complemented by algorithms to infer the

changes of cell subsets during the disease process (11). Proteomics

data directly reflect the activity of functional molecules and make up

for the lack of information in post-transcriptional regulation (12).

Multimodality integration improves accuracy by combining single-

cell data, bulk transcriptome, and serum proteomics, advancing

early disease screening, target discovery, and personalized treatment

in precision medicine.

COVID-19 infection can trigger an inappropriate immune

response, leading to excessive activation of immune cells, tissue

inflammation, and even multi-organ dysfunction (13). Current

studies indicate that T cell-mediated immunity plays a crucial

role in the effective antiviral response to COVID-19 (14). In this
Abbreviations: BTD, Biotinidase; CIBERSORT, Cell-type identification by

estimating relative subsets of protein; CFL1, Cofilin 1; DDA, Data-dependent

acquisition; GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and

genomes; LASSO, Least absolute shrinkage and selection operator; Paxlovid,

Nirmatrelvir/Ritonavir; PCA, Principal component analysis; PIGR, Polymeric

immunoglobulin receptor; RDW, Red cell distribution width; RF, Random forest;

scRNA-seq, Single cell transcriptome; SERPINA3, Alpha-1-antichymotrypsin;

TOM, Topological overlap measure; WGCNA, Weighted gene co-expression

network analysis.
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context, CD8+ T cells form an initial line of defense by rapidly

recognizing viral antigens (15). COVID-19 infection induces CD8+

T cells to initiate cytotoxic responses, with cytotoxic T lymphocytes

being responsible for clearing infected cells, thus playing a key role

in controlling the virus (16, 17). Regulatory T cells also help prevent

severe COVID-19 outcomes by mitigating excessive host

inflammatory responses (18). In summary, cellular immunity,

particularly CD8+ T cells, is vital for monitoring and predicting

COVID-19 progression, aiding in early detection of severe cases and

guiding clinical treatment. While patients with COVID-19 often

present with lymphopenia, the disease has also been linked to

immune hyperresponsiveness (19). Notably, the mechanisms

behind immune cell dysfunction are not yet fully understood.

In this study, we performed integrated analyses using scRNA-

seq, RNA-seq, proteomics, and AlphaFold-based molecular docking

to investigate the alterations in key biomarkers associated with

COVID-19. Functional enrichment analysis and machine learning

were subsequently employed to identify pathogenic genes and

elucidate their role within the pathophysiological network of

COVID-19. By combining genetic evidence with clinical trial

data, we developed a multi-omics framework to prioritize

immune-mediated drug targets for COVID-19. Preliminary

findings indicate that biotinidase (BTD), Cofilin 1 (CFL1),

Polymeric Immunoglobulin Receptor (PIGR), and Alpha-1-

antichymotrypsin (SERPINA3) are critical molecular markers

associated with CD8+ T cells in the context of COVID-19,

suggesting their potential as biomarkers for diagnosis and

therapeutic intervention.
Methods

Clinical data collection

In this study, we retrospectively analyzed the test data of 358

COVID-19 patients and 265 healthy people who were treated in the

Second Affiliated Hospital of Mudanjiang Medical College from

January to June 2023. This study was conducted in strict accordance

with the Declaration of Helsinki and was approved by the Medical

Ethics Review Committee of the Second Affiliated Hospital of

Mudanjiang Medical College (No. 202328). All participants gave

their consent to participate in the study.
Clinical features extract

Principal component analysis (PCA) was performed using the

“prcomp” function from the “stats” R package based on the 14

clinical features. We utilized the randomForest v4.7 package to

construct a random forest model for ranking the importance of

these clinical features and evaluating their performance as

indicators. Specifically, the number of decision trees (such as n

tree ≥ 500), the maximum depth and other parameters are set, and

the Gini index decline or replacement importance is used to

evaluate the feature contribution.
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Single-cell RNA-seq

The scRNA-seq data used in this study were screened from the

public database GEO database platform. The scRNA-seq dataset

(GSE192391) used is based on the Illumina NovaSeq assay platform

and contains 12 patients and 6 controls (10). Subsequent analysis

was performed using the R Seurat v5.2.1 package. The following

quality control steps were performed to filter the count matrices:

Genes expressed in <3 cells and cells expressing fewer than 200

genes were removed; Cells expressing >5000 genes were discarded

as these could be potential multiplet events where more than a

single cell was encapsulated within the same barcoded GEM; Cells

with >10% mitochondrial content was filtered out as these were

deemed to be of low-quality. The data set consists of 18 samples. In

order to remove the batch effect except the processing factors

between different samples, data integration is carried out based

on rPCA method. After data integration, the cells were clustered by

principal component analysis and dimensionality reduction.

