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Introduction: COVID-19 has caused over 7 million deaths worldwide since its
onset in 2019, and the virus remains a significant health threat. Identifying
sensitive and specific biomarkers, along with elucidating immune-mediated
mechanisms, is essential for improving the diagnosis, treatment, and
prevention of COVID-19. To predict key molecular markers of COVID-19 using
an established multi-omics framework combined with machine learning models.
Methods: We conducted an integrated analysis of single-cell RNA sequencing
(scRNA-seq), bulk RNA sequencing, and proteomics data to identify critical
biomarkers associated with COVID-19. The multi-omics approach enabled the
characterization of gene expression dynamics and alterations in immune cell
subsets in COVID-19 patients. Machine learning techniques and molecular
docking analyses were employed to identify biomarkers and therapeutic
targets within the disease’s pathophysiological network.

Results: Principal component analysis effectively grouped samples based on
clinical characteristics. Using random forest and SVM-RFE models, we identified
clinical indicators capable of accurately distinguishing COVID-19 patients.
Transcriptomic analysis, including scRNA-seq, highlighted the pivotal role of
CD8™" T cells, and WGCNA identified related module genes. Proteomic analysis,
integrated with machine learning, revealed 36 DEPs. Further investigation
identified several genes associated with monocyte proportions. Correlation
analysis showed that BTD, CFL1, PIGR, and SERPINA3 were strongly linked to
CD8* T cell abundance in COVID-19 patients. ROC curve analysis demonstrated
that these genes could effectively distinguish between COVID-19 patients and
healthy individuals. Concordant findings from both transcriptomic and
proteomic levels support BTD, CFL1, PIGR, and SERPINA3 as potential auxiliary
diagnostic markers. Finally, AlphaFold-based molecular docking analysis
suggested these biomarkers may also serve as candidate therapeutic targets.
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GRAPHICAL ABSTRACT

Overview of the study design. The participants were divided into two groups: control group (n=265) and COVID-19 group (n=358). Principal compo-
nent analysis was used to group samples according to clinical characteristics. Selected features were analyzed based on random forest model and
SVM-REF model. By integrating scRNA-seq and RNA-seq data with an analysis of the peripheral plasma proteome, we applied machine learning
models to successfully identify and predict potential biomarkers associated with CD8+ T cell responses in COVID-19 infection. ROC curve analysis
was used to analyze the clinical diagnostic efficacy of inflammatory factors among different groups. The box diagram was used to show the levels of
different inflammatory factors in plasma of different populations.

Frontiers in Immunology

10.3389/fimmu.2025.1671936

Discussion: Preliminary findings indicate that BTD, CFL1, PIGR, and SERPINA3 are
vital molecular biomarkers related of CD8+ T cell, providing new insights into the
molecular mechanisms and long-term prevention of COVID-19.

KEYWORDS

multi-omics, scRNA-seq, RNA-seq, biomarkers, COVID-19

@ Analysis and importance ranking of clinical sample features
i‘i Py -
L265 » == N -
fnnmh . S ; & o0 i
Control B 5 émv - |- . L
b= Con ™ .
3 fo| Eeaw » e ==
ey | i g
. 358 ¢ 7 - N kN ’ i
finnf I SR - e B Eﬁg i
COVID-19 Feree R " o . i )
| The nitial fiftcen clinical features | —3> \itotite fErine lj IR s E@E

@ Single cell transcriptome sequencing

R
a0of

O\ F .’ H |

3 ¢ 2 pd o LN : N

£ N\ \\ - . .J! i t____ ‘!__-m’_ij H

¢ i FAFIIIPFEIIPIEEIFE) -

= S /\’ \i fé%%é&%?’%&;;{# |
L @ L

® Proteomics Analysis

-Log 1 (P value)

@ Identification of biomarkers by machine learning

PP PP - crus pior serpwas
I. . . o2
i i i i
f :"( iy LE L
: Logt sovatoy sovcay - Spoctcty
® Verification of biomarkers
9 con B8 OOV, 8 con B cov

1

=R

02 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1671936
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Zhou et al.

Background

Despite a decline in the overall burden of COVID-19, the threat
posed by the virus remains significant and persistent (1, 2). COVID-19,
caused by the zoonotic SARS-CoV-2, continues to spread through
respiratory droplets and direct contact, posing ongoing challenges to
public health (3). Despite the flood of insights into the behavior of the
virus and how to prevent it from causing harm (4, 5), many questions
remain regarding the duration and quality of immunity after
reinfection or vaccination, the impact of coinfections, and optimal
treatment protocols for different populations. Severe COVID-19 is
characterized by pneumonia, lymphopenia, exhausted lymphocytes
and a cytokine storm (6). However, whether this is protective or
pathogenic remains to be determined. Critical COVID-19-related
illnesses continue to occur, and the virus’s impact on immune
function remains insufficiently understood (7). Therefore, identifying
sensitive and specific molecular markers, uncovering key immune
mechanisms, and discovering new therapeutic targets are not only
important but also critically necessary. Continued research is essential
to manage COVID-19 effectively, mitigate its long-term effects, and
prepare for future threats.

