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Background: PANoptosis is a newly recognized form of programmed
inflammatory cell death implicated in numerous inflammation-related diseases.
However, its precise role and underlying mechanisms in periodontitis (PD)
remain unclear.

Methods: We analyzed single-cell RNA sequencing (scRNA-seq) on gingival tissues
from PD patients and healthy individuals to profile cellular composition and quantify
cell-type distributions. Functional enrichment analyses were used to explore
PANoptosis and related pathways, with five gene set scoring methods applied to
quantify PANoptosis activity in human gingival fibroblasts (HGFs). The expression of
PANoptosis-related markers was validated by immunofluorescence staining and
gPCR in HGFs and gingival tissues from PD model mice. Based on PANoptosis
scores, HGFs were stratified into high- and low-activity groups. Cell-cell
communication and spatial transcriptomic analyses were integrated to examine
their interactions with immune cells in the periodontal microenvironment. Finally,
bulk RNA-seq data were subjected to comprehensive analysis using 113 machine
learning models to screen for core PANoptosis-associated genes, which were
subsequently validated through gPCR and immunohistochemistry in
gingival tissues.

Results: scRNA-seq analysis revealed a decreased proportion of HGFs alongside
enrichment of multiple PANoptosis-related pathways in PD samples. Further
assessment demonstrated significantly elevated PANoptosis activity in HGFs from
PD compared to controls, which was validated by tissue-level immunofluorescence
staining. In vitro experiments using cultured HGFs and in vivo analyses in PD model
mice further confirmed upregulation of PANoptosis-related markers via
immunofluorescence and gPCR. Upon stratifying HGFs into high- and low-
PANoptosis groups, cell-cell communication and spatial transcriptomic analyses
indicated that high-PANoptosis HGFs exhibited enhanced interactions with
immune cells within the periodontal microenvironment. Additionally, bulk
transcriptomic profiling combined with machine learning approaches identified
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four key PANoptosis-associated genes, which were subsequently validated in
human gingival tissues.

Conclusion: Our findings demonstrate that PANoptosis is activated in HGFs in
the context of PD, which may drive immune dysregulation and facilitate disease
progression. By integrating bulk transcriptomic data with machine learning
algorithms, we identified and validated key PANoptosis-related genes,
highlighting their potential as novel therapeutic targets.

panoptosis, periodontitis, fibroblasts, immune dysregulation, spatial transcriptome,

machine learning

1 Introduction

Periodontitis (PD) is a widespread chronic inflammatory disease,
affecting more than 40% of adults globally and standing as a primary
cause of tooth loss among the elderly (1). The onset of PD involves a
dysbiotic shift in the oral microbiome, which provokes an excessive
host immune response marked by elevated levels of pro-inflammatory
cytokines (such as TNF-o. and IL-1f) and matrix metalloproteinases
(MMPs), ultimately resulting in the breakdown of the periodontal
ligament and alveolar bone (2). Although the central role of
inflammation in PD pathogenesis is well established, the precise
cellular and molecular mechanisms underlying irreversible tissue
damage remain incompletely understood.

Recent studies have highlighted the importance of programmed
cell death (PCD) in shaping the periodontal microenvironment (3).
Among the known PCD pathways, apoptosis, pyroptosis and
necroptosis have been extensively implicated in PD, especially in
the context of immune activation and microbial insult (4, 5).
However, emerging evidence suggests that these forms of cell
death often do not occur in isolation, but instead act in a
coordinated and context-dependent manner (6). PANoptosis, a
recently defined and mechanistically integrated cell death
pathway, represents a novel paradigm that unifies pyroptosis,
apoptosis, and necroptosis into a single, tightly regulated
inflammatory program (7). Unlike the individual pathways,
PANoptosis is triggered by specific upstream signals—such as
ZBP1, AIM2, or TNF—and is executed through the assembly of
PANoptosomes, leading to the simultaneous activation of multiple
PCD effectors (e.g., CASP1, CASP8, RIPK3) (8, 9). This results in
rapid, lytic cell death accompanied by robust release of DAMPs,
thereby amplifying inflammation.

Recent studies have implicated PANoptosis in acute infections,
sepsis, autoimmune diseases and other chronic inflammatory
conditions, where it mediates inflammatory cell death and
amplifies immune responses (10-13). However, its potential role
in PD remains largely unexplored. The periodontal environment—
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with its persistent bacterial challenge, oxidative stress, and cytokine-
rich milieu—provides an ideal setting for PANoptotic activation.
Importantly, PANoptosis is not merely redundant with pyroptosis
or necroptosis, but may serve as a higher-order regulatory
mechanism that determines cell fate under complex inflammatory
stimuli (14). Its activation could explain cases where multiple PCD
markers are simultaneously upregulated, as has been observed in
transcriptomic studies of periodontal lesions (15, 16). Meanwhile,
Jiang et al. further investigated the relationship between cell death
induced by Porphyromonas gingivalis (P. gingivalis)—a keystone
periodontal pathogen—and PD progression, proposing that
PANoptosis may facilitate immune evasion by P. gingivalis,
thereby acting as a potential pathogenic mechanism in PD (17).
Human gingival fibroblasts (HGFs)—a major cellular constituent of
gingival connective tissue—are increasingly recognized as active
participants in PD pathogenesis rather than passive structural cells
(18). HGFs respond to microbial stimuli by secreting pro-
inflammatory cytokines and chemokines, and are known to
undergo apoptosis, pyroptosis, and necroptosis upon infection
with P. gingivalis (19-21). Given this susceptibility and their
functional heterogeneity, HGFs may undergo PANoptotic
reprogramming that shapes the local immune microenvironment
and disease progression. Therefore, identifying PANoptosis-stage-
specific HGF subtypes is therefore critical to understanding how
this integrated cell death mechanism contributes to periodontal
tissue destruction.

In this study, we leveraged publicly available single-cell RNA
sequencing (scRNA-seq) datasets to profile PANoptosis activity in
HGFs from healthy and diseased gingival tissues. Through
integrative analyses including cell-cell communication, spatial
transcriptomics, and machine learning, we uncovered
PANoptosis-associated HGF subsets, mapped their spatial niches
and intercellular interactions, and identified diagnostic biomarkers
with translational relevance. These findings provide new insights
into PANoptosis as a central pathological mechanism in PD and
offer a foundation for developing targeted therapeutic strategies.
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2 Materials and methods
2.1 Data collection

We obtained the single-cell RNA-seq dataset GSE164241 and
bulk RNA-seq datasets GSE16134 and GSE10334 from the GEO
database (https://www.ncbi.nlm.nih.gov/geo/) for integrated
analysis. The single-cell dataset included 21 gingival tissue
samples, with 13 from healthy controls and 8 from PD patients.
For bulk transcriptomic analysis, we employed two complementary
GEO datasets: GSE16134, comprising 310 samples (241 PD and 69
healthy controls) as the training set, and GSE10334, including 247
samples (183 PD and 64 controls) as the independent validation
cohort. Additionally, to explore the spatial distribution and
localization of cells within PD-affected gingival tissues, we
incorporated two PD samples (GSM6258258 and GSM6258257)
from the spatial transcriptomic dataset GSE206621. This spatial
transcriptomics data enabled us to investigate the in situ cellular
architecture and spatial relationships of key cell populations
identified in the single-cell analysis, providing critical spatial
context to complement the molecular findings. Supplementary
Tables 1-4 listed the genes related to PANoptosis, apoptosis,
pyroptosis, and necroptosis used in this study.