According to the markers of human cell subsets determined in

previous studies, cell annotation was carried out and the proportion

of each cell subset was calculated. In this study, the R CellChat

v1.6.1 package was used to infer the interaction between cells based

on the expression of receptors and ligands on the cell surface. The

algorithm simulates the probability of cell-to-cell communication

by inputting the gene expression data of cells and combining the

gene expression with the prior data of the interaction between signal

ligands, receptors and their co-factors.
DEG analysis, functional enrichment and
immune infiltration analysis

The RNA-Seq data used in this study were GSE164805 included

10 COVID patients and 5 controls (20). Using R limma v3.62.2

package, according to the sample grouping, the differences between

standard groups were analyzed. Cluster analysis was used to calculate

PCA and FactoMine package drawing. Transcriptomics data were

processed by R DESeq2 v1.46.0 package to analyze the difference of

the original Counts matrix, and follow the standard process. In this

study, |Log2FC| > 0.5 and P < 0.05 were set for differential expression

genes filtration. Gene ontology (GO) enrichment analysis of DEGs

was implemented in the R GO.db v3.20.0 packages based on

Wallenius non-central hypergeometric distribution (https://

geneontology.org/). The DEGs were analyzed using the Kyoto

Encyclopedia of Genes and Genomes (KEGG) database (https://

www.genome.jp/kegg/pathway.html). Protein-protein interaction

network was conducted in STRING (https://string-db.org/).

Transcriptome data was transformed into the total abundance of

immune cells by utilizing the Cell-type Identification by Estimating

Relative Subsets of protein (CIBERSORT) analysis with the R

CIBERSORT v0.1.0 package. Using the Wilcoxon test, immune

cells were compared among COVID samples and control samples.
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Construction of co-expression network

Weighted gene co-expression network analysis (WGCNA) was

utilized to identify gene modules with similar expression patterns

and analyze the correlation between monocyte proportion and gene

modules. The scale independence and average connectivity of the

networks were tested with different power values (from 1 to 20). The

appropriate power value was determined when the independent

scale was greater than 0.85 and the connectivity was high. Then, the

similarity matrix was transformed into a topological matrix with the

topological overlap measure (TOM) describing the correlation

between genes. The genes were clustered by using 1-TOM as the

distance. A dynamic hybrid cutting method was used to establish a

hierarchical clustering tree to identify co-expressed gene modules.

Each leaf of the tree represents a gene, and genes with similar

expression data aggregate to form a branch of the tree and each

branch represents a gene module. A weighted co-expression

network model was established, and the gene expression matrix

was divided into several related modules. Finally, the modules

related to KOA and immune cell infiltration were selected for

further analysis.
Label-free protein profiling detection

Protein quantification was performed using the Bradford protein

quantification kit (purchased from Shanghai Biotechnology

Company). Trypsin (purchased from Solebac (Beijing)) was added

to each protein sample and incubated at 37°C for 4 h. CaCl2 was

added to each sample and digested overnight. Formic acid was added,

centrifuged at 12,000 g for 5 min, and the resulting supernatant was

loaded onto a C18 desalting column. LC-MS/MS analysis was

performed using an EASY-nLC TM 1200 UHPLC and Q Exactive

TM HF-X mass spectrometry system, both purchased from

ThermoFisher (USA), operated in data-dependent acquisition

(DDA) mode.
DEP analysis, functional enrichment and
PPI analysis

Proteomics data were processed by R DEP version 1.26.0

package. Proteomic data were then normalized using

“normalize_vsn” function. Cluster analysis was used to calculate

PCA and R package FactoMine drawing. “add_rejections” function

was applied to calculate the fold-change values of proteins. In this

study, |Log2FC| > 0.5 and P < 0.05 were set for differential

expression proteins filtration. GO enrichment analysis of DEPs

was implemented in the GOseq R packages based on Wallenius

non-central hypergeometric distribution. The DEPs were analyzed

using the KEGG database. Protein-protein interaction network was

conducted in STRING.
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Machine learning techniques