The integrated analysis of single cell transcriptome (scRNA-
seq), bulk RNA-seq and proteomics has become a frontier means to
analyze the mechanism of complex diseases and find accurate
biomarkers (8). Single cell transcriptome technology can analyze
the heterogeneity of cells with high resolution, and reveal the gene
expression dynamics of specific cell subsets in microenvironment of
COVID-19 patients (9, 10). However, the sparsity and high noise of
single cell data need to be optimized by preprocessing and
dimensionality reduction clustering, while the bulk transcriptome
data provide the global expression characteristics of transcription
level, and the two can be complemented by algorithms to infer the
changes of cell subsets during the disease process (11). Proteomics
data directly reflect the activity of functional molecules and make up
for the lack of information in post-transcriptional regulation (12).
Multimodality integration improves accuracy by combining single-
cell data, bulk transcriptome, and serum proteomics, advancing
early disease screening, target discovery, and personalized treatment
in precision medicine.

COVID-19 infection can trigger an inappropriate immune
response, leading to excessive activation of immune cells, tissue
inflammation, and even multi-organ dysfunction (13). Current
studies indicate that T cell-mediated immunity plays a crucial
role in the effective antiviral response to COVID-19 (14). In this

Abbreviations: BTD, Biotinidase; CIBERSORT, Cell-type identification by
estimating relative subsets of protein; CFL1, Cofilin 1; DDA, Data-dependent
acquisition; GO, Gene ontology; KEGG, Kyoto encyclopedia of genes and
genomes; LASSO, Least absolute shrinkage and selection operator; Paxlovid,
Nirmatrelvir/Ritonavir; PCA, Principal component analysis; PIGR, Polymeric
immunoglobulin receptor; RDW, Red cell distribution width; RF, Random forest;
scRNA-seq, Single cell transcriptome; SERPINA3, Alpha-1-antichymotrypsin;
TOM, Topological overlap measure; WGCNA, Weighted gene co-expression

network analysis.
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context, CD8+ T cells form an initial line of defense by rapidly
recognizing viral antigens (15). COVID-19 infection induces CD8+
T cells to initiate cytotoxic responses, with cytotoxic T lymphocytes
being responsible for clearing infected cells, thus playing a key role
in controlling the virus (16, 17). Regulatory T cells also help prevent
severe COVID-19 outcomes by mitigating excessive host
inflammatory responses (18). In summary, cellular immunity,
particularly CD8+ T cells, is vital for monitoring and predicting
COVID-19 progression, aiding in early detection of severe cases and
guiding clinical treatment. While patients with COVID-19 often
present with lymphopenia, the disease has also been linked to
immune hyperresponsiveness (19). Notably, the mechanisms
behind immune cell dysfunction are not yet fully understood.

In this study, we performed integrated analyses using sScRNA-
seq, RNA-seq, proteomics, and AlphaFold-based molecular docking
to investigate the alterations in key biomarkers associated with
COVID-19. Functional enrichment analysis and machine learning
were subsequently employed to identify pathogenic genes and
elucidate their role within the pathophysiological network of
COVID-19. By combining genetic evidence with clinical trial
data, we developed a multi-omics framework to prioritize
immune-mediated drug targets for COVID-19. Preliminary
findings indicate that biotinidase (BTD), Cofilin 1 (CFL1),
Polymeric Immunoglobulin Receptor (PIGR), and Alpha-1-
antichymotrypsin (SERPINA3) are critical molecular markers
associated with CD8+ T cells in the context of COVID-19,
suggesting their potential as biomarkers for diagnosis and
therapeutic intervention.

Methods
Clinical data collection

In this study, we retrospectively analyzed the test data of 358
COVID-19 patients and 265 healthy people who were treated in the
Second Affiliated Hospital of Mudanjiang Medical College from
January to June 2023. This study was conducted in strict accordance
with the Declaration of Helsinki and was approved by the Medical
Ethics Review Committee of the Second Affiliated Hospital of
Mudanjiang Medical College (No. 202328). All participants gave
their consent to participate in the study.