2.2 scRNA-seq data processing

To identify cell populations associated with PANoptosis and
characterize their transcriptional profiles, we employed Seurat
(v4.3.1) in R for comprehensive single-cell analysis. Cells
expressing between 200 and 6,000 genes and with mitochondrial
content under 20% passed quality control. After normalization, the
top 2,000 highly variable genes were selected. Data scaling and
principal component analysis (PCA) were performed, followed by
batch correction and integration using Harmony (v1.2.3). For
visualization and clustering, UMAP was applied on the top 20
PCs. Cluster markers were identified with FindAllMarkers, using a
log fold change > 0.25 and minimum expression in 25% of cells. Cell
clusters were subsequently annotated according to canonical cell
surface markers and curated reference datasets from previously
published literature.

2.3 PANoptosis-related gene set activity
scoring analysis

To evaluate PANoptosis activity in HGFs, we curated a gene set
of 109 PANoptosis-related genes. We assessed their activity at the
single-cell level using five distinct gene set scoring algorithms:
AUCell, UCell, singscore, ssGSEA, and AddModuleScore.
Specifically, AUCell (v1.24.0) was used to build cell-wise gene
expression rankings and calculate area under the curve (AUC)
values for the PANoptosis gene set. UCell and singscore were
applied using the irGSEA package (v3.3.2) to generate normalized
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scores based on non-parametric and rank-based methods. ssGSEA
computed enrichment scores across all single cells using a Gaussian
kernel. AddModuleScore calculated average expression levels of the
PANoptosis gene set after control gene subtraction. To integrate
and compare results across methods, all individual scores were min-
max normalized (0-1 range). A composite PANoptosis activity
score was then calculated by summing the normalized scores from
all five algorithms for each cell, providing a robust and
comprehensive measurement of PANoptotic activity. We utilized
the “ggplot2” R package (v3.5.1) to visualize gene set scores at the
single-cell level, enabling comparison of pathway activities in HGFs
from both healthy and PD samples. The same scoring framework
was also applied to assess the activity of apoptosis, pyroptosis, and
necroptosis pathways, using curated gene sets specific to each cell
death program.

2.4 Pseudotime trajectory analysis

Using the “Monocle 2” R package (v2.30.1), we conducted
pseudotime analysis to investigate the developmental progression
of HGFs subpopulations exhibiting varying levels of PANoptosis
activity. Cells were ordered along a pseudotime axis based on highly
variable genes using the DDRTree algorithm. Gene expression
dynamics and functional pathway changes were analyzed along
the trajectory to reveal transcriptional reprogramming associated
with PANoptosis during HGFs state transitions.

2.5 Cell-cell communication analysis

To investigate the intercellular interactions between cell types in
PD, we employed the “CellChat” package (v2.2.0) to infer and
visualize cell-cell communication networks (22). The normalized
single-cell transcriptomic data were used to construct ligand-
receptor interaction networks. The communication strength was
quantified by analyzing the overall interaction number and
signaling strength.

2.6 Functional and pathway enrichment
analysis

To explore the biological functions and signaling pathways
linked to PANoptosis in PD, we conducted Gene Set Variation
Analysis (GSVA) and GSEA to assess functional differences
between PANoptosis-related cell subsets. Gene sets were sourced
from the Molecular Signatures Database (MSigDB) to ensure
comprehensive pathway coverage. Additionally, differentially
expressed genes (DEGs) between these subgroups were analyzed
for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment using the “clusterProfiler”
R package (v4.15.1).

frontiersin.org


https://www.ncbi.nlm.nih.gov/geo/
https://doi.org/10.3389/fimmu.2025.1671919
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wu et al.

2.7 Spatial transcriptomics and spatial
trajectory analysis

We performed comprehensive ST analysis using “Seurat” in R
to process Visium-derived gene-spot matrices, filtering out spots
with fewer than 10 detected genes and normalizing the data with
SCTransform while accounting for mitochondrial and ribosomal
gene effects. Dimensionality reduction and clustering were applied
to identify spatial gene expression patterns, followed by
visualization using UMAP. For cell type deconvolution, we
employed the Robust Cell Type Decomposition (RCT) algorithm
to accurately estimate the cellular composition of each spatial spot,
offering enhanced robustness against technical noise and
compositional variability. To further investigate cell-cell
communication and spatial organization within the PD
microenvironment, we utilized mistyR (v1.10.0), a multiview
machine learning framework that integrates gene expression data
with spatial coordinates. This approach enabled quantification of
context-specific regulatory influences exerted by neighboring cells
and identification of spatially structured intercellular signaling
networks, providing deeper insights into the local regulatory
architecture driving disease progression.

2.8 Consensus clustering of PANoptosis
genes

To explore the role of PANoptosis in PD, we performed consensus
clustering using the “ConsensusClusterPlus” R package (v1.66.0) to
classify patients based on the expression patterns of PANoptosis-
related genes (PRGs). The optimal cluster number was identified by
evaluating cumulative distribution function (CDF) curves across
different clustering iterations. The stability and accuracy of the
resulting clusters were further confirmed through PCA.

2.9 Immune cell infiltration and functional
analysis

To evaluate immune characteristics across the identified subtypes,
we applied single-sample Gene Set Enrichment Analysis (ssGSEA)
using the “GSVA” R package (v1.50.5). This method quantified the
infiltration levels of 28 immune cell types and assessed immune-
related functional pathways based on established gene signatures.
Differences in immune cell infiltration and pathway activity between
subtypes were statistically evaluated using the Wilcoxon rank-sum test
and visualized with boxplots. Furthermore, Spearman correlation
analysis was conducted to explore relationships between
PANoptosis-related gene expression and immune features.

2.10 Weighted gene co-expression
network analysis

To systematically identify gene modules linked to PANoptosis-
related expression patterns, we conducted WGCNA using the
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“WGCNA” R package (v1.73) (23). An optimal soft-thresholding
power was chosen to achieve scale-free network topology, balancing
network connectivity with biological significance. Genes were
clustered according to topological overlap, and modules were
detected via a dynamic tree-cutting algorithm. Each module’s
expression pattern was summarized by its module eigengene
(ME), defined as the first principal component representing the
module’s overall gene expression profile. Correlations between
module eigengenes and PANoptosis-related traits or sample
phenotypes were then calculated to identify biologically relevant
modules. The module showing the strongest correlation was
selected for downstream analysis.