Machine learning was employed as a tool to improve biomarker

screening. First, feature selection was performed using the Random

Forest (RF) algorithm, which calculates the mean decrease in Gini

(MDG) for each gene or protein, ranks them accordingly, and

determines the optimal number of features by sequentially adding

differential genes/proteins from highest to lowest MDG until

classification accuracy is maximized. Next, the least absolute

shrinkage and selection operator (LASSO), implemented via the

“glmnet” R package, was applied as a regularized regression

approach to further refine the selected features. Finally, an

artificial neural network (ANN) analysis was conducted with the

R packages “neuralnet” for model construction and training, and

“NeuralNetTools” for visualization and interpretation of the results.

This integrated workflow enabled robust identification and

evaluation of candidate biomarkers.
ROC analysis and validation of the
biomarkers

In addition, the expression level and diagnostic value of

biomarkers was verified in both proteomics and transcriptomics

data. We examined the diagnostic effectiveness of the biomarkers

with the ROC using the R pROC v1.18.5 package. The expression

levels of the biomarkers were also compared between COVID and

control samples using an independent t-test, with P < 0.05

considered statistically significant.
AlphaFold-based molecular docking

To assess the binding affinity between the COVID-19 antiviral

drug Nirmatrelvir/Ritonavir (Paxlovid) (21) and key biomarkers,

the 3D structures of core target proteins were predicted using

AlphaFold DB (https://alphafold.ebi.ac.uk/), while the 3D

structure of Paxlovid (PubChem CID, 155903259) was retrieved

from PubChem (https://pubchem.ncbi.nlm.nih.gov/). Binding

affinity was evaluated using CB-Dock2, with a docking score ≤ –

5.0 kcal/mol considered indicative of strong interaction (22, 23).
Statistical analysis

The normal distribution of the data was assessed by the Shapiro-

Wilk normality test using or SPSS Statistics v27.0 (IBM, USA), and the

mean is expressed as mean ± standard error. If the data were normally

distributed, the differences between the means were assessed by one-

way analysis of variance and Tukey’s multiple comparison test. If the

data were not normally distributed, scores were compared using the

nonparametric Kruskal-Walli’s test. When p < 0.05, the difference

between groups was considered statistically significant. A professional

biostatistician reviewed the study and confirmed that the sample size is

appropriate and statistically justified.
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Result

Analysis of clinical sample features

A total of 623 samples were collected and divided into two

groups: Control (n=265) and COVID-19 (n=358). PCA shows that

the horizontal and vertical coordinates (PC 1 and PC 2) explain

22.5% and 15.8% of the total variation respectively, and the

cumulative contribution rate is 38.3%, which indicates that it can

effectively capture the main variation trend of samples data

(Figure 1A, Table 1). The random forest results suggest that the

top five clinical features of the five importance scores are

lymphocyte level, monocyte level, red cell distribution width

(RDW), neutrophil level and PCT (Figure 1B). The results of

SVM-REF indicated that four clinical features changed obviously

when the disease occurred, namely lymphocyte level, monocyte

level, RDW and neutrophil level (Figure 1C). Moreover, the model

exhibited favorable performance with ROC curve, lymphocyte level

(AUC = 0.98), monocyte level (AUC = 0.98), RDW (AUC = 0.979)

and neutrophil level (AUC = 0.978) (Figure 1D). To further screen

the clinical sample features for machine learning model

construction, we analyzed the changing trends of significant

clinical sample features among different groups (Figures 1E–H).
scRNA-seq reveals the key immune cell
components of COVID-19 patients

We compared the distribution characteristics of single cells

between control group and COVID-19 group by ISNE

dimensionality reduction technique. Figure 2A shows the

distribution pattern of 26 cell subsets in a two-dimensional space

composed of ISNE_1 (horizontal axis) and ISNE_2 (vertical axis) in

the form of digital clustering, while the spatial location of CD8+ T

cells (orange), monocytes (blue-green), dendritic cells (pink) and

other major immune cells is clearly marked on the right (Figure 2B).

