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Objective: By integrating whole-genome resequencing (WGR) with longitudinal
transcriptomic profiling, this study aimed to unravel the genetic—transcriptional
regulatory network underlying thyroid immune-related adverse events (irAEs) in
non-small cell lung cancer (NSCLC) patients treated with sintilimab. A key
objective was to identify molecular biomarkers with predictive and
therapeutic relevance.

Methods: This prospective study included NSCLC patients receiving sintilimab,
from whom peripheral blood samples were collected at three time points:
baseline, post-first treatment, and post-second treatment. RNA sequencing
(RNA-seq) and 30x WGR were performed. Differential gene expression analysis
was conducted on the RNA-seq data, followed by longitudinal consistency
filtering using the Longitudinal Concordant Gene Intersection (LCGI) algorithm
to identify robust differentially expressed genes (DEGs). These DEGs underwent
downstream integration with protein—protein interaction (PPI) network analysis
and cis-expression quantitative trait loci (cis-eQTL) mapping to pinpoint key
genes and regulatory single-nucleotide polymorphisms (SNPs) associated with
thyroid irAEs.

Results: The LCGI algorithm identified 13 DEGs exhibiting sustained directional
shifts across treatment timepoints. Integration with conventional DEG signatures
revealed a functionally cohesive module, with C1QA/B/C, FLT1, TEK, PDGFRB,
SPP1, and HLA-DPB1 emerging as central regulators of thyroid irAEs. Cis-eQTL
mapping identified 500 SNPs with significant cis-regulatory effects on 153 genes.
A "C3 complement-matrix axis” was uncovered as a pivotal node, promoting
macrophage polarization toward a pro-inflammatory phenotype. Based on the
refined PPl network, we proposed a cascading pathological model in which a
self-sustaining feedback loop drove progressive and irreversible
thyroid autoimmunity.

Conclusion: This study established a genetic—transcriptional regulatory
framework for sintilimab-induced thyroid irAEs and identified a candidate gene
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set with biomarker potential. Our findings highlighted the central role of
complement-driven mechanisms, providing a foundation for precision risk
prediction and targeted intervention strategies that preserve antitumor efficacy
while mitigating autoimmune toxicity.

immune-related adverse events (irAEs), sintilimab, eQTL analysis, complement system,
longitudinal transcriptomics

Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized the
therapeutic landscape of non-small cell lung cancer (NSCLC),
offering durable clinical benefit in a subset of patients (1, 2).
Sintilimab, a fully human IgG4 monoclonal antibody targeting
PD-1, exhibits high-affinity binding and sustained blockade of the
PD-1/PD-L1 pathway (3), leading to significantly improved survival
outcomes in NSCLC (4). However, thyroid immune-related adverse
events (irAEs) have emerged as some of the most prevalent
toxicities associated with ICI-based regimens, with incidence rates
approaching 50% in combination therapies (5). These endocrine
irAEs span a clinical spectrum that includes hypothyroidism,
hyperthyroidism, and destructive thyroiditis, often necessitating
treatment discontinuation and substantially impairing patient
quality of life (6, 7). Despite its proven clinical efficacy, the
genetic and transcriptomic underpinnings of sintilimab-induced
thyroid irAEs in NSCLC remain largely undefined.

The advancement of gene sequencing technologies has enabled
major breakthroughs in elucidating the genetic basis of disease
pathogenesis (8, 9). Genome-wide association studies (GWAS) have
been widely used to identify genetic loci associated with various
traits and diseases, but they generally require large cohorts to
achieve statistically robust and reproducible genome-wide
associations (10). As a result, for studies involving small sample
sizes, such as investigations into adverse drug reactions, GWAS
often prove insufficient as a stand-alone analytical strategy.
Moreover, even in large-scale GWAS, although numerous trait-
associated loci have been successfully identified, the mechanistic
interpretation of these variants remains an ongoing challenge: the
specific molecular pathways through which these variants influence
biological functions and disease phenotypes are often poorly
understood (11).

Expression quantitative trait loci (eQTL) studies illuminate the
functional consequences of genetic variants by linking them to
transcriptional changes, offering critical mechanistic insights into
GWAS-identified loci and the etiology of complex diseases (12).
The integration of multiple expression modalities, such as total gene
expression and allele-specific expression, significantly enhances
both the sensitivity and specificity of eQTL detection, particularly
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in heterogeneous tissues like tumors. Advanced mapping strategies
such as pTReCASE, which incorporate tumor purity estimates and
distinguish between tumor-derived and normal cellular expression,
offer a more refined and accurate framework for detecting tumor-
specific regulatory effects (13). These methodological advances not
only improve the identification of disease-associated genes and
actionable therapeutic targets but also deepen our understanding
of the molecular circuitry driving disease progression (14). In the
context of immunological research, eQTL analyses hold distinct
advantages by capturing cell- and tissue-specific regulation,
temporal expression dynamics, and multicellular interactions,
thus providing powerful tools to dissect the genetic basis of
immune-related disorders and inform novel therapeutic
strategies (15).

Previous investigations into irAEs have largely been restricted to
static comparisons of gene expression between patient groups following
a single ICI administration. However, immune responses are inherently
dynamic and temporally regulated. To better capture this complexity,
the current study assessed transcriptomic profiles at three sequential
time points: pre-treatment, post-first treatment, and post-second
treatment. Differential expression and pathway enrichment analyses
were performed to systematically characterize the evolving
transcriptomic landscape in response to sintilimab administration.

This study leveraged transcriptomic data to perform an unbiased,
genome-wide eQTL analysis aimed at uncovering single-nucleotide
polymorphisms (SNPs) linked to gene expression changes implicated
in thyroid irAEs. By integrating SNP profiles with longitudinal
transcriptomic data, we reconstructed the genetic-transcriptional
regulatory network underlying thyroid irAEs, thus addressing a key
limitation in this field, namely, the constraints of small sample sizes in
rare adverse event studies. This multi-omics approach illuminated the
mechanistic connections between genetic variation and the
emergence of thyroid irAEs, revealing candidate molecular
pathways that might drive their development. Our findings also
pointed to a set of clinically actionable biomarkers with potential
utility for dynamic risk stratification in NSCLC patients undergoing
sintilimab treatment. Through this comprehensive framework, we
provided new insights into the genetic architecture of immune
toxicity, with broader implications for precision medicine in
cancer immunotherapy.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1671594
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

Materials and methods
Study design and participants

This study was designed as a prospective, real-world
investigation. Eligible participants met the following criteria: (1)
hospitalization at the National Cancer Center/Cancer Hospital,
Chinese Academy of Medical Sciences between January 2021 and
December 2024; (2) histological or clinical confirmation of NSCLC;
(3) completion of at least two cycles of sintilimab administered
every 3 weeks; (4) age between 18 and 80 years; and (5) availability
of complete and evaluable baseline (BT) data prior to
treatment initiation.

Exclusion criteria included: (1) history of thyroid surgery or
radiotherapy to the cervical region; (2) preexisting thyroid disease
or dysfunction; and (3) severe cardiac, hepatic, renal, or
autoimmune disorders.

The study protocol was approved by the Ethics Committee of
the National Cancer Center/Cancer Hospital, Chinese Academy
of Medical Sciences (approval number: 2020122509100302).
Written informed consent was obtained from all participants
before enrollment.

Whole-Genome Resequencing

Peripheral blood samples were collected, and genomic DNA
was isolated using the TIANamp Genomic DNA Kit. DNA
® 3.0 Fluorometer (Life
Technologies, CA, USA), while integrity and purity were assessed

concentration was quantified with a Qubit

via 1% agarose gel electrophoresis (120 V, 45 min). Library
preparation was performed following the TruSeq DNA Sample
Preparation Guide (Illumina, 15026486 Rev. C). Library quality was
verified by qPCR using the Bio-Rad iQ SYBR Green Kit.

Sequencing was conducted on the Illumina NovaSeq 6000
platform using paired-end (PE) protocols, generating 150-bp PE
reads with an average coverage depth of 30x. Clean reads were
aligned to the UCSC hg38 human reference genome using BWA.
Varijant calling was subsequently performed using the Genome
Analysis Toolkit (GATK) to extract candidate polymorphic
SNP loci.