2.11 Machine learning algorithms

To develop the diagnostic model, we applied a comprehensive
machine learning framework incorporating multiple established
algorithms to systematically perform feature selection and model
training. A total of 113 model variants were generated and evaluated
using tenfold cross-validation on the GSE16134 dataset. The
performance of each model was further validated in an
independent external cohort (GSE10334). The final diagnostic
model was selected based on the highest average area under the
receiver operating characteristic curve (AUC) across both training
and validation datasets.

2.12 Profiling and visualization of hub gene
expression

Differential expression of key signature genes was analyzed
using the R package “limma” (v3.62.2), with visualization
performed via boxplots created by the “ggpubr” package (v0.6.0).
To assess the diagnostic potential of each core gene, Receiver
Operating Characteristic (ROC) curve analysis was conducted
using the “pROC” package (v1.18.0), and the AUC values were
calculated accordingly.

2.13 Tissue sample collection

Gingival tissue samples were collected from 20 individuals at the
Stomatology Hospital of Anhui Medical University, including 10
healthy controls and 10 patients with PD. PD was diagnosed based
on a probing depth =5 mm and clinical attachment loss >3 mm in at
least two teeth, accompanied by bleeding on probing. Healthy controls
had a probing depth <3 mm, no clinical attachment loss, and no
bleeding on probing; gingival tissues were obtained from the excised
gingiva during third molar extraction performed due to orthodontic
treatment or impaction. Exclusion criteria for all participants included
systemic diseases affecting periodontal health, pregnancy or lactation,
use of antibiotics, anti-inflammatory, or immunosuppressive drugs
within the previous 3 months, and smoking or alcohol abuse. Inflamed
gingival tissues from PD patients were obtained from the periodontal
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pocket area during flap surgery. All specimens were immediately
preserved in RNAlater or fixed in 4% paraformaldehyde for
subsequent analysis. The study was approved by the Ethics
Committee of Anhui Medical University (Approval No. 2021006),
and written informed consent was obtained from all participants.

2.14 Cell culture

Gingival tissues were harvested following standard procedures,
washed with PBS, and minced into small fragments. These
fragments were cultured in o-MEM (Gibco, USA) supplemented
with 10% fetal bovine serum (OriCell, China) at 37°C with 5% CO..
Primary cells migrated from tissue explants after about seven days.
Once 80% confluence was reached, cells were passaged and
expanded. Cells between passages 4 and 8 were used for
experiments. To mimic periodontal inflammation in vitro, HGFs
were treated with Porphyromonas gingivalis lipopolysaccharide (Pg-
LPS; InvivoGen, France) at a concentration of 1 pug/mL for 6 hours.
This concentration was selected based on prior literature
demonstrating effective induction of inflammatory responses
without causing non-specific cytotoxicity (24, 25).

2.15 Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent following the
manufacturer’s protocol. cDNA was synthesized using a reverse
transcription kit. Quantitative PCR was conducted with SYBR
Green Master Mix (TaKaRa) on a QuantStudio 5 Real-Time PCR
System. Gene expression levels were normalized to the internal
control GAPDH. Primer sequences for the target genes and
GAPDH are listed in Supplementary Table 5.

2.16 Mouse model of PD

Twelve wild-type (WT) C57BL/6 mice, purchased from Anhui
Medical University, were randomly assigned to control and PD
groups (n = 6 per group). Mice were anesthetized via intraperitoneal
injection of sodium pentobarbital (40 mg/kg). In the PD group, PD
was induced by carefully placing a sterile 5-0 silk ligature around
the maxillary second molar under adequate illumination, without
administration of Pg-LPS. The ligature was maintained for 10 days
to allow disease development. All animal procedures were approved
by the Ethics Committee of Anhui Medical University (Approval
No. LLSC20250965) and conducted in accordance with institutional
guidelines for the care and use of laboratory animals. Maxillary
tissues were harvested and fixed in 4% paraformaldehyde for 24-48
hours, followed by decalcification and paraffin embedding for
subsequent analyses.
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2.17 Hematoxylin and eosin staining

H&E staining was performed on paraftin-embedded sections to
assess histopathological changes. Stained slides were scanned using
a panoramic digital slide scanner, and images were analyzed to
evaluate inflammatory infiltration and alveolar bone loss.

2.18 Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde for 20 minutes at
room temperature, then washed with PBS. Tissue sections were first
deparaffinized through a series of xylene and graded ethanol
washes, followed by rehydration in PBS. Both cells and tissue
sections were permeabilized with 0.1% Triton X-100 for 10
minutes and blocked with 5% BSA for 1 hour at room
temperature. Samples were then incubated overnight at 4°C with
primary antibodies. After washing with PBS, Alexa Fluor-
conjugated secondary antibodies (1:100 dilution) were applied for
2 hours at room temperature in the dark. Nuclei were
counterstained with DAPI (1 pg/mL) for 5 minutes. Fluorescence
images were acquired using a Leica upright fluorescence microscope
with consistent exposure settings. For quantification, at least three
randomly selected fields per sample were analyzed using Image]
software (version 1.48). The number of cells positive for both
markers (co-stained cells) and the total number of nuclei (DAPI-
stained) within each field were counted manually or by
thresholding. The proportion of co-stained cells relative to total
cells was calculated and averaged across fields for each sample.

2.19 Immunohistochemistry staining

Paraffin sections (4 pm) were deparaffinized, rehydrated, and
antigen-retrieved in sodium citrate buffer at 95°C for 15 minutes.
After blocking with 3% H,O, and 5% goat serum, sections were
incubated overnight with primary antibodies. Following secondary
antibody incubation, staining was developed using a DAB kit and
counterstained with hematoxylin. Images were captured and
analyzed with ImageJ (v1.48).

2.20 Statistical analysis

Statistical analyses were performed using R software (version
4.3.1). Quantitative data from qPCR, immunofluorescence, and
other assays are expressed as mean + standard deviation (SD).
Group comparisons were performed using unpaired two-tailed
Student’s t-tests for comparisons between two groups, or one-way
analysis of variance (ANOVA) followed by Tukey’s post hoc test for
multiple group comparisons, where appropriate. For differential
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gene expression and pathway enrichment analyses, the BH
procedure was applied to control the false discovery rate (FDR).
Adjusted p-values less than 0.05 were considered statistically
significant. For correlation analyses, Spearman’s rank correlation
coefficient was calculated. All tests were two-sided unless otherwise
specified. Data visualization was performed using the ggplot2 R
package (version 3.5.1).

