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Objective: Idiopathic membranous nephropathy (IMN) is a leading cause of
nephrotic syndrome in middle-aged and elderly populations. Early intervention
can delay disease progression and improve patient outcomes. This study aims to
identify urinary biomarkers for IMN and investigate their association with disease
progression, offering new insights for precise diagnosis and treatment.
Methods: This study began with RNA sequencing of three urine sample types
(first-void morning urine, second-void morning urine, and random urine),
combined with single-cell RNA sequencing of renal tissues. Bioinformatics
analyses—including differential gene expression screening, machine learning,
and molecular function annotation—were employed to identify potential IMN
biomarkers. Furthermore, we established both a siRNA-mediated gene silencing
model and a lentivirus transfection-mediated gene overexpression model in HK-
2 cells. Subsequently, we investigated the functional mechanisms of the
candidate biomarkers through qRT-PCR, Western blot, immunohistochemistry,
and immunofluorescence assays.

Results: SPP1 was identified as a promising biomarker for IMN, demonstrating a
critical role in promoting fibrosis and inflammatory responses associated with the
disease. These findings suggest its potential as a novel therapeutic target for
IMN intervention.
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1 Introduction

Idiopathic Membranous Nephropathy (IMN) accounts for
approximately 30% of adult nephrotic syndrome cases (1), with
nearly 40% of patients progressing to end-stage renal disease (2, 3).
Early detection and timely intervention can significantly improve
outcomes while reducing the socioeconomic burden. Pathologically,
IMN is characterized by immune complex deposition, complement-
mediated proteinuria, and progressive renal impairment (4). Current
clinical staging relies on histopathological features including the degree
of glomerular basement membrane thickening, presence of spike
formations, and immunoglobulin deposition patterns (5). These
pathological classifications facilitate disease progression monitoring
and prognosis prediction. The disease pathogenesis involves
inflammatory cell infiltration and subsequent release of vasoactive
mediators, leading to vascular hyperpermeability, leukocyte
recruitment, and other inflammatory injuries (6). These processes
represent critical pathological hallmarks that drive IMN progression
to chronic kidney disease. Ultimately, renal fibrosis progression and
sustained immune activation form the core pathological mechanisms in
IMN development, suggesting that modulation of inflammatory
responses may serve as a promising therapeutic strategy.

Genetic alterations are closely associated with disease
pathogenesis. Accumulating evidence indicates that differentially
expressed genes may serve as both reliable disease biomarkers and
promising therapeutic targets (7). In recent years, RNA sequencing
(RNA-seq), particularly single-cell RNA sequencing (scRNA-seq),
has revolutionized our understanding of cellular heterogeneity and
intercellular communication networks owing to its unparalleled
capacity for comprehensive and precise gene expression profiling
(8). This cutting-edge technology has substantially advanced
research in renal pathophysiology, facilitating the identification of
diagnostic biomarkers and discovery of novel therapeutic targets.

Urine contains various exfoliated renal cells with significant
research value. Studies have demonstrated that urine from both
healthy and diseased kidneys contains sufficient exfoliated proximal
tubular cells (PTCs) that can reflect renal functional changes (9).
Different urine sampling methods offer distinct advantages: first-
void morning urine is the most clinically practical due to its
convenience (10), while second-void morning urine-collected
after initial bladder emptying-shows increased proportions of
exfoliated renal cells with reduced contamination from urethral
epithelial cells, thereby providing more accurate pathological
information (11). Although random urine sampling offers
convenience and temporal flexibility, its clinical application
remains limited due to potential variability. To address these
limitations, our study integrated RNA-seq data from all three
urine sample types to identify consistently and highly expressed
genes across different sampling conditions, aiming to discover more
reliable urinary biomarkers. Notably, secreted phosphoprotein 1
(SPP1) emerged as a particularly promising candidate owing to its
exceptional diagnostic performance.

SPPI, also known as Osteopontin, is encoded on chromosome 4
and expressed in bone tissue, renal tissue, and other tissues (12). Early
studies considered SPP1 a calcium-binding protein involved in bone
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formation, playing a critical role in regulating bone mineralization (13).
With in-depth research on SPP1, it has been found to participate in
numerous biological processes such as inflammation and fibrosis, and to
have the potential as a biomarker (14). In the brain, SPP1 can activate
microglia to facilitate synaptic phagocytosis (15); in lung tissue, SPP1
promotes M2 macrophage polarization through the Jak2/Stat3 signaling
pathway, accelerating the progression of idiopathic pulmonary fibrosis
(16); in renal tissue, SPP1 acts as a “driver” of renal fibrosis and
inflammatory progression (17, 18). Given these pleiotropic effects,
elucidating SPP1’s mechanistic roles is essential for developing
therapeutic strategies against kidney disease progression.

In this study, through RNA sequencing of urinary exfoliated
cells from three sampling methods, we identified SPP1 as an
exceptional biomarker for disease progression. Its expression
levels showed a significant positive correlation with pathological
severity in IMN patients. Histological and in vitro cellular
experiments further demonstrated that SPP1 regulates the
expression of inflammatory and fibrotic factors. These findings
suggest that SPP1 not only serves as a potential diagnostic
biomarker for IMN, but may also represent a novel therapeutic
target for disease intervention.

2 Research methods and materials

2.1 Collection of samples and clinical
information

PLA2R (M-type phospholipase A2 receptor) is a key
autoantigen in the pathogenesis of IMN, and anti-PLA2R
antibodies can be detected in the serum of approximately 70%-
80% of IMN patients (19). Additionally, PLA2R serves as a specific
diagnostic biomarker for IMN, which helps distinguish idiopathic
membranous nephropathy from secondary membranous
nephropathy (20).

In this study, the diagnostic criteria for membranous
nephropathy were based on renal biopsy pathological results and
the detection status of anti-PLA2R antibodies. Only patients who
underwent renal biopsy for the first time and were pathologically
diagnosed with IMN were included. All urine samples were
collected before the patients underwent renal biopsy to avoid
interference of the biopsy procedure on sample quality.