RNA sequencing

High-quality total RNA was extracted from peripheral
blood samples. RNA purity was assessed using a NanoDrop
spectrophotometer (NanoDrop Technologies, Wilmington, DE,
USA), and RNA integrity was evaluated using the Agilent 2100/
5400 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).
Ribosomal RNA was depleted from total RNA prior to
library construction.

Fragmented RNA was used as a template for first-strand cDNA
synthesis primed with random hexamers. Second-strand synthesis
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was performed using DNA Polymerase I, RNase H, and a ANTP
mix in which dUTP replaced dTTP. The resulting double-stranded
c¢DNA underwent purification, end repair, adenylation, and adapter
ligation. Uracil-containing second strands were selectively digested
with USER enzyme (New England Biolabs) to ensure strand
specificity. Final libraries were purified using AMPure XP beads
(Beckman Coulter). Libraries that passed quality control were
sequenced on the Illumina NovaSeq X Plus platform using a
150-bp PE protocol.

Statistical analyses

The overall analytical workflow is illustrated in Figure 1.
Differential gene expression analysis was conducted using the
DESeq2 package (version 1.34.0), while eQTL mapping was
performed using the Matrix eQTL package (version 2.3) in R
(version 4.3.3).

Differential expression analyses

RNA-seq quantification data were analyzed using the DESeq2
package (version 1.34.0) in R (version 4.3.3). Raw gene counts were
imported from a preprocessed expression matrix, accompanied by
metadata specifying experimental groups and covariates (sex and
age). Genes with low expression, defined as fewer than 10 counts in
fewer than k samples, where k corresponds to the sample size of the
smallest comparison group, were excluded to reduce noise and
retain biologically meaningful signals.

Categorical variables (e.g., sex and group) were encoded as
factors, while continuous variables (e.g., age) were standardized via
z-score transformation (mean-centered and scaled to unit variance).
Differential expression testing was performed using a negative
binomial generalized linear model that accounted for sex and age
as covariates. Dispersion estimates were moderated using empirical
Bayes shrinkage prior to Wald significance testing.

Differentially expressed genes (DEGs) were defined based on
dual criteria: an absolute log, fold change >1 and an adjusted p-
value (padj, Benjamini-Hochberg correction) <0.05.

Gene expression can be influenced by a variety of
environmental and biological factors, including diet and lifestyle
(16), chemical exposure (17), hormonal fluctuations (18, 19), and
cellular states such as proliferation and differentiation (20). To
mitigate confounding from such variables, we implemented the
Longitudinal Concordant Gene Intersection (LCGI) method, a
robust analytic strategy designed to reduce false positives while
prioritizing sustained biological signals. This approach incorporates
longitudinal RNA-seq data from two post-treatment time points,
filtering genes by fold-change thresholds (AIT >1, A2T >0.5),
p-value significance (<0.05), and directional consistency across
time. The final DEG set was defined as the intersection of genes
meeting all criteria, thereby enriching for genes with persistent,
treatment-associated expression changes.
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( Participants )

Inclusion Criteria:

(1) Patients hospitalized at the National Cancer
Center/Cancer Hospital, Chinese Academy of Medical
Sciences, from January 2021 to December 2024;

(2) Histologically or clinically confirmed non-small cell lung
cancer;

(3) Receipt of at least two cycles of sintilimab administered
every 3 weeks;

(4) Age > 18 years and < 80 years;

(5) Complete and evaluable baseline information before
treatment initiation

Case Group

Exclusion Criteria:

(1) Prior thyroid surgery or radiation therapy to the
thyroid region;

(2) Thyroid disease or thyroid dysfunction;

(3) Severe cardiac, hepatic, or renal diseases, or
autoimmune deficiency diseases.

Thyroid irAEs

Control Group

Whole-Genome

RNA Sequencing

Differential Expression
and Enrichment
Analyses

Resequencing

eQTL Analysis

Integrative Analysis

FIGURE 1

Research process for investigating immune-related thyroid dysfunction in NSCLC patients receiving sintilimab treatment.

Gene ontology functional annotation and
kyoto encyclopedia of genes and genomes
pathway enrichment analysis

To minimize baseline confounding and achieve a
comprehensive characterization of pathways associated with
thyroid irAEs, we integrated enrichment analyses from two gene
sets: (1) concordantly regulated DEGs identified via the LCGI
method; and (2) combined DEGs from the post-treatment stages
AI1T and A2T, excluding those differentially expressed at BT.

GO functional annotation and KEGG pathway enrichment
analyses were performed using the DAVID online platform
(https://davidbioinformatics.nih.gov/home.jsp). Visualization of
enrichment results was achieved through Sankey diagrams
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generated with Bioladder (https://www.bioladder.cn) and bubble
plots created via Wei Sheng Xin (http://www.bioinformatics.com.cn).

Construction of protein-protein interaction
networks

DEGs across the three time points were compared and
visualized using Venn diagrams. PPI networks were constructed
based on these DEGs using the STRING database. The resultant
interaction data were imported into Cytoscape software to analyze
network topology and facilitate visualization. Key genes within the
network were identified using the CytoHubba plugin employing the
maximal clique centrality (MCC) algorithm, while functionally
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relevant gene clusters were detected using the MCODE plugin.
Integration of these analyses enabled the identification of
significantly connected and functionally important gene modules.

eQTL analysis

Cis-acting genetic associations between SNPs and gene
expression levels were identified using a linear model framework
implemented in the MatrixEQTL R package (version 2.3). SNP-
gene pairs located within a 1-Mb window flanking each gene’s
transcription start site were tested for association. All significant cis-
eQTLs were defined by a false discovery rate (FDR) threshold of
<0.05 and retained for subsequent functional annotation.

Integrative analysis

Genes identified through cis-eQTL mapping were intersected
with DEGs derived from transcriptomic analyses. The overlapping
gene sets were then analyzed via the STRING online platform,
applying a network interaction confidence cutoft set to “confidence”
to delineate high-confidence PPIs. Integrating these data with prior
knowledge from the literature enabled the inference of putative
molecular mechanisms driving thyroid irAEs.

Results
Patient characteristics

A total of 29 patients were enrolled in this study. Within this cohort
receiving combined sintilimab and chemotherapy, 21 patients (72.41%)
maintained normal thyroid function indices at BT, including T3, T4,
FT3, FT4, and TSH, and exhibited persistently normal TSH levels
following treatment. In contrast, eight patients (27.59%) with normal
BT thyroid function developed abnormal TSH levels post-treatment
(Table 1). Importantly, no statistically significant differences were
observed between these two groups with respect to sex, age, tumor
histological subtype, disease stage, concomitant medication regimens,
or BT thyroid function parameters.

Differential expression analyses and
dynamic expression patterns

Differential expression analysis was performed to identify genes
exhibiting significant expression differences between the thyroid
irAEs group and controls across three distinct timepoints (BT, A1T,
A2T). Volcano plots (Figure 2) illustrate gene expression changes at
each stage. Raw p-values were adjusted using the Benjamini-
Hochberg procedure to control the FDR, generating padj. In these
plots, red dots denote genes meeting the criteria of padj < 0.05 and
absolute log, fold change > 1, while green dots indicate genes with
padj < 0.05 and absolute log, fold change > 1.
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TABLE 1 BT characteristics and clinical parameters comparison between
patients with normal thyroid function and thyroid dysfunction after
sintilimab combined with chemotherapy treatment.