3 Results

3.1 scRNA-seq analysis revealed
dysregulation of multiple PANoptosis and
their related pathways in HGFs

To investigate the cellular composition of gingival tissues in PD,
we performed single-cell RNA sequencing (scRNA-seq) on samples
from both healthy controls and PD patients. After quality control
and batch correction, 15 major cell populations were identified
based on the expression of canonical lineage-specific markers
(Figures 1A, B). These included HGFs (COL1A1l, LUM, DCN),
epithelial cells (KRT5, KRT14), endothelial cells (VWF, AQPI,
CLDNS5, PECAM1), vascular mural cells (TAGLN, ACTA2),
melanocytes (DCT, PMEL), proliferating cells (MKI67, TOP2A),
T cells (CCR7, CD3D, TRAC), B cells (MS4A1, CD79A), plasma B
cells (MZB1, IGHG1), NK cells (NKG7, CD3D, TRAC),
macrophages (CD14, CD163, C1QA), neutrophils (G0S2, SOD2,
NAMPT), mast cells (CPA3, TPSABI1), myeloid dendritic cells
(mDCs; CLEC9A), and plasmacytoid dendritic cells (pDCs; IRF7,
SOX4). Figure 1C illustrates the relative abundances of these
populations in healthy and PD samples. Notably, HGFs and
endothelial cells were markedly reduced in PD, whereas immune
cell subsets such as T cells, NK cells, plasma B cells, and neutrophils
were relatively enriched, indicating a shift toward a pro-
inflammatory microenvironment. Given the substantial decrease
in HGF abundance and their potential contribution to PD
pathogenesis, we further analyzed DEGs in HGFs between
healthy and diseased tissues. The analysis revealed significant
enrichment of cell death-related pathways including apoptosis,
pyroptosis and necroptosis, suggesting that dysregulated cell
death contributed to the progression of PD (Figures 1D, E). To
validate these findings, we evaluated the activity of apoptosis,
pyroptosis, and necroptosis in HGFs using GSEA and five
independent gene set scoring algorithms. Consistently, HGFs
from PD samples exhibited increased activation of these pathways
compared to those from healthy controls (Figures 1F-K).

Given the convergence of apoptosis, pyroptosis, and necroptosis
within the PANoptosis framework, we further investigated the
potential involvement of PANoptosis in PD. PANoptosis activity
was quantified using five independent gene set scoring methods
based on the expression profiles of 109 PRGs. The analysis
demonstrated a significant increase in PANoptotic activity in
HGFs from PD samples compared to healthy controls
(Figure 1L). To validate these results, immunofluorescence
staining was performed on gingival tissues, assessing the co-
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localization of PANoptosis markers—ZBP1, cleaved-Caspase-1
(Cle-CASP-1), cleaved Caspase-3 (Cle-CASP-3), and P-RIPK3—
with the HGFs marker vimentin. HGFs in PD samples showed
markedly elevated expression of these markers relative to healthy
gingiva, with quantitative fluorescence intensity analysis shown in
Figures 1M-P. Quantitative analysis of fluorescence intensity
confirmed these observations, with significantly higher levels of
ZBP1, Cle-CASP-1, Cle-CASP-3, and P-RIPK3 in PD HGFs
compared to healthy controls (Figures 1Q-T).

3.2 In vitro and in vivo validation confirmed
PANoptosis activation in gingival
fibroblasts

Additionally, primary HGFs were cultured in vitro and
stimulated with lipopolysaccharide (LPS). Immunofluorescence
staining revealed increased expression of the same PANoptosis-
related markers in LPS-treated HGFs compared to unstimulated
controls (Figures 2A-D). Furthermore, TUNEL staining
demonstrated a significant increase in DNA fragmentation in
LPS-treated HGFs, indicative of cell death (Figure 2E), and
quantitative analysis confirmed a higher percentage of TUNEL-
positive cells following LPS stimulation (Figure 2F). Consistent with
these findings, qPCR analysis showed upregulation of key
PANoptosis-related genes—including ZBP1, NLRP3, CASP-1,
CASP-3 and RIPK3—following LPS treatment (Figures 2G-K).
These findings collectively indicate that PANoptosis activation in
HGFs may contribute to the development of PD.

To further validate the involvement of PANoptosis in the
progression of PD, an in vivo PD model was established in mice
by ligating the maxillary second molars for 10 days (Figure 2L).
H&E staining confirmed successful induction of PD, as evidenced
by inflammatory infiltration and alveolar bone loss (Supplementary
Figure 1). Immunofluorescence staining was then performed to
assess the expression of PANoptosis-related markers in gingival
fibroblasts. Compared to wild-type controls, gingival fibroblasts
from PD mice exhibited increased expression of Cle-Casp-1, Cle-
Casp-3, and P-RIPK3 (Figures 2M-O). Quantitative analysis of
immunofluorescence intensity further confirmed significantly
elevated levels of these markers in the PD group (Figures 2P-R),
suggesting the activation of PANoptosis in the gingival
microenvironment during PD.

3.3 PANoptosis participates in immune
regulation

To further investigate the functional characteristics and
signaling pathways associated with PANoptosis activity, we
stratified HGFs into high-PANoptosis (HP) and low-PANoptosis
(LP) subgroups based on their PANoptosis scores. As shown in
Figure 3A, differential gene expression analysis revealed distinct
gene profiles between HP and LP subgroups of HGFs. Functional
enrichment analysis showed that the differentially expressed genes
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FIGURE 1

scRNA-seq revealed higher PANoptosis activity in PD HGFs. (A) UMAP plot showing the distribution of 15 distinct cell types in gingival tissues. (B) Bubble
maps were used to display surface-annotated genes for various cell types. (C) Cell proportions of 15 cell types originating from normal and PD samples.
(D, E) GO and KEGG enrichment analyses of DEGs in HGFs from healthy and PD samples. (F-H) GSEA was performed to assess the enrichment of
apoptosis, pyroptosis, and necroptosis pathways in HGFs from healthy and PD samples. (I-L) Comparison of apoptotic, pyroptotic, necroptotic, and
PANoptotic activities in HGFs from healthy and PD samples based on five different gene set scoring methods. (M-P) Immunofluorescence staining of
ZBP1, cleaved CASP-1, cleaved CASP-3, and P-RIPK3, with vimentin-positive cells indicating HGFs. (Q-T) Quantification of fluorescence intensity for
ZBP1, cleaved CASP-1, cleaved CASP-3, and RIPK3 in vimentin-positive HGFs from healthy and PD samples. HGFs: Human gingival fibroblasts; DEGs,
differentially expressed genes; *p < 0.05, **p < 0.01. PD: Periodontitis.
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FIGURE 2