A total of 17 PLA2R antibody-positive IMN patients were
enrolled in the study, with 47 urine samples collected
cumulatively; meanwhile, 17 healthy volunteers were included as
controls, with 51 urine samples collected cumulatively, which is
consistent with the sequencing samples used in our previous study
(DOL: 10.3389/fmed.2025.1574852).

The exclusion criteria were set as follows (1): Patients diagnosed
with other types of kidney diseases (excluding IMN); (2) Patients
with anuria or those requiring long-term dialysis (hemodialysis/
peritoneal dialysis) treatment; (3) Patients with severe systemic
diseases or major organ dysfunction, including but not limited to: 1.
Severe cardiovascular diseases (e.g., heart failure with New York
Heart Association [NYHA] Class III-IV, new-onset myocardial
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infarction within the past 6 months); 2. Severe liver diseases (e.g.,
liver cirrhosis with Child-Pugh Class B or higher, clinically
confirmed active hepatitis); 3. Severe respiratory diseases (e.g.,
acute exacerbation of chronic obstructive pulmonary disease,
respiratory failure requiring mechanical ventilation support); (4)
Individuals with poor medical compliance who were unable to
cooperate with sample collection and provide relevant information;
(5) Individuals who refused to sign the informed consent form due
to personal reasons.

The study protocol received ethical approval from the Second
Affiliated Hospital of Guangxi Medical University (Approval No.
2023KY-0715) and was conducted in compliance with the
Declaration of Helsinki, with written informed consent obtained
from all participants or guardians.

For sample collection, patients provided first-void morning
urine immediately upon waking, followed by second-void
morning urine within 2 hours, and random urine samples
between 12:00 and 20:00. All samples were immediately processed
through centrifugation at 490xg for 10 minutes at 4 °C, with
supernatants stored in 1.5 mL EP tubes (Axygen, USA) and cell
pellets washed twice with chilled DPBS (Wisent, Canada) using
centrifugation at 2,000 rpm for 5 minutes at 4 °C before final storage
at -80 °C freezer. Clinical data were obtained from medical records
and health examination reports at the Second Affiliated Hospital of
Guangxi Medical University, with detailed parameters provided in
Supplementary Table 1.

2.2 RNA sequencing of urinary exfoliated
cells and primary analysis of raw
sequencing data

Urinary cell pellets were retrieved from the -80 °C freezer, and bulk
RNA sequencing was performed using the AccuraCode® HTP One-
Step RNA Sequencing Kit (Singleron Biotechnologies Co., Ltd., China).
The specific steps were as follows: cell lysis and mRNA capture, ONE
Step amplification to obtain cDNA, cDNA product purification, quality
inspection of purified cDNA products, cDNA product fragmentation
reaction, adapter ligation to fragmented products, purification of
adapter-ligated products, PCR enrichment of purified products,
transcriptome library sorting, transcriptome library quality inspection,
and library sequencing.

After library preparation, stringent quality control (QC) was
conducted, which included assessments of total library yield (>30
ng), fragment size distribution (main peak: 300-600 bp), large
fragment contamination (fragments of 900-5000 bp accounting
for <20%), and small fragment residues (fragments of <300 bp
accounting for <20%). Qualified libraries were subjected to paired-
end sequencing on the Illumina NovaSeq platform.

Raw reads were processed with Celescope (v2.0.7) using default
parameters to generate gene expression profiles. Briefly, barcodes
and unique molecular identifiers (UMIs) were extracted from R1
reads and subjected to error correction. Adapter sequences and
poly-A tails were trimmed from R2 reads using cutadapt (v3.7). The
trimmed R2 reads were then aligned to the Homo sapiens
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GRCh38.99 reference genome using STAR (v2.7.11a). Uniquely
mapped reads were assigned to genes using featureCounts (v2.0.1).
Finally, successfully assigned reads sharing identical barcodes,
UMIs, and gene annotations were aggregated to generate the gene
expression matrix for downstream analysis.

2.3 Integration of RNA-seq datasets and
differential gene expression analysis

The bioinformatics analysis of RNA-seq data was performed
using R (version 4.3.1; https://www.r-project.org/). Batch effects
between samples were corrected using the sva package. Differential
expression analysis between IMN patients and healthy volunteers
across three urine sample types was conducted using edgeR with
thresholds of |logFC| > 1 and p < 0.05. We then performed cross-
analysis of differentially expressed genes (DEGs) from the three
urine sample types, focusing on consistently dysregulated genes
across all samples. The integrated DEGs were visualized using the
ggplot2 package for volcano plots and the VennDiagram package
for Venn diagrams.

2.4 Functional enrichment analysis of DEGs
and protein-protein interaction network
construction

Functional enrichment analysis was performed using the
clusterProfiler package, which conducted Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses on the DEGs. The results were
visualized using the ggplot2 package, while functional
characterization of DEGs was further analyzed through gene set
enrichment analysis (GSEA) implemented in the GSVA package.
Protein-protein interaction (PPI) networks were constructed using
the STRING database (https://string-db.org/). The commonly
upregulated DEGs across all three urine sample types were
subsequently visualized using Cytoscape software (version 3.8.2).

2.5 Machine learning-based identification
of key biomarkers and evaluation of
diagnostic performance

Three machine learning approaches - Random Forest, LASSO
(Least Absolute Shrinkage and Selection Operator), and Support
Vector Machine (SVM) - were employed to screen the consistently
upregulated DEGs across all three urine sample types. The
identified key biomarkers were subsequently used to construct a
nomogram with the rms package, utilizing the “nomogram”,
“validate”, and “calibrate” functions. To evaluate the diagnostic
performance, receiver operating characteristic (ROC) curves were
generated with the plotROC package, and the area under the curve
(AUC) was calculated to assess the predictive power and validate
the efficacy of these key biomarkers.
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2.6 Functional exploration, regulatory
mechanisms, and therapeutic targets of
DEGs

We employed the TRRUST database to identify potential
transcription factor targets of DEGs. Correlation analyses among
DEGs were performed using the ggcorrplot and PerformanceAnalytics
packages. The ssGSEA method was implemented to estimate infiltration
levels of 22 immune cell types. Immune infiltration analysis and
correlation analysis between DEGs and immune cell infiltration were
conducted using the TIMER database, in conjunction with the
geom_segment, geom_point, pheatmap, and ggplot2 packages.

Potential miRNA-mRNA interactions were predicted using the
miRbase and TargetScan databases, while miRNA-IncRNA and
IncRNA-mRNA interactions were explored through the starBase
database. These predictions were integrated to construct a
comprehensive regulatory network, which was subsequently
visualized using the igraph and visNetwork packages.

For drug prediction, we utilized the DGIdb (Drug Gene
Interaction Database) and CMap (Connectivity Map) databases
combined with the enrichDGN function from the DOSE package.
Results were visualized via barplot and dotplot. Web scraping was
performed using the rvest package to retrieve relevant data. A drug-
gene interaction network was constructed and analyzed using
functions from the igraph package, enabling identification of
potential drugs targeting the key genes.

2.7 Construction of renal tissue single-cell
atlas and cellular clustering

All data analyses were performed using R (version 4.3.1; https://
www.r-project.org/). Dataset integration and batch effect correction
were conducted using the harmony package. Quality control was
implemented via the Seurat package, which involved excluding cells
expressing fewer than 500 genes, more than 7,000 genes, or
containing mitochondrial genes accounting for >20% of total
transcript counts. A total of 45,315 quality-filtered cells were
retained for downstream analyses. Cellular clustering was
performed using the FindClusters function at a resolution of 0.8,
with cell identities annotated based on the top 5 marker genes.
Dimensionality reduction was achieved through the RunTSNE
function, and results were visualized using the ggplot2 package.

2.8 Visualization of differential gene
expression patterns through density plots,
bubble plots, and violin plots

We performed differential gene visualization using the ggplot2
package to generate density plots and bubble plots. The single-cell
transcriptomic data from IMN patients were stratified into two
disease progression groups (Stage II vs. Stages III/IV) according to
pathological grading criteria. SPP1 expression levels across different
pathological stages were statistically compared and visualized
through violin plots created with ggplot2.
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2.9 Identification of cellular population
regulators

The gene regulatory network analysis was performed using
pySCENIC following its three-step analytical pipeline. First, we
inferred transcription factor (TF)-target gene co-expression
modules through the GRNBoost2 algorithm, executing the pyscenic
grn command to generate an adjacency matrix (sce.adj.csv) from the
expression data (sceloom) and human TF database. Second, we
conducted TF-motif enrichment analysis using pyscenic ctx to
identify direct target genes, resulting in regulons (sce.regulons.csv)
where each regulon represents a TF and its directly regulated targets.
The human genomic regulatory regions (hg38) were defined as +10kb
flanking transcription start sites. Finally, we scored regulon activity in
individual cells via pyscenic aucell, which quantifies the enrichment
of regulon genes in each cell’s expression profile.

2.10 Cell-cell interaction analysis

We performed cell-cell interaction analysis using the
CellPhoneDB package in Python (version 3.13.2; https://
www.python.org/), with particular focus on the interactions
between SPP1-high PTCs and other cell populations that are
mediated by inflammatory factors and chemokines.

2.11 Cell transfection

The SPP1 and NR2F1 silenced HK-2 cell lines were established
via transfection with small interfering RNAs (siRNAs, Hycyte,
China). HK-2 cells (TCH-C400, Hycyte, China) were transfected
with siRNA, corresponding negative control (NC), and fluorescent
control (FAM-NC) using Lipofectamine 2000 (Thermo Fisher
Scientific, USA) according to the manufacturer’s (Hycyte, China)
protocol. The optimized transfection conditions determined
through preliminary experiments were: (1) cell confluence of 30-
40%; (2) siRNA concentration of 30 nM; and (3) transfection
duration of 32 hours.

The overexpression of the SPP1 gene in HK-2 cells was achieved
via lentiviral infection (GenePharma, China), following the
manufacturer’s instructions. The general procedure was as
follows: When the density of the seeded cells reached 30%-40%,
the experimental group (OE-SPP1) was supplemented with
medium containing SPP1-overexpressing recombinant lentivirus
and transfection-enhancing solution, while the control group
(NC) was supplemented with medium containing empty vector
lentivirus and transfection-enhancing solution. Twenty-four hours
after infection, the medium was replaced with complete medium,
and the cells were placed in a 37°C incubator for continued
infection. After 72 hours of infection, the cells were cultured
continuously in medium containing purinomycin for 7 days,
thereby obtaining SPP1-overexpressing stable cell lines.

Transfection efficiency was validated by quantitative Real-Time
PCR (qRT-PCR) and Western blot (WB) analyses.
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2.12 RNA extraction, reverse transcription,
and quantitative real-time PCR analysis

Total RNA was extracted from cells/tissues using the FastPure®
Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, China), followed by
cDNA synthesis with PrimeScriptTM RT Master Mix (Takara, Japan)
and subsequent gQRT-PCR amplification using FastStart Essential DNA
Green Master (Roche, Switzerland) according to manufacturers’
protocols, with B-actin as the endogenous control. Gene expression
levels were quantified via the 274" method and statistically analyzed
using GraphPad Prism 9.0, with data presented as mean + SD and
significance thresholds set at *P < 0.05, **P < 0.0, **P < 0.001, and
P < 0.0001 using unpaired t-tests for two-group comparisons or
one-way ANOVA for multi-group analyses. The study evaluated key
inflammatory markers—tumor necrosis factor-o. (TNF-o), interleukin-
1B (IL-1B), and interleukin-6 (IL-6)—along with fibrotic markers
including transforming growth factor-B1 (TGF-B1), collagen type I
(Col 1), vimentin (Vim), and fibronectin (FN) [19]. All primer
sequences are detailed in Supplementary Table 2 (GenSys
Biotechnology, China).

2.13 Western blot analysis

The processed cells were washed twice with PBS (Solarbio, China)
and lysed in RIPA buffer (Solarbio, China) containing 1% Protease and
Phosphatase Inhibitor Cocktail (NCM Biotech, China) using ultrasonic
cell disruption, followed by incubation on ice for 30 min and
centrifugation at 10,000 rpm for 10 min to collect the protein
supernatant. Protein concentration was determined by BCA assay
(Beyotime, China). After quantification, loading buffer (Epizyme,
China) was added at a 1:4 ratio, and samples were denatured at 100 °
C for 10 min using a metal bath. Electrophoresis and transfer were
performed using the Mini-PROTEAN Tetra system (Bio-Rad, USA)
with the following parameters: 20V for 10 min, 80V for 20 min, and
120V for 60 min. Transfer conditions were optimized based on
molecular weight: 400 mA for 30 min for proteins <100 kDa, and
220 mA for 90 min for Fibronectin. Membranes were blocked with
blocking buffer (NCM Biotech, China) for 40 min, washed three times
with TBST (Solarbio, China) (10 min per wash), and incubated with
primary antibodies at 4°C overnight. After three additional TBST
washes, membranes were incubated with HRP-conjugated secondary
antibodies at room temperature for 1 h, washed again, and developed
using ECL Ultra-sensitive substrate (Biosharp, China). Protein bands
were visualized using a gel imaging system and quantified with ImageJ
software. Detailed antibody information is provided in
Supplementary Table 3.

2.14 Immunohistochemical and multiplex
immunofluorescence assays

Renal tissue sections from IMN patients and controls were
obtained from the Second Affiliated Hospital of Guangxi Medical
University with donor/relative consent and ethical approval
(2023KY-0715).
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Immunohistochemistry was performed using a universal
immunohistochemical kit (Proteintech, China) following the
manufacturer’s protocol (antibody details in Supplementary
Table 4). For multiplex immunofluorescence: Dewaxed tissue
sections underwent antigen retrieval (EDTA solution, Solarbio,
China) and BSA blocking (Sigma, USA). They were then
sequentially incubated with primary antibodies (4°C, overnight)
and fluorescent secondary antibodies (37°C, dark). For the second
protein’s primary/secondary antibodies, incubation started at the
BSA blocking step (all subsequent steps dark). Nuclei were stained
with DAPI (Servicebio, China), sections mounted with anti-
fluorescence quenching medium (Servicebio, China), and imaged
via confocal microscope (antibody details in Supplementary Table 5).

3 Results

3.1 Identification of DEGs

We performed comparative analysis of three urine samples from 17
IMN patients and 17 healthy volunteers, integrating DEGs consistently
identified across all three sample types with particular focus on genes
showing elevated expression in all samples. Volcano plots and Venn
diagrams of DEGs revealed 111 stably upregulated genes across different
collection times (Figures 1A, B), demonstrating their robustness to
sampling variability. KEGG, GO, and GSEA analyses indicated these
DEGs were significantly enriched in inflammatory pathways (NF-kB,
TNF, chemokine signaling, and Toll-like receptor pathways) and
fibrotic processes (e.g., extracellular matrix receptor interactions)
(Figures 1C-F). PPI network analysis of the 111 DEGs identified VIM
as a central node interacting with multiple DEGs (Supplementary
Figures 1A, B), further confirming the strong association between
urinary cell DEGs and fibrotic mechanisms.

3.2 Identification of key factors including
SPP1

We screened the 111 DEGs using three machine learning
approaches—Random Forest, LASSO, and SVM (Figures 2A-F)—
and identified overlapping key factors through Venn diagram
analysis (Figure 2G). This integrated approach yielded seven
pivotal biomarkers: GAREM2, SPP1, HBD, PIGN, SYNEI],
CCDC88A, and RUNXIT1 (Figure 2G). ROC curve analysis
demonstrated the diagnostic performance of these seven key
factors across all three urine samples, revealing that SPP1
consistently exhibited superior diagnostic efficacy (Figures 2H-]).

3.3 Exploration of regulatory networks and
diagnostic performance of key biomarkers

To investigate the functional roles of the seven key biomarkers,
we analyzed their protein interaction networks, which revealed
significant associations with developmental and inflammatory
response proteins (Figure 3A). Using the TRRUST database, we
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FIGURE 1

DEGs' expression and functional enrichment analysis of urinary exfoliated cells from IMN patients versus healthy volunteers across three sample
types. (A) Volcano plot displaying integrated DEGs from all three urine samples. (B) Venn diagram illustrating overlapping DEGs among sample types.
(C) KEGG pathway analysis demonstrating significant associations of DEGs with inflammatory and fibrotic responses. (D) GO analysis categorizing
DEGs into biological processes (BP), cellular components (CC), and molecular functions (MF). (E, F) GSEA of downregulated and upregulated gene

sets, respectively.

identified NR3C1, POU2F1, CEBPA, POU2F2, ERG, POUS5F1,
FOXD3, SP1, HDACI, TFCP2, HTATIP2, and ING4 as key
transcription factors regulating SPP1, while RUNX1T1 and ELF4
were found to regulate IL-3 and HBD, respectively (Figure 3B). We
constructed a nomogram model incorporating all seven biomarkers
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(PIGN, SPP1, GAREM2, SYNE1, RUNXI1TI1, HBD, and
CCDCB88A) that demonstrated strong diagnostic performance
(AUC = 0.923, Figure 3C) and reliable risk prediction across a
0.1-0.99 probability range (Figure 3D). The model showed excellent
calibration (Figure 3E) and provided superior net clinical benefit
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FIGURE 2

Screening of key biomarkers. (A, B) Feature importance identification using Random Forest algorithm. (C, D) Coefficient trajectory plot and cross-
validation curve from LASSO logistic regression analysis. (E, F) Prediction accuracy and error variation curves for each gene in SVM algorithm.

(G) Venn diagram displaying overlapping diagnostic biomarkers identified by all three algorithms. (H-J) ROC curves demonstrating diagnostic
efficacy of the seven key biomarkers in first-void morning urine, second-void morning urine, and random urine samples, respectively, where higher
AUC values indicate stronger correlations and better diagnostic performance.

compared to single-marker approaches at threshold probabilities of
0.1-0.8 (Figure 3F). All seven biomarkers exhibited significantly
higher expression levels in IMN patients than in controls when
detected in second-void urine samples (Figure 3G), which lays a
foundation for investigating the association between these
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biomarkers and IMN. Meanwhile, correlation analysis
demonstrated positive correlations between SPP1 and GAREM2,
SPP1 and HBD. In addition, PIGN was found to have negative
correlations with SPP1, GAREM2, and HBD; SPP1 also showed a
negative correlation with SYNE1 (Figure 3H).
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3.4 Investigation of immune infiltration and

immune cell correlations for key

biomarkers

Immune infiltration analysis was performed using RNA-seq data
from second-void morning urine samples. Comparative assessment

10.3389/fimmu.2025.1671891

between IMN patients and healthy controls revealed significantly
higher proportions of macrophage subsets in IMN (Figures 4A, B).
Heatmap analysis demonstrated significant positive correlations
between plasma cells and dendritic cells resting, naive B cells and
dendritic cells resting, as well as activated dendritic cells and resting
mast cells, while negative correlations were observed between
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Transcriptional regulatory networks and diagnostic performance evaluation of key biomarkers. (A) PPl network of the seven key biomarkers.

(B) Transcriptional regulatory networks of SPP1, RUNX1T1, and HBD identified through TRRUST database analysis. (C) ROC curve of the nomogram
model, where higher AUC values indicate greater model reliability. (D) The nomogram visually demonstrates the association between key biomarkers
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regulatory T cells and resting mast cells, and M1 macrophages and
activated mast cells (Figure 4C). Lollipop plots illustrated distinct
immunocyte associations of the key biomarkers: GAREM2 showed
negative correlations with Y3 T cells, CD4" naive T cells, and M2
macrophages; SPP1 was inversely associated with M2 macrophages;
CCDC88A positively correlated with ¥0 T cells but negatively with
activated dendritic cells, CD8" T cells, resting dendritic cells, and
monocytes; RUNX1T1 exhibited positive correlation with activated NK
cells but negative association with resting NK cells (Figures 4D-]). No
significant correlations (P > 0.05) were found for the remaining
biomarkers. These findings suggest that urinary DEGs may
contribute to IMN pathogenesis by modulating the immune
microenvironment, particularly through suppressing M2 macrophage
infiltration and regulating T-cell subset homeostasis.

3.5 Regulatory factors and drug targets of
key biomarkers

The miRNA regulatory network revealed 11 miRNAs targeting
RUNXI1TI, 1 miRNA targeting SPP1, and 1 miRNA targeting PIGN
(Figure 5A). The IncRNA-ceRNA network analysis identified only
RUNXITI as being regulated by hsa-miR-1238-3p and hsa-miR-
15a-5p (Figure 5B). Drug prediction analysis identified compounds
with binding potential to key biomarkers: periodate-oxidized
adenosine, mefloquine, verteporfin, and 3-(1-methylpyrrolidin-2-
yl) pyridine showed binding capacity with two DEGs each
(Figures 5C, D). Notably, SPP1 demonstrated binding potential
with nearly all analyzed drugs, suggesting strong therapeutic
promise (Figure 5E). Mefloquine, an established clinical drug with
recently reported immunomodulatory properties (21), was further
investigated through molecular docking experiments. The results
confirmed stable binding conformations between mefloquine and
both SPP1/CCDCS88A proteins (Figures 5F, G), with binding
energies <-5 kcal/mol, indicating high affinity and potential as
therapeutic targets.

3.6 Construction of a single-cell atlas of
IMN renal tissue

Integrated analysis of scRNA-seq data from 9 IMN patients and
7 healthy controls (Figure 6A) after quality control (Supplementary
Figure 2) revealed 10 distinct cell clusters through principal
component analysis of variably expressed genes: proximal tubular
cells, epithelial cells, loop of Henle cells, principal cells, monocytes,
T cells, endothelial cells, fibroblasts, podocytes, and B cells
(Figures 6B, C). Cluster-specific marker genes were visualized by
heatmap, with color intensity reflecting relative expression levels
(Figure 6D). Density plots and bubble charts demonstrated cellular
expression patterns of 7 differentially expressed genes, where darker
hues indicated higher expression (Figures 6E, F). SPP1 showed
ubiquitous expression across all clusters with peak abundance in
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proximal tubular cells (Figure 6F), suggesting its potential
involvement in IMN pathogenesis. Stratification by pathological
stage (I vs. ITI/IV) demonstrated upregulated SPP1 expression with
broader distribution in advanced-stage samples (Figure 6G),
indicating a potential correlation between SPP1 expression levels
and disease progression, which may implicate SPP1 as a key
contributor to IMN advancement.

3.7 Exploration of the functions and key
regulatory factors of SPP1-high expressing
PTCs populations

We reclassified PTCs into 7 clusters and found that SPP1 was
highly expressed in cluster C3 (Figures 7A, B). Using Regulon
Specificity Score (RSS) analysis, we generated a heatmap of key
regulatory factors for this cluster, as shown in Figure 7C. HOXBS5,
NR2F1, PBX3, ERG, and STAT1 were identified as critical
transcription factors for cluster C3. Enrichment analysis of the top
3-6 DEGs in each subgroup was performed: the left line chart depicts
the expression patterns of DEGs, while the right panel shows GO
enrichment results using these DEGs, reflecting biological process
pathways and functional enrichment of DEGs in each cluster
(Figure 7D). Notably, cluster C3 (labeled as cluster C4 in the
figure) was associated with positive regulation of phospholipid
transport and steroid metabolism (Figure 7D). TSNE visualization
of transcription factor activity showed that NR2F1 and PBX3 had the
highest activity in cluster C3, indicating their dominant regulatory
role in this cluster (Figure 7E). Line charts suggested that PBX3,
DDIT3, and NR2F1 might exhibit more specific regulatory effects in
cluster C3 (Figure 7F). Intriguingly, NR2F1 belongs to the same
nuclear receptor superfamily as NR3Cl1 (Figure 3B), implying that
nuclear receptor superfamily members may serve as key regulators of
SPP1. The regulatory role of NR2F1 in SPP1 expression warrants
further investigation.

3.8 Cell-cell interactions in cluster C3

Through heatmap analysis and network visualization, we observed
significant interaction characteristics between different cell populations
(Figures 8A, B). Notably, the interaction network between cluster C3
and fibroblasts exhibited the densest connections and a significantly
higher signal communication intensity compared to other cell
populations, suggesting that their close interaction may play a critical
role in renal tissue fibrosis (Figure 8A). Given SPP1’s potential
association with inflammatory responses in IMN, we focused on
three key cytokine families—the interferon (IFN) family, chemokine
CC subfamily (CCL), and tumor necrosis factor (TNF) family—to
systematically explore their intercellular networks. Cluster C3 signals to
other cell populations by secreting type II interferon (IFN-y) and
binding to its receptor (IFNGR) (Figure 8C). Furthermore, cluster C3
connects with mononuclear macrophages via CCL members, potentially
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FIGURE 4
Immune infiltration and immune cell correlation analysis of key factors. (A, B) Immune cell infiltration between IMN and normal controls.
(C) Heatmap of correlations between immune cells. (D-J) Lollipop plots showing correlations between hub genes and immune cells.

regulating their migration and activation (Figure 8D). Additionally, the
TNF family mediates interactions between cluster C3 and other cells
through TNF-TNFR signaling, dynamically regulating the immune
microenvironment (Figure 8E). These findings highlight cluster C3’s
central role in intercellular communication and its multidimensional

3.9 Immunohistochemistry and renal tissue
qRT-PCR validation of SPP1 expression in
IMN

Immunohistochemical analysis revealed that SPP1 expression

regulatory mechanisms. was highest in stage ITI IMN renal tissues, followed by stage II, while
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Regulatory factors and drug targets of key biomarkers: (A) miRNA regulatory network of key biomarkers; (B) IncRNA and ceRNA regulatory network
of key biomarkers; (C, D) Box plot and bubble plot showing predicted drug binding sites; (E) Network diagram illustrating specific drug-biomarker
interactions, where circular nodes represent key biomarkers and connecting lines indicate existing associations or interactions between drugs and
biomarkers. (F, G) Molecular docking analysis showing the binding sites of CCDC88A and SPP1 with mefloquine.

the control group showed the lowest expression level (Figures 9A-
C). Quantitative analysis of immunohistochemistry confirmed that
these results were statistically significant (Figure 9D). Consistently,
qRT-PCR analysis of IMN renal tissues and adjacent normal renal

Frontiers in Immunology

11

tissues demonstrated that SPP1 expression positively correlated
with IMN pathological severity (Figure 9E). This finding aligns
closely with prior bioinformatics analyses, suggesting that SPP1
may be associated with IMN disease progression.
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FIGURE 7
Functional exploration and transcriptional regulatory factor analysis of SPP1-high expressing PTCs clusters: (A) PTCs were reclassified into 7 clusters
with a resolution of 0.1; (B) Violin plot showing high SPP1 expression in cluster C3; (C) Heatmap of transcription factors with high specificity for each
cluster, calculated by RSS; (D) Heatmap visualizing characteristic marker gene expression and corresponding GO enrichment analysis results;
(E) TSNE plot displaying transcription factor distribution, where each point represents a cell. The color intensity indicates the activity level of the
corresponding transcription regulator (darker color = higher activity), enabling observation of activity differences across cells; (F) Scatter line plot
with abscissa “Regulon” (different transcription regulators) and ordinate "Regulon specificity score” (reflecting regulator specificity—higher scores
indicate stronger unique activity in specific cell types/states).
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FIGURE 8

Cell-cell interaction networks: (A) Heatmap of intercellular interactions where deep red indicates stronger associations and blue denotes weaker
correlations; (B) Network diagram displaying interaction relationships between cell clusters (colored nodes represent distinct cell types, connecting
lines indicate significant interactions-greater line complexity reflects richer intercellular crosstalk); (C-E) Bubble plots demonstrating C3 cell cluster
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shaded bubbles indicate higher normalized values, red-circled solid dots denote statistical significance).
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FIGURE 9

Detection of SPP1 expression in renal tissues by immunohistochemistry and gRT-PCR: (A-C) Immunohistochemical staining of SPP1 in control, stage
Il IMN, and stage Ill IMN renal tissues, respectively. Darker coloration indicates higher SPP1 expression levels. (D) Quantitative immunohistochemical
analysis of the control, stage Il IMN, and stage Il IMN renal tissues. (E) gRT-PCR analysis of SPP1 expression in adjacent normal renal tissues, stage Il
IMN, and stage Il IMN renal tissues. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

3.10 Validation of SPP1 and NR2F1
knockdown efficiency and expression of
inflammatory and fibrotic factors

We performed siRNA transfection experiments in HK-2 cells, using
siRNA carrying scrambled sequences as the NC group. qRT-PCR results
demonstrated that SPP1-siRNA2 and NR2F1-siRNA3 exhibited the
optimal gene knockdown efficiency, while neither the transfection
reagent control (MOCK) or the FAM-NC showed significant effects
on SPP1/NR2F1 mRNA expression (Figures 10A, C). WB analysis
confirmed successful knockdown of SPP1 and NR2F1 at the protein
level (Figures 10B, D, E, F).

qRT-PCR analysis revealed significantly reduced SPP1
expression in the NR2F1 knockdown group (si-NR2F1),
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providing cellular-level evidence for NR2F1’s regulatory role on
SPP1 (Figure 10G). Furthermore, immunofluorescence results
demonstrated co-localization of NR2F1 and SPP1 in cells, offering
histological support for the hypothesis that NR2F1 may serve as a
regulatory factor for SPP1 (Figure 10H).

