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Ziyang Gao1, Bang Li1,2*, Qingqing Wang1,2* and Wei Shao1,3*

1College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of
Anhui, Hefei, China, 2Department of Periodontology, Anhui Stomatology Hospital affiliated to Anhui
Medical University, Hefei, China, 3Department of Microbiology and Parasitology, Anhui Provincial
Laboratory of Pathogen Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei,
Anhui, China
Background: PANoptosis is a newly recognized form of programmed

inflammatory cell death implicated in numerous inflammation-related diseases.

However, its precise role and underlying mechanisms in periodontitis (PD)

remain unclear.

Methods:We analyzed single-cell RNA sequencing (scRNA-seq) on gingival tissues

from PD patients and healthy individuals to profile cellular composition and quantify

cell-type distributions. Functional enrichment analyses were used to explore

PANoptosis and related pathways, with five gene set scoring methods applied to

quantify PANoptosis activity in human gingival fibroblasts (HGFs). The expression of

PANoptosis-related markers was validated by immunofluorescence staining and

qPCR in HGFs and gingival tissues from PD model mice. Based on PANoptosis

scores, HGFs were stratified into high- and low-activity groups. Cell-cell

communication and spatial transcriptomic analyses were integrated to examine

their interactions with immune cells in the periodontal microenvironment. Finally,

bulk RNA-seq data were subjected to comprehensive analysis using 113 machine

learning models to screen for core PANoptosis-associated genes, which were

subsequently validated through qPCR and immunohistochemistry in

gingival tissues.

Results: scRNA-seq analysis revealed a decreased proportion of HGFs alongside

enrichment of multiple PANoptosis-related pathways in PD samples. Further

assessment demonstrated significantly elevated PANoptosis activity in HGFs from

PD compared to controls, whichwas validated by tissue-level immunofluorescence

staining. In vitro experiments using cultured HGFs and in vivo analyses in PD model

mice further confirmed upregulation of PANoptosis-related markers via

immunofluorescence and qPCR. Upon stratifying HGFs into high- and low-

PANoptosis groups, cell-cell communication and spatial transcriptomic analyses

indicated that high-PANoptosis HGFs exhibited enhanced interactions with

immune cells within the periodontal microenvironment. Additionally, bulk

transcriptomic profiling combined with machine learning approaches identified
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four key PANoptosis-associated genes, which were subsequently validated in

human gingival tissues.

Conclusion: Our findings demonstrate that PANoptosis is activated in HGFs in

the context of PD, which may drive immune dysregulation and facilitate disease

progression. By integrating bulk transcriptomic data with machine learning

algorithms, we identified and validated key PANoptosis-related genes,

highlighting their potential as novel therapeutic targets.
KEYWORDS

panoptosis, periodontitis, fibroblasts, immune dysregulation, spatial transcriptome,
machine learning
1 Introduction

Periodontitis (PD) is a widespread chronic inflammatory disease,

affecting more than 40% of adults globally and standing as a primary

cause of tooth loss among the elderly (1). The onset of PD involves a

dysbiotic shift in the oral microbiome, which provokes an excessive

host immune response marked by elevated levels of pro-inflammatory

cytokines (such as TNF-a and IL-1b) and matrix metalloproteinases

(MMPs), ultimately resulting in the breakdown of the periodontal

ligament and alveolar bone (2). Although the central role of

inflammation in PD pathogenesis is well established, the precise

cellular and molecular mechanisms underlying irreversible tissue

damage remain incompletely understood.

Recent studies have highlighted the importance of programmed

cell death (PCD) in shaping the periodontal microenvironment (3).

Among the known PCD pathways, apoptosis, pyroptosis and

necroptosis have been extensively implicated in PD, especially in

the context of immune activation and microbial insult (4, 5).

However, emerging evidence suggests that these forms of cell

death often do not occur in isolation, but instead act in a

coordinated and context-dependent manner (6). PANoptosis, a

recently defined and mechanistically integrated cell death

pathway, represents a novel paradigm that unifies pyroptosis,

apoptosis, and necroptosis into a single, tightly regulated

inflammatory program (7). Unlike the individual pathways,

PANoptosis is triggered by specific upstream signals—such as

ZBP1, AIM2, or TNF—and is executed through the assembly of

PANoptosomes, leading to the simultaneous activation of multiple

PCD effectors (e.g., CASP1, CASP8, RIPK3) (8, 9). This results in

rapid, lytic cell death accompanied by robust release of DAMPs,

thereby amplifying inflammation.

Recent studies have implicated PANoptosis in acute infections,

sepsis, autoimmune diseases and other chronic inflammatory

conditions, where it mediates inflammatory cell death and

amplifies immune responses (10–13). However, its potential role

in PD remains largely unexplored. The periodontal environment—
02
with its persistent bacterial challenge, oxidative stress, and cytokine-

rich milieu—provides an ideal setting for PANoptotic activation.

Importantly, PANoptosis is not merely redundant with pyroptosis

or necroptosis, but may serve as a higher-order regulatory

mechanism that determines cell fate under complex inflammatory

stimuli (14). Its activation could explain cases where multiple PCD

markers are simultaneously upregulated, as has been observed in

transcriptomic studies of periodontal lesions (15, 16). Meanwhile,

Jiang et al. further investigated the relationship between cell death

induced by Porphyromonas gingivalis (P. gingivalis)—a keystone

periodontal pathogen—and PD progression, proposing that

PANoptosis may facilitate immune evasion by P. gingivalis,

thereby acting as a potential pathogenic mechanism in PD (17).

Human gingival fibroblasts (HGFs)—a major cellular constituent of

gingival connective tissue—are increasingly recognized as active

participants in PD pathogenesis rather than passive structural cells

(18). HGFs respond to microbial stimuli by secreting pro-

inflammatory cytokines and chemokines, and are known to

undergo apoptosis, pyroptosis, and necroptosis upon infection

with P. gingivalis (19–21). Given this susceptibility and their

functional heterogeneity, HGFs may undergo PANoptotic

reprogramming that shapes the local immune microenvironment

and disease progression. Therefore, identifying PANoptosis-stage-

specific HGF subtypes is therefore critical to understanding how

this integrated cell death mechanism contributes to periodontal

tissue destruction.

In this study, we leveraged publicly available single-cell RNA

sequencing (scRNA-seq) datasets to profile PANoptosis activity in

HGFs from healthy and diseased gingival tissues. Through

integrative analyses including cell–cell communication, spatial

transcriptomics, and machine learning, we uncovered

PANoptosis-associated HGF subsets, mapped their spatial niches

and intercellular interactions, and identified diagnostic biomarkers

with translational relevance. These findings provide new insights

into PANoptosis as a central pathological mechanism in PD and

offer a foundation for developing targeted therapeutic strategies.
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2 Materials and methods

2.1 Data collection

We obtained the single-cell RNA-seq dataset GSE164241 and

bulk RNA-seq datasets GSE16134 and GSE10334 from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) for integrated

analysis. The single-cell dataset included 21 gingival tissue

samples, with 13 from healthy controls and 8 from PD patients.

For bulk transcriptomic analysis, we employed two complementary

GEO datasets: GSE16134, comprising 310 samples (241 PD and 69

healthy controls) as the training set, and GSE10334, including 247

samples (183 PD and 64 controls) as the independent validation

cohort. Additionally, to explore the spatial distribution and

localization of cells within PD-affected gingival tissues, we

incorporated two PD samples (GSM6258258 and GSM6258257)

from the spatial transcriptomic dataset GSE206621. This spatial

transcriptomics data enabled us to investigate the in situ cellular

architecture and spatial relationships of key cell populations

identified in the single-cell analysis, providing critical spatial

context to complement the molecular findings. Supplementary

Tables 1–4 listed the genes related to PANoptosis, apoptosis,

pyroptosis, and necroptosis used in this study.
2.2 scRNA-seq data processing

To identify cell populations associated with PANoptosis and

characterize their transcriptional profiles, we employed Seurat

(v4.3.1) in R for comprehensive single-cell analysis. Cells

expressing between 200 and 6,000 genes and with mitochondrial

content under 20% passed quality control. After normalization, the

top 2,000 highly variable genes were selected. Data scaling and

principal component analysis (PCA) were performed, followed by

batch correction and integration using Harmony (v1.2.3). For

visualization and clustering, UMAP was applied on the top 20

PCs. Cluster markers were identified with FindAllMarkers, using a

log fold change > 0.25 and minimum expression in 25% of cells. Cell

clusters were subsequently annotated according to canonical cell

surface markers and curated reference datasets from previously

published literature.
2.3 PANoptosis-related gene set activity
scoring analysis

To evaluate PANoptosis activity in HGFs, we curated a gene set

of 109 PANoptosis-related genes. We assessed their activity at the

single-cell level using five distinct gene set scoring algorithms:

AUCell, UCell, singscore, ssGSEA, and AddModuleScore.