PANoptosis-related markers are upregulated in HGFs upon LPS stimulation and in gingival tissues of PD model mice. (A-D) Immunofluorescence
staining showing the expression of ZBP1, cleaved CASP-1, cleaved CASP-3, and P-RIPK3 in HGFs following treatment with negative control (NC) or
LPS. For each panel, the left image shows the individual channels prior to merging, and the right image shows the merged channels. (E) TUNEL
staining of HGFs following stimulation with NC or LPS. (F) Quantification of TUNEL-positive HGFs following NC or LPS treatment. (G-K) gPCR
analysis of MRNA expression levels of ZBP1, NLRP3, CASP-1, CASP-3 and RIPK3 in HGFs after NC or LPS treatment. (L) Schematic diagram illustrating
the workflow for establishing the periodontitis mouse model. (M-O) Immunofluorescence results showing increased expression level of Cle-Casp-1,
Cle-Casp-1, P-RIPK3 in gingival fibroblasts from periodontitis mouse gingival tissues. (P-R) Quantification of fluorescence intensity for Cle-Casp-1,
Cle-Casp-3, and P-RIPK3 in gingival fibroblasts. *p < 0.05, **p < 0.01, ***p < 0.001. HGFs: human gingival fibroblasts
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(DEGs) were significantly associated with inflammation and
immune-related pathways, such as the inflammatory response,
NEF-kB signaling, cytokine-cytokine receptor interaction, and
chemokine signaling (Figures 3B, C). Moreover, hallmark
pathways—including TNFA signaling via NF-xB, IL6-JAK-STAT3
signaling, complement activation, apoptosis, and interferon-y
response—were markedly enriched in HP-HGFs (Figures 3D-H).
GSEA further confirmed significant upregulation of pathways like
Toll-like receptor signaling, NOD-like receptor signaling, and
chemokine signaling in HP-HGFs compared to LP-HGFs
(Figures 3I-L). Subsequently, we employed pseudotime trajectory
analysis to investigate the dynamic changes of HGFs with high and
low PANoptosis activity during cellular development. The results
revealed that LP-HGFs were primarily located at early
developmental stages, while HP-HGFs were enriched in later
phases, suggesting a temporal progression toward a high
PANoptotic state (Figure 3M). Correspondingly, as HGFs
transitioned along the pseudotime trajectory, the proportion of
LP-HGFs gradually declined, whereas HP-HGFs became
increasingly dominant (Figure 3N). This phenotypic shift was
accompanied by a gradual increase in the expression of pro-
inflammatory cytokines and chemokines, as well as the activation
of immune-related pathways, including responses to bacterial
products and lipopolysaccharide, TNF signaling, NF-xB, and IL-
17 pathways (Figure 30). Collectively, these findings indicate that
PANoptosis activation in HGFs is closely linked to pro-
inflammatory signaling and may contribute to the immune
dysregulation and tissue destruction characteristic of PD.

3.4 Enhanced cell-cell interactions in HP-
HGFs

To investigate changes in intercellular communication associated
with PANoptosis activity, we performed CellChat analysis comparing
HP-HGFs and LP-HGFs. The results revealed that HP-HGFs
exhibited markedly enhanced communication with various immune
cell types—including neutrophils, T cells, B cells, macrophages, mast
cells, and plasma cells—suggesting a heightened immunomodulatory
role (Figures 4A-C). Notably, HP-HGFs demonstrated stronger
outgoing signaling through key pathways such as CXCL, IL6, and
the complement system, indicating active involvement in immune cell
recruitment and activation (Figures 4D-F). Compared to LP-HGFs,
HP-HGFs exhibited markedly increased ligand-receptor interactions,
such as CSFI-CSFIR, IL34-CSFIR, and PTN-NCL, particularly
targeting B cells, T cells, neutrophils, and macrophages
(Figures 4G). These results suggest that HGFs with active
PANoptosis significantly influence the inflammatory milieu in PD
by enhancing immune cell recruitment and intensifying pro-
inflammatory signaling, potentially contributing to sustained
inflammation and disease progression.
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3.5 ST data highlights stronger immune
interaction of HP-HGFs

To further elucidate the role of PANoptosis in PD, we
integrated spatial transcriptomics data from two PD samples,
GSM6258256 and GSM6258257. After filtering low-quality data,
we applied the “SCTransform” method for normalization and batch
correction, followed by dimensionality reduction. The spatial
feature visualization (Supplementary Figures 2A, B) illustrated the
distribution of the number of genes detected at each capture spot
(nFeature_Spatial) across the tissue sections. Subsequent clustering
analysis identified six and five distinct spatial domains in the two
samples (Supplementary Figures 2C, D), respectively, highlighting
the potential spatial heterogeneity of PD lesions. We then
performed deconvolution using scRNA-seq results and projected
the inferred cell types onto the spatial transcriptomics framework.
Both samples showed highly consistent results, revealing significant
spatial heterogeneity in the localization of HP and LP
subpopulations of HGFs (Figures 4H-K). Spatial analysis of cell-
cell interactions through co-localization revealed that, in PD tissues,
HP-HGFs tended to form long-distance interactions with immune
cells including neutrophils, T cells, and B cells (Figures 4L-O). This
suggests a significant role for HP-HGFs in regulating the local
immune microenvironment. These spatial transcriptomics data
align with our scRNA-seq findings, reinforcing the idea that
PANoptosis may contribute to PD development by modulating
immune activity within the tissue niche.

3.6 Bulk RNA-seq reveals elevated
PANoptosis levels and identification of
differentially expressed PANoptosis-related
genes in PD patients

Meanwhile, we investigated the role of PANoptosis in PD at the
bulk RNA-seq level. GSEA of two independent PD datasets revealed
that PANoptotic activity was significantly elevated in PD samples
compared to healthy controls (Figures 5A, B). Furthermore, three
key cell death-related pathways—apoptosis, pyroptosis, and
necroptosis—were also markedly dysregulated between healthy
and PD groups (Figures 5C, D). To identify PANoptosis-related
DEGs, we first screened 1,106 DEGs between healthy and PD
samples (Figure 5E). Cross-referencing these with a curated list of
PANoptosis-associated genes yielded 13 overlapping candidates
(Figure 5F). Their expression patterns across groups are presented
in Figure 5G, and strong correlations among these genes are
depicted in Figure 5H. To explore immune alterations, we
assessed immune cell infiltration using ssGSEA and observed a
marked increase in multiple immune cell populations in PD
samples compared to healthy controls (Figure 5I). Correlation
studies demonstrated significant associations between several
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FIGURE 3

Molecular characteristics and pathway alterations between HP-HGFs and LP-HGFs. (A) DEGs between HP-HGFs and LP-HGFs. (B, C) GO and KEGG
enrichment analyses of DEGs between HP-HGFs and LP-HGFs. (D-H) Comparison of hallmark gene set activity between HP-HGFs and LP-HGFs
using GSVA. (I-L) GSEA analysis of the cp:KEGG pathway gene sets to assess signaling differences between the two HGF subsets. (M) Cell type
distribution of HP-HGFs and LP-HGFs along pseudotime trajectory branches. (N) A pseudotime trajectory was constructed to investigate the
dynamic transcriptional states of HGFs categorized by PANoptosis activity. Cells were colored based on pseudotime values, ranging from early
(purple) to late (yellow) developmental stages, as indicated by the color bar. The trajectory demonstrates a branched topology, suggestive of distinct
differentiation or activation paths. Cells were further annotated by PANoptosis score-based classification into HP-HGFs (cyan) and LP-HGFs (orange),
and the proportion of each cell type within the major trajectory branches is represented by the embedded pie charts. Arrows indicate the direction
of pseudotime progression along each branch. (O) Branched heatmap showing dynamic gene expression and functional enrichment along
pseudotime trajectory in HGFs associated with PANoptosis. Heatmap shows two major gene modules (C1 and C2) identified along the pseudotime
trajectory of HGFs using Monocle2. Each row represents a gene and each column a cell ordered by pseudotime, with color indicating Z-score-
scaled expression levels. Cells are aligned according to pseudotime (top color bar), and genes are grouped by shared dynamic expression patterns.
Functional enrichment analysis (GO and KEGQG) is visualized using dot plots overlaid on the heatmap. The color gradient and bar length represent
pathway significance (-log10 p-value), while the x-coordinate of the yellow dots indicates the enrichment magnitude (log10 ratio), collectively
highlighting distinct biological processes and signaling pathways associated with each gene module and reflecting transcriptional heterogeneity
during PANoptosis-related transitions. *p < 0.05, **p < 0.01, ***p < 0.001. HGFs: human gingival fibroblasts; DEG: Differentially expressed genes;
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FIGURE 4