Normal
Thyroid Thyroid
Characteristic Function Dysfunction
(n=21) (n=8) N = 8
N = 21"
Age 0.59
Mean (SD) 61 (10) 64 (10)
Median (Q1, Q3) 61 (56, 68) 67 (55, 72)
Min, Max 41,77 50, 77
Sex >0.99
female 8 (38%) 3 (38%)
male 13 (62%) 5 (63%)
Histological Type 0.65
adenocarcinoma 16 (76%) 5 (63%)
E‘}::r;(;ii;stimulating 017
Mean (SD) 2.34 (1.06) 1.99 (1.68)
Median (Q1, Q3) 2.26 (1.54,2.79) 1.59 (0.84, 2.32)
Min, Max 0.72, 5.63 0.66, 5.82
Staging 0.28
I 0 (0%) 1 (13%)
11 4 (19%) 3 (38%)
v 16 (76%) 4 (50%)
missing 1 (4.8%) 0 (0%)
T stage 0.59
Tl 2 (9.5%) 2 (25%)
T2 4 (19%) 3 (38%)
T3 4 (19%) 1 (13%)
T4 10 (48%) 2 (25%)
X 1 (4.8%) 0 (0%)
N stage 0.15
No 3 (14%) 1(13%)
N1 1 (4.8%) 0 (0%)
N2 5 (24%) 5 (63%)
N3 11 (52%) 1 (13%)
X 1 (4.8%) 1 (13%)
M stage 0.14
Mo 3 (14%) 4 (50%)
M1 15 (71%) 4 (50%)
(Continued)
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TABLE 1 Continued

Normal
Thyroid Thyroid
Characteristic Function Dysfunction
(n=21) (n=8) N = 8*
N =21
X 3 (14%) 0 (0%)
Non-platinum 0.32
None 0 (0%) 1 (13%)
Pemetrexed 11 (52%) 4 (50%)
Taxanes 9 (43%) 2 (25%)
Vinorelbine 1 (4.8%) 1 (13%)
Platinum-based 0.43
Carboplatin 10 (48%) 4 (50%)
Cisplatin 0 (0%) 1 (13%)
None 11 (52%) 3 (38%)
Bevacizumab >0.99
Bevacizumab 9 (43%) 3 (38%)
None 12 (57%) 5 (63%)
'n (%).

2Wilcoxon rank sum test; Fisher’s exact test; Wilcoxon rank sum exact test.

To assess the impact of sintilimab treatment on gene
expression dynamics, we applied the LCGI method, identifying
genes with consistent directional changes, either upregulated or
downregulated, at both A1T and A2T stages, while rigorously
excluding genes exhibiting similar BT expression changes. This
approach yielded 13 DEGs, comprising two upregulated and 11
downregulated genes (Figure 3).

To capture progressive transcriptional adaptations, we retained
a primary threshold of p < 0.05 and |log, fold change| > 1
(highlighted as green dots on volcano plots) across all
comparisons, while relaxing the fold change cutoff to |log,FC| >
0.5 specifically for the adjacent A2T phase to detect subtler
expression shifts. Heatmaps (Figures 4, 5) visualize critical gene
expression patterns across samples post-first and second treatment
cycles, with hierarchical clustering dendrograms at the top
illustrating sample similarity.

GO functional annotation and pathway
enrichment analysis

GO enrichment results are visualized in the bubble plot
(Figure 6). Key enriched terms, considering both enrichment ratio
and p-value, converged on complement activation as a central
biological process, implicating neuro-immune crosstalk alongside
perturbations in metabolic and transport pathways that collectively
contribute to thyroid irAEs.

Subsequent KEGG pathway enrichment analysis, performed via
the DAVID database, identified 18 DEGs enriched across multiple
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FIGURE 2

Volcano plot highlighting significant gene expression variations
across the 3 distinct stages: BT, ALT, A2T.

pathways. Eleven significantly enriched pathways were visualized
using a bubble chart (Figure 7), and a Sankey diagram (Figure 8)
was constructed to systematically map the gene-pathway
relationships. These enrichment patterns emphasized the
functional interplay between the complement and coagulation
cascades (hsa04610) and the MAPK signaling pathway (hsa04010).

Construction of PPl networks

DEGs were analyzed for PPIs using the STRING database, and
the resulting network was visualized with Cytoscape software. After
filtering out disconnected nodes based on network topology, the
refined network comprised 29 nodes and 45 edges (Figure 8).

Key regulatory nodes were identified using the CytoHubba
plugin with the MCC algorithm, highlighting genes with high
connectivity or essential functional roles. Notably, PDGFRB, TEK,
FLT1, C1QB, SPP1, C1QC, and C1QA emerged as top candidates
(MCC = 10).