Among them, the COVID-19 group showed remarkable

characteristics: the density of CD8+ T cells in ISNE_1 axis 10–20

and ISNE_2 axis -10–0 regions increased obviously, showing

antiviral immune activation; The distribution range of monocytes

expanded to ISNE_1 axis 15–25 and ISNE_2 axis -5-5, and partially

overlapped with T cell region, suggesting cell interaction in

inflammatory microenvironment. Dendritic cells distributed

discretely between 0–10 of ISNE_1 axis and 5–15 of ISNE_2 axis,

which may be related to the disorder of antigen presentation. These

differences in spatial distribution directly reveal the migration of

immune cells, the reconstruction of subsets and the change of

functional status caused by COVID-19 infection, which provides

visual evidence for the analysis of virus-specific immune response.

By comparing the immune cell composition and gene expression

characteristics between the control group and COVID-19 group,

the immune remodeling law of COVID-19 infection was revealed.

The histogram of Figure 2C shows that the proportion of CD8+ T

cells (red stripes) in COVID-19 group decreased significantly, while

the proportion of monocytes (lavender stripes) increased relatively,
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suggesting that the proportion of immune cells was unbalanced.

Figure 2D volcanic map further analyzed the functional changes,

the cytotoxicity-related molecules (such as GZMB and IFNG) in

CD8+ T cells gene expression profile were significantly increased

(red dots were dense), indicating that the remaining cells were

highly activated; Monocytes are accompanied by the strong

expression of pro-inflammatory genes such as IL1b and TNF (the

red dots in the fifth column on the right gather at a high level),

which proves that they are polarized to the inflammatory

phenotype. The up-regulation of CXCL9/10 chemokine in

dendritic cells (red dot in the fourth column) and the fluctuation

of NK cell activation gene (sixth column) jointly reveal the

abnormal recruitment and regulation network disorder of

immune cells in inflammatory microenvironment. It is worth

noting that although the proportion of progenitor cells (light

blue-green strips) is stable, their stem cell maintenance genes
Frontiers in Immunology 06
(such as SOX4) are down-regulated (the last green dot),

suggesting that the immune regeneration potential is impaired.

Then, we analyzed the cell interaction network formed a dynamic

regulatory system through radial connection. Among them, CD8+

T cells (green center) establish multi-directional connections with

CD4+ T cells (blue), dendritic cells (uncolored), B cells (red),

monocytes (orange) and NK cells (pink) through green lines,

highlighting its position as a hub of cytotoxic response

(Figure 2E); CD4+ T cells (blue center) are connected in series

with B cells (red thick junction), monocytes and progenitor cells

through dense blue radiation, revealing their dual functions of

coordinating humoral immunity and inflammatory regulation

(Figure 2F). The strong connection between B cells (red center)

and CD4+ T cells (red thick line) confirms the core pathway of

antibody production in cooperation with T-B (Figure 2G), NK cells

and T/monocytes form rapid killing defense through pink
FIGURE 1

Clinical data collection and features extract. (A) PCA analysis. (B) Importance of clinical characteristic of random forest analysis. (C) Extraction of
clinical features by SVM-REF. (D) ROC analysis of four clinical features. (E) Levels of lymphocytes in blood of two groups. (F) Levels of monocytes in
blood of two groups. (G) RDW in blood of two groups. (H) Levels of neutrophil in blood of two groups.
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connection (Figure 2H), while dendritic cells are simultaneously

connected with T/B/NK cells (Figure 2I) to mediate antigen

presentation and chemotaxis recruitment. Monocytes (orange

center) are widely connected with T/NK/dendritic cells through

orange lines, suggesting that they play a bridging role in

inflammatory signal amplification (Figure 2J). From the

perspective of systems biology, we reveal the precise framework of

cell cooperation in immune response.
RNA-seq reveals the key immune
components of COVID-19

Through principal component analysis, the sequencing data of

transcription group showed that the control group (Con, blue dot)

and COVID-19 group (Cov, red triangle) were significantly

separated along the PC1(32.7% variance) and PC2(19.5%

variance) axes, among which the samples in the control group

were relatively concentrated, suggesting that the transcription

characteristics in the group were highly consistent (Figure 3A).