Cell-cell communication analysis between HP-HGFs and LP-HGFs. (A) Heatmap illustrating the strength and number of interactions between HP-
HGFs and LP-HGFs. (B, C) Heatmap and mulberry plot depicting interaction intensity between HP-HGFs or LP-HGFs as sender cells and various
immune cell populations. (D-F) Heatmaps showing the relative contribution of each cell type within the CXCL, IL6 and complement signaling
networks. (G) Bubble plot displaying significant ligand-receptor pairs for HP-HGFs and LP-HGFs, respectively. (H, 1) Spatial transcriptomic maps
showing the localization of HP-HGFs and LP-HGFs in sample GSM6258258. (J, K) Spatial transcriptomic maps showing the localization of HP-HGFs
and LP-HGFs in sample GSM6258257. (L, M) Spatial analysis of long-range intercellular interactions among various cell types in GSM6258258.

(N, O) Spatial analysis of long-range intercellular interactions among various cell types in GSM6258257. HP-HGF: high-PANoptosis HGFs; LP-HGFs:

low-PANoptosis HGFs.
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PANoptosis genes and immune cell infiltration (Figure 57).
Collectively, these results indicate that PRGs are closely
intertwined with immune activation, potentially driving the pro-
inflammatory environment characteristic of PD.

3.7 Consensus clustering and immune
characteristics among subgroups

To investigate the immunological characteristics and functional
implications of PANoptosis in PD, we stratified patient samples based
on the expression patterns of PRGs using consensus clustering. The
optimal number of clusters was determined through evaluation of the
cumulative distribution function (CDF) curves (Supplementary
Figure 3) and consensus matrix heatmaps, ultimately identifying
two distinct molecular subtypes (Figure 6A). Analysis of PCA further
validated the robustness and reliability of this classification
(Figure 6B). As shown in Figure 6C, multiple PANoptosis-
associated genes were significantly upregulated in the C2 subtype,
suggesting enhanced PANoptotic signaling in this group. To quantify
PANoptotic activity, GSEA was performed between the two subtypes.
The results demonstrated that the C2 subtype exhibited markedly
elevated PANoptosis activity compared to the CI subtype
(Figure 6D). To elucidate the biological functions and pathways
associated with PANoptosis, we performed GSEA on two distinct
PANoptosis-related subtypes. The C2 subtype exhibited significant
upregulation of multiple immune-related pathways, including
immune response activation, myeloid leukocyte migration, B cell
receptor signaling, and chemokine signaling (Figures 6E, F). We also
performed pathway enrichment analysis using gene sets from the
Molecular Signatures Database (MSigDB), including the
HALLMARK, C5-GO, and C2-KEGG collections. The C2 subtype
demonstrated upregulation of multiple immuno-inflammatory
pathways, such as IL6-JAK-STAT3 signaling, inflammatory
response, and complement in the HALLMARK set; regulation of
myeloid cell differentiation, regulation of B cell proliferation, and T
cell extravasation in the GO set; and B cell receptor signaling, Toll-
like receptor signaling, and chemokine signaling in the KEGG set
(Figures 6G-I). Collectively, these results suggest a strong association
between PANoptosis and immune activation. Further analysis of
immune cell infiltration and immune-related functions revealed a
broadly elevated immune status in the C2 subtype, characterized by
increased infiltration of various immune cells and enhanced immune
functional activities (Figures 6], K). Taken together, these findings
underscore the pivotal role of PANoptosis-related molecular features
in modulating the immune microenvironment of PD and provide
novel insights into the inflammatory pathogenesis of the disease.

3.8 WGCNA network construction and
identification of key modules

To investigate gene co-expression patterns associated with PD,
we applied Weighted Gene Co-Expression Network Analysis
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(WGCNA). Following hierarchical clustering to exclude outlier
samples, a soft-threshold power of 5 (B = 5) was chosen to
achieve a scale-free network structure. This analysis identified 6
distinct gene modules, among which the turquoise module
exhibited the highest positive correlation with disease status (r =
0.68), encompassing 690 genes (Figure 7A). Subsequent evaluation
of gene significance versus module membership demonstrated a
strong association, underscoring the importance of these genes for
further functional analyses (Figure 7B).

3.9 Screening of characteristic genes
related to PANoptosis and construction of
machine learning

At the bulk RNA-seq level, 343 upregulated and 115
downregulated DEGs related to PANoptosis were identified
between the two subtypes (Supplementary Table 6). Meanwhile,
scRNA-seq analysis revealed 245 upregulated and 5 downregulated
DEGs distinguishing HP-HGFs from LP-HGFs (Supplementary
Table 7). By intersecting these gene sets with results from
WGCNA and DEGs identified between healthy and PD samples,
we ultimately obtained 13 core PANoptosis-related genes
(Supplementary Figures 4A, B). These genes were subsequently
used to construct 113 machine learning models. The GSE16134
dataset served as the training set, while GSE10334 was used for
external validation. The final model, which integrated LASSO and
RF, demonstrated excellent predictive performance, achieving an
AUC of 0.996 in the training cohort and 0.967 in the external
validation cohort (Figure 7C). To further assess its diagnostic
efficacy, additional metrics were calculated. In the training dataset
(GSE16134), the model yielded a sensitivity of 98.8%, specificity of
89.9%, and an F1 score of 97.9%. In the independent validation
dataset (GSE10334), it maintained a high sensitivity of 97.3% and
an F1 score of 93.9%, with a moderate specificity of 81.9%
(Supplementary Figure 5). These results highlight the robustness
and clinical potential of the predictive model. LASSO regression
identified 11 candidate genes. Subsequently, RF analysis refined the
selection to 4 key genes (BTG2, CTSH, AKR1B1, and IL24), which
contributed most significantly to the model’s predictive
performance and stability.