Clinical features extract

Principal component analysis (PCA) was performed using the
“prcomp” function from the “stats” R package based on the 14
clinical features. We utilized the randomForest v4.7 package to
construct a random forest model for ranking the importance of
these clinical features and evaluating their performance as
indicators. Specifically, the number of decision trees (such as n
tree = 500), the maximum depth and other parameters are set, and
the Gini index decline or replacement importance is used to
evaluate the feature contribution.
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Single-cell RNA-seq

The scRNA-seq data used in this study were screened from the
public database GEO database platform. The scRNA-seq dataset
(GSE192391) used is based on the Illumina NovaSeq assay platform
and contains 12 patients and 6 controls (10). Subsequent analysis
was performed using the R Seurat v5.2.1 package. The following
quality control steps were performed to filter the count matrices:
Genes expressed in <3 cells and cells expressing fewer than 200
genes were removed; Cells expressing >5000 genes were discarded
as these could be potential multiplet events where more than a
single cell was encapsulated within the same barcoded GEM; Cells
with >10% mitochondrial content was filtered out as these were
deemed to be of low-quality. The data set consists of 18 samples. In
order to remove the batch effect except the processing factors
between different samples, data integration is carried out based
on rPCA method. After data integration, the cells were clustered by
principal component analysis and dimensionality reduction.
According to the markers of human cell subsets determined in
previous studies, cell annotation was carried out and the proportion
of each cell subset was calculated. In this study, the R CellChat
v1.6.1 package was used to infer the interaction between cells based
on the expression of receptors and ligands on the cell surface. The
algorithm simulates the probability of cell-to-cell communication
by inputting the gene expression data of cells and combining the
gene expression with the prior data of the interaction between signal
ligands, receptors and their co-factors.

DEG analysis, functional enrichment and
immune infiltration analysis

The RNA-Seq data used in this study were GSE164805 included
10 COVID patients and 5 controls (20). Using R limma v3.62.2
package, according to the sample grouping, the differences between
standard groups were analyzed. Cluster analysis was used to calculate
PCA and FactoMine package drawing. Transcriptomics data were
processed by R DESeq2 v1.46.0 package to analyze the difference of
the original Counts matrix, and follow the standard process. In this
study, |Log2FC| > 0.5 and P < 0.05 were set for differential expression
genes filtration. Gene ontology (GO) enrichment analysis of DEGs
was implemented in the R GO.db v3.20.0 packages based on
Wallenius non-central hypergeometric distribution (https://
geneontology.org/). The DEGs were analyzed using the Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (https://
www.genome.jp/kegg/pathway.html). Protein-protein interaction
network was conducted in STRING (https://string-db.org/).
Transcriptome data was transformed into the total abundance of
immune cells by utilizing the Cell-type Identification by Estimating
Relative Subsets of protein (CIBERSORT) analysis with the R
CIBERSORT v0.1.0 package. Using the Wilcoxon test, immune
cells were compared among COVID samples and control samples.
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Construction of co-expression network

Weighted gene co-expression network analysis (WGCNA) was
utilized to identify gene modules with similar expression patterns
and analyze the correlation between monocyte proportion and gene
modules. The scale independence and average connectivity of the
networks were tested with different power values (from 1 to 20). The
appropriate power value was determined when the independent
scale was greater than 0.85 and the connectivity was high. Then, the
similarity matrix was transformed into a topological matrix with the
topological overlap measure (TOM) describing the correlation
between genes. The genes were clustered by using 1-TOM as the
distance. A dynamic hybrid cutting method was used to establish a
hierarchical clustering tree to identify co-expressed gene modules.
Each leaf of the tree represents a gene, and genes with similar
expression data aggregate to form a branch of the tree and each
branch represents a gene module. A weighted co-expression
network model was established, and the gene expression matrix
was divided into several related modules. Finally, the modules
related to KOA and immune cell infiltration were selected for
further analysis.

Label-free protein profiling detection

Protein quantification was performed using the Bradford protein
quantification kit (purchased from Shanghai Biotechnology
Company). Trypsin (purchased from Solebac (Beijing)) was added
to each protein sample and incubated at 37°C for 4 h. CaCl, was
added to each sample and digested overnight. Formic acid was added,
centrifuged at 12,000 g for 5 min, and the resulting supernatant was
loaded onto a C18 desalting column. LC-MS/MS analysis was
performed using an EASY-nLC TM 1200 UHPLC and Q Exactive
TM HF-X mass spectrometry system, both purchased from
ThermoFisher (USA), operated in data-dependent acquisition
(DDA) mode.

DEP analysis, functional enrichment and
PPI analysis

Proteomics data were processed by R DEP version 1.26.0
package. Proteomic data were then normalized using
“normalize_vsn” function. Cluster analysis was used to calculate
PCA and R package FactoMine drawing. “add_rejections” function
was applied to calculate the fold-change values of proteins. In this
study, |Log2FC| > 0.5 and P < 0.05 were set for differential
expression proteins filtration. GO enrichment analysis of DEPs
was implemented in the GOseq R packages based on Wallenius
non-central hypergeometric distribution. The DEPs were analyzed
using the KEGG database. Protein-protein interaction network was
conducted in STRING.
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Machine learning techniques

Machine learning was employed as a tool to improve biomarker
screening. First, feature selection was performed using the Random
Forest (RF) algorithm, which calculates the mean decrease in Gini
(MDGQG) for each gene or protein, ranks them accordingly, and
determines the optimal number of features by sequentially adding
differential genes/proteins from highest to lowest MDG until
classification accuracy is maximized. Next, the least absolute
shrinkage and selection operator (LASSO), implemented via the
“glmnet” R package, was applied as a regularized regression
approach to further refine the selected features. Finally, an
artificial neural network (ANN) analysis was conducted with the
R packages “neuralnet” for model construction and training, and
“NeuralNetTools” for visualization and interpretation of the results.
This integrated workflow enabled robust identification and
evaluation of candidate biomarkers.