Cluster thermogram shows the expression gradient of genes (rows)

in different samples (columns), and blue to red respectively

correspond to low expression to high expression level (Figure 3B).

It can be seen that “Con” (blue label) and “Cov” (red label) samples

form obvious clustering partitions on the gene expression spectrum.

Further difference analysis showed that 3024 genes were up-

regulated and 3812 genes were down-regulated (Figure 3C). GO

analysis showed that the differential genes were significantly

enriched in physiological process-related pathways such as MAPK

cascade positive regulation, immune response regulation, apoptosis

signal pathway and T cell differentiation, and involved ribosome

structures, suggesting that cell function and structure were widely
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affected during the disease process (Figure 3D). KEGG enrichment

results suggest innate immune pathways such as chemokines, Toll-

like receptors and T cell receptors, as well as key regulatory hubs

such as FoxO, TNF and NF-kB (Figure 3E).

The results of immune infiltration analysis showed that the

correlation network among immune cell subsets was revealed by red

and blue gradient (Figure 3F), in which CD8+ T cells were positively

correlated with naive B Cell (r=0.74) and negatively correlated with

neutrophils (r=-0.79), suggesting the cooperative or antagonistic

relationship between different immune cells in the infiltration

process. The difference in the proportion of immune cells

between “con” (blue) and “cov” (red) groups was compared by

box chart (Figure 3G). Among them, Plasma cells, CD4+ T cells

memory resting, M0 macrophage, resting mast cells and CD8+ T

cells showed significant distribution deviation between the two

groups, and the difference in box span suggested that the

treatment might specifically reshape the microenvironment of

specific immune subgroups.
WGCNA analysis reveals the modular
genes of CD8+ T cells

Figure 4A shows the relationship between soft threshold

(power) and goodness of fit (R2) of scale-free topological model.

When power=9 (marked by red five-pointed star), R2 reaches 0.72

and the curve tends to be flat, indicating that this threshold can

effectively balance the biological characteristics and topological

attributes of the network. Figure 4B shows the decreasing trend of

Mean Connectivity with the increase of power, and the connectivity

drops to 671.79 when power=9, suggesting that the network retains

the core co-expression structure after filtering weakly related genes.
TABLE 1 Clinical data analysis.

n Control (265) Covid (358) P value

Age (mean (SD)) 60.45 (19.18) 68.77 (14.39) <0.001

WBC.Count (mean (SD)) 7.71 (4.47) 6.98 (3.39) <0.001

Neutrophil.Proportion (mean (SD)) 66.07 (17.38) 70.83 (16.05) <0.001

Lymphocyte.Proportion (mean (SD)) 21.66 (15.42) 17.10 (10.45) <0.001

Monocyte.Proportion (mean (SD)) 8.53 (4.49) 8.54 (6.21) 0.054

RBC.Mean.Volume (mean (SD)) 91.30 (8.20) 88.79 (14.70) 0.016

RBC.Distribution.Width (mean (SD)) 14.19 (2.58) 12.70 (2.43) <0.001

PT (mean (SD)) 8.38 (6.48) 10.29 (5.07) <0.001

APTT (mean (SD)) 18.36 (13.79) 23.26 (11.43) <0.001

D.Dimer (mean (SD)) 0.99 (1.86) 0.96 (2.30) <0.001

IL6 (mean (SD)) 1.14 (5.63) 11.25 (31.03) <0.001

PCT (mean (SD)) 0.56 (3.97) 0.22 (1.13) <0.001

C.Reactive.Protein (mean (SD)) 42.41 (52.10) 33.68 (53.20) <0.001

Sex = 2 (%) 119 (44.9) 151 (42.2) <0.001
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The thermogram of Figure 4C reveals the correlation pattern

between modules. The dark red block in diagonal area (such as

brown4 module) reflects the high degree of gene cooperation within

modules, while the blue-red difference between firebrick4 and light-

colored modules (such as r=0.32 to -0.45) implies the independence

or antagonistic relationship of different functional modules.