3.10 Expression levels and diagnostic
significance of hub genes

To assess the relevance of these hub genes in PD, we analyzed
their expression levels and diagnostic performance. Boxplot
analyses of the GSE16134 and GSE10334 datasets showed that the
four hub genes were significantly upregulated in PD samples
(Figures 7D, E). ROC curve analysis further demonstrated that all
four genes exhibited strong diagnostic performance, with AUC
values exceeding 0.8 in both datasets (Figures 7F, G), indicating
their robust predictive value for PD.
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FIGURE 6

Identification and characterization of PANoptosis-related molecular subtypes in PD. (A) Consensus clustering heatmap when k= 2, indicating the
optimal classification into two PANoptosis-related clusters. (B) Principal component analysis (PCA) showing clear separation between the two
PANoptosis clusters. (C) Boxplots displaying the expression levels of DE-PRGs between the two clusters. (D) GSEA showing differences in
PANoptotic activity between the two clusters. (E, F) GSEA identifying significant differences in GO terms and KEGG pathways between the two
clusters. (G-1) GSVA illustrating variations in hallmark, GO, and KEGG gene sets between the two clusters. (J) Estimated proportion of immune cell
infiltration in the two clusters. (K) Differences in immune-related functional scores between the two clusters; *p < 0.05, **p < 0.01, ***p < 0.001. PD:
Periodontitis.
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FIGURE 7
Identification of potential PANoptosis-related hub genes and model construction. (A) Heatmap showing module-trait correlations generated by
WGCNA analysis. (B) Scatter plot depicting the relationship between gene significance for PD and module membership in the MEturquoise module.
(C) Performance of 113 machine learning algorithm combinations evaluated using 10-fold cross-validation. (D, E) Boxplots showing the expression
levels of identified core PANoptosis-related genes in datasets GSE16134 and GSE10334. (F, G) ROC curves assessing the diagnostic performance of
the core genes in the training set (GSE16134) and validation set (GSE10334). (H, 1) Correlation analysis between the four core PANoptosis-related
genes and immune cell infiltration as well as immune-related functional pathways.
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3.11 Correlation between hub genes and
immune infiltration

Pearson correlation analysis was conducted to explore the
association between the expression of target genes and immune
cell infiltration as well as immune-related functions. The findings
showed positive correlations with the majority of immune cell types
and immune activities (Figures 7H, I), indicating these genes may
play important roles in modulating immune responses and
influencing PD progression.

3.12 Functional enrichment analysis of key
genes

To further clarify the biological functions of the four key genes
(BTG2, CTSH, AKRI1BI, and IL24) in PD, we conducted single-
gene GSEA and GSVA analyses. GSVA indicated that these genes
were positively associated with multiple immune and inflammatory
pathways, including IL2/STAT5 and IL6/JAK/STATS3 signaling,
interferon responses, complement activation, and inflammatory
responses (Supplementary Figures 6A-D). GSEA further revealed
that BTG2, CTSH, and AKR1B1 were enriched in B cell receptor
and chemokine signaling pathways (Supplementary Figures 6E-G),
while 1L24 was primarily associated with cytokine-cytokine
receptor interaction and the JAK-STAT signaling pathway
(Supplementary Figure 6H). These findings imply that elevated
expression of BTG2, CTSH, AKR1BI, and IL24 may play a role in
driving immune dysregulation in PD.

3.13 Experimental validation of
PANoptosis-related hub genes

To validate our bioinformatics findings, four PANoptosis-
associated hub genes (BTG2, CTSH, AKR1BI, and IL24) were
selected for experimental confirmation. qPCR analysis revealed
significant upregulation of these genes in PD gingival tissues
compared to healthy controls (Figures 8A-D). Immunohistochemistry
further confirmed consistent protein-level expression patterns
(Figure 8E), and quantitative analysis demonstrated significantly
increased staining intensity in PD samples (Figures 8F-I), supporting
the robustness of the PANoptosis-based model. Notably, we found that
CTSH was mainly localized in the epithelial layer and vascular-
associated regions, suggesting that it may be involved in the
occurrence of PANoptosis in these compartments. However, as the
present study primarily focused on HGFs, these regions were not
examined in detail, representing a limitation that warrants further
investigation in future studies.

4 Discussion

PD is a chronic inflammatory condition marked by the gradual
destruction of tooth-supporting tissues, primarily driven by
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dysregulated host immune responses to microbial biofilms (26).
While traditional forms of PCD, such as apoptosis and necroptosis,
have been implicated in periodontal tissue damage (4), the role of
PANoptosis—a recently identified, highly inflammatory form of cell
death that integrates pyroptosis, apoptosis, and necroptosis—
remains largely unexplored in the context of periodontal disease
(14). Given its unique capacity to orchestrate immune-
inflammatory cascades, PANoptosis may represent a crucial
mechanism linking cellular stress responses to immune activation
in the periodontal microenvironment.

Our single-cell analysis revealed that HGFs in PD tissues exhibit
transcriptional signatures indicative of multiple programmed cell
death modalities, with PANoptosis-related genes significantly
upregulated compared to healthy controls. Increasing evidence
suggests that HGFs actively participate in inflammatory signaling
during PD, beyond their traditional role as structural matrix
components maintaining tissue integrity. Under inflammatory
conditions, HGFs are susceptible to diverse forms of programmed
cell death, which contribute to tissue destruction and disease
progression. Apoptosis of HGFs, induced by pro-inflammatory
cytokines such as TNF-o and IL-1f3, has been well documented as
a mechanism driving connective tissue degradation (27).
Furthermore, recent studies demonstrate that microbial
components can trigger pyroptosis in HGFs via caspase-1
activation, thereby amplifying local inflammatory responses (28).
Emerging data also indicate that necroptosis may occur in HGFs
under sustained inflammatory stress, further exacerbating tissue
damage (20). Collectively, these findings highlight that HGFs in PD
concurrently exhibit apoptotic, pyroptotic, and necroptotic death
modalities. Our results extend this understanding by suggesting that
these pathways may not act independently but rather operate in an
integrated fashion characteristic of PANoptosis. This is consistent
with emerging research in other inflammatory contexts, such as
sepsis and viral infections, where PANoptosis orchestrates potent
inflammatory responses through the simultaneous activation of
pyroptotic, apoptotic, and necroptotic machinery (29, 30).
Therefore, our study provides the first transcriptomic evidence
identifying HGFs in PD as a previously underrecognized cellular
source of PANoptotic activity.

