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Mapping the genetic–
transcriptional landscape
of thyroid irAEs in
sintilimab therapy:
toward biomarker-guided
immunotoxicity prediction
Wei Chen1,2†, Mingyu Zhang2†, Taifeng Li2, Bing Shang2,
Haishuai Su1, Yafei Shi2, Yutao Liu3*, Feng Yu1* and Guohui Li2*

1School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing,
Jiangsu, China, 2Department of Pharmacy, National Cancer Center/National Clinical Research Center
for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China, 3Department of Medical Oncology, National Cancer Center/National Clinical
Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking
Union Medical College, Beijing, China
Objective: By integrating whole-genome resequencing (WGR) with longitudinal

transcriptomic profiling, this study aimed to unravel the genetic–transcriptional

regulatory network underlying thyroid immune-related adverse events (irAEs) in

non-small cell lung cancer (NSCLC) patients treated with sintilimab. A key

objective was to identify molecular biomarkers with predictive and

therapeutic relevance.

Methods: This prospective study included NSCLC patients receiving sintilimab,

from whom peripheral blood samples were collected at three time points:

baseline, post-first treatment, and post-second treatment. RNA sequencing

(RNA-seq) and 30× WGR were performed. Differential gene expression analysis

was conducted on the RNA-seq data, followed by longitudinal consistency

filtering using the Longitudinal Concordant Gene Intersection (LCGI) algorithm

to identify robust differentially expressed genes (DEGs). These DEGs underwent

downstream integration with protein–protein interaction (PPI) network analysis

and cis-expression quantitative trait loci (cis-eQTL) mapping to pinpoint key

genes and regulatory single-nucleotide polymorphisms (SNPs) associated with

thyroid irAEs.

Results: The LCGI algorithm identified 13 DEGs exhibiting sustained directional

shifts across treatment timepoints. Integration with conventional DEG signatures

revealed a functionally cohesive module, with C1QA/B/C, FLT1, TEK, PDGFRB,

SPP1, and HLA-DPB1 emerging as central regulators of thyroid irAEs. Cis-eQTL

mapping identified 500 SNPs with significant cis-regulatory effects on 153 genes.

A “C3 complement-matrix axis” was uncovered as a pivotal node, promoting

macrophage polarization toward a pro-inflammatory phenotype. Based on the

refined PPI network, we proposed a cascading pathological model in which a

self-sustaining feedback loop drove progressive and irreversible

thyroid autoimmunity.

Conclusion: This study established a genetic–transcriptional regulatory

framework for sintilimab-induced thyroid irAEs and identified a candidate gene
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set with biomarker potential. Our findings highlighted the central role of

complement-driven mechanisms, providing a foundation for precision risk

prediction and targeted intervention strategies that preserve antitumor efficacy

while mitigating autoimmune toxicity.
KEYWORDS

immune-related adverse events (irAEs), sintilimab, eQTL analysis, complement system,
longitudinal transcriptomics
Introduction

Immune checkpoint inhibitors (ICIs) have revolutionized the

therapeutic landscape of non-small cell lung cancer (NSCLC),

offering durable clinical benefit in a subset of patients (1, 2).

Sintilimab, a fully human IgG4 monoclonal antibody targeting

PD-1, exhibits high-affinity binding and sustained blockade of the

PD-1/PD-L1 pathway (3), leading to significantly improved survival

outcomes in NSCLC (4). However, thyroid immune-related adverse

events (irAEs) have emerged as some of the most prevalent

toxicities associated with ICI-based regimens, with incidence rates

approaching 50% in combination therapies (5). These endocrine

irAEs span a clinical spectrum that includes hypothyroidism,

hyperthyroidism, and destructive thyroiditis, often necessitating

treatment discontinuation and substantially impairing patient

quality of life (6, 7). Despite its proven clinical efficacy, the

genetic and transcriptomic underpinnings of sintilimab-induced

thyroid irAEs in NSCLC remain largely undefined.

The advancement of gene sequencing technologies has enabled

major breakthroughs in elucidating the genetic basis of disease

pathogenesis (8, 9). Genome-wide association studies (GWAS) have

been widely used to identify genetic loci associated with various

traits and diseases, but they generally require large cohorts to

achieve statistically robust and reproducible genome-wide

associations (10). As a result, for studies involving small sample

sizes, such as investigations into adverse drug reactions, GWAS

often prove insufficient as a stand-alone analytical strategy.

Moreover, even in large-scale GWAS, although numerous trait-

associated loci have been successfully identified, the mechanistic

interpretation of these variants remains an ongoing challenge: the

specific molecular pathways through which these variants influence

biological functions and disease phenotypes are often poorly

understood (11).

Expression quantitative trait loci (eQTL) studies illuminate the

functional consequences of genetic variants by linking them to

transcriptional changes, offering critical mechanistic insights into

GWAS-identified loci and the etiology of complex diseases (12).

The integration of multiple expression modalities, such as total gene

expression and allele-specific expression, significantly enhances

both the sensitivity and specificity of eQTL detection, particularly
02
in heterogeneous tissues like tumors. Advanced mapping strategies

such as pTReCASE, which incorporate tumor purity estimates and

distinguish between tumor-derived and normal cellular expression,

offer a more refined and accurate framework for detecting tumor-

specific regulatory effects (13). These methodological advances not

only improve the identification of disease-associated genes and

actionable therapeutic targets but also deepen our understanding

of the molecular circuitry driving disease progression (14). In the

context of immunological research, eQTL analyses hold distinct

advantages by capturing cell- and tissue-specific regulation,

temporal expression dynamics, and multicellular interactions,

thus providing powerful tools to dissect the genetic basis of

immune-related disorders and inform novