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Objective: Idiopathic membranous nephropathy (IMN) is a leading cause of

nephrotic syndrome in middle-aged and elderly populations. Early intervention

can delay disease progression and improve patient outcomes. This study aims to

identify urinary biomarkers for IMN and investigate their association with disease

progression, offering new insights for precise diagnosis and treatment.

Methods: This study began with RNA sequencing of three urine sample types

(first-void morning urine, second-void morning urine, and random urine),

combined with single-cell RNA sequencing of renal tissues. Bioinformatics

analyses—including differential gene expression screening, machine learning,

and molecular function annotation—were employed to identify potential IMN

biomarkers. Furthermore, we established both a siRNA-mediated gene silencing

model and a lentivirus transfection-mediated gene overexpression model in HK-

2 cells. Subsequently, we investigated the functional mechanisms of the

candidate biomarkers through qRT-PCR, Western blot, immunohistochemistry,

and immunofluorescence assays.

Results: SPP1 was identified as a promising biomarker for IMN, demonstrating a

critical role in promoting fibrosis and inflammatory responses associated with the

disease. These findings suggest its potential as a novel therapeutic target for

IMN intervention.
KEYWORDS
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frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671891/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671891/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671891/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671891/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1671891/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1671891&domain=pdf&date_stamp=2025-09-26
mailto:xuechao@stu.gxmu.edu.cn
mailto:yangrirong@sr.gxmu.edu.cn
mailto:liwei@stu.gxmu.edu.cn
https://doi.org/10.3389/fimmu.2025.1671891
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1671891
https://www.frontiersin.org/journals/immunology


Pang et al. 10.3389/fimmu.2025.1671891
1 Introduction

Idiopathic Membranous Nephropathy (IMN) accounts for

approximately 30% of adult nephrotic syndrome cases (1), with

nearly 40% of patients progressing to end-stage renal disease (2, 3).

Early detection and timely intervention can significantly improve

outcomes while reducing the socioeconomic burden. Pathologically,

IMN is characterized by immune complex deposition, complement-

mediated proteinuria, and progressive renal impairment (4). Current

clinical staging relies on histopathological features including the degree

of glomerular basement membrane thickening, presence of spike

formations, and immunoglobulin deposition patterns (5). These

pathological classifications facilitate disease progression monitoring

and prognosis prediction. The disease pathogenesis involves

inflammatory cell infiltration and subsequent release of vasoactive

mediators, leading to vascular hyperpermeability, leukocyte

recruitment, and other inflammatory injuries (6). These processes

represent critical pathological hallmarks that drive IMN progression

to chronic kidney disease. Ultimately, renal fibrosis progression and

sustained immune activation form the core pathological mechanisms in

IMN development, suggesting that modulation of inflammatory

responses may serve as a promising therapeutic strategy.

Genetic alterations are closely associated with disease

pathogenesis. Accumulating evidence indicates that differentially

expressed genes may serve as both reliable disease biomarkers and

promising therapeutic targets (7). In recent years, RNA sequencing

(RNA-seq), particularly single-cell RNA sequencing (scRNA-seq),

has revolutionized our understanding of cellular heterogeneity and

intercellular communication networks owing to its unparalleled

capacity for comprehensive and precise gene expression profiling

(8). This cutting-edge technology has substantially advanced

research in renal pathophysiology, facilitating the identification of

diagnostic biomarkers and discovery of novel therapeutic targets.

Urine contains various exfoliated renal cells with significant

research value. Studies have demonstrated that urine from both

healthy and diseased kidneys contains sufficient exfoliated proximal

tubular cells (PTCs) that can reflect renal functional changes (9).

Different urine sampling methods offer distinct advantages: first-

void morning urine is the most clinically practical due to its

convenience (10), while second-void morning urine-collected

after initial bladder emptying-shows increased proportions of

exfoliated renal cells with reduced contamination from urethral

epithelial cells, thereby providing more accurate pathological

information (11). Although random urine sampling offers

convenience and temporal flexibility, its clinical application

remains limited due to potential variability. To address these

limitations, our study integrated RNA-seq data from all three

urine sample types to identify consistently and highly expressed

genes across different sampling conditions, aiming to discover more

reliable urinary biomarkers. Notably, secreted phosphoprotein 1

(SPP1) emerged as a particularly promising candidate owing to its

exceptional diagnostic performance.

SPP1, also known as Osteopontin, is encoded on chromosome 4

and expressed in bone tissue, renal tissue, and other tissues (12). Early

studies considered SPP1 a calcium-binding protein involved in bone
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formation, playing a critical role in regulating bone mineralization (13).

With in-depth research on SPP1, it has been found to participate in

numerous biological processes such as inflammation and fibrosis, and to

have the potential as a biomarker (14). In the brain, SPP1 can activate

microglia to facilitate synaptic phagocytosis (15); in lung tissue, SPP1

promotes M2macrophage polarization through the Jak2/Stat3 signaling

pathway, accelerating the progression of idiopathic pulmonary fibrosis

(16); in renal tissue, SPP1 acts as a “driver” of renal fibrosis and

inflammatory progression (17, 18). Given these pleiotropic effects,

elucidating SPP1’s mechanistic roles is essential for developing

therapeutic strategies against kidney disease progression.

In this study, through RNA sequencing of urinary exfoliated

cells from three sampling methods, we identified SPP1 as an

exceptional biomarker for disease progression. Its expression

levels showed a significant positive correlation with pathological

severity in IMN patients. Histological and in vitro cellular

experiments further demonstrated that SPP1 regulates the

expression of inflammatory and fibrotic factors. These findings

suggest that SPP1 not only serves as a potential diagnostic

biomarker for IMN, but may also represent a novel therapeutic

target for disease intervention.
2 Research methods and materials

2.1 Collection of samples and clinical
information

PLA2R (M-type phospholipase A2 receptor) is a key

autoantigen in the pathogenesis of IMN, and anti-PLA2R

antibodies can be detected in the serum of approximately 70%-

80% of IMN patients (19). Additionally, PLA2R serves as a specific

diagnostic biomarker for IMN, which helps distinguish idiopathic

membranous nephropathy from secondary membranous

nephropathy (20).

In this study, the diagnostic criteria for membranous

nephropathy were based on renal biopsy pathological results and

the detection status of anti-PLA2R antibodies. Only patients who

underwent renal biopsy for the first time and were pathologically

diagnosed with IMN were included. All urine samples were

collected before the patients underwent renal biopsy to avoid

interference of the biopsy procedure on sample quality.

A total of 17 PLA2R antibody-positive IMN patients were

enrolled in the study, with 47 urine samples collected

cumulatively; meanwhile, 17 healthy volunteers were included as

controls, with 51 urine samples collected cumulatively, which is

consistent with the sequencing samples used in our previous study

(DOI: 10.3389/fmed.2025.1574852).

The exclusion criteria were set as follows (1): Patients diagnosed

with other types of kidney diseases (excluding IMN); (2) Patients

with anuria or those requiring long-term dialysis (hemodialysis/

peritoneal dialysis) treatment; (3) Patients with severe systemic

diseases or major organ dysfunction, including but not limited to: 1.

Severe cardiovascular diseases (e.g., heart failure with New York

Heart Association [NYHA] Class III-IV, new-onset myocardial
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infarction within the past 6 months); 2. Severe liver diseases (e.g.,

liver cirrhosis with Child-Pugh Class B or higher, clinically

confirmed active hepatitis); 3. Severe respiratory diseases (e.g.,

acute exacerbation of chronic obstructive pulmonary disease,

respiratory failure requiring mechanical ventilation support); (4)

Individuals with poor medical compliance who were unable to

cooperate with sample collection and provide relevant information;

(5) Individuals who refused to sign the informed consent form due

to personal reasons.

The study protocol received ethical approval from the Second

Affiliated Hospital of Guangxi Medical University (Approval No.

2023KY-0715) and was conducted in compliance with the

Declaration of Helsinki, with written informed consent obtained

from all participants or guardians.

For sample collection, patients provided first-void morning

urine immediately upon waking, followed by second-void

morning urine within 2 hours, and random urine samples

between 12:00 and 20:00. All samples were immediately processed

through centrifugation at 490×g for 10 minutes at 4 °C, with

supernatants stored in 1.5 mL EP tubes (Axygen, USA) and cell

pellets washed twice with chilled DPBS (Wisent, Canada) using

centrifugation at 2,000 rpm for 5 minutes at 4 °C before final storage

at -80 °C freezer. Clinical data were obtained from medical records

and health examination reports at the Second Affiliated Hospital of

Guangxi Medical University, with detailed parameters provided in

Supplementary Table 1.
2.2 RNA sequencing of urinary exfoliated
cells and primary analysis of raw
sequencing data

Urinary cell pellets were retrieved from the -80 °C freezer, and bulk

RNA sequencing was performed using the AccuraCode® HTP One-

Step RNA Sequencing Kit (Singleron Biotechnologies Co., Ltd., China).

The specific steps were as follows: cell lysis and mRNA capture, ONE

Step amplification to obtain cDNA, cDNA product purification, quality

inspection of purified cDNA products, cDNA product fragmentation

reaction, adapter ligation to fragmented products, purification of

adapter-ligated products, PCR enrichment of purified products,

transcriptome library sorting, transcriptome library quality inspection,

and library sequencing.

After library preparation, stringent quality control (QC) was

conducted, which included assessments of total library yield (>30

ng), fragment size distribution (main peak: 300–600 bp), large

fragment contamination (fragments of 900–5000 bp accounting

for <20%), and small fragment residues (fragments of <300 bp

accounting for <20%). Qualified libraries were subjected to paired-

end sequencing on the Illumina NovaSeq platform.

Raw reads were processed with Celescope (v2.0.7) using default

parameters to generate gene expression profiles. Briefly, barcodes

and unique molecular identifiers (UMIs) were extracted from R1

reads and subjected to error correction. Adapter sequences and

poly-A tails were trimmed from R2 reads using cutadapt (v3.7). The

trimmed R2 reads were then aligned to the Homo sapiens
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GRCh38.99 reference genome using STAR (v2.7.11a). Uniquely

mapped reads were assigned to genes using featureCounts (v2.0.1).

Finally, successfully assigned reads sharing identical barcodes,

UMIs, and gene annotations were aggregated to generate the gene

expression matrix for downstream analysis.
2.3 Integration of RNA-seq datasets and
differential gene expression analysis

The bioinformatics analysis of RNA-seq data was performed

using R (version 4.3.1; https://www.r-project.org/). Batch effects

between samples were corrected using the sva package. Differential

expression analysis between IMN patients and healthy volunteers

across three urine sample types was conducted using edgeR with

thresholds of |logFC| > 1 and p < 0.05. We then performed cross-

analysis of differentially expressed genes (DEGs) from the three

urine sample types, focusing on consistently dysregulated genes

across all samples. The integrated DEGs were visualized using the

ggplot2 package for volcano plots and the VennDiagram package

for Venn diagrams.
2.4 Functional enrichment analysis of DEGs
and protein-protein interaction network
construction

Functional enrichment analysis was performed using the

clusterProfiler package, which conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway enrichment analyses on the DEGs. The results were

visualized using the ggplot2 package, while functional

characterization of DEGs was further analyzed through gene set

enrichment analysis (GSEA) implemented in the GSVA package.

Protein-protein interaction (PPI) networks were constructed using

the STRING database (https://string-db.org/). The commonly

upregulated DEGs across all three urine sample types were

subsequently visualized using Cytoscape software (version 3.8.2).
2.5 Machine learning-based identification
of key biomarkers and evaluation of
diagnostic performance

Three machine learning approaches - Random Forest, LASSO

(Least Absolute Shrinkage and Selection Operator), and Support

Vector Machine (SVM) - were employed to screen the consistently

upregulated DEGs across all three urine sample types. The

identified key biomarkers were subsequently used to construct a

nomogram with the rms package, utilizing the “nomogram”,

“validate”, and “calibrate” functions. To evaluate the diagnostic

performance, receiver operating characteristic (ROC) curves were

generated with the plotROC package, and the area under the curve

(AUC) was calculated to assess the predictive power and validate

the efficacy of these key biomarkers.
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2.6 Functional exploration, regulatory
mechanisms, and therapeutic targets of
DEGs

We employed the TRRUST database to identify potential

transcription factor targets of DEGs. Correlation analyses among

DEGs were performed using the ggcorrplot and PerformanceAnalytics

packages. The ssGSEA method was implemented to estimate infiltration

levels of 22 immune cell types. Immune infiltration analysis and

correlation analysis between DEGs and immune cell infiltration were

conducted using the TIMER database, in conjunction with the

geom_segment, geom_point, pheatmap, and ggplot2 packages.

Potential miRNA-mRNA interactions were predicted using the

miRbase and TargetScan databases, while miRNA-lncRNA and

lncRNA-mRNA interactions were explored through the starBase

database. These predictions were integrated to construct a

comprehensive regulatory network, which was subsequently

visualized using the igraph and visNetwork packages.

For drug prediction, we utilized the DGIdb (Drug Gene

Interaction Database) and CMap (Connectivity Map) databases

combined with the enrichDGN function from the DOSE package.

Results were visualized via barplot and dotplot. Web scraping was

performed using the rvest package to retrieve relevant data. A drug-

gene interaction network was constructed and analyzed using

functions from the igraph package, enabling identification of

potential drugs targeting the key genes.
2.7 Construction of renal tissue single-cell
atlas and cellular clustering

All data analyses were performed using R (version 4.3.1; https://

www.r-project.org/). Dataset integration and batch effect correction

were conducted using the harmony package. Quality control was

implemented via the Seurat package, which involved excluding cells

expressing fewer than 500 genes, more than 7,000 genes, or

containing mitochondrial genes accounting for >20% of total

transcript counts. A total of 45,315 quality-filtered cells were

retained for downstream analyses. Cellular clustering was

performed using the FindClusters function at a resolution of 0.8,

with cell identities annotated based on the top 5 marker genes.

Dimensionality reduction was achieved through the RunTSNE

function, and results were visualized using the ggplot2 package.
2.8 Visualization of differential gene
expression patterns through density plots,
bubble plots, and violin plots

We performed differential gene visualization using the ggplot2

package to generate density plots and bubble plots. The single-cell

transcriptomic data from IMN patients were stratified into two

disease progression groups (Stage II vs. Stages III/IV) according to

pathological grading criteria. SPP1 expression levels across different

pathological stages were statistically compared and visualized

through violin plots created with ggplot2.
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2.9 Identification of cellular population
regulators

The gene regulatory network analysis was performed using

pySCENIC following its three-step analytical pipeline. First, we

inferred transcription factor (TF)-target gene co-expression

modules through the GRNBoost2 algorithm, executing the pyscenic

grn command to generate an adjacency matrix (sce.adj.csv) from the

expression data (sce.loom) and human TF database. Second, we

conducted TF-motif enrichment analysis using pyscenic ctx to

identify direct target genes, resulting in regulons (sce.regulons.csv)

where each regulon represents a TF and its directly regulated targets.

The human genomic regulatory regions (hg38) were defined as ±10kb

flanking transcription start sites. Finally, we scored regulon activity in

individual cells via pyscenic aucell, which quantifies the enrichment

of regulon genes in each cell’s expression profile.
2.10 Cell-cell interaction analysis

We performed cell-cell interaction analysis using the

CellPhoneDB package in Python (version 3.13.2; https://

www.python.org/), with particular focus on the interactions

between SPP1-high PTCs and other cell populations that are

mediated by inflammatory factors and chemokines.
2.11 Cell transfection

The SPP1 and NR2F1 silenced HK-2 cell lines were established

via transfection with small interfering RNAs (siRNAs, Hycyte,

China). HK-2 cells (TCH-C400, Hycyte, China) were transfected

with siRNA, corresponding negative control (NC), and fluorescent

control (FAM-NC) using Lipofectamine 2000 (Thermo Fisher

Scientific, USA) according to the manufacturer’s (Hycyte, China)

protocol. The optimized transfection conditions determined

through preliminary experiments were: (1) cell confluence of 30-

40%; (2) siRNA concentration of 30 nM; and (3) transfection

duration of 32 hours.

The overexpression of the SPP1 gene in HK-2 cells was achieved

via lentiviral infection (GenePharma, China), following the

manufacturer’s instructions. The general procedure was as

follows: When the density of the seeded cells reached 30%-40%,

the experimental group (OE-SPP1) was supplemented with

medium containing SPP1-overexpressing recombinant lentivirus

and transfection-enhancing solution, while the control group

(NC) was supplemented with medium containing empty vector

lentivirus and transfection-enhancing solution. Twenty-four hours

after infection, the medium was replaced with complete medium,

and the cells were placed in a 37°C incubator for continued

infection. After 72 hours of infection, the cells were cultured

continuously in medium containing purinomycin for 7 days,

thereby obtaining SPP1-overexpressing stable cell lines.

Transfection efficiency was validated by quantitative Real-Time

PCR (qRT-PCR) and Western blot (WB) analyses.
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2.12 RNA extraction, reverse transcription,
and quantitative real-time PCR analysis

Total RNA was extracted from cells/tissues using the FastPure®

Cell/Tissue Total RNA Isolation Kit V2 (Vazyme, China), followed by

cDNA synthesis with PrimeScript™ RT Master Mix (Takara, Japan)

and subsequent qRT-PCR amplification using FastStart Essential DNA

Green Master (Roche, Switzerland) according to manufacturers’

protocols, with b-actin as the endogenous control. Gene expression

levels were quantified via the 2−DDCt method and statistically analyzed

using GraphPad Prism 9.0, with data presented as mean ± SD and

significance thresholds set at *P < 0.05, **P < 0.01, ***P < 0.001, and

****P < 0.0001 using unpaired t-tests for two-group comparisons or

one-way ANOVA for multi-group analyses. The study evaluated key

inflammatory markers—tumor necrosis factor-a (TNF-a), interleukin-
1b (IL-1b), and interleukin-6 (IL-6)—along with fibrotic markers

including transforming growth factor-b1 (TGF-b1), collagen type I

(Col 1), vimentin (Vim), and fibronectin (FN) [19]. All primer

sequences are detailed in Supplementary Table 2 (GenSys

Biotechnology, China).
2.13 Western blot analysis

The processed cells were washed twice with PBS (Solarbio, China)

and lysed in RIPA buffer (Solarbio, China) containing 1% Protease and

Phosphatase Inhibitor Cocktail (NCM Biotech, China) using ultrasonic

cell disruption, followed by incubation on ice for 30 min and

centrifugation at 10,000 rpm for 10 min to collect the protein

supernatant. Protein concentration was determined by BCA assay

(Beyotime, China). After quantification, loading buffer (Epizyme,

China) was added at a 1:4 ratio, and samples were denatured at 100 °

C for 10 min using a metal bath. Electrophoresis and transfer were

performed using the Mini-PROTEAN Tetra system (Bio-Rad, USA)

with the following parameters: 20V for 10 min, 80V for 20 min, and

120V for 60 min. Transfer conditions were optimized based on

molecular weight: 400 mA for 30 min for proteins ≤100 kDa, and

220 mA for 90 min for Fibronectin. Membranes were blocked with

blocking buffer (NCM Biotech, China) for 40 min, washed three times

with TBST (Solarbio, China) (10 min per wash), and incubated with

primary antibodies at 4°C overnight. After three additional TBST

washes, membranes were incubated with HRP-conjugated secondary

antibodies at room temperature for 1 h, washed again, and developed

using ECL Ultra-sensitive substrate (Biosharp, China). Protein bands

were visualized using a gel imaging system and quantified with ImageJ

software. Detailed antibody information is provided in

Supplementary Table 3.
2.14 Immunohistochemical and multiplex
immunofluorescence assays

Renal tissue sections from IMN patients and controls were

obtained from the Second Affiliated Hospital of Guangxi Medical

University with donor/relative consent and ethical approval

(2023KY-0715).
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Immunohistochemistry was performed using a universal

immunohistochemical kit (Proteintech, China) following the

manufacturer’s protocol (antibody details in Supplementary

Table 4). For multiplex immunofluorescence: Dewaxed tissue

sections underwent antigen retrieval (EDTA solution, Solarbio,

China) and BSA blocking (Sigma, USA). They were then

sequentially incubated with primary antibodies (4°C, overnight)

and fluorescent secondary antibodies (37°C, dark). For the second

protein’s primary/secondary antibodies, incubation started at the

BSA blocking step (all subsequent steps dark). Nuclei were stained

with DAPI (Servicebio, China), sections mounted with anti-

fluorescence quenching medium (Servicebio, China), and imaged

via confocal microscope (antibody details in Supplementary Table 5).
3 Results

3.1 Identification of DEGs

We performed comparative analysis of three urine samples from 17

IMN patients and 17 healthy volunteers, integrating DEGs consistently

identified across all three sample types with particular focus on genes

showing elevated expression in all samples. Volcano plots and Venn

diagrams of DEGs revealed 111 stably upregulated genes across different

collection times (Figures 1A, B), demonstrating their robustness to

sampling variability. KEGG, GO, and GSEA analyses indicated these

DEGs were significantly enriched in inflammatory pathways (NF-kB,
TNF, chemokine signaling, and Toll-like receptor pathways) and

fibrotic processes (e.g., extracellular matrix receptor interactions)

(Figures 1C-F). PPI network analysis of the 111 DEGs identified VIM

as a central node interacting with multiple DEGs (Supplementary

Figures 1A, B), further confirming the strong association between

urinary cell DEGs and fibrotic mechanisms.
3.2 Identification of key factors including
SPP1

We screened the 111 DEGs using three machine learning

approaches—Random Forest, LASSO, and SVM (Figures 2A-F)—

and identified overlapping key factors through Venn diagram

analysis (Figure 2G). This integrated approach yielded seven

pivotal biomarkers: GAREM2, SPP1, HBD, PIGN, SYNE1,

CCDC88A, and RUNX1T1 (Figure 2G). ROC curve analysis

demonstrated the diagnostic performance of these seven key

factors across all three urine samples, revealing that SPP1

consistently exhibited superior diagnostic efficacy (Figures 2H-J).
3.3 Exploration of regulatory networks and
diagnostic performance of key biomarkers

To investigate the functional roles of the seven key biomarkers,

we analyzed their protein interaction networks, which revealed

significant associations with developmental and inflammatory

response proteins (Figure 3A). Using the TRRUST database, we
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identified NR3C1, POU2F1, CEBPA, POU2F2, ERG, POU5F1,

FOXD3, SP1, HDAC1, TFCP2, HTATIP2, and ING4 as key

transcription factors regulating SPP1, while RUNX1T1 and ELF4

were found to regulate IL-3 and HBD, respectively (Figure 3B). We

constructed a nomogram model incorporating all seven biomarkers
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(PIGN, SPP1, GAREM2, SYNE1, RUNX1T1, HBD, and

CCDC88A) that demonstrated strong diagnostic performance

(AUC = 0.923, Figure 3C) and reliable risk prediction across a

0.1-0.99 probability range (Figure 3D). The model showed excellent

calibration (Figure 3E) and provided superior net clinical benefit
FIGURE 1

DEGs’ expression and functional enrichment analysis of urinary exfoliated cells from IMN patients versus healthy volunteers across three sample
types. (A) Volcano plot displaying integrated DEGs from all three urine samples. (B) Venn diagram illustrating overlapping DEGs among sample types.
(C) KEGG pathway analysis demonstrating significant associations of DEGs with inflammatory and fibrotic responses. (D) GO analysis categorizing
DEGs into biological processes (BP), cellular components (CC), and molecular functions (MF). (E, F) GSEA of downregulated and upregulated gene
sets, respectively.
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compared to single-marker approaches at threshold probabilities of

0.1-0.8 (Figure 3F). All seven biomarkers exhibited significantly

higher expression levels in IMN patients than in controls when

detected in second-void urine samples (Figure 3G), which lays a

foundation for investigating the association between these
Frontiers in Immunology 07
biomarkers and IMN. Meanwhile, correlation analysis

demonstrated positive correlations between SPP1 and GAREM2,

SPP1 and HBD. In addition, PIGN was found to have negative

correlations with SPP1, GAREM2, and HBD; SPP1 also showed a

negative correlation with SYNE1 (Figure 3H).
FIGURE 2

Screening of key biomarkers. (A, B) Feature importance identification using Random Forest algorithm. (C, D) Coefficient trajectory plot and cross-
validation curve from LASSO logistic regression analysis. (E, F) Prediction accuracy and error variation curves for each gene in SVM algorithm.
(G) Venn diagram displaying overlapping diagnostic biomarkers identified by all three algorithms. (H-J) ROC curves demonstrating diagnostic
efficacy of the seven key biomarkers in first-void morning urine, second-void morning urine, and random urine samples, respectively, where higher
AUC values indicate stronger correlations and better diagnostic performance.
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3.4 Investigation of immune infiltration and
immune cell correlations for key
biomarkers

Immune infiltration analysis was performed using RNA-seq data

from second-void morning urine samples. Comparative assessment
Frontiers in Immunology 08
between IMN patients and healthy controls revealed significantly

higher proportions of macrophage subsets in IMN (Figures 4A, B).

Heatmap analysis demonstrated significant positive correlations

between plasma cells and dendritic cells resting, naïve B cells and

dendritic cells resting, as well as activated dendritic cells and resting

mast cells, while negative correlations were observed between
FIGURE 3

Transcriptional regulatory networks and diagnostic performance evaluation of key biomarkers. (A) PPI network of the seven key biomarkers.
(B) Transcriptional regulatory networks of SPP1, RUNX1T1, and HBD identified through TRRUST database analysis. (C) ROC curve of the nomogram
model, where higher AUC values indicate greater model reliability. (D) The nomogram visually demonstrates the association between key biomarkers
and disease risk, with the length of each variable’s axis (i.e., scale markers) being proportional to its contribution to the outcome. (E) Calibration
curve analysis of the nomogram model: Apparent represents the model’s predictive performance on the training set; Bias-corrected shows the
relationship between predicted and actual probabilities after bias correction; Ideal indicates perfect alignment between predicted and actual
probabilities. (F) Decision curve analysis for the SPP1 biomarker. (G) Box plots displaying expression levels of all key biomarkers. (H) Correlation
analysis of DEGs: the lower left quadrant shows bivariate scatter plots with fitted lines, while the upper right quadrant displays correlation
coefficients and significance levels (*P < 0.05, **P < 0.01, ***P < 0.001).
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regulatory T cells and resting mast cells, and M1 macrophages and

activated mast cells (Figure 4C). Lollipop plots illustrated distinct

immunocyte associations of the key biomarkers: GAREM2 showed

negative correlations with gd T cells, CD4+ naïve T cells, and M2

macrophages; SPP1 was inversely associated with M2 macrophages;

CCDC88A positively correlated with gd T cells but negatively with

activated dendritic cells, CD8+ T cells, resting dendritic cells, and

monocytes; RUNX1T1 exhibited positive correlation with activated NK

cells but negative association with resting NK cells (Figures 4D-J). No

significant correlations (P > 0.05) were found for the remaining

biomarkers. These findings suggest that urinary DEGs may

contribute to IMN pathogenesis by modulating the immune

microenvironment, particularly through suppressing M2 macrophage

infiltration and regulating T-cell subset homeostasis.
3.5 Regulatory factors and drug targets of
key biomarkers

The miRNA regulatory network revealed 11 miRNAs targeting

RUNX1T1, 1 miRNA targeting SPP1, and 1 miRNA targeting PIGN

(Figure 5A). The lncRNA-ceRNA network analysis identified only

RUNX1T1 as being regulated by hsa-miR-1238-3p and hsa-miR-

15a-5p (Figure 5B). Drug prediction analysis identified compounds

with binding potential to key biomarkers: periodate-oxidized

adenosine, mefloquine, verteporfin, and 3-(1-methylpyrrolidin-2-

yl) pyridine showed binding capacity with two DEGs each

(Figures 5C, D). Notably, SPP1 demonstrated binding potential

with nearly all analyzed drugs, suggesting strong therapeutic

promise (Figure 5E). Mefloquine, an established clinical drug with

recently reported immunomodulatory properties (21), was further

investigated through molecular docking experiments. The results

confirmed stable binding conformations between mefloquine and

both SPP1/CCDC88A proteins (Figures 5F, G), with binding

energies <-5 kcal/mol, indicating high affinity and potential as

therapeutic targets.
3.6 Construction of a single-cell atlas of
IMN renal tissue

Integrated analysis of scRNA-seq data from 9 IMN patients and

7 healthy controls (Figure 6A) after quality control (Supplementary

Figure 2) revealed 10 distinct cell clusters through principal

component analysis of variably expressed genes: proximal tubular

cells, epithelial cells, loop of Henle cells, principal cells, monocytes,

T cells, endothelial cells, fibroblasts, podocytes, and B cells

(Figures 6B, C). Cluster-specific marker genes were visualized by

heatmap, with color intensity reflecting relative expression levels

(Figure 6D). Density plots and bubble charts demonstrated cellular

expression patterns of 7 differentially expressed genes, where darker

hues indicated higher expression (Figures 6E, F). SPP1 showed

ubiquitous expression across all clusters with peak abundance in
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proximal tubular cells (Figure 6F), suggesting its potential

involvement in IMN pathogenesis. Stratification by pathological

stage (II vs. III/IV) demonstrated upregulated SPP1 expression with

broader distribution in advanced-stage samples (Figure 6G),

indicating a potential correlation between SPP1 expression levels

and disease progression, which may implicate SPP1 as a key

contributor to IMN advancement.
3.7 Exploration of the functions and key
regulatory factors of SPP1-high expressing
PTCs populations

We reclassified PTCs into 7 clusters and found that SPP1 was

highly expressed in cluster C3 (Figures 7A, B). Using Regulon

Specificity Score (RSS) analysis, we generated a heatmap of key

regulatory factors for this cluster, as shown in Figure 7C. HOXB5,

NR2F1, PBX3, ERG, and STAT1 were identified as critical

transcription factors for cluster C3. Enrichment analysis of the top

3–6 DEGs in each subgroup was performed: the left line chart depicts

the expression patterns of DEGs, while the right panel shows GO

enrichment results using these DEGs, reflecting biological process

pathways and functional enrichment of DEGs in each cluster

(Figure 7D). Notably, cluster C3 (labeled as cluster C4 in the

figure) was associated with positive regulation of phospholipid

transport and steroid metabolism (Figure 7D). TSNE visualization

of transcription factor activity showed that NR2F1 and PBX3 had the

highest activity in cluster C3, indicating their dominant regulatory

role in this cluster (Figure 7E). Line charts suggested that PBX3,

DDIT3, and NR2F1 might exhibit more specific regulatory effects in

cluster C3 (Figure 7F). Intriguingly, NR2F1 belongs to the same

nuclear receptor superfamily as NR3C1 (Figure 3B), implying that

nuclear receptor superfamily members may serve as key regulators of

SPP1. The regulatory role of NR2F1 in SPP1 expression warrants

further investigation.
3.8 Cell-cell interactions in cluster C3

Through heatmap analysis and network visualization, we observed

significant interaction characteristics between different cell populations

(Figures 8A, B). Notably, the interaction network between cluster C3

and fibroblasts exhibited the densest connections and a significantly

higher signal communication intensity compared to other cell

populations, suggesting that their close interaction may play a critical

role in renal tissue fibrosis (Figure 8A). Given SPP1’s potential

association with inflammatory responses in IMN, we focused on

three key cytokine families—the interferon (IFN) family, chemokine

CC subfamily (CCL), and tumor necrosis factor (TNF) family—to

systematically explore their intercellular networks. Cluster C3 signals to

other cell populations by secreting type II interferon (IFN-g) and

binding to its receptor (IFNGR) (Figure 8C). Furthermore, cluster C3

connects withmononuclearmacrophages via CCLmembers, potentially
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regulating their migration and activation (Figure 8D). Additionally, the

TNF family mediates interactions between cluster C3 and other cells

through TNF-TNFR signaling, dynamically regulating the immune

microenvironment (Figure 8E). These findings highlight cluster C3’s

central role in intercellular communication and its multidimensional

regulatory mechanisms.
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3.9 Immunohistochemistry and renal tissue
qRT-PCR validation of SPP1 expression in
IMN

Immunohistochemical analysis revealed that SPP1 expression

was highest in stage III IMN renal tissues, followed by stage II, while
FIGURE 4

Immune infiltration and immune cell correlation analysis of key factors. (A, B) Immune cell infiltration between IMN and normal controls.
(C) Heatmap of correlations between immune cells. (D-J) Lollipop plots showing correlations between hub genes and immune cells.
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the control group showed the lowest expression level (Figures 9A-

C). Quantitative analysis of immunohistochemistry confirmed that

these results were statistically significant (Figure 9D). Consistently,

qRT-PCR analysis of IMN renal tissues and adjacent normal renal
Frontiers in Immunology 11
tissues demonstrated that SPP1 expression positively correlated

with IMN pathological severity (Figure 9E). This finding aligns

closely with prior bioinformatics analyses, suggesting that SPP1

may be associated with IMN disease progression.
FIGURE 5

Regulatory factors and drug targets of key biomarkers: (A) miRNA regulatory network of key biomarkers; (B) lncRNA and ceRNA regulatory network
of key biomarkers; (C, D) Box plot and bubble plot showing predicted drug binding sites; (E) Network diagram illustrating specific drug-biomarker
interactions, where circular nodes represent key biomarkers and connecting lines indicate existing associations or interactions between drugs and
biomarkers. (F, G) Molecular docking analysis showing the binding sites of CCDC88A and SPP1 with mefloquine.
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FIGURE 6

Construction of IMN single-cell atlas and cellular localization of differentially expressed genes: (A) Integration of scRNA-seq data from renal tissues
of 9 IMN patients and 7 healthy controls; (B, C) Cell clustering into 10 distinct populations based on marker gene expression; (D) Marker genes of
each cell cluster are shown as a heatmap, with color intensity indicating their relative expression; (E, F) Density plots and bubble charts visualizing
distribution patterns of differentially expressed genes across cell clusters - in density plots, color intensity correlates positively with cellular
distribution density (darker shades indicate higher cell density), while in bubble charts, bubble size is proportional to cell numbers (larger bubbles
represent greater cell quantities); (G) Violin plot analysis demonstrating significantly elevated SPP1 expression in stage III/IV pathological samples
compared to earlier stages.
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FIGURE 7

Functional exploration and transcriptional regulatory factor analysis of SPP1-high expressing PTCs clusters: (A) PTCs were reclassified into 7 clusters
with a resolution of 0.1; (B) Violin plot showing high SPP1 expression in cluster C3; (C) Heatmap of transcription factors with high specificity for each
cluster, calculated by RSS; (D) Heatmap visualizing characteristic marker gene expression and corresponding GO enrichment analysis results;
(E) TSNE plot displaying transcription factor distribution, where each point represents a cell. The color intensity indicates the activity level of the
corresponding transcription regulator (darker color = higher activity), enabling observation of activity differences across cells; (F) Scatter line plot
with abscissa “Regulon” (different transcription regulators) and ordinate “Regulon specificity score” (reflecting regulator specificity—higher scores
indicate stronger unique activity in specific cell types/states).
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FIGURE 8

Cell-cell interaction networks: (A) Heatmap of intercellular interactions where deep red indicates stronger associations and blue denotes weaker
correlations; (B) Network diagram displaying interaction relationships between cell clusters (colored nodes represent distinct cell types, connecting
lines indicate significant interactions-greater line complexity reflects richer intercellular crosstalk); (C-E) Bubble plots demonstrating C3 cell cluster
interactions via (C) interferon family factors, (D) CC-chemokine subfamily factors, and (E) tumor necrosis factor superfamily members (yellow-
shaded bubbles indicate higher normalized values, red-circled solid dots denote statistical significance).
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3.10 Validation of SPP1 and NR2F1
knockdown efficiency and expression of
inflammatory and fibrotic factors

We performed siRNA transfection experiments in HK-2 cells, using

siRNA carrying scrambled sequences as theNC group. qRT-PCR results

demonstrated that SPP1-siRNA2 and NR2F1-siRNA3 exhibited the

optimal gene knockdown efficiency, while neither the transfection

reagent control (MOCK) or the FAM-NC showed significant effects

on SPP1/NR2F1 mRNA expression (Figures 10A, C). WB analysis

confirmed successful knockdown of SPP1 and NR2F1 at the protein

level (Figures 10B, D, E, F).

qRT-PCR analysis revealed significantly reduced SPP1

expression in the NR2F1 knockdown group (si-NR2F1),
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providing cellular-level evidence for NR2F1’s regulatory role on

SPP1 (Figure 10G). Furthermore, immunofluorescence results

demonstrated co-localization of NR2F1 and SPP1 in cells, offering

histological support for the hypothesis that NR2F1 may serve as a

regulatory factor for SPP1 (Figure 10H).

To further investigate the relationship between SPP1 and

inflammatory/fibrotic factors, we measured their expression levels

by qRT-PCR. Results showed that in the SPP1 knockdown group

(si-SPP1), expression of inflammatory factors (TNF-a, IL-1b) and
fibrotic markers (TGF-b1, Col 1, Vim, FN) was significantly

reduced (Figure 10I). In the si-NR2F1 group, expression of TNF-

a, TGF-b1, Col 1, Vim and FN also decreased, while IL-1b
expression remained unchanged (Figure 10I). Notably, although

the expression levels of these inflammatory and fibrotic factors in
FIGURE 9

Detection of SPP1 expression in renal tissues by immunohistochemistry and qRT-PCR: (A-C) Immunohistochemical staining of SPP1 in control, stage
II IMN, and stage III IMN renal tissues, respectively. Darker coloration indicates higher SPP1 expression levels. (D) Quantitative immunohistochemical
analysis of the control, stage II IMN, and stage III IMN renal tissues. (E) qRT-PCR analysis of SPP1 expression in adjacent normal renal tissues, stage II
IMN, and stage III IMN renal tissues. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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FIGURE 10

Interaction between SPP1 and NR2F1 and their regulatory mechanisms in inflammation and fibrosis: (A-F) Silencing efficiency of SPP1 and NR2F1 was
validated by qRT-PCR and WB; (G) Altered SPP1 expression levels in si-NR2F1 group; (H) Dual-color immunofluorescence revealing intracellular
spatial co-localization of SPP1 and NR2F1; (I) Expression profiles of inflammatory and fibrotic markers in si-SPP1 and si-NR2F1 group. (*P < 0.05,
**P < 0.01, ***P < 0.001, ****P < 0.0001).
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the si-NR2F1 group were lower than controls, they were

consistently higher than those in the si-SPP1 group.
3.11 Validation of inflammatory and fibrotic
markers at histological and protein levels

Given that TNF-a and FN are hallmark factors of inflammation

and fibrosis respectively, we selected these two markers to further

validate SPP1 ’s regulatory effects on their expression.

Immunohistochemical analysis revealed that both FN and TNF-a
exhibited the highest expression levels in stage III IMN renal tissues,

followed by stage II IMN, while control tissues showed minimal

expression (Figures 11A, B). And the quantitative analysis of

immunohistochemistry confirmed that these results were statistically

significant. This expression pattern closely mirrored SPP1’s distribution

in renal tissues. Immunofluorescence experiments further demonstrated

significant co-localization between SPP1 and TNF-a, as well as between
SPP1 and FN in tissues, providing histological evidence supporting

SPP1’s potential role as a regulatory factor for both TNF-a and FN

(Figures 11C, D). WB analysis confirmed that SPP1 knockdown

reduced protein expression levels of both FN and TNF-a, offering
additional protein-level validation of SPP1’s regulatory function

(Figures 11E, F).

Furthermore, we successfully constructed an SPP1-

overexpressing cell line (Figures 12A, C). Experimental results

showed that following SPP1 overexpression, the expression levels

of the inflammatory marker TNF-a and the fibrosis-related factor

FN were both significantly increased (Figures 12D-G). Collectively,

these findings demonstrate that SPP1 exerts a crucial regulatory role

in both inflammatory responses and fibrotic processes, while also

suggesting its potential as a promising therapeutic target for IMN.
4 Discussion

Renal biopsy remains the gold standard for diagnosing kidney

diseases, yet it only provides static pathological information and cannot

dynamically assess disease progression or prognosis (3, 22, 23).

Therefore, complementary diagnostic indicators are needed.

Microscopic analysis of urinary sediment cells represents one of the

oldest diagnostic tools in nephrology and the most common clinical

application of urinary exfoliated cells (24). Studies have revealed that

urinary exfoliated cells contain not only erythrocytes, microorganisms,

and immune cells but also various renal-origin cells, including tubular

epithelial cells (25), podocytes (26), and even undifferentiated renal

progenitor cells (27). This demonstrates the significant potential of

urinary exfoliated cells for both nephrology research and clinical

applications. In our study, we observed consistently high and stable

expression of SPP1 in urinary samples from IMN patients across

three collections.

Biomarkers, defined as objectively measurable indicators of

normal biological processes, pathological processes, or responses
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to therapeutic interventions, play crucial roles in disease diagnosis,

prognosis evaluation, treatment monitoring, and drug development

(28, 29). Emerging analytical approaches like network

pharmacology and molecular docking have enabled systematic

exploration of targeted drugs from molecular to pathway levels,

gaining wide application in drug discovery research (30, 31). Our

findings demonstrate that renal tubular SPP1 exhibits excellent

diagnostic performance in serial urinary analyses and possesses

multiple targetable binding sites, strongly supporting its potential as

a biomarker for IMN.

PTCs play a pivotal role in maintaining renal reabsorption,

secretion, and excretion functions, as well as water-electrolyte

homeostasis (32). Emerging evidence indicates that PTCs injury

can actively drive disease progression and even serve as a key

contributor to renal dysfunction (33). During inflammatory

responses, damaged PTCs release various inflammatory cytokines

(e.g., TNF-a, IL-1b) and recruit immune cells through chemokine

expression (e.g., MCP-1), thereby exacerbating local inflammation

(34). Moreover, injured PTCs activate critical signaling pathways

like NF-kB, further promoting inflammatory cytokine release and

establishing a self-perpetuating inflammatory cycle (35). In fibrotic

processes, damaged PTCs may undergo epithelial-mesenchymal

transition into fibroblasts, facilitating excessive extracellular

matrix (ECM) deposition and ultimately leading to renal fibrosis

(36). Our scRNA-seq analysis of IMN renal tissues revealed

predominant SPP1 expression in PTCs, with expression levels

strongly correlating with IMN pathological severity. Notably,

SPP1+ PTC populations occupied central positions in renal

cellular interaction networks and demonstrated close associations

with inflammatory/fibrotic responses.

Renal inflammation initially represents a physiological response

to injury (37). However, persistent inflammation underlies the

pathogenesis of numerous renal diseases, promoting fibrotic

processes that drive chronic nephritis progression, functional

decline, and eventual end-stage renal disease (38, 39). Conversely,

ECM remodeling during fibrosis reciprocally fuels inflammation by

facilitating immune cell migration and immunological synapse

formation (40). As an autoimmune disorder, IMN pathogenesis

fundamentally involves dysregulated immune responses (19), with

inflammation and fibrosis constituting two core pathological

processes driving disease progression (41). These interconnected

mechanisms form a vicious cycle that significantly contributes to

renal function loss (42, 43). Our findings demonstrate parallel

elevation of TNF-a and FN expression with IMN progression,

highlighting the therapeutic imperative of targeting inflammation-

fibrosis crosstalk to mitigate disease advancement.

SPP1, a multifunctional glycosylated phosphoprotein, plays

significant roles in diverse physiological and pathological

processes (14, 44). It contains multiple functional domains that

mediate biological effects through binding to cell surface receptors.

Its expression and function are regulated by various factors,

including transcriptional activity, epigenetic modifications,

extracellular signals, and microenvironmental cues (45). In
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immune regulation, SPP1 participates in inflammatory responses by

modulating the activation and migration of immune cells (e.g.,

macrophages and T cells) (46). Renal fibrosis studies have identified

SPP1 as a key effector that promotes fibroblast-to-myofibroblast
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differentiation via the TGF-b/Smad signaling pathway (17, 47). Our

study demonstrated that SPP1 knockdown in IMN significantly

reduced the expression of TNF-a, IL-1b, TGF-b1, Col 1, Vim, and

FN. And by constructing an SPP1-overexpressing cell line, we
FIGURE 11

Immunohistochemistry, multicolor immunofluorescence, and construction of an SPP1-silenced cell line were performed to investigate the
relationships between SPP1 and both Fibronectin as well as TNF-a: (A) Immunohistochemical expression profiles of Fibronectin in control, stage II
IMN, and stage III IMN renal tissues; (B) Immunohistochemical expression patterns of TNF-a in control, stage II IMN, and stage III IMN renal tissues;
(C) Dual-color immunofluorescence co-localization analysis of SPP1 and Fibronectin, revealing their spatial distribution correlation; (D) Dual-color
immunofluorescence co-localization analysis of SPP1 and TNF-a, demonstrating their spatial association; (E) Effect of SPP1 silencing on Fibronectin
expression levels; (F) Effect of SPP1 silencing on TNF-a expression levels. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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observed that the expression levels of TNF-a and FN increased in

parallel with elevated SPP1 expression. Immunofluorescence

further revealed close spatial associations between SPP1 and both

TNF-a/FN at the tissue level, corroborating SPP1’s regulatory role

in inflammation and fibrosis.

Notably, the downregulation of inflammatory and fibrotic

factors was more moderate in the si-NR2F1 group compared to

the si-SPP1 group. We hypothesize that NR2F1 knockdown may

indirectly modulate these factors through SPP1 regulation. This

finding not only reinforces SPP1’s central regulatory position in

inflammation and fibrosis but also elucidates a potential molecular

mechanism whereby NR2F1 exerts indirect effects via SPP1,

providing a theoretical foundation for targeting SPP1 to mitigate

fibrotic and inflammatory responses in IMN.

However, this study has several limitations. First, the urinary

exfoliated cell RNA-seq analysis included only 17 IMN patients and

17 healthy controls with triplicate urine samples—a relatively small

cohort that warrants expansion to validate SPP1’s reliability as an

IMN biomarker. Second, although histological and in vitro cellular

experiments confirmed SPP1’s regulatory effects, animal models are

needed to comprehensively characterize its functional roles in

inflammation and fibrosis. Finally, the precise molecular

pathways through which SPP1 regulates these processes remain
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unexplored. Further mechanistic studies are essential to solidify

SPP1’s potential as a therapeutic target.
5 Conclusions

The SPP1 factor in proximal tubular epithelial cells is closely

associated with IMN disease progression, serving as a key

biomarker and regulatory factor in both inflammatory and

fibrotic processes. Targeted inhibition of SPP1 expression

significantly reduces the levels of inflammation and fibrosis

related factors, thereby effectively mitigating disease progression.

These findings highlight SPP1 as a promising therapeutic target for

IMN, offering a potential novel strategy for clinical intervention.
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FIGURE 12

Overexpression of SPP1 to investigate the relationships between SPP1 and both Fibronectin as well as TNF-a: (A-C) Overexpression efficiency of
SPP1 was validated by qRT-PCR and WB; (D-E) WB assay showing the expression levels of TNF-a in the OE-SPP1 group; (F, G) WB assay showing
the expression levels of FN in the OE-SPP1 group. (*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001).
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where samples starting with "PL04" represent healthy volunteers, and

the remaining samples represent those from IMN patients.
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