Figure 4D quantifies the similarity between samples/gene clusters
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by vertical height (vertical axis), and the black branching structure

shows that low-level merged clusters (such as height < 5) have high

homogeneity, while high-level branches (such as height > 15)

suggest significant cross-cluster heterogeneity; At the bottom,

“Dynamic Tree Cut” (color strip) marks the independent clusters

(such as purple and orange clusters) generated by dynamic cutting,

and “Merge Dynamic” strip shows the merged large-scale
FIGURE 2

Single-cell RNA sequencing analysis. (A) t-SNE analysis of single-cell transcriptome. (B) Comparative t-SNE analysis between control and COVID-19
groups. (C) Cell Cluster Distribution in control and COVID-19 groups. (D) Differentially expressed genes (DEGs) across cell clusters (E–J). Cell
interaction network maps.
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distribution (such as blue-green cross-sample continuous area),

indicating that the data has multi-level clustering characteristics.

Each module gene was correlated with the group (Figure 4E), and

the results showed that coral1 module gene was significantly

correlated with Cov group (r=0.91, p < 0.05). Correlation analysis

of co-expression network showed that there was a strong positive

correlation between the membership degree of coral1 module gene

and the significance of weighted genes in Cov group (Figure 4F). By
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analyzing the interaction network between gene module and

immune cell-related subsets, it was found that coral1 module

gene was negatively correlated with CD8+ T cells (r=-0.81, p <

0.05), which emphasized the negative regulatory effect of Coral1

module gene on CD8+T cells (Figure 4G). Then, we analyzed the

correlation analysis between coral1 module gene and CD8+T cells

(Figure 4H, r=0.88), CD4+T cells resting memory (Figure 4I,

r=0.41) and Plasma cells (Figure 4J, r=0.10).
FIGURE 3

Transcriptomic data analysis. (A). PCA analysis. (B, C). Heatmap and volcano plot of transcriptomic data. (D, E). GO and KEGG analyses. (F, G).
Heatmap and bar chart of immune infiltration analysis.
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Proteomics analysis reveals the key
proteins related with CD8+ T cells

The efficiency of proteomics analysis from original map to

protein quantification (Figure 5A). In order to identify

biomarkers of COVID-19, we conducted proteomic sequencing.
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The similarity between samples is shown in Figure 5B, where there

is a significant difference between the control and COVID-19. PCA

results demonstrate that COVID-19 has a difference compared to

Control (Figure 5C). We found a total of 36 DEPs with 11

downregulated proteins and 25 upregulated proteins (Figure 5D).

To further identify potential biomarkers, we conducted PPI
FIGURE 4

WGCNA Analysis. (A, B). Selection of optimal soft thresholds for network construction. (C). Heatmap of module-trait correlations. (D). Hierarchical
clustering dendrogram for module detection. (E). Heatmap showing the correlation between modules and immune cells. (F, G). (H-J) The
correlation analysis between coral1 module gene and CD8+T cells (H), CD4+T cells resting memory (I), Plasma cells (J).
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network analysis using the DEPs (Figure 5E). To further understand

the functions of these DEPs, we performed enrichment analysis.

The results revealed that these differentially expressed genes are

mainly enriched in biological processes such as negative regulation

of hydrolase activity, negative regulation of peptidase activity, and

negative regulation of endopeptidase activity (Figure 5F). They are

also enriched in the apoptosis, PPAR signaling pathway and biotin

metabolism (Figure 5G).
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Biomarker identification and molecular
docking verification

Subsequently, we selected proteins from this module that

intersected with differentially expressed proteins and hub genes

(Figure 6A). We identified BTD, CFL1, PIGR and SERPINA3 as

potential biomarkers with machine learning (Figures 6B-C). ROC

analysis of transcriptomics results showed that BTD (AUC = 0.94,
FIGURE 5

Proteomic Analysis. (A) Data quality assessment bar chart. (B) Clustering heatmap. (C) PCA analysis. (D) Volcano plot. (E) PPI analysis. (F, G). GO and
KEGG analyses.
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Figure 6D), CFL1 (AUC = 1, Figure 6E), PIGR (AUC = 0.98,