ROC analysis and validation of the
biomarkers

In addition, the expression level and diagnostic value of
biomarkers was verified in both proteomics and transcriptomics
data. We examined the diagnostic effectiveness of the biomarkers
with the ROC using the R pROC v1.18.5 package. The expression
levels of the biomarkers were also compared between COVID and
control samples using an independent t-test, with P < 0.05
considered statistically significant.

AlphaFold-based molecular docking

To assess the binding affinity between the COVID-19 antiviral
drug Nirmatrelvir/Ritonavir (Paxlovid) (21) and key biomarkers,
the 3D structures of core target proteins were predicted using
AlphaFold DB (https://alphafold.ebi.ac.uk/), while the 3D
structure of Paxlovid (PubChem CID, 155903259) was retrieved
from PubChem (https://pubchem.ncbi.nlm.nih.gov/). Binding
affinity was evaluated using CB-Dock2, with a docking score < -
5.0 kcal/mol considered indicative of strong interaction (22, 23).

Statistical analysis

The normal distribution of the data was assessed by the Shapiro-
Wilk normality test using or SPSS Statistics v27.0 (IBM, USA), and the
mean is expressed as mean + standard error. If the data were normally
distributed, the differences between the means were assessed by one-
way analysis of variance and Tukey’s multiple comparison test. If the
data were not normally distributed, scores were compared using the
nonparametric Kruskal-Walli’s test. When p < 0.05, the difference
between groups was considered statistically significant. A professional
biostatistician reviewed the study and confirmed that the sample size is
appropriate and statistically justified.
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Result
Analysis of clinical sample features

A total of 623 samples were collected and divided into two
groups: Control (n=265) and COVID-19 (n=358). PCA shows that
the horizontal and vertical coordinates (PC 1 and PC 2) explain
22.5% and 15.8% of the total variation respectively, and the
cumulative contribution rate is 38.3%, which indicates that it can
effectively capture the main variation trend of samples data
(Figure 1A, Table 1). The random forest results suggest that the
top five clinical features of the five importance scores are
lymphocyte level, monocyte level, red cell distribution width
(RDW), neutrophil level and PCT (Figure 1B). The results of
SVM-REF indicated that four clinical features changed obviously
when the disease occurred, namely lymphocyte level, monocyte
level, RDW and neutrophil level (Figure 1C). Moreover, the model
exhibited favorable performance with ROC curve, lymphocyte level
(AUC = 0.98), monocyte level (AUC = 0.98), RDW (AUC = 0.979)
and neutrophil level (AUC = 0.978) (Figure 1D). To further screen
the clinical sample features for machine learning model
construction, we analyzed the changing trends of significant
clinical sample features among different groups (Figures 1E-H).

scRNA-seq reveals the key immune cell
components of COVID-19 patients

We compared the distribution characteristics of single cells
between control group and COVID-19 group by ISNE
dimensionality reduction technique. Figure 2A shows the
distribution pattern of 26 cell subsets in a two-dimensional space
composed of ISNE_1 (horizontal axis) and ISNE_2 (vertical axis) in
the form of digital clustering, while the spatial location of CD8+ T
cells (orange), monocytes (blue-green), dendritic cells (pink) and
other major immune cells is clearly marked on the right (Figure 2B).
Among them, the COVID-19 group showed remarkable
characteristics: the density of CD8+ T cells in ISNE_1 axis 10-20
and ISNE_2 axis -10-0 regions increased obviously, showing
antiviral immune activation; The distribution range of monocytes
expanded to ISNE_1 axis 15-25 and ISNE_2 axis -5-5, and partially
overlapped with T cell region, suggesting cell interaction in
inflammatory microenvironment. Dendritic cells distributed
discretely between 0-10 of ISNE_1 axis and 5-15 of ISNE_2 axis,
which may be related to the disorder of antigen presentation. These
differences in spatial distribution directly reveal the migration of
immune cells, the reconstruction of subsets and the change of
functional status caused by COVID-19 infection, which provides
visual evidence for the analysis of virus-specific immune response.
By comparing the immune cell composition and gene expression
characteristics between the control group and COVID-19 group,
the immune remodeling law of COVID-19 infection was revealed.
The histogram of Figure 2C shows that the proportion of CD8+ T
cells (red stripes) in COVID-19 group decreased significantly, while
the proportion of monocytes (lavender stripes) increased relatively,
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FIGURE 1