To further investigate the relationship between SPP1 and
inflammatory/fibrotic factors, we measured their expression levels
by qRT-PCR. Results showed that in the SPP1 knockdown group
(si-SPP1), expression of inflammatory factors (TNF-o, IL-1f) and
fibrotic markers (TGF-B1, Col 1, Vim, FN) was significantly
reduced (Figure 10I). In the si-NR2F1 group, expression of TNF-
o, TGF-B1, Col 1, Vim and FN also decreased, while IL-1f
expression remained unchanged (Figure 10I). Notably, although
the expression levels of these inflammatory and fibrotic factors in
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FIGURE 10

Interaction between SPP1 and NR2F1 and their regulatory mechanisms in inflammation and fibrosis: (A-F) Silencing efficiency of SPP1 and NR2F1 was
validated by qRT-PCR and WB; (G) Altered SPP1 expression levels in si-NR2F1 group; (H) Dual-color immunofluorescence revealing intracellular
spatial co-localization of SPP1 and NR2F1; (I) Expression profiles of inflammatory and fibrotic markers in si-SPP1 and si-NR2F1 group. (*P < 0.05,

**P < 0.01, ***P < 0.001, ****P < 0.0001)
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the si-NR2F1 group were lower than controls, they were
consistently higher than those in the si-SPP1 group.

3.11 Validation of inflammatory and fibrotic
markers at histological and protein levels

Given that TNF-o and FN are hallmark factors of inflammation
and fibrosis respectively, we selected these two markers to further
validate SPP1’s regulatory effects on their expression.
Immunohistochemical analysis revealed that both FN and TNF-o
exhibited the highest expression levels in stage IIT IMN renal tissues,
followed by stage II IMN, while control tissues showed minimal
expression (Figures 11A, B). And the quantitative analysis of
immunohistochemistry confirmed that these results were statistically
significant. This expression pattern closely mirrored SPP1’s distribution
in renal tissues. Immunofluorescence experiments further demonstrated
significant co-localization between SPP1 and TNF-q, as well as between
SPP1 and FN in tissues, providing histological evidence supporting
SPPI’s potential role as a regulatory factor for both TNF-o. and FN
(Figures 11C, D). WB analysis confirmed that SPP1 knockdown
reduced protein expression levels of both FN and TNF-o, offering
additional protein-level validation of SPP1’s regulatory function
(Figures 11E, F).

Furthermore, we successfully constructed an SPPI1-
overexpressing cell line (Figures 12A, C). Experimental results
showed that following SPP1 overexpression, the expression levels
of the inflammatory marker TNF-o and the fibrosis-related factor
FN were both significantly increased (Figures 12D-G). Collectively,
these findings demonstrate that SPP1 exerts a crucial regulatory role
in both inflammatory responses and fibrotic processes, while also
suggesting its potential as a promising therapeutic target for IMN.

4 Discussion

Renal biopsy remains the gold standard for diagnosing kidney
diseases, yet it only provides static pathological information and cannot
dynamically assess disease progression or prognosis (3, 22, 23).
Therefore, complementary diagnostic indicators are needed.
Microscopic analysis of urinary sediment cells represents one of the
oldest diagnostic tools in nephrology and the most common clinical
application of urinary exfoliated cells (24). Studies have revealed that
urinary exfoliated cells contain not only erythrocytes, microorganisms,
and immune cells but also various renal-origin cells, including tubular
epithelial cells (25), podocytes (26), and even undifferentiated renal
progenitor cells (27). This demonstrates the significant potential of
urinary exfoliated cells for both nephrology research and clinical
applications. In our study, we observed consistently high and stable
expression of SPP1 in urinary samples from IMN patients across
three collections.

Biomarkers, defined as objectively measurable indicators of
normal biological processes, pathological processes, or responses
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to therapeutic interventions, play crucial roles in disease diagnosis,
prognosis evaluation, treatment monitoring, and drug development
(28, 29). Emerging analytical approaches like network
pharmacology and molecular docking have enabled systematic
exploration of targeted drugs from molecular to pathway levels,
gaining wide application in drug discovery research (30, 31). Our
findings demonstrate that renal tubular SPP1 exhibits excellent
diagnostic performance in serial urinary analyses and possesses
multiple targetable binding sites, strongly supporting its potential as
a biomarker for IMN.

PTCs play a pivotal role in maintaining renal reabsorption,
secretion, and excretion functions, as well as water-electrolyte
homeostasis (32). Emerging evidence indicates that PTCs injury
can actively drive disease progression and even serve as a key
contributor to renal dysfunction (33). During inflammatory
responses, damaged PTCs release various inflammatory cytokines
(e.g., TNF-0,, IL-1P) and recruit immune cells through chemokine
expression (e.g., MCP-1), thereby exacerbating local inflammation
(34). Moreover, injured PTCs activate critical signaling pathways
like NF-kB, further promoting inflammatory cytokine release and
establishing a self-perpetuating inflammatory cycle (35). In fibrotic
processes, damaged PTCs may undergo epithelial-mesenchymal
transition into fibroblasts, facilitating excessive extracellular
matrix (ECM) deposition and ultimately leading to renal fibrosis
(36). Our scRNA-seq analysis of IMN renal tissues revealed
predominant SPP1 expression in PTCs, with expression levels
strongly correlating with IMN pathological severity. Notably,
SPP1* PTC populations occupied central positions in renal
cellular interaction networks and demonstrated close associations
with inflammatory/fibrotic responses.