Subnetwork detection via MCODE, using a K-core threshold of
2, revealed modules of densely interconnected nodes. The highest-
scoring subnetwork included PDGFRB, EFNA1, C1QB, TMEM119,
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BT_DOWN

FIGURE 3
Venn diagram of DEGs across the three distinct stages: BT, A1T, A2T.

C1QA, TEK, HLA-DPBI, FLT1, and C1QC, connected by 16 edges.
This module surpassed the degree cutoft threshold, designating it as
the most functionally pivotal cluster within the PPI network.

eQTL and integrative analysis

Cis-eQTL analysis identified 514 significant associations involving
512 unique SNPs and 135 genes (Figure 9). Notably, the gene ADARB2
was found at the intersection of both the eQTL target gene set and
DEGs. Three SNPs, rs12763675, 152209625, and rs10904542, were
implicated as putative eQTLs modulating ADARB2 expression,
suggesting a potential role in the pathogenesis of thyroid irAEs.

Further integrative analysis using the STRING database
revealed 173 distinct eQTLs regulating 37 genes that directly
interact with DEGs. These 37 genes, in turn, influenced 39
downstream target genes, highlighting a complex regulatory
network potentially contributing to thyroid irAE development.

Discussion

The LCGI approach robustly filters out transient fluctuations by
demanding consistent gene expression changes across multiple
timepoints, thereby elevating confidence in detecting biologically
meaningful and sustained signals. By requiring genes to exhibit
concordant directional dynamics, either persistent upregulation or
downregulation, across independent temporal measurements, LCGI
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effectively acts as an intrinsic experimental replicate. This design
dramatically reduces the joint false-positive rate (<0.0025, derived
from 0.05 x 0.05), markedly outperforming conventional single-
timepoint FDR-controlled analyses, a feature especially advantageous
in studies constrained by limited sample sizes.

Importantly, given that irAEs reflect progressive disturbances in
immune homeostasis, such as sustained T-cell activation and
cumulative inflammatory cytokine release, LCGI selectively enriches
for genes with durable transcriptional responses intimately linked to
irAE pathogenesis, while efficiently excluding ephemeral stress-induced
gene expression. This targeted focus on stable molecular signatures not
only enhances mechanistic insight but also improves the identification
of robust biomarkers predictive of irAE onset.

Among the 13 genes identified via LCGI, several emerged as
central hub nodes within the PPI network and have been
experimentally validated for their pivotal roles in immune
regulation. Notably, SPP1 (secreted phosphoprotein 1, also
known as Osteopontin) orchestrates both innate and adaptive
immune responses by modulating immune cell activation,
proliferation, and differentiation, thereby finely tuning the
magnitude of immune reactions (21). Through interactions with
integrins (e.g., avP3) and the CD44 receptor, SPP1 facilitates
immune cell trafficking to sites of inflammation (22, 23). Its
chemotactic properties likely promote T-cell migration into
healthy tissues, potentially driving the pathogenesis of irAEs.

Functionally, SPP1 modulates the secretion of key pro-
inflammatory cytokines, including IL-1, TNF-o, and IL-6, while
concurrently dampening cytotoxic CD8" T cell activity (23). Prior
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FIGURE 4

Heatmap of DEGs after the first treatment of sintilimab.

studies have demonstrated a strong positive correlation between SPP1
expression and the infiltration of diverse immune cell subsets in cancer,
implicating it in the establishment of an immunosuppressive tumor
microenvironment (24, 25). Moreover, genetic variants of SPP1 have
been significantly linked to susceptibility and clinical severity in
autoimmune diseases such as systemic lupus erythematosus (SLE)
and rheumatoid arthritis (RA), underscoring its potential as a
biomarker for irAEs (21).

Within the PPI network, C1QA, C1QB, and CIQC formed a
prominent subnetwork identified through CytoHubba and MCODE
analyses, implicating their involvement in thyroid irAEs. Clgq, a
hexameric protein complex composed of these three distinct subunits,
plays a central role in maintaining immune homeostasis by mediating
immune complex clearance, regulating phagocytosis, balancing
cytokine production, and modulating T-cell subsets. Dysfunction of
Clq has been directly linked to the onset and progression of
autoimmune diseases such as SLE and RA, underscoring its crucial
function in immune tolerance and disease susceptibility (26).