Clinical data collection and features extract. (A) PCA analysis. (B) Importance of clinical characteristic of random forest analysis. (C) Extraction of
clinical features by SVM-REF. (D) ROC analysis of four clinical features. (E) Levels of lymphocytes in blood of two groups. (F) Levels of monocytes in
blood of two groups. (G) RDW in blood of two groups. (H) Levels of neutrophil in blood of two groups.

suggesting that the proportion of immune cells was unbalanced.
Figure 2D volcanic map further analyzed the functional changes,
the cytotoxicity-related molecules (such as GZMB and IFNG) in
CD8+ T cells gene expression profile were significantly increased
(red dots were dense), indicating that the remaining cells were
highly activated; Monocytes are accompanied by the strong
expression of pro-inflammatory genes such as IL1f3 and TNF (the
red dots in the fifth column on the right gather at a high level),
which proves that they are polarized to the inflammatory
phenotype. The up-regulation of CXCL9/10 chemokine in
dendritic cells (red dot in the fourth column) and the fluctuation
of NK cell activation gene (sixth column) jointly reveal the
abnormal recruitment and regulation network disorder of
immune cells in inflammatory microenvironment. It is worth
noting that although the proportion of progenitor cells (light
blue-green strips) is stable, their stem cell maintenance genes
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(such as SOX4) are down-regulated (the last green dot),
suggesting that the immune regeneration potential is impaired.
Then, we analyzed the cell interaction network formed a dynamic
regulatory system through radial connection. Among them, CD8+
T cells (green center) establish multi-directional connections with
CD4+ T cells (blue), dendritic cells (uncolored), B cells (red),
monocytes (orange) and NK cells (pink) through green lines,
highlighting its position as a hub of cytotoxic response
(Figure 2E); CD4+ T cells (blue center) are connected in series
with B cells (red thick junction), monocytes and progenitor cells
through dense blue radiation, revealing their dual functions of
coordinating humoral immunity and inflammatory regulation
(Figure 2F). The strong connection between B cells (red center)
and CD4+ T cells (red thick line) confirms the core pathway of
antibody production in cooperation with T-B (Figure 2G), NK cells
and T/monocytes form rapid killing defense through pink
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TABLE 1 Clinical data analysis.

10.3389/fimmu.2025.1671936

n Control (265) Covid (358) P value
Age (mean (SD)) 60.45 (19.18) 68.77 (14.39) <0.001
WBC.Count (mean (SD)) 7.71 (4.47) 6.98 (3.39) <0.001
Neutrophil. Proportion (mean (SD)) 66.07 (17.38) 70.83 (16.05) <0.001
Lymphocyte.Proportion (mean (SD)) 21.66 (15.42) 17.10 (10.45) <0.001
Monocyte.Proportion (mean (SD)) 8.53 (4.49) 8.54 (6.21) 0.054
RBC.Mean.Volume (mean (SD)) 91.30 (8.20) 88.79 (14.70) 0.016
RBC.Distribution.Width (mean (SD)) 14.19 (2.58) 12.70 (2.43) <0.001
PT (mean (SD)) 8.38 (6.48) 10.29 (5.07) <0.001
APTT (mean (SD)) 18.36 (13.79) 23.26 (11.43) <0.001
D.Dimer (mean (SD)) 0.99 (1.86) 0.96 (2.30) <0.001
IL6 (mean (SD)) 1.14 (5.63) 11.25 (31.03) <0.001
PCT (mean (SD)) 0.56 (3.97) 0.22 (1.13) <0.001
C.Reactive.Protein (mean (SD)) 42.41 (52.10) 33.68 (53.20) <0.001
Sex =2 (%) 119 (44.9) 151 (42.2) <0.001

connection (Figure 2H), while dendritic cells are simultaneously
connected with T/B/NK cells (Figure 2I) to mediate antigen
presentation and chemotaxis recruitment. Monocytes (orange
center) are widely connected with T/NK/dendritic cells through
orange lines, suggesting that they play a bridging role in
inflammatory signal amplification (Figure 2J). From the
perspective of systems biology, we reveal the precise framework of
cell cooperation in immune response.

RNA-seq reveals the key immune
components of COVID-19

Through principal component analysis, the sequencing data of
transcription group showed that the control group (Con, blue dot)
and COVID-19 group (Cov, red triangle) were significantly
separated along the PC1(32.7% variance) and PC2(19.5%
variance) axes, among which the samples in the control group
were relatively concentrated, suggesting that the transcription
characteristics in the group were highly consistent (Figure 3A).
Cluster thermogram shows the expression gradient of genes (rows)
in different samples (columns), and blue to red respectively
correspond to low expression to high expression level (Figure 3B).
It can be seen that “Con” (blue label) and “Cov” (red label) samples
form obvious clustering partitions on the gene expression spectrum.
Further difference analysis showed that 3024 genes were up-
regulated and 3812 genes were down-regulated (Figure 3C). GO
analysis showed that the differential genes were significantly
enriched in physiological process-related pathways such as MAPK
cascade positive regulation, immune response regulation, apoptosis
signal pathway and T cell differentiation, and involved ribosome
structures, suggesting that cell function and structure were widely
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affected during the disease process (Figure 3D). KEGG enrichment
results suggest innate immune pathways such as chemokines, Toll-
like receptors and T cell receptors, as well as key regulatory hubs
such as FoxO, TNF and NF-xB (Figure 3E).