Functionally, the spatial transcriptomic and cell-cell
communication analyses revealed that HP-HGFs exhibited
enhanced interactions with multiple immune cell populations,
including neutrophils, T cells, and B cells. This observation
suggests that PANoptotic HGFs may contribute to shaping the
local immune landscape. The link between PANoptosis in HGFs
and the amplified immune response can be understood through
several mechanisms. PANoptosis leads to pore formation and
plasma membrane rupture, resulting in the release of DAMPs and
mature inflammatory cytokines such as IL-1f and IL-18 (30). These
mediators are potent activators of innate immunity, recruiting and
activating neutrophils and macrophages. Although direct evidence
in HGFs is limited, similar immunogenic effects of PANoptosis
have been observed in other contexts—including cancer and
infectious models—where PANoptotic cell death enhances
immune cell infiltration and inflammation (29, 31). Secondly,
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dying HGFs and their secretory factors may promote adaptive
immune activation by releasing chemokines and pro-
inflammatory cytokines that recruit and modulate T and B cells,
which is consistent with our spatial transcriptomic evidence of
enhanced interactions between HP-HGFs and these lymphocyte
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populations. Third, PANoptosis-associated release of inflammatory
mediators and subsequent immune cell activation may enhance
proteolytic activity within periodontal lesions—such as increased
production of MMPs and other proteases—thereby linking
molecular cell death events to extracellular matrix degradation
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Overall, these
observations suggest a plausible feed-forward loop: inflammatory

and clinical tissue loss observed in PD (32).

stimulation induces PANoptosis in HGFs; PANoptotic cells amplify
immune activation and proteolytic processes; and the resulting
inflammation further stresses stromal cells, sustaining tissue
damage. Importantly, these interpretations remain correlative and
hypothesis-generating. To establish causality and therapeutic
potential, targeted functional studies are needed—such as
inhibiting key PANoptosome components (e.g., ZBP1 or RIPK3)
or inflammasome signaling in HGFs, assessing consequent changes
in immune recruitment and matrix destruction in co-culture and
animal models, and validating key mediators at the protein level
with multiplexed imaging.

Using an integrative machine learning pipeline combining 113
feature selection-classifier pairs, we first applied a primary
algorithm (e.g., LASSO) to identify candidate variables, followed
by a secondary algorithm (e.g., Random Forest) to construct
classification models. Model performance was evaluated in both
training and validation cohorts, and the combination with the
highest mean AUC was selected as optimal. In this top-
performing model, four PANoptosis-related hub genes—BTG2,
CTSH, AKRI1BI1, and IL24—were consistently retained across
algorithms and ranked highest in discriminative power,
substantially improving model performance (AUC = 0.996
training; 0.967 validation).

Functionally, these genes may act as regulatory nodes linking
inflammatory stress to programmed cell death pathways in the
periodontal microenvironment. BTG2 is an anti-proliferative gene
induced by oxidative and genotoxic stress, functioning as a
downstream effector of p53 (33). It regulates the cell cycle by
inducing G1/S and G2/M arrest and promotes apoptosis via
upregulation of pro-apoptotic proteins such as Bax (34). BTG2 also
participates in DNA damage repair and oxidative stress responses
through both p53-dependent and ROS-NF-«B pathways (35, 36). Its
expression may reflect cellular stress and apoptosis initiation under
chronic inflammatory conditions, suggesting a role in the apoptotic
component of PANoptosis in PD. CTSH encodes a lysosomal cysteine
protease primarily involved in intracellular protein degradation and
antigen processing, playing a vital role in lysosomal function and
cellular homeostasis (37). Dysregulated expression of CTSH has been
reported in various cancers, including breast cancer (38), prostate
cancer (39), and glioma (40). Emerging evidence also links CTSH to
regulation of inflammatory responses and cell death. For example, it
modulates microglia-mediated inflammation and apoptosis following
brain injury or infection (41). Additionally, CTSH is an important
regulator of -cell function in type 1 diabetes, where its overexpression
protects against [3-cell apoptosis, while downregulation promotes cell
death (42). These findings suggest that CTSH may similarly influence
inflammatory and cell death processes relevant to periodontal disease
progression. AKR1B1 (Aldo-keto reductase family 1 member B1) is a
key enzyme in the polyol pathway that contributes to oxidative stress
and inflammatory signaling (43). It has been implicated in the
pathogenesis of various inflammation-related conditions, including
asthma (44), sepsis (45), and uveitis (46). AKR1B1 inhibition
attenuates inflammatory signaling by downregulating
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lipopolysaccharide (LPS)-induced cascades and reducing the
production of pro-inflammatory cytokines and chemokines (45, 47).
These findings suggest that AKR1BI may represent a promising
therapeutic target in inflammatory diseases. IL24 (Interleukin 24) is
a cytokine of the IL-10 family with known immunomodulatory and
pro-apoptotic functions (48). It has been shown to induce apoptosis in
various tumor cell types and modulate inflammatory signaling in
immune cells (49). While its role in periodontal tissues remains
unclear, elevated IL24 expression may reflect a heightened
inflammatory state. From a diagnostic perspective, the robust and
stable contribution of these genes to the machine learning model
supports their potential as a molecular signature for PD. They hold
promise for early detection, risk stratification, and longitudinal disease
monitoring, and may improve diagnostic specificity by distinguishing
PD from other inflammatory oral conditions. Integration of these
markers into targeted PCR panels or transcriptomic assays could
advance precision dentistry approaches in PD management.

Several limitations of this study should be noted. First, although
single-cell RNA sequencing and spatial transcriptomics offered
valuable insights into the heterogeneity and spatial patterns of
PANoptosis activity in HGFs, the relatively small sample size may
limit the broader applicability of our findings. Second, the
identification of PANoptosis relied mainly on transcriptomic
signatures rather than direct functional or protein-level assays,
which may not fully capture the dynamic regulation and
execution of this cell death pathway. Third, pseudotime trajectory
analysis revealed a gradual transcriptional transition from LP-HGFs
to HP-HGFs, indicating a potential phenotypic shift. However, this
inference is based solely on transcriptional dynamics and does not
constitute direct evidence of a lineage transition. Therefore, we
propose this as a hypothetical differentiation model, which requires
further validation through functional assays. Fourth, the consensus
clustering-based molecular subtyping of PD was performed using a
single publicly available bulk RNA-seq dataset (GSE16134).
Although internal validation supported the robustness of this
classification, the lack of multi-cohort external validation may
limit the generalizability of the identified subtypes. Future studies
incorporating additional independent datasets will be essential to
confirm the reproducibility and stability of these PANoptosis-
related subtypes. Moreover, although the single-cell and spatial
transcriptomic results suggest a potential association between
PANoptosis and immune modulation, these findings are based on
correlative analyses. Further in vitro and in vivo experiments are
needed to investigate and validate the underlying mechanisms
linking PANoptosis to immune cell recruitment and activation.
Finally, this study primarily focused on HGFs; thus, the
involvement of other stromal or immune cell populations in

PANoptosis-related PD pathogenesis remains to be explored.

5 Conclusion

In summary, this study reveals novel insights into PANoptosis
in PD pathogenesis. By integrating single-cell RNA sequencing,
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spatial transcriptomics, and cell-cell communication analyses, we
demonstrated that PANoptosis is markedly activated in HGFs from
PD tissues and is associated with enhanced immune interactions.
PANoptotic HGFs not only undergo inflammatory programmed
cell death but also actively participate in shaping the immune
microenvironment, potentially contributing to persistent
inflammation and tissue destruction. Moreover, through
screening 113 machine learning models, we identified four key
PRGs and confirmed their expression in gingival tissues from PD
patients. These findings reveal PANoptosis as an insufficiently
recognized mechanism in periodontal disease and suggest that
targeting PANoptosis pathways and hub genes could provide
novel therapeutic avenues for controlling inflammation and
maintaining periodontal tissue health.
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