Specifically, AUCell (v1.24.0) was used to build cell-wise gene

expression rankings and calculate area under the curve (AUC)

values for the PANoptosis gene set. UCell and singscore were

applied using the irGSEA package (v3.3.2) to generate normalized
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scores based on non-parametric and rank-based methods. ssGSEA

computed enrichment scores across all single cells using a Gaussian

kernel. AddModuleScore calculated average expression levels of the

PANoptosis gene set after control gene subtraction. To integrate

and compare results across methods, all individual scores were min-

max normalized (0–1 range). A composite PANoptosis activity

score was then calculated by summing the normalized scores from

all five algorithms for each cell, providing a robust and

comprehensive measurement of PANoptotic activity. We utilized

the “ggplot2” R package (v3.5.1) to visualize gene set scores at the

single-cell level, enabling comparison of pathway activities in HGFs

from both healthy and PD samples. The same scoring framework

was also applied to assess the activity of apoptosis, pyroptosis, and

necroptosis pathways, using curated gene sets specific to each cell

death program.
2.4 Pseudotime trajectory analysis

Using the “Monocle 2” R package (v2.30.1), we conducted

pseudotime analysis to investigate the developmental progression

of HGFs subpopulations exhibiting varying levels of PANoptosis

activity. Cells were ordered along a pseudotime axis based on highly

variable genes using the DDRTree algorithm. Gene expression

dynamics and functional pathway changes were analyzed along

the trajectory to reveal transcriptional reprogramming associated

with PANoptosis during HGFs state transitions.
2.5 Cell-cell communication analysis

To investigate the intercellular interactions between cell types in

PD, we employed the “CellChat” package (v2.2.0) to infer and

visualize cell-cell communication networks (22). The normalized

single-cell transcriptomic data were used to construct ligand-

receptor interaction networks. The communication strength was

quantified by analyzing the overall interaction number and

signaling strength.
2.6 Functional and pathway enrichment
analysis

To explore the biological functions and signaling pathways

linked to PANoptosis in PD, we conducted Gene Set Variation

Analysis (GSVA) and GSEA to assess functional differences

between PANoptosis-related cell subsets. Gene sets were sourced

from the Molecular Signatures Database (MSigDB) to ensure

comprehensive pathway coverage. Additionally, differentially

expressed genes (DEGs) between these subgroups were analyzed

for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment using the “clusterProfiler”

R package (v4.15.1).
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2.7 Spatial transcriptomics and spatial
trajectory analysis

We performed comprehensive ST analysis using “Seurat” in R

to process Visium-derived gene-spot matrices, filtering out spots

with fewer than 10 detected genes and normalizing the data with

SCTransform while accounting for mitochondrial and ribosomal

gene effects. Dimensionality reduction and clustering were applied

to identify spatial gene expression patterns, followed by

visualization using UMAP. For cell type deconvolution, we

employed the Robust Cell Type Decomposition (RCT) algorithm

to accurately estimate the cellular composition of each spatial spot,

offering enhanced robustness against technical noise and

compositional variability. To further investigate cell-cell

communication and spatial organization within the PD

microenvironment, we utilized mistyR (v1.10.0), a multiview

machine learning framework that integrates gene expression data

with spatial coordinates. This approach enabled quantification of

context-specific regulatory influences exerted by neighboring cells

and identification of spatially structured intercellular signaling

networks, providing deeper insights into the local regulatory

architecture driving disease progression.
2.8 Consensus clustering of PANoptosis
genes

To explore the role of PANoptosis in PD, we performed consensus

clustering using the “ConsensusClusterPlus” R package (v1.66.0) to

classify patients based on the expression patterns of PANoptosis-

related genes (PRGs). The optimal cluster number was identified by

evaluating cumulative distribution function (CDF) curves across

different clustering iterations. The stability and accuracy of the

resulting clusters were further confirmed through PCA.

2.9 Immune cell infiltration and functional
analysis

To evaluate immune characteristics across the identified subtypes,

we applied single-sample Gene Set Enrichment Analysis (ssGSEA)

using the “GSVA” R package (v1.50.5). This method quantified the

infiltration levels of 28 immune cell types and assessed immune-

related functional pathways based on established gene signatures.

Differences in immune cell infiltration and pathway activity between

subtypes were statistically evaluated using theWilcoxon rank-sum test

and visualized with boxplots. Furthermore, Spearman correlation

analysis was conducted to explore relationships between

PANoptosis-related gene expression and immune features.
2.10 Weighted gene co-expression
network analysis

To systematically identify gene modules linked to PANoptosis-

related expression patterns, we conducted WGCNA using the
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“WGCNA” R package (v1.73) (23). An optimal soft-thresholding

power was chosen to achieve scale-free network topology, balancing

network connectivity with biological significance. Genes were

clustered according to topological overlap, and modules were

detected via a dynamic tree-cutting algorithm. Each module’s

expression pattern was summarized by its module eigengene

(ME), defined as the first principal component representing the

module’s overall gene expression profile. Correlations between

module eigengenes and PANoptosis-related traits or sample

phenotypes were then calculated to identify biologically relevant

modules. The module showing the strongest correlation was

selected for downstream analysis.
2.11 Machine learning algorithms

To develop the diagnostic model, we applied a comprehensive

machine learning framework incorporating multiple established

algorithms to systematically perform feature selection and model

training. A total of 113 model variants were generated and evaluated

using tenfold cross-validation on the GSE16134 dataset. The

performance of each model was further validated in an

independent external cohort (GSE10334). The final diagnostic

model was selected based on the highest average area under the

receiver operating characteristic curve (AUC) across both training

and validation datasets.
2.12 Profiling and visualization of hub gene
expression

Differential expression of key signature genes was analyzed

using the R package “limma” (v3.62.2), with visualization

performed via boxplots created by the “ggpubr” package (v0.6.0).

To assess the diagnostic potential of each core gene, Receiver

Operating Characteristic (ROC) curve analysis was conducted

using the “pROC” package (v1.18.0), and the AUC values were

calculated accordingly.
2.13 Tissue sample collection

Gingival tissue samples were collected from 20 individuals at the

Stomatology Hospital of Anhui Medical University, including 10

healthy controls and 10 patients with PD. PD was diagnosed based

on a probing depth ≥5 mm and clinical attachment loss ≥3 mm in at

least two teeth, accompanied by bleeding on probing. Healthy controls

had a probing depth ≤3 mm, no clinical attachment loss, and no

bleeding on probing; gingival tissues were obtained from the excised

gingiva during third molar extraction performed due to orthodontic

treatment or impaction. Exclusion criteria for all participants included

systemic diseases affecting periodontal health, pregnancy or lactation,

use of antibiotics, anti-inflammatory, or immunosuppressive drugs

within the previous 3months, and smoking or alcohol abuse. Inflamed

gingival tissues from PD patients were obtained from the periodontal
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pocket area during flap surgery. All specimens were immediately

preserved in RNAlater or fixed in 4% paraformaldehyde for

subsequent analysis. The study was approved by the Ethics

Committee of Anhui Medical University (Approval No. 2021006),

and written informed consent was obtained from all participants.
2.14 Cell culture

Gingival tissues were harvested following standard procedures,

washed with PBS, and minced into small fragments. These

fragments were cultured in a-MEM (Gibco, USA) supplemented

with 10% fetal bovine serum (OriCell, China) at 37°C with 5% CO2.

Primary cells migrated from tissue explants after about seven days.

Once 80% confluence was reached, cells were passaged and

expanded. Cells between passages 4 and 8 were used for

experiments. To mimic periodontal inflammation in vitro, HGFs

were treated with Porphyromonas gingivalis lipopolysaccharide (Pg-

LPS; InvivoGen, France) at a concentration of 1 mg/mL for 6 hours.

This concentration was selected based on prior literature

demonstrating effective induction of inflammatory responses

without causing non-specific cytotoxicity (24, 25).
2.15 Quantitative real-time PCR

Total RNA was extracted using TRIzol reagent following the

manufacturer’s protocol. cDNA was synthesized using a reverse

transcription kit. Quantitative PCR was conducted with SYBR

Green Master Mix (TaKaRa) on a QuantStudio 5 Real-Time PCR

System. Gene expression levels were normalized to the internal

control GAPDH. Primer sequences for the target genes and

GAPDH are listed in Supplementary Table 5.
2.16 Mouse model of PD

Twelve wild-type (WT) C57BL/6 mice, purchased from Anhui

Medical University, were randomly assigned to control and PD

groups (n = 6 per group). Mice were anesthetized via intraperitoneal

injection of sodium pentobarbital (40 mg/kg). In the PD group, PD

was induced by carefully placing a sterile 5–0 silk ligature around

the maxillary second molar under adequate illumination, without

administration of Pg-LPS. The ligature was maintained for 10 days

to allow disease development. All animal procedures were approved

by the Ethics Committee of Anhui Medical University (Approval

No. LLSC20250965) and conducted in accordance with institutional

guidelines for the care and use of laboratory animals. Maxillary

tissues were harvested and fixed in 4% paraformaldehyde for 24–48

hours, followed by decalcification and paraffin embedding for

subsequent analyses.
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2.17 Hematoxylin and eosin staining

H&E staining was performed on paraffin-embedded sections to

assess histopathological changes. Stained slides were scanned using

a panoramic digital slide scanner, and images were analyzed to

evaluate inflammatory infiltration and alveolar bone loss.
2.18 Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde for 20 minutes at

room temperature, then washed with PBS. Tissue sections were first

deparaffinized through a series of xylene and graded ethanol

washes, followed by rehydration in PBS. Both cells and tissue

sections were permeabilized with 0.1% Triton X-100 for 10

minutes and blocked with 5% BSA for 1 hour at room

temperature. Samples were then incubated overnight at 4°C with

primary antibodies. After washing with PBS, Alexa Fluor-

conjugated secondary antibodies (1:100 dilution) were applied for

2 hours at room temperature in the dark. Nuclei were

counterstained with DAPI (1 mg/mL) for 5 minutes. Fluorescence

images were acquired using a Leica upright fluorescence microscope

with consistent exposure settings. For quantification, at least three

randomly selected fields per sample were analyzed using ImageJ

software (version 1.48). The number of cells positive for both

markers (co-stained cells) and the total number of nuclei (DAPI-

stained) within each field were counted manually or by

thresholding. The proportion of co-stained cells relative to total

cells was calculated and averaged across fields for each sample.
2.19 Immunohistochemistry staining

Paraffin sections (4 mm) were deparaffinized, rehydrated, and

antigen-retrieved in sodium citrate buffer at 95°C for 15 minutes.

After blocking with 3% H2O2 and 5% goat serum, sections were

incubated overnight with primary antibodies. Following secondary

antibody incubation, staining was developed using a DAB kit and

counterstained with hematoxylin. Images were captured and

analyzed with ImageJ (v1.48).
2.20 Statistical analysis

Statistical analyses were performed using R software (version

4.3.1). Quantitative data from qPCR, immunofluorescence, and

other assays are expressed as mean ± standard deviation (SD).

Group comparisons were performed using unpaired two-tailed

Student’s t-tests for comparisons between two groups, or one-way

analysis of variance (ANOVA) followed by Tukey’s post hoc test for

multiple group comparisons, where appropriate. For differential
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gene expression and pathway enrichment analyses, the BH

procedure was applied to control the false discovery rate (FDR).

Adjusted p-values less than 0.05 were considered statistically

significant. For correlation analyses, Spearman’s rank correlation

coefficient was calculated. All tests were two-sided unless otherwise

specified. Data visualization was performed using the ggplot2 R

package (version 3.5.1).
3 Results

3.1 scRNA-seq analysis revealed
dysregulation of multiple PANoptosis and
their related pathways in HGFs

To investigate the cellular composition of gingival tissues in PD,

we performed single-cell RNA sequencing (scRNA-seq) on samples

from both healthy controls and PD patients. After quality control

and batch correction, 15 major cell populations were identified

based on the expression of canonical lineage-specific markers

(Figures 1A, B). These included HGFs (COL1A1, LUM, DCN),

epithelial cells (KRT5, KRT14), endothelial cells (VWF, AQP1,

CLDN5, PECAM1), vascular mural cells (TAGLN, ACTA2),

melanocytes (DCT, PMEL), proliferating cells (MKI67, TOP2A),

T cells (CCR7, CD3D, TRAC), B cells (MS4A1, CD79A), plasma B

cells (MZB1, IGHG1), NK cells (NKG7, CD3D, TRAC),

macrophages (CD14, CD163, C1QA), neutrophils (G0S2, SOD2,

NAMPT), mast cells (CPA3, TPSAB1), myeloid dendritic cells

(mDCs; CLEC9A), and plasmacytoid dendritic cells (pDCs; IRF7,

SOX4). Figure 1C illustrates the relative abundances of these

populations in healthy and PD samples. Notably, HGFs and

endothelial cells were markedly reduced in PD, whereas immune

cell subsets such as T cells, NK cells, plasma B cells, and neutrophils

were relatively enriched, indicating a shift toward a pro-

inflammatory microenvironment. Given the substantial decrease

in HGF abundance and their potential contribution to PD

pathogenesis, we further analyzed DEGs in HGFs between

healthy and diseased tissues. The analysis revealed significant

enrichment of cell death-related pathways including apoptosis,

pyroptosis and necroptosis, suggesting that dysregulated cell

death contributed to the progression of PD (Figures 1D, E). To

validate these findings, we evaluated the activity of apoptosis,

pyroptosis, and necroptosis in HGFs using GSEA and five

independent gene set scoring algorithms. Consistently, HGFs

from PD samples exhibited increased activation of these pathways

compared to those from healthy controls (Figures 1F-K).

Given the convergence of apoptosis, pyroptosis, and necroptosis

within the PANoptosis framework, we further investigated the

potential involvement of PANoptosis in PD. PANoptosis activity

was quantified using five independent gene set scoring methods

based on the expression profiles of 109 PRGs. The analysis

demonstrated a significant increase in PANoptotic activity in

HGFs from PD samples compared to healthy controls

(Figure 1L). To validate these results, immunofluorescence

staining was performed on gingival tissues, assessing the co-
Frontiers in Immunology 06
localization of PANoptosis markers—ZBP1, cleaved-Caspase-1

(Cle-CASP-1), cleaved Caspase-3 (Cle-CASP-3), and P-RIPK3—

with the HGFs marker vimentin. HGFs in PD samples showed

markedly elevated expression of these markers relative to healthy

gingiva, with quantitative fluorescence intensity analysis shown in

Figures 1M-P. Quantitative analysis of fluorescence intensity

confirmed these observations, with significantly higher levels of

ZBP1, Cle-CASP-1, Cle-CASP-3, and P-RIPK3 in PD HGFs

compared to healthy controls (Figures 1Q-T).
3.2 In vitro and in vivo validation confirmed
PANoptosis activation in gingival
fibroblasts

Additionally, primary HGFs were cultured in vitro and

stimulated with lipopolysaccharide (LPS). Immunofluorescence

staining revealed increased expression of the same PANoptosis-

related markers in LPS-treated HGFs compared to unstimulated

controls (Figures 2A-D). Furthermore, TUNEL staining

demonstrated a significant increase in DNA fragmentation in

LPS-treated HGFs, indicative of cell death (Figure 2E), and

quantitative analysis confirmed a higher percentage of TUNEL-

positive cells following LPS stimulation (Figure 2F). Consistent with

these findings, qPCR analysis showed upregulation of key

PANoptosis-related genes—including ZBP1, NLRP3, CASP-1,

CASP-3 and RIPK3—following LPS treatment (Figures 2G-K).

These findings collectively indicate that PANoptosis activation in

HGFs may contribute to the development of PD.

To further validate the involvement of PANoptosis in the

progression of PD, an in vivo PD model was established in mice

by ligating the maxillary second molars for 10 days (Figure 2L).

H&E staining confirmed successful induction of PD, as evidenced

by inflammatory infiltration and alveolar bone loss (Supplementary

Figure 1). Immunofluorescence staining was then performed to

assess the expression of PANoptosis-related markers in gingival

fibroblasts. Compared to wild-type controls, gingival fibroblasts

from PD mice exhibited increased expression of Cle-Casp-1, Cle-

Casp-3, and P-RIPK3 (Figures 2M-O). Quantitative analysis of

immunofluorescence intensity further confirmed significantly

elevated levels of these markers in the PD group (Figures 2P-R),

suggesting the activation of PANoptosis in the gingival

microenvironment during PD.
3.3 PANoptosis participates in immune
regulation

To further investigate the functional characteristics and

signaling pathways associated with PANoptosis activity, we

stratified HGFs into high-PANoptosis (HP) and low-PANoptosis

(LP) subgroups based on their PANoptosis scores. As shown in

Figure 3A, differential gene expression analysis revealed distinct

gene profiles between HP and LP subgroups of HGFs. Functional

enrichment analysis showed that the differentially expressed genes
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FIGURE 1

scRNA-seq revealed higher PANoptosis activity in PD HGFs. (A) UMAP plot showing the distribution of 15 distinct cell types in gingival tissues. (B) Bubble
maps were used to display surface-annotated genes for various cell types. (C) Cell proportions of 15 cell types originating from normal and PD samples.
(D, E) GO and KEGG enrichment analyses of DEGs in HGFs from healthy and PD samples. (F-H) GSEA was performed to assess the enrichment of
apoptosis, pyroptosis, and necroptosis pathways in HGFs from healthy and PD samples. (I-L) Comparison of apoptotic, pyroptotic, necroptotic, and
PANoptotic activities in HGFs from healthy and PD samples based on five different gene set scoring methods. (M-P) Immunofluorescence staining of
ZBP1, cleaved CASP-1, cleaved CASP-3, and P-RIPK3, with vimentin-positive cells indicating HGFs. (Q-T) Quantification of fluorescence intensity for
ZBP1, cleaved CASP-1, cleaved CASP-3, and RIPK3 in vimentin-positive HGFs from healthy and PD samples. HGFs: Human gingival fibroblasts; DEGs,
differentially expressed genes; *p < 0.05, **p < 0.01. PD: Periodontitis.
Frontiers in Immunology frontiersin.org07

https://doi.org/10.3389/fimmu.2025.1671919
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1671919
FIGURE 2

PANoptosis-related markers are upregulated in HGFs upon LPS stimulation and in gingival tissues of PD model mice. (A-D) Immunofluorescence
staining showing the expression of ZBP1, cleaved CASP-1, cleaved CASP-3, and P-RIPK3 in HGFs following treatment with negative control (NC) or
LPS. For each panel, the left image shows the individual channels prior to merging, and the right image shows the merged channels. (E) TUNEL
staining of HGFs following stimulation with NC or LPS. (F) Quantification of TUNEL-positive HGFs following NC or LPS treatment. (G-K) qPCR
analysis of mRNA expression levels of ZBP1, NLRP3, CASP-1, CASP-3 and RIPK3 in HGFs after NC or LPS treatment. (L) Schematic diagram illustrating
the workflow for establishing the periodontitis mouse model. (M-O) Immunofluorescence results showing increased expression level of Cle-Casp-1,
Cle-Casp-1, P-RIPK3 in gingival fibroblasts from periodontitis mouse gingival tissues. (P-R) Quantification of fluorescence intensity for Cle-Casp-1,
Cle-Casp-3, and P-RIPK3 in gingival fibroblasts. *p < 0.05, **p < 0.01, ***p < 0.001. HGFs: human gingival fibroblasts.
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(DEGs) were significantly associated with inflammation and

immune-related pathways, such as the inflammatory response,

NF-kB signaling, cytokine–cytokine receptor interaction, and

chemokine signaling (Figures 3B, C). Moreover, hallmark

pathways—including TNFA signaling via NF-kB, IL6-JAK-STAT3
signaling, complement activation, apoptosis, and interferon-g
response—were markedly enriched in HP-HGFs (Figures 3D-H).

GSEA further confirmed significant upregulation of pathways like

Toll-like receptor signaling, NOD-like receptor signaling, and

chemokine signaling in HP-HGFs compared to LP-HGFs

(Figures 3I-L). Subsequently, we employed pseudotime trajectory

analysis to investigate the dynamic changes of HGFs with high and

low PANoptosis activity during cellular development. The results

revealed that LP-HGFs were primarily located at early

developmental stages, while HP-HGFs were enriched in later

phases, suggesting a temporal progression toward a high

PANoptotic state (Figure 3M). Correspondingly, as HGFs

transitioned along the pseudotime trajectory, the proportion of

LP-HGFs gradually declined, whereas HP-HGFs became

increasingly dominant (Figure 3N). This phenotypic shift was

accompanied by a gradual increase in the expression of pro-

inflammatory cytokines and chemokines, as well as the activation

of immune-related pathways, including responses to bacterial

products and lipopolysaccharide, TNF signaling, NF-kB, and IL-

17 pathways (Figure 3O). Collectively, these findings indicate that

PANoptosis activation in HGFs is closely linked to pro-

inflammatory signaling and may contribute to the immune

dysregulation and tissue destruction characteristic of PD.
3.4 Enhanced cell-cell interactions in HP-
HGFs

To investigate changes in intercellular communication associated

with PANoptosis activity, we performed CellChat analysis comparing

HP-HGFs and LP-HGFs. The results revealed that HP-HGFs

exhibited markedly enhanced communication with various immune

cell types—including neutrophils, T cells, B cells, macrophages, mast

cells, and plasma cells—suggesting a heightened immunomodulatory

role (Figures 4A-C). Notably, HP-HGFs demonstrated stronger

outgoing signaling through key pathways such as CXCL, IL6, and

the complement system, indicating active involvement in immune cell

recruitment and activation (Figures 4D-F). Compared to LP-HGFs,

HP-HGFs exhibited markedly increased ligand–receptor interactions,

such as CSF1–CSF1R, IL34–CSF1R, and PTN–NCL, particularly

targeting B cells, T cells, neutrophils, and macrophages

(Figures 4G). These results suggest that HGFs with active

PANoptosis significantly influence the inflammatory milieu in PD

by enhancing immune cell recruitment and intensifying pro-

inflammatory signaling, potentially contributing to sustained

inflammation and disease progression.
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3.5 ST data highlights stronger immune
interaction of HP-HGFs

To further elucidate the role of PANoptosis in PD, we

integrated spatial transcriptomics data from two PD samples,

GSM6258256 and GSM6258257. After filtering low-quality data,

we applied the “SCTransform”method for normalization and batch

correction, followed by dimensionality reduction. The spatial

feature visualization (Supplementary Figures 2A, B) illustrated the

distribution of the number of genes detected at each capture spot

(nFeature_Spatial) across the tissue sections. Subsequent clustering

analysis identified six and five distinct spatial domains in the two

samples (Supplementary Figures 2C, D), respectively, highlighting

the potential spatial heterogeneity of PD lesions. We then

performed deconvolution using scRNA-seq results and projected

the inferred cell types onto the spatial transcriptomics framework.

Both samples showed highly consistent results, revealing significant

spatial heterogeneity in the localization of HP and LP

subpopulations of HGFs (Figures 4H-K). Spatial analysis of cell-

cell interactions through co-localization revealed that, in PD tissues,

HP-HGFs tended to form long-distance interactions with immune

cells including neutrophils, T cells, and B cells (Figures 4L-O). This

suggests a significant role for HP-HGFs in regulating the local

immune microenvironment. These spatial transcriptomics data

align with our scRNA-seq findings, reinforcing the idea that

PANoptosis may contribute to PD development by modulating

immune activity within the tissue niche.
3.6 Bulk RNA-seq reveals elevated
PANoptosis levels and identification of
differentially expressed PANoptosis-related
genes in PD patients

Meanwhile, we investigated the role of PANoptosis in PD at the

bulk RNA-seq level. GSEA of two independent PD datasets revealed

that PANoptotic activity was significantly elevated in PD samples

compared to healthy controls (Figures 5A, B). Furthermore, three

key cell death-related pathways—apoptosis, pyroptosis, and

necroptosis—were also markedly dysregulated between healthy

and PD groups (Figures 5C, D). To identify PANoptosis-related

DEGs, we first screened 1,106 DEGs between healthy and PD

samples (Figure 5E). Cross-referencing these with a curated list of

PANoptosis-associated genes yielded 13 overlapping candidates

(Figure 5F). Their expression patterns across groups are presented

in Figure 5G, and strong correlations among these genes are

depicted in Figure 5H. To explore immune alterations, we

assessed immune cell infiltration using ssGSEA and observed a

marked increase in multiple immune cell populations in PD

samples compared to healthy controls (Figure 5I). Correlation

studies demonstrated significant associations between several
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FIGURE 3

Molecular characteristics and pathway alterations between HP-HGFs and LP-HGFs. (A) DEGs between HP-HGFs and LP-HGFs. (B, C) GO and KEGG
enrichment analyses of DEGs between HP-HGFs and LP-HGFs. (D-H) Comparison of hallmark gene set activity between HP-HGFs and LP-HGFs
using GSVA. (I-L) GSEA analysis of the cp:KEGG pathway gene sets to assess signaling differences between the two HGF subsets. (M) Cell type
distribution of HP-HGFs and LP-HGFs along pseudotime trajectory branches. (N) A pseudotime trajectory was constructed to investigate the
dynamic transcriptional states of HGFs categorized by PANoptosis activity. Cells were colored based on pseudotime values, ranging from early
(purple) to late (yellow) developmental stages, as indicated by the color bar. The trajectory demonstrates a branched topology, suggestive of distinct
differentiation or activation paths. Cells were further annotated by PANoptosis score-based classification into HP-HGFs (cyan) and LP-HGFs (orange),
and the proportion of each cell type within the major trajectory branches is represented by the embedded pie charts. Arrows indicate the direction
of pseudotime progression along each branch. (O) Branched heatmap showing dynamic gene expression and functional enrichment along
pseudotime trajectory in HGFs associated with PANoptosis. Heatmap shows two major gene modules (C1 and C2) identified along the pseudotime
trajectory of HGFs using Monocle2. Each row represents a gene and each column a cell ordered by pseudotime, with color indicating Z-score-
scaled expression levels. Cells are aligned according to pseudotime (top color bar), and genes are grouped by shared dynamic expression patterns.
Functional enrichment analysis (GO and KEGG) is visualized using dot plots overlaid on the heatmap. The color gradient and bar length represent
pathway significance (-log10 p-value), while the x-coordinate of the yellow dots indicates the enrichment magnitude (log10 ratio), collectively
highlighting distinct biological processes and signaling pathways associated with each gene module and reflecting transcriptional heterogeneity
during PANoptosis-related transitions. *p < 0.05, **p < 0.01, ***p < 0.001. HGFs: human gingival fibroblasts; DEG: Differentially expressed genes;
HP-HGF: high-PANoptosis HGFs; LP-HGFs: low-PANoptosis HGFs.
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FIGURE 4

Cell-cell communication analysis between HP-HGFs and LP-HGFs. (A) Heatmap illustrating the strength and number of interactions between HP-
HGFs and LP-HGFs. (B, C) Heatmap and mulberry plot depicting interaction intensity between HP-HGFs or LP-HGFs as sender cells and various
immune cell populations. (D-F) Heatmaps showing the relative contribution of each cell type within the CXCL, IL6 and complement signaling
networks. (G) Bubble plot displaying significant ligand-receptor pairs for HP-HGFs and LP-HGFs, respectively. (H, I) Spatial transcriptomic maps
showing the localization of HP-HGFs and LP-HGFs in sample GSM6258258. (J, K) Spatial transcriptomic maps showing the localization of HP-HGFs
and LP-HGFs in sample GSM6258257. (L, M) Spatial analysis of long-range intercellular interactions among various cell types in GSM6258258.
(N, O) Spatial analysis of long-range intercellular interactions among various cell types in GSM6258257. HP-HGF: high-PANoptosis HGFs; LP-HGFs:
low-PANoptosis HGFs.
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FIGURE 5

Bulk RNA-seq analysis reveals increased PANoptotic activity in PD samples and identifies DE-PRGs. (A, B) GSEA showing increased PANoptotic
activity in PD samples compared to healthy controls in datasets GSE16134 and GSE10334. (C, D) GSVA assessing the activity of apoptotic, pyroptotic,
and necroptotic pathways in healthy and PD samples from GSE16134 and GSE10334. (E) Volcano plot illustrating DEGs between healthy and PD
samples in GSE16134. (F) Venn diagram showing the intersection of DEGs and PRGs. (G) Boxplots showing the expression levels of DE-PRGs. (H)
Correlation analysis of 13 DE-PRGs. (I) ssGSEA-based estimation of the infiltration levels of 28 immune cell types in healthy and PD samples. (J)
Correlation analysis between DE-PRGs and the infiltration abundance of 28 immune cell types. DEGs: differentially expressed genes; DE-PRGs:
differentially expressed PANoptosis-related genes; *p < 0.05, **p < 0.01, ***p < 0.001. PD: Periodontitis.
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PANoptosis genes and immune cell infiltration (Figure 5J).

Collectively, these results indicate that PRGs are closely

intertwined with immune activation, potentially driving the pro-

inflammatory environment characteristic of PD.
3.7 Consensus clustering and immune
characteristics among subgroups

To investigate the immunological characteristics and functional

implications of PANoptosis in PD, we stratified patient samples based

on the expression patterns of PRGs using consensus clustering. The

optimal number of clusters was determined through evaluation of the

cumulative distribution function (CDF) curves (Supplementary

Figure 3) and consensus matrix heatmaps, ultimately identifying

two distinct molecular subtypes (Figure 6A). Analysis of PCA further

validated the robustness and reliability of this classification

(Figure 6B). As shown in Figure 6C, multiple PANoptosis-

associated genes were significantly upregulated in the C2 subtype,

suggesting enhanced PANoptotic signaling in this group. To quantify

PANoptotic activity, GSEA was performed between the two subtypes.

The results demonstrated that the C2 subtype exhibited markedly

elevated PANoptosis activity compared to the C1 subtype

(Figure 6D). To elucidate the biological functions and pathways

associated with PANoptosis, we performed GSEA on two distinct

PANoptosis-related subtypes. The C2 subtype exhibited significant

upregulation of multiple immune-related pathways, including

immune response activation, myeloid leukocyte migration, B cell

receptor signaling, and chemokine signaling (Figures 6E, F). We also

performed pathway enrichment analysis using gene sets from the

Molecular Signatures Database (MSigDB), including the

HALLMARK, C5-GO, and C2-KEGG collections. The C2 subtype

demonstrated upregulation of multiple immuno-inflammatory

pathways, such as IL6–JAK–STAT3 signaling, inflammatory

response, and complement in the HALLMARK set; regulation of

myeloid cell differentiation, regulation of B cell proliferation, and T

cell extravasation in the GO set; and B cell receptor signaling, Toll-

like receptor signaling, and chemokine signaling in the KEGG set

(Figures 6G–I). Collectively, these results suggest a strong association

between PANoptosis and immune activation. Further analysis of

immune cell infiltration and immune-related functions revealed a

broadly elevated immune status in the C2 subtype, characterized by

increased infiltration of various immune cells and enhanced immune

functional activities (Figures 6J, K). Taken together, these findings

underscore the pivotal role of PANoptosis-related molecular features

in modulating the immune microenvironment of PD and provide

novel insights into the inflammatory pathogenesis of the disease.
3.8 WGCNA network construction and
identification of key modules

To investigate gene co-expression patterns associated with PD,

we applied Weighted Gene Co-Expression Network Analysis
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(WGCNA). Following hierarchical clustering to exclude outlier

samples, a soft-threshold power of 5 (b = 5) was chosen to

achieve a scale-free network structure. This analysis identified 6

distinct gene modules, among which the turquoise module

exhibited the highest positive correlation with disease status (r =

0.68), encompassing 690 genes (Figure 7A). Subsequent evaluation

of gene significance versus module membership demonstrated a

strong association, underscoring the importance of these genes for

further functional analyses (Figure 7B).
3.9 Screening of characteristic genes
related to PANoptosis and construction of
machine learning

At the bulk RNA-seq level, 343 upregulated and 115

downregulated DEGs related to PANoptosis were identified

between the two subtypes (Supplementary Table 6). Meanwhile,

scRNA-seq analysis revealed 245 upregulated and 5 downregulated

DEGs distinguishing HP-HGFs from LP-HGFs (Supplementary

Table 7). By intersecting these gene sets with results from

WGCNA and DEGs identified between healthy and PD samples,

we ultimately obtained 13 core PANoptosis-related genes

(Supplementary Figures 4A, B). These genes were subsequently

used to construct 113 machine learning models. The GSE16134

dataset served as the training set, while GSE10334 was used for

external validation. The final model, which integrated LASSO and

RF, demonstrated excellent predictive performance, achieving an

AUC of 0.996 in the training cohort and 0.967 in the external

validation cohort (Figure 7C). To further assess its diagnostic

efficacy, additional metrics were calculated. In the training dataset

(GSE16134), the model yielded a sensitivity of 98.8%, specificity of

89.9%, and an F1 score of 97.9%. In the independent validation

dataset (GSE10334), it maintained a high sensitivity of 97.3% and

an F1 score of 93.9%, with a moderate specificity of 81.9%

(Supplementary Figure 5). These results highlight the robustness

and clinical potential of the predictive model. LASSO regression

identified 11 candidate genes. Subsequently, RF analysis refined the

selection to 4 key genes (BTG2, CTSH, AKR1B1, and IL24), which

contributed most significantly to the model’s predictive

performance and stability.
3.10 Expression levels and diagnostic
significance of hub genes