The results of immune infiltration analysis showed that the
correlation network among immune cell subsets was revealed by red
and blue gradient (Figure 3F), in which CD8+ T cells were positively
correlated with naive B Cell (r=0.74) and negatively correlated with
neutrophils (r=-0.79), suggesting the cooperative or antagonistic
relationship between different immune cells in the infiltration
process. The difference in the proportion of immune cells
between “con” (blue) and “cov” (red) groups was compared by
box chart (Figure 3G). Among them, Plasma cells, CD4+ T cells
memory resting, MO macrophage, resting mast cells and CD8+ T
cells showed significant distribution deviation between the two
groups, and the difference in box span suggested that the
treatment might specifically reshape the microenvironment of
specific immune subgroups.

WGCNA analysis reveals the modular
genes of CD8+ T cells

Figure 4A shows the relationship between soft threshold
(power) and goodness of fit (R?) of scale-free topological model.
When power=9 (marked by red five-pointed star), R* reaches 0.72
and the curve tends to be flat, indicating that this threshold can
effectively balance the biological characteristics and topological
attributes of the network. Figure 4B shows the decreasing trend of
Mean Connectivity with the increase of power, and the connectivity
drops to 671.79 when power=9, suggesting that the network retains
the core co-expression structure after filtering weakly related genes.
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Single-cell RNA sequencing analysis. (A) t-SNE analysis of single-cell transcriptome. (B) Comparative t-SNE analysis between control and COVID-19
groups. (C) Cell Cluster Distribution in control and COVID-19 groups. (D) Differentially expressed genes (DEGs) across cell clusters (E-J). Cell

interaction network maps.

The thermogram of Figure 4C reveals the correlation pattern
between modules. The dark red block in diagonal area (such as
brown4 module) reflects the high degree of gene cooperation within
modules, while the blue-red difference between firebrick4 and light-
colored modules (such as r=0.32 to -0.45) implies the independence
or antagonistic relationship of different functional modules.
Figure 4D quantifies the similarity between samples/gene clusters
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by vertical height (vertical axis), and the black branching structure
shows that low-level merged clusters (such as height < 5) have high
homogeneity, while high-level branches (such as height > 15)
suggest significant cross-cluster heterogeneity; At the bottom,
“Dynamic Tree Cut” (color strip) marks the independent clusters
(such as purple and orange clusters) generated by dynamic cutting,
and “Merge Dynamic” strip shows the merged large-scale
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FIGURE 3
Transcriptomic data analysis. (A). PCA analysis. (B, C). Heatmap and volcano plot of transcriptomic data. (D, E). GO and KEGG analyses. (F, G).
Heatmap and bar chart of immune infiltration analysis.

distribution (such as blue-green cross-sample continuous area),  analyzing the interaction network between gene module and
indicating that the data has multi-level clustering characteristics. ~ immune cell-related subsets, it was found that corall module
Each module gene was correlated with the group (Figure 4E), and  gene was negatively correlated with CD8+ T cells (r=-0.81, p <
the results showed that corall module gene was significantly  0.05), which emphasized the negative regulatory effect of Corall
correlated with Cov group (r=0.91, p < 0.05). Correlation analysis ~ module gene on CD8+T cells (Figure 4G). Then, we analyzed the
of co-expression network showed that there was a strong positive  correlation analysis between corall module gene and CD8+T cells
correlation between the membership degree of corall module gene  (Figure 4H, r=0.88), CD4+T cells resting memory (Figure 41,
and the significance of weighted genes in Cov group (Figure 4F). By ~ r=0.41) and Plasma cells (Figure 4], r=0.10).
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Proteomics analysis reveals the key The similarity between samples is shown in Figure 5B, where there
proteins related with CD8+ T cells is a significant difference between the control and COVID-19. PCA
results demonstrate that COVID-19 has a difference compared to

The efficiency of proteomics analysis from original map to  Control (Figure 5C). We found a total of 36 DEPs with 11
protein quantification (Figure 5A). In order to identify  downregulated proteins and 25 upregulated proteins (Figure 5D).
biomarkers of COVID-19, we conducted proteomic sequencing.  To further identify potential biomarkers, we conducted PPI
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FIGURE 5

Proteomic Analysis. (A) Data quality assessment bar chart. (B) Clustering heatmap. (C) PCA analysis. (D) Volcano plot. (E) PPI analysis. (F, G). GO and

KEGG analyses.

network analysis using the DEPs (Figure 5E). To further understand
the functions of these DEPs, we performed enrichment analysis.
The results revealed that these differentially expressed genes are
mainly enriched in biological processes such as negative regulation
of hydrolase activity, negative regulation of peptidase activity, and
negative regulation of endopeptidase activity (Figure 5F). They are
also enriched in the apoptosis, PPAR signaling pathway and biotin
metabolism (Figure 5G).