Figure 6F), SERPINA3 (AUC = 0.96, Figure 6G) had high diagnostic

value. ROC analysis of proteomics results showed that BTD (AUC = 1,

Figure 6H), CFL1 (AUC = 1, Figure 6I), PIGR (AUC = 0.92, Figure 6J),

SERPINA3 (AUC = 0.84, Figure 6K) had high diagnostic value. ANN

model was constructed using four candidate biomarkers (CFL1, PIGR,
Frontiers in Immunology 12
SERPINA3, and BTD) as input variables (Figure 6L). The network

comprised an input layer with four nodes, one hidden layer, and an

output layer with two nodes corresponding to the Control and

COVID-19 groups. The model converged with a final error of

0.000992 after 360 training steps. The diagnostic performance of the

ANN was assessed by receiver operating characteristic (ROC) curve
FIGURE 6

Identification of biomarkers. (A). Venn diagram. (B, C). LASSO regression analysis. (D–G). ROC analysis of transcriptomics. (H–K). ROC analysis of
proteomics. (L, M). ANN analysis.
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analysis. As shown in Figure 6M, the model achieved an area under the

curve (AUC = 0.953), indicating excellent discriminative power in

distinguishing COVID-19 patients from controls. These results suggest

that the identified biomarkers, when integrated into an ANN

framework, hold strong potential for accurate disease classification.

To determine whether BTD, CFL1, PIGR and SERPINA3 can

serve as biomarkers for COVID-19, we verified with the related

biomarkers expression of transcriptomics data (Figure 7A) and

proteomics data (Figure 7B). In order to determine whether

Paxlovid plays a therapeutic role through biomarkers, we

conducted molecular docking verification based on AlphaFold.

The results indicated that Paxlovid may bind to BTD (Figure 7C),

CFL1 (Figure 7D), PIGR (Figure 7E), and SERPINA3 (Figure 7F)

with favorable binding energies (Table 2), potentially modulating

their protein functions and exerting therapeutic effects.
Discussion

The COVID-19 pandemic, caused by the SARS-CoV-2 virus,

has profoundly affected the world, with millions of confirmed cases

and numerous fatalities (24, 25). The disease presents a wide

spectrum of clinical manifestations, ranging from mild symptoms

to severe respiratory failure, posing significant challenges for both

diagnosis and treatment (26). Recent advances in multi-omics

molecular profiling have greatly improved our understanding of

the transmission dynamics of respiratory viruses on a global scale

(27). Additionally, the substantial overlap in clinical symptoms

among various respiratory illnesses continues to hinder accurate

diagnosis. To address this challenge, we conducted a comprehensive

framework using healthy individuals as a control group, collecting

clinical diagnostic data from the peripheral blood of both COVID-

19 patients and healthy controls. The omics data (GSE192391,

GSE164805) and our clinical cohort come from different sources

and time points, and key variables such as age, disease severity and

gender can be seen in Supplementary Table S1. By integrating

scRNA-seq and RNA-seq data with an analysis of the peripheral

plasma proteome, we applied machine learning models to

successfully identify and predict potential biomarkers associated

with CD8+ T cell responses in COVID-19 infection. Our findings

suggest that BTD, CFL1, PIGR, and SERPINA3 may serve as

promising auxiliary diagnostic and therapeutic biomarkers for

COVID-19, offering significant clinical potential.

Several limitations of this study should be acknowledged. First,

the cohorts used in our analysis were not fully matched in terms of

demographic and clinical characteristics, which may introduce

confounding factors and limit the comparability across groups.

Second, while we integrated both publicly available external datasets

(GSE192391, GSE164805) and our own internal proteomic data to

enhance robustness, heterogeneity in sample collection, processing

protocols, and sequencing platforms could have affected the

consistency of the results. Third, the sample size of our internal

cohort remains relatively modest, which may constrain the

statistical power and generalizability of the findings. Finally,

functional validation of the identified biomarkers was not
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performed in the present work, and further studies in larger, well-

matched, and longitudinal cohorts are needed to verify the

diagnostic and preventive potential of the proposed multi-

omics framework.