To assess the relevance of these hub genes in PD, we analyzed

their expression levels and diagnostic performance. Boxplot

analyses of the GSE16134 and GSE10334 datasets showed that the

four hub genes were significantly upregulated in PD samples

(Figures 7D, E). ROC curve analysis further demonstrated that all

four genes exhibited strong diagnostic performance, with AUC

values exceeding 0.8 in both datasets (Figures 7F, G), indicating

their robust predictive value for PD.
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FIGURE 6

Identification and characterization of PANoptosis-related molecular subtypes in PD. (A) Consensus clustering heatmap when k= 2, indicating the
optimal classification into two PANoptosis-related clusters. (B) Principal component analysis (PCA) showing clear separation between the two
PANoptosis clusters. (C) Boxplots displaying the expression levels of DE-PRGs between the two clusters. (D) GSEA showing differences in
PANoptotic activity between the two clusters. (E, F) GSEA identifying significant differences in GO terms and KEGG pathways between the two
clusters. (G-I) GSVA illustrating variations in hallmark, GO, and KEGG gene sets between the two clusters. (J) Estimated proportion of immune cell
infiltration in the two clusters. (K) Differences in immune-related functional scores between the two clusters; *p < 0.05, **p < 0.01, ***p < 0.001. PD:
Periodontitis.
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FIGURE 7

Identification of potential PANoptosis-related hub genes and model construction. (A) Heatmap showing module-trait correlations generated by
WGCNA analysis. (B) Scatter plot depicting the relationship between gene significance for PD and module membership in the MEturquoise module.
(C) Performance of 113 machine learning algorithm combinations evaluated using 10-fold cross-validation. (D, E) Boxplots showing the expression
levels of identified core PANoptosis-related genes in datasets GSE16134 and GSE10334. (F, G) ROC curves assessing the diagnostic performance of
the core genes in the training set (GSE16134) and validation set (GSE10334). (H, I) Correlation analysis between the four core PANoptosis-related
genes and immune cell infiltration as well as immune-related functional pathways.
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3.11 Correlation between hub genes and
immune infiltration

Pearson correlation analysis was conducted to explore the

association between the expression of target genes and immune

cell infiltration as well as immune-related functions. The findings

showed positive correlations with the majority of immune cell types

and immune activities (Figures 7H, I), indicating these genes may

play important roles in modulating immune responses and

influencing PD progression.
3.12 Functional enrichment analysis of key
genes

To further clarify the biological functions of the four key genes

(BTG2, CTSH, AKR1B1, and IL24) in PD, we conducted single-

gene GSEA and GSVA analyses. GSVA indicated that these genes

were positively associated with multiple immune and inflammatory

pathways, including IL2/STAT5 and IL6/JAK/STAT3 signaling,

interferon responses, complement activation, and inflammatory

responses (Supplementary Figures 6A-D). GSEA further revealed

that BTG2, CTSH, and AKR1B1 were enriched in B cell receptor

and chemokine signaling pathways (Supplementary Figures 6E-G),

while IL24 was primarily associated with cytokine–cytokine

receptor interaction and the JAK-STAT signaling pathway

(Supplementary Figure 6H). These findings imply that elevated

expression of BTG2, CTSH, AKR1B1, and IL24 may play a role in

driving immune dysregulation in PD.
3.13 Experimental validation of
PANoptosis-related hub genes

To validate our bioinformatics findings, four PANoptosis-

associated hub genes (BTG2, CTSH, AKR1B1, and IL24) were

selected for experimental confirmation. qPCR analysis revealed

significant upregulation of these genes in PD gingival tissues

compared to healthy controls (Figures 8A-D). Immunohistochemistry

further confirmed consistent protein-level expression patterns

(Figure 8E), and quantitative analysis demonstrated significantly

increased staining intensity in PD samples (Figures 8F-I), supporting

the robustness of the PANoptosis-based model. Notably, we found that

CTSH was mainly localized in the epithelial layer and vascular-

associated regions, suggesting that it may be involved in the

occurrence of PANoptosis in these compartments. However, as the

present study primarily focused on HGFs, these regions were not

examined in detail, representing a limitation that warrants further

investigation in future studies.
4 Discussion

PD is a chronic inflammatory condition marked by the gradual

destruction of tooth-supporting tissues, primarily driven by
Frontiers in Immunology 16
dysregulated host immune responses to microbial biofilms (26).

While traditional forms of PCD, such as apoptosis and necroptosis,

have been implicated in periodontal tissue damage (4), the role of

PANoptosis—a recently identified, highly inflammatory form of cell

death that integrates pyroptosis, apoptosis, and necroptosis—

remains largely unexplored in the context of periodontal disease

(14). Given its unique capacity to orchestrate immune-

inflammatory cascades, PANoptosis may represent a crucial

mechanism linking cellular stress responses to immune activation

in the periodontal microenvironment.

Our single-cell analysis revealed that HGFs in PD tissues exhibit

transcriptional signatures indicative of multiple programmed cell

death modalities, with PANoptosis-related genes significantly

upregulated compared to healthy controls. Increasing evidence

suggests that HGFs actively participate in inflammatory signaling

during PD, beyond their traditional role as structural matrix

components maintaining tissue integrity. Under inflammatory

conditions, HGFs are susceptible to diverse forms of programmed

cell death, which contribute to tissue destruction and disease

progression. Apoptosis of HGFs, induced by pro-inflammatory

cytokines such as TNF-a and IL-1b, has been well documented as

a mechanism driving connective tissue degradation (27).

Furthermore, recent studies demonstrate that microbial

components can trigger pyroptosis in HGFs via caspase-1

activation, thereby amplifying local inflammatory responses (28).

Emerging data also indicate that necroptosis may occur in HGFs

under sustained inflammatory stress, further exacerbating tissue

damage (20). Collectively, these findings highlight that HGFs in PD

concurrently exhibit apoptotic, pyroptotic, and necroptotic death

modalities. Our results extend this understanding by suggesting that

these pathways may not act independently but rather operate in an

integrated fashion characteristic of PANoptosis. This is consistent

with emerging research in other inflammatory contexts, such as

sepsis and viral infections, where PANoptosis orchestrates potent

inflammatory responses through the simultaneous activation of

pyroptotic, apoptotic, and necroptotic machinery (29, 30).

Therefore, our study provides the first transcriptomic evidence

identifying HGFs in PD as a previously underrecognized cellular

source of PANoptotic activity.

Functionally, the spatial transcriptomic and cell–cell

communication analyses revealed that HP-HGFs exhibited

enhanced interactions with multiple immune cell populations,

including neutrophils, T cells, and B cells. This observation

suggests that PANoptotic HGFs may contribute to shaping the

local immune landscape. The link between PANoptosis in HGFs

and the amplified immune response can be understood through

several mechanisms. PANoptosis leads to pore formation and

plasma membrane rupture, resulting in the release of DAMPs and

mature inflammatory cytokines such as IL-1b and IL-18 (30). These

mediators are potent activators of innate immunity, recruiting and

activating neutrophils and macrophages. Although direct evidence

in HGFs is limited, similar immunogenic effects of PANoptosis

have been observed in other contexts—including cancer and

infectious models—where PANoptotic cell death enhances

immune cell infiltration and inflammation (29, 31). Secondly,
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dying HGFs and their secretory factors may promote adaptive

immune activation by releasing chemokines and pro-

inflammatory cytokines that recruit and modulate T and B cells,

which is consistent with our spatial transcriptomic evidence of

enhanced interactions between HP-HGFs and these lymphocyte
Frontiers in Immunology 17
populations. Third, PANoptosis-associated release of inflammatory

mediators and subsequent immune cell activation may enhance

proteolytic activity within periodontal lesions—such as increased

production of MMPs and other proteases—thereby linking

molecular cell death events to extracellular matrix degradation
FIGURE 8

Expression levels of BTG2, CTSH, AKR1B1, and IL24 in gingival tissues from healthy individuals and PD patients. (A-D) qRT-PCR analysis showing the
mRNA expression levels of BTG2, CTSH, AKR1B1, and IL24 in gingival tissues from human healthy controls (n=10) and PD patients (n=10). GAPDH
was used as the internal control. (E) Immunohistochemical staining of BTG2, CTSH, AKR1B1, and IL24 in gingival tissues from human healthy controls
and PD patients. Arrows indicate spindle-shaped HGFs. (F-I) Quantification of immunohistochemical staining intensity for each target gene. *p <
0.05, **p < 0.01, ***p < 0.001. PD: Periodontitis.
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and clinical tissue loss observed in PD (32). Overall, these

observations suggest a plausible feed-forward loop: inflammatory

stimulation induces PANoptosis in HGFs; PANoptotic cells amplify

immune activation and proteolytic processes; and the resulting

inflammation further stresses stromal cells, sustaining tissue

damage. Importantly, these interpretations remain correlative and

hypothesis-generating. To establish causality and therapeutic

potential, targeted functional studies are needed—such as

inhibiting key PANoptosome components (e.g., ZBP1 or RIPK3)

or inflammasome signaling in HGFs, assessing consequent changes

in immune recruitment and matrix destruction in co-culture and

animal models, and validating key mediators at the protein level

with multiplexed imaging.