Frontiers in Immunology

11

Biomarker identification and molecular
docking verification

Subsequently, we selected proteins from this module that
intersected with differentially expressed proteins and hub genes
(Figure 6A). We identified BTD, CFL1, PIGR and SERPINA3 as
potential biomarkers with machine learning (Figures 6B-C). ROC
analysis of transcriptomics results showed that BTD (AUC = 0.94,
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Figure 6D), CFL1 (AUC = 1, Figure 6E), PIGR (AUC = 0.98,
Figure 6F), SERPINA3 (AUC = 0.96, Figure 6G) had high diagnostic
value. ROC analysis of proteomics results showed that BTD (AUC = 1,
Figure 6H), CFL1 (AUC = 1, Figure 6I), PIGR (AUC = 0.92, Figure 6]),
SERPINA3 (AUC = 0.84, Figure 6K) had high diagnostic value. ANN
model was constructed using four candidate biomarkers (CFL1, PIGR,

10.3389/fimmu.2025.1671936

SERPINA3, and BTD) as input variables (Figure 6L). The network
comprised an input layer with four nodes, one hidden layer, and an
output layer with two nodes corresponding to the Control and
COVID-19 groups. The model converged with a final error of
0.000992 after 360 training steps. The diagnostic performance of the
ANN was assessed by receiver operating characteristic (ROC) curve
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analysis. As shown in Figure 6M, the model achieved an area under the
curve (AUC = 0.953), indicating excellent discriminative power in
distinguishing COVID-19 patients from controls. These results suggest
that the identified biomarkers, when integrated into an ANN
framework, hold strong potential for accurate disease classification.

To determine whether BTD, CFL1, PIGR and SERPINA3 can
serve as biomarkers for COVID-19, we verified with the related
biomarkers expression of transcriptomics data (Figure 7A) and
proteomics data (Figure 7B). In order to determine whether
Paxlovid plays a therapeutic role through biomarkers, we
conducted molecular docking verification based on AlphaFold.
The results indicated that Paxlovid may bind to BTD (Figure 7C),
CFL1 (Figure 7D), PIGR (Figure 7E), and SERPINA3 (Figure 7F)
with favorable binding energies (Table 2), potentially modulating
their protein functions and exerting therapeutic effects.

Discussion

The COVID-19 pandemic, caused by the SARS-CoV-2 virus,
has profoundly affected the world, with millions of confirmed cases
and numerous fatalities (24, 25). The disease presents a wide
spectrum of clinical manifestations, ranging from mild symptoms
to severe respiratory failure, posing significant challenges for both
diagnosis and treatment (26). Recent advances in multi-omics
molecular profiling have greatly improved our understanding of
the transmission dynamics of respiratory viruses on a global scale
(27). Additionally, the substantial overlap in clinical symptoms
among various respiratory illnesses continues to hinder accurate
diagnosis. To address this challenge, we conducted a comprehensive
framework using healthy individuals as a control group, collecting
clinical diagnostic data from the peripheral blood of both COVID-
19 patients and healthy controls. The omics data (GSE192391,
GSE164805) and our clinical cohort come from different sources
and time points, and key variables such as age, disease severity and
gender can be seen in Supplementary Table S1. By integrating
scRNA-seq and RNA-seq data with an analysis of the peripheral
plasma proteome, we applied machine learning models to
successfully identify and predict potential biomarkers associated
with CD8+ T cell responses in COVID-19 infection. Our findings
suggest that BTD, CFL1, PIGR, and SERPINA3 may serve as
promising auxiliary diagnostic and therapeutic biomarkers for
COVID-19, offering significant clinical potential.

Several limitations of this study should be acknowledged. First,
the cohorts used in our analysis were not fully matched in terms of
demographic and clinical characteristics, which may introduce
confounding factors and limit the comparability across groups.
Second, while we integrated both publicly available external datasets
(GSE192391, GSE164805) and our own internal proteomic data to
enhance robustness, heterogeneity in sample collection, processing
protocols, and sequencing platforms could have affected the
consistency of the results. Third, the sample size of our internal
cohort remains relatively modest, which may constrain the
statistical power and generalizability of the findings. Finally,
functional validation of the identified biomarkers was not
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performed in the present work, and further studies in larger, well-
matched, and longitudinal cohorts are needed to verify the
diagnostic and preventive potential of the proposed multi-
omics framework.