The findings are both clinically relevant and biologically

plausible. Recent studies suggest critical roles of T cells in the

clearance of SARS-CoV-2 and protection from developing severe

COVID-19 (28, 29). In a study, Bilich et al. specifically explored the

kinetics of SARS-CoV-2–specific T cell responses in two cohorts of

patients up to 6 months after infection (30). The authors found that,

whereas antibody responses wane, T cell responses to SARS-CoV-2

antigens remain consistent or increase over time. T cell responses

against SARS-CoV-2 likely provide protection against severe

COVID-19, but how reinfection affects T cell functionality

remains unclear (31). The coronavirus typically induces an

excessive immune response, with the overconsume and

dysfunction of CD8+ T cells being one of the core mechanisms of

immunopathological damage (15). SARS-CoV-2-specific CD8+ T

cells in pre-pandemic samples from children, adults, and elderly

individuals predominantly displayed a naive phenotype, indicating

a lack of previous cross-reactive exposures (32). A subset of CD8+ T

cells regulate chronic inflammation in COVID-19 patients by

killing pathogenic CD4+ T cells (33). Nevertheless, despite

extensive research, the exact role of CD8+ T cells in COVID-19

remains to be determined.

Biotinidase (BTD) plays a role in supporting immune function,

and since COVID-19 affects immune responses, there may be an

indirect relationship (34). BTD deficiency can impair immune

function, and individuals with biotinidase deficiency or biotin

deficiency may exhibit altered responses to infections, including

viral ones like SARS-CoV-2 (35). While BTD has not been studied

specifically in the context of COVID-19, its role in cellular processes

and immunity suggests that biotinidase could potentially support

immune function during viral infections, though there is no

evidence yet to suggest it has a direct effect on COVID-19. Cofilin

1 (CFL1) is involved in cytoskeletal regulation and plays a

significant role in immune cell migration, particularly may

influence T cells migrate to sites of infection and become

activated in inflammatory response (36). Therefore, CFL1 could

serve as a potential marker for disease severity in COVID-19, with

elevated levels or altered actin dynamics possibly correlating with

more severe disease or prolonged inflammation. PIGR is essential

for mucosal immunity by facilitating the secretion of dimeric IgA

and IgM into mucosal surfaces like the respiratory and

gastrointestinal tracts (37, 38). The dysregulation of PIGR activity

could impair mucosal immune responses, particularly IgA ability to

neutralize SARS-CoV-2, leading to higher viral loads in the upper

respiratory tract and potentially more severe disease. SERPINA3

plays an important role in regulating inflammation and protecting

tissues from protease-mediated damage (39). The decrease of

SERPINA3 level may be related to poor outcome, but it may also

be a protective factor to limit excessive tissue damage. Their

potential role in acute COVID-19 and long-term COVID makes

them potential biomarkers of disease severity and a candidate for

therapeutic intervention.
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Healthcare has shifted from a responsive model to a proactive,

personalized, and preventative approach. The development of multi-

omics offers a powerful framework to accurately predict an individual’s

disease risk and uncover complex biological interactions that may

otherwise remain hidden (40). Swinnerton et al. have developed and
Frontiers in Immunology 14
prospectively validated a tool to predict the absolute risk of severe

COVID-19, incorporating dynamic parameters at both the patient and

population levels, which could inform clinical care (41). However, it

remains possible that this model may not generalize to individuals who

acquired immunity via natural infection or those without exposure to
FIGURE 7

Expression level of biomarkers and Molecular Docking Visualization. (A) the gene expression levels of essential genes (BTD, CFL1, PIGR, SERPINA3),
(B) the protein expression levels of essential proteins (BTD, CFL1, PIGR, SERPINA3). (C) The binding between BTD and Paxlovid. (D) The binding
between CFL1 and Paxlovid. (E) The binding between PIGR and Paxlovid. (F) The binding between SERPINA3 and Paxlovid.
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the virus or vaccine. The SARS-CoV-2 pandemic spread rapidly

worldwide, resulting in high mortality. Developing enhanced

vaccination strategies that effectively protect against both disease and

viral transmission is crucial for preparing for future respiratory virus

pandemics. Leveraging a multi-omics approach in our research allows

us to comprehensively assess the multifactorial immune response,

providing deeper insights into how blood biomarkers of COVID-19

modulate immunity. Further clinical and translational studies are

essential to refine these findings and bridge the gaps in

our understanding.
Conclusions

Our findings suggest that BTD, CFL1, PIGR, and SERPINA3

may serve as promising auxiliary diagnostic and therapeutic

biomarkers for COVID-19, offering significant clinical potential.

By combining machine learning with multi-omics framework, we

offer a novel approach to precision medicine, especially in early

diagnosis and personalized treatment.
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