Elevated C1q expression correlates strongly with disease activity
and inflammatory severity in autoimmune conditions, including
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RA (27) and Takayasu arteritis (TA). Moreover, fluctuations in Clq
levels have emerged as a promising biomarker for monitoring the
therapeutic efficacy of immunosuppressive treatments (28).
Notably, during the A1T stage, transcripts of CIQA, C1QB, and
C1QC were significantly upregulated relative to controls, suggesting
that immune hyperactivation following sintilimab administration
might increase susceptibility to thyroid irAEs.

These observations illuminated the dual role of Clq in
autoimmune pathophysiology and treatment response, emphasizing
the necessity for careful endocrine irAE monitoring in patients
undergoing ICI therapy.

Based on the constructed PPI network and the outcomes of GO
and KEGG enrichment analyses, we proposed a pathogenic cascade
underpinning thyroid irAEs, driven by coordinated gene functional
disruptions. Downregulation of FLT1 undermines vascular endothelial
stability (29), which, in concert with decreased TEK expression,
perturbs ANGPT/TIE2 signaling homeostasis. This destabilizes
VE-cadherin-mediated adherens junctions, compromising endothelial
barrier integrity and markedly increasing vascular permeability (30).
Simultaneously, upregulation of PDGFRB exacerbates barrier
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FIGURE 5

Heatmap of DEGs after the second treatment of sintilimab.

dysfunction, facilitating vascular leakage and inflammatory
cell infiltration.

Concurrently, elevated expression of C1QA, C1QB, and C1QC
activates the classical complement cascade, promoting formation of C3
convertase (31) and membrane attack complexes (MAC) that directly
induce lysis of thyroid follicular cells (32). Downregulation of keratins
further destabilizes the cellular cytoskeleton (33), synergizing with
complement-mediated damage to release autoantigens such as
thyroglobulin (Tg) and thyroid peroxidase (TPO).

Reduced SPPI expression impairs macrophage-mediated
clearance of apoptotic debris (34), intensifying antigen exposure,
while disrupting the Treg/Th17 balance (35), thereby diminishing
immunosuppressive control and amplifying pro-inflammatory
responses. The resulting autoantigens are efficiently presented by
antigen-presenting cells with upregulated HLA-DPBI, triggering
activation of autoreactive CD4" T cells. These T cells secrete
interferon-gamma (IFN-y), which further upregulates HLA-DPB1
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expression (36) and complement production, establishing a self-
perpetuating feedback loop of antigen presentation and
inflammatory amplification. This cascade culminates in relentless
thyroid autoimmune injury (Figure 10).

Leveraging STRING-based analysis of eQTL-targeted genes, we
identified 12 genes that directly interacted with 11 candidate genes
(FLT1, PDGFRB, TEK, C1QA, C1QB, C1QC, HLA-DPBI, SPP1,
KRT72, KRT73, KRT18) implicated in thyroid irAE pathogenesis.
These 12 genes were linked to 75 SNPs. Notably, C3 emerged as a
central bridging gene, engaging directly with four key mechanistic
genes, SPP1, C1QA, C1QB, and C1QC, while genetically associated
with three specific SNPs (rs189966229, rs9749508, and
rs148292769). This revealed a novel genetic-immunological axis
centered on C3-associated eQTLs, orchestrating complement-
mediated tissue injury as a core driver of thyroid irAEs.

The identified SNPs modulated C3 expression, positioning it as a
pivotal node that translated genetic susceptibility into downstream
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FIGURE 8
PPI network revealing key regulatory hubs in cellular pathways related to thyroid irAEs.
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effector pathways. Through its interactions with SPP1 and the essential. Furthermore, mechanistic insights into SNP functionality
complement initiators C1QA/B/C, C3 formed a “complement-  require dedicated in vitro and in vivo studies to unravel the causal
matrix axis” that promoted macrophage polarization toward a pro-  pathways linking genetic variation to irAE pathogenesis.
inflammatory phenotype, thereby amplifying pathogenic
immune responses.
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