Using an integrative machine learning pipeline combining 113

feature selection–classifier pairs, we first applied a primary

algorithm (e.g., LASSO) to identify candidate variables, followed

by a secondary algorithm (e.g., Random Forest) to construct

classification models. Model performance was evaluated in both

training and validation cohorts, and the combination with the

highest mean AUC was selected as optimal. In this top-

performing model, four PANoptosis-related hub genes—BTG2,

CTSH, AKR1B1, and IL24—were consistently retained across

algorithms and ranked highest in discriminative power,

substantially improving model performance (AUC = 0.996

training; 0.967 validation).

Functionally, these genes may act as regulatory nodes linking

inflammatory stress to programmed cell death pathways in the

periodontal microenvironment. BTG2 is an anti-proliferative gene

induced by oxidative and genotoxic stress, functioning as a

downstream effector of p53 (33). It regulates the cell cycle by

inducing G1/S and G2/M arrest and promotes apoptosis via

upregulation of pro-apoptotic proteins such as Bax (34). BTG2 also

participates in DNA damage repair and oxidative stress responses

through both p53-dependent and ROS-NF-kB pathways (35, 36). Its

expression may reflect cellular stress and apoptosis initiation under

chronic inflammatory conditions, suggesting a role in the apoptotic

component of PANoptosis in PD. CTSH encodes a lysosomal cysteine

protease primarily involved in intracellular protein degradation and

antigen processing, playing a vital role in lysosomal function and

cellular homeostasis (37). Dysregulated expression of CTSH has been

reported in various cancers, including breast cancer (38), prostate

cancer (39), and glioma (40). Emerging evidence also links CTSH to

regulation of inflammatory responses and cell death. For example, it

modulates microglia-mediated inflammation and apoptosis following

brain injury or infection (41). Additionally, CTSH is an important

regulator of b-cell function in type 1 diabetes, where its overexpression
protects against b-cell apoptosis, while downregulation promotes cell

death (42). These findings suggest that CTSH may similarly influence

inflammatory and cell death processes relevant to periodontal disease

progression. AKR1B1 (Aldo-keto reductase family 1 member B1) is a

key enzyme in the polyol pathway that contributes to oxidative stress

and inflammatory signaling (43). It has been implicated in the

pathogenesis of various inflammation-related conditions, including

asthma (44), sepsis (45), and uveitis (46). AKR1B1 inhibition

attenuates inflammatory signaling by downregulating
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lipopolysaccharide (LPS)-induced cascades and reducing the

production of pro-inflammatory cytokines and chemokines (45, 47).

These findings suggest that AKR1B1 may represent a promising

therapeutic target in inflammatory diseases. IL24 (Interleukin 24) is

a cytokine of the IL-10 family with known immunomodulatory and

pro-apoptotic functions (48). It has been shown to induce apoptosis in

various tumor cell types and modulate inflammatory signaling in

immune cells (49). While its role in periodontal tissues remains

unclear, elevated IL24 expression may reflect a heightened

inflammatory state. From a diagnostic perspective, the robust and

stable contribution of these genes to the machine learning model

supports their potential as a molecular signature for PD. They hold

promise for early detection, risk stratification, and longitudinal disease

monitoring, and may improve diagnostic specificity by distinguishing

PD from other inflammatory oral conditions. Integration of these

markers into targeted PCR panels or transcriptomic assays could

advance precision dentistry approaches in PD management.

Several limitations of this study should be noted. First, although

single-cell RNA sequencing and spatial transcriptomics offered

valuable insights into the heterogeneity and spatial patterns of

PANoptosis activity in HGFs, the relatively small sample size may

limit the broader applicability of our findings. Second, the

identification of PANoptosis relied mainly on transcriptomic

signatures rather than direct functional or protein-level assays,

which may not fully capture the dynamic regulation and

execution of this cell death pathway. Third, pseudotime trajectory

analysis revealed a gradual transcriptional transition from LP-HGFs

to HP-HGFs, indicating a potential phenotypic shift. However, this

inference is based solely on transcriptional dynamics and does not

constitute direct evidence of a lineage transition. Therefore, we

propose this as a hypothetical differentiation model, which requires

further validation through functional assays. Fourth, the consensus

clustering-based molecular subtyping of PD was performed using a

single publicly available bulk RNA-seq dataset (GSE16134).

Although internal validation supported the robustness of this

classification, the lack of multi-cohort external validation may

limit the generalizability of the identified subtypes. Future studies

incorporating additional independent datasets will be essential to

confirm the reproducibility and stability of these PANoptosis-

related subtypes. Moreover, although the single-cell and spatial

transcriptomic results suggest a potential association between

PANoptosis and immune modulation, these findings are based on

correlative analyses. Further in vitro and in vivo experiments are

needed to investigate and validate the underlying mechanisms

linking PANoptosis to immune cell recruitment and activation.

Finally, this study primarily focused on HGFs; thus, the

involvement of other stromal or immune cell populations in

PANoptosis-related PD pathogenesis remains to be explored.
5 Conclusion

In summary, this study reveals novel insights into PANoptosis

in PD pathogenesis. By integrating single-cell RNA sequencing,
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spatial transcriptomics, and cell-cell communication analyses, we

demonstrated that PANoptosis is markedly activated in HGFs from

PD tissues and is associated with enhanced immune interactions.

PANoptotic HGFs not only undergo inflammatory programmed

cell death but also actively participate in shaping the immune

microenvironment, potentially contributing to persistent

inflammation and tissue destruction. Moreover, through

screening 113 machine learning models, we identified four key

PRGs and confirmed their expression in gingival tissues from PD

patients. These findings reveal PANoptosis as an insufficiently

recognized mechanism in periodontal disease and suggest that

targeting PANoptosis pathways and hub genes could provide

novel therapeutic avenues for controlling inflammation and

maintaining periodontal tissue health.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding authors.
Ethics statement

The studies involving humans were approved by Ethics

Committee of Anhui Medical University (Ethics number:

2021006). The studies were conducted in accordance with the

local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.

The animal study was approved by Ethics Committee of Anhui

Medical University (Ethics number: LLSC20250965). The study was

conducted in accordance with the local legislation and

institutional requirements.
Author contributions

EW: Conceptualization, Writing – original draft, Methodology,

Data curation, Formal analysis, Writing – review & editing. QZ:

Investigation, Writing – original draft, Software. XY: Validation,

Supervision, Writing – original draft. JL: Supervision, Writing –

original draft. HZ: Visualization, Writing – original draft. FG:

Project administration, Writing – original draft. FL: Project

administration, Writing – original draft. XZ: Writing – original

draft, Supervision. ZG: Writing – original draft, Validation. BL:

Resources, Writing – review & editing. QW: Validation, Writing –

review & editing. WS: Writing – review & editing, Writing –

original draft, Funding acquisition.
Frontiers in Immunology 19
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This work was supported

by the National Natural Science Foundation of China (82071770);

Research Level Improvement Project of Anhui Medical University

(2021xkjT001); Basic and Clinical Cooperative Research and

Promotion Program of Anhui Medical University (2021xkjt039);

Natural Science Foundation of Anhui Province (2208085QH245);

the National Natural Science Foundation of China (82201127).
Acknowledgments

The authors thank the GEO database for the information provided.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The authors declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible. If

you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

9The SupplementaryMaterial for this article can be found online at:

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671919/

full#supplementary-material
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671919/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671919/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1671919
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1671919
References
1. Heitz-Mayfield LJA. Conventional diagnostic criteria for periodontal diseases
(plaque-induced gingivitis and periodontitis). Periodontol 2000. (2024) 95:10–9.
doi: 10.1111/prd.12579

2. Neurath N, Kesting M. Cytokines in gingivitis and periodontitis: from
pathogenesis to therapeutic targets. Front Immunol. (2024) 15:1435054. doi: 10.3389/
fimmu.2024.1435054

3. Song B, Zhou T, Yang WL, Liu J, Shao LQ. Programmed cell death in
periodontitis: recent advances and future perspectives. Oral Dis. (2017) 23:609–19.
doi: 10.1111/odi.12574

4. Xu X, Zhang T, Xia X, Yin Y, Yang S, Ai D, et al. Pyroptosis in periodontitis: From
the intricate interaction with apoptosis, NETosis, and necroptosis to the therapeutic
prospects. Front Cell Infect Microbiol . (2022) 12:953277. doi: 10.3389/
fcimb.2022.953277

5. Sordi MB, Magini RS, Panahipour L, Gruber R. Pyroptosis-mediated periodontal
disease. Int J Mol Sci. (2021) 23:372. doi: 10.3390/ijms23010372

6. Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: master
regulators of NLRP3 inflammasome/pyroptosis, apoptosis, and necroptosis (PAN-
optosis). Front Cell Infect Microbiol. (2019) 9:406. doi: 10.3389/fcimb.2019.00406

7. Pandeya A, Kanneganti TD. Therapeutic potential of PANoptosis: innate sensors,
inflammasomes, and RIPKs in PANoptosomes. Trends Mol Med. (2024) 30:74–88.
doi: 10.1016/j.molmed.2023.10.001

8. Sun X, Yang Y, Meng X, Li J, Liu X, Liu H. PANoptosis: Mechanisms, biology, and
role in disease. Immunol Rev. (2024) 321:246–62. doi: 10.1111/imr.13279

9. Zhu P, Ke ZR, Chen JX, Li SJ, Ma TL, Fan XL. Advances in mechanism and
regulation of PANoptosis: Prospects in disease treatment. Front Immunol. (2023)
14:1120034. doi: 10.3389/fimmu.2023.1120034

10. Wu Q, Qi S, Kang Z, Bai X, Li Z, Cheng J, et al. PANoptosis in sepsis: A central
role and emerging therapeutic target. J Inflammation Res. (2025) 18:6245–61.
doi: 10.2147/jir.S513367

11. Liu K, Wang M, Li D, Duc Duong NT, Liu Y, Ma J, et al. PANoptosis in
autoimmune diseases interplay between apoptosis, necrosis, and pyroptosis. Front
Immunol. (2024) 15:1502855. doi: 10.3389/fimmu.2024.1502855

12. Gong W, Liu Z, Wang Y, Huang W, Yang K, Gao Z, et al. Reprogramming of
Treg cell-derived small extracellular vesicles effectively prevents intestinal
inflammation from PANoptosis by blocking mitochondrial oxidative stress. Trends
Biotechnol. (2025) 43:893–917. doi: 10.1016/j.tibtech.2024.11.017

13. Chen S, Jiang J, Li T, Huang L. PANoptosis: mechanism and role in pulmonary
diseases. Int J Mol Sci. (2023) 24:5343. doi: 10.3390/ijms242015343

14. Zhang A, Zhang C, Zhang Y, Hu T, Cheng R. PANoptosis is a compound death
in periodontitis: A systematic review of ex vivo and in vivo studies. Oral Dis. (2024)
30:1828–42. doi: 10.1111/odi.14726

15. Pan S, Li Y, He H, Cheng S, Li J, Pathak JL. Identification of ferroptosis,
necroptosis, and pyroptosis-associated genes in periodontitis-affected human
periodontal tissue using integrated bioinformatic analysis. Front Pharmacol. (2022)
13:1098851. doi: 10.3389/fphar.2022.1098851

16. Yue Y, Chan W, Zhang J, Liu J, Wang M, Hao L, et al. Activation of receptor-
interacting protein 3-mediated necroptosis accelerates periodontitis in mice. Oral Dis.
(2024) 30:2485–96. doi: 10.1111/odi.14693

17. Jiang W, Deng Z, Dai X, ZhaoW. PANoptosis: A new insight into oral infectious
diseases. Front Immunol. (2021) 12:789610. doi: 10.3389/fimmu.2021.789610

18. Wielento A, Lagosz-Cwik KB, Potempa J, Grabiec AM. The role of gingival
fibroblasts in the pathogenesis of periodontitis. J Dent Res. (2023) 102:489–96.
doi: 10.1177/00220345231151921

19. Oka S, Li X, Sato F, Zhang F, Tewari N, Kim IS, et al. A deficiency of Dec2
triggers periodontal inflammation and pyroptosis. J Periodontal Res. (2021) 56:492–
500. doi: 10.1111/jre.12849

20. Zhang K, Chen X, Zhou R, Chen Z, Wu B, Qiu W, et al. Inhibition of gingival
fibroblast necroptosis mediated by RIPK3/MLKL attenuates periodontitis. J Clin
Periodontol. (2023) 50:1264–79. doi: 10.1111/jcpe.13841

21. Zhang Y, Guo Y, Wei W, Zhang Z, Xu X. Metabolomics profiling reveals
berberine-inhibited inflammatory response in human gingival fibroblasts by regulating
the LPS-induced apoptosis signaling pathway. Front Pharmacol. (2022) 13:940224.
doi: 10.3389/fphar.2022.940224

22. Jin S, Guerrero-Juarez CF, Zhang L, Chang I, Ramos R, Kuan CH, et al. Inference
and analysis of cell-cell communication using CellChat. Nat Commun. (2021) 12:1088.
doi: 10.1038/s41467-021-21246-9

23. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:559. doi: 10.1186/1471-2105-9-559

24. Wu E., Yin X., Liang F., Zhou X., Hu J., Yuan W., et al. Analysis of immunogenic
cell death in periodontitis based on scRNA-seq and bulk RNA-seq data. Front
Immunol. (2024) 15:1438998. doi: 10.3389/fimmu.2024.1438998

25. Wu E, Gu F, Zhuo Q, Gao Z, Zhang Y, Li J, et al. Exploration the role of pro-
inflammatory fibroblasts and related markers in periodontitis: combing with scRNA-
Frontiers in Immunology 20
seq and bulk-seq data. Front Immunol. (2025) 16:1537046. doi: 10.3389/
fimmu.2025.1537046

26. Hajishengallis G. Periodontitis: from microbial immune subversion to systemic
inflammation. Nat Rev Immunol. (2015) 15:30–44. doi: 10.1038/nri3785

27. Wang PL, Shirasu S, Shinohara M, Daito M, Oido M, Kowashi Y, et al. Induction
of apoptosis in human gingival fibroblasts by a Porphyromonas gingivalis protease
preparation. Arch Oral Biol. (1999) 44:337–42. doi: 10.1016/s0003-9969(99)00002-3

28. Xiang X, Zhang J, Yue Y. Pyroptosis: A major trigger of excessive immune
response in the gingiva. Oral Dis. (2024) 30:4152–60. doi: 10.1111/odi.15013

29. Karki R, Sharma BR, Tuladhar S, Williams EP, Zalduondo L, Samir P, et al.
Synergism of TNF-a and IFN-g Triggers inflammatory cell death, tissue damage, and
mortality in SARS-CoV-2 infection and cytokine shock syndromes. Cell. (2021)
184:149–168.e17. doi: 10.1016/j.cell.2020.11.025

30. Pandian N, Kanneganti TD. PANoptosis: A unique innate immune
inflammatory cell death modality. J Immunol. (2022) 209:1625–33. doi: 10.4049/
jimmunol.2200508

31. Malireddi RKS, Karki R, Sundaram B, Kancharana B, Lee S, Samir P, et al.
Inflammatory cell death, PANoptosis, mediated by cytokines in diverse cancer lineages
inhibits tumor growth. Immunohorizons. (2021) 5:568–80. doi: 10.4049/
immunohorizons.2100059

32. Zhou J, Windsor LJ. Porphyromonas gingivalis affects host collagen degradation
by affecting expression, activation, and inhibition of matrix metalloproteinases. J
Periodontal Res. (2006) 41:47–54. doi: 10.1111/j.1600-0765.2005.00835.x

33. Kim SH, Jung IR, Hwang SS. Emerging role of anti-proliferative protein BTG1
and BTG2. BMB Rep. (2022) 55:380–8. doi: 10.5483/BMBRep.2022.55.8.092
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