Renal inflammation initially represents a physiological response
to injury (37). However, persistent inflammation underlies the
pathogenesis of numerous renal diseases, promoting fibrotic
processes that drive chronic nephritis progression, functional
decline, and eventual end-stage renal disease (38, 39). Conversely,
ECM remodeling during fibrosis reciprocally fuels inflammation by
facilitating immune cell migration and immunological synapse
formation (40). As an autoimmune disorder, IMN pathogenesis
fundamentally involves dysregulated immune responses (19), with
inflammation and fibrosis constituting two core pathological
processes driving disease progression (41). These interconnected
mechanisms form a vicious cycle that significantly contributes to
renal function loss (42, 43). Our findings demonstrate parallel
elevation of TNF-o. and FN expression with IMN progression,
highlighting the therapeutic imperative of targeting inflammation-
fibrosis crosstalk to mitigate disease advancement.

SPP1, a multifunctional glycosylated phosphoprotein, plays
significant roles in diverse physiological and pathological
processes (14, 44). It contains multiple functional domains that
mediate biological effects through binding to cell surface receptors.
Its expression and function are regulated by various factors,
including transcriptional activity, epigenetic modifications,
extracellular signals, and microenvironmental cues (45). In
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Immunohistochemistry, multicolor immunofluorescence, and construction of an SPP1-silenced cell line were performed to investigate the
relationships between SPP1 and both Fibronectin as well as TNF-a:: (A) Immunohistochemical expression profiles of Fibronectin in control, stage Il
IMN, and stage Ill IMN renal tissues; (B) Immunohistochemical expression patterns of TNF-a in control, stage Il IMN, and stage Il IMN renal tissues;
(C) Dual-color immunofluorescence co-localization analysis of SPP1 and Fibronectin, revealing their spatial distribution correlation; (D) Dual-color
immunofluorescence co-localization analysis of SPP1 and TNF-o, demonstrating their spatial association; (E) Effect of SPP1 silencing on Fibronectin
expression levels; (F) Effect of SPP1 silencing on TNF-a expression levels. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).

immune regulation, SPP1 participates in inflammatory responses by
modulating the activation and migration of immune cells (e.g.,
macrophages and T cells) (46). Renal fibrosis studies have identified
SPP1 as a key effector that promotes fibroblast-to-myofibroblast
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differentiation via the TGF-f/Smad signaling pathway (17, 47). Our
study demonstrated that SPP1 knockdown in IMN significantly
reduced the expression of TNF-a., IL-13, TGE-B1, Col 1, Vim, and
EN. And by constructing an SPPI1-overexpressing cell line, we

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1671891
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Pang et al. 10.3389/fimmu.2025.1671891
A B c
40~ * ok ok k 4- "
L
_l_ NC OE-SPP1
- c 3 ¥
g £ 1 spp1 [ L5 @ 70KDa
o ©
© [
@ 20 2 2
E o . A =
% . ?,', 1 B-actln ‘s 42KDa
- +
0 T T 0 T T
NC OE-SPP1 NC OE-SPP1
D E F G
* 25— * %k %k
1.5+ .
£ ‘ NC OE-SPPI £ 2.0 NC OE-SPP1
3 ) 5
3 . . .
z 10 Fibronectin [i # | 270KDa 3 15 TNF-a m 33KDa
£ oy
3 3 1.0 "
@ _ . L .
g B B-tubulin | s wmes | 55KDa 2 | B-tubulin | ¥ *==1 55K Da
] i A
s - - +
0.0- * .-
NC OE-SPP1 NC OE-SPP1
FIGURE 12

Overexpression of SPP1 to investigate the relationships between SPP1 and both Fibronectin as well as TNF-o: (A-C) Overexpression efficiency of
SPP1 was validated by qRT-PCR and WB; (D-E) WB assay showing the expression levels of TNF-a in the OE-SPP1 group; (F, G) WB assay showing
the expression levels of FN in the OE-SPP1 group. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001)

observed that the expression levels of TNF-o. and FN increased in
parallel with elevated SPP1 expression. Immunofluorescence
further revealed close spatial associations between SPP1 and both
TNF-0/FN at the tissue level, corroborating SPP1’s regulatory role
in inflammation and fibrosis.

Notably, the downregulation of inflammatory and fibrotic
factors was more moderate in the si-NR2F1 group compared to
the si-SPP1 group. We hypothesize that NR2F1 knockdown may
indirectly modulate these factors through SPP1 regulation. This
finding not only reinforces SPP1’s central regulatory position in
inflammation and fibrosis but also elucidates a potential molecular
mechanism whereby NR2F1 exerts indirect effects via SPPI1,
providing a theoretical foundation for targeting SPP1 to mitigate
fibrotic and inflammatory responses in IMN.

However, this study has several limitations. First, the urinary
exfoliated cell RNA-seq analysis included only 17 IMN patients and
17 healthy controls with triplicate urine samples—a relatively small
cohort that warrants expansion to validate SPP1’s reliability as an
IMN biomarker. Second, although histological and in vitro cellular
experiments confirmed SPP1’s regulatory effects, animal models are
needed to comprehensively characterize its functional roles in
inflammation and fibrosis. Finally, the precise molecular
pathways through which SPP1 regulates these processes remain
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unexplored. Further mechanistic studies are essential to solidify
SPPI’s potential as a therapeutic target.

5 Conclusions

The SPP1 factor in proximal tubular epithelial cells is closely
associated with IMN disease progression, serving as a key
biomarker and regulatory factor in both inflammatory and
fibrotic processes. Targeted inhibition of SPP1 expression
significantly reduces the levels of inflammation and fibrosis
related factors, thereby effectively mitigating disease progression.
These findings highlight SPP1 as a promising therapeutic target for
IMN, offering a potential novel strategy for clinical intervention.
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where samples starting with "PL04" represent healthy volunteers, and
the remaining samples represent those from IMN patients.
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