The findings are both clinically relevant and biologically
plausible. Recent studies suggest critical roles of T cells in the
clearance of SARS-CoV-2 and protection from developing severe
COVID-19 (28, 29). In a study, Bilich et al. specifically explored the
kinetics of SARS-CoV-2-specific T cell responses in two cohorts of
patients up to 6 months after infection (30). The authors found that,
whereas antibody responses wane, T cell responses to SARS-CoV-2
antigens remain consistent or increase over time. T cell responses
against SARS-CoV-2 likely provide protection against severe
COVID-19, but how reinfection affects T cell functionality
remains unclear (31). The coronavirus typically induces an
excessive immune response, with the overconsume and
dysfunction of CD8+ T cells being one of the core mechanisms of
immunopathological damage (15). SARS-CoV-2-specific CD8+ T
cells in pre-pandemic samples from children, adults, and elderly
individuals predominantly displayed a naive phenotype, indicating
alack of previous cross-reactive exposures (32). A subset of CD8+ T
cells regulate chronic inflammation in COVID-19 patients by
killing pathogenic CD4+ T cells (33). Nevertheless, despite
extensive research, the exact role of CD8+ T cells in COVID-19
remains to be determined.

Biotinidase (BTD) plays a role in supporting immune function,
and since COVID-19 affects immune responses, there may be an
indirect relationship (34). BTD deficiency can impair immune
function, and individuals with biotinidase deficiency or biotin
deficiency may exhibit altered responses to infections, including
viral ones like SARS-CoV-2 (35). While BTD has not been studied
specifically in the context of COVID-19, its role in cellular processes
and immunity suggests that biotinidase could potentially support
immune function during viral infections, though there is no
evidence yet to suggest it has a direct effect on COVID-19. Cofilin
1 (CFL1) is involved in cytoskeletal regulation and plays a
significant role in immune cell migration, particularly may
influence T cells migrate to sites of infection and become
activated in inflammatory response (36). Therefore, CFL1 could
serve as a potential marker for disease severity in COVID-19, with
elevated levels or altered actin dynamics possibly correlating with
more severe disease or prolonged inflammation. PIGR is essential
for mucosal immunity by facilitating the secretion of dimeric IgA
and IgM into mucosal surfaces like the respiratory and
gastrointestinal tracts (37, 38). The dysregulation of PIGR activity
could impair mucosal immune responses, particularly IgA ability to
neutralize SARS-CoV-2, leading to higher viral loads in the upper
respiratory tract and potentially more severe disease. SERPINA3
plays an important role in regulating inflammation and protecting
tissues from protease-mediated damage (39). The decrease of
SERPINAS3 level may be related to poor outcome, but it may also
be a protective factor to limit excessive tissue damage. Their
potential role in acute COVID-19 and long-term COVID makes
them potential biomarkers of disease severity and a candidate for
therapeutic intervention.
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Expression level of biomarkers and Molecular Docking Visualization. (A) the gene expression levels of essential genes (BTD, CFL1, PIGR, SERPINA3),
(B) the protein expression levels of essential proteins (BTD, CFL1, PIGR, SERPINA3). (C) The binding between BTD and Paxlovid. (D) The binding
between CFL1 and Paxlovid. (E) The binding between PIGR and Paxlovid. (F) The binding between SERPINA3 and Paxlovid.

Healthcare has shifted from a responsive model to a proactive,  prospectively validated a tool to predict the absolute risk of severe
personalized, and preventative approach. The development of multi- ~ COVID-19, incorporating dynamic parameters at both the patient and
omics offers a powerful framework to accurately predict an individual's ~ population levels, which could inform clinical care (41). However, it
disease risk and uncover complex biological interactions that may  remains possible that this model may not generalize to individuals who
otherwise remain hidden (40). Swinnerton et al. have developed and  acquired immunity via natural infection or those without exposure to
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TABLE 2 Molecular docking based on AlphaFold.

Protein AlphaFold structure ID
Biotinidase AF-P43251-F1-v4
Cofilin-1 AF-P23528-F1-v4

Polymeric immunoglobulin receptor AF-P01833-F1-v4

Alpha-1-antichymotrypsin AF-P01011-F1-v4

the virus or vaccine. The SARS-CoV-2 pandemic spread rapidly
worldwide, resulting in high mortality. Developing enhanced
vaccination strategies that effectively protect against both disease and
viral transmission is crucial for preparing for future respiratory virus
pandemics. Leveraging a multi-omics approach in our research allows
us to comprehensively assess the multifactorial immune response,
providing deeper insights into how blood biomarkers of COVID-19
modulate immunity. Further clinical and translational studies are
essential to refine these findings and bridge the gaps in
our understanding.

Conclusions

Our findings suggest that BTD, CFL1, PIGR, and SERPINA3
may serve as promising auxiliary diagnostic and therapeutic
biomarkers for COVID-19, offering significant clinical potential.
By combining machine learning with multi-omics framework, we
offer a novel approach to precision medicine, especially in early
diagnosis and personalized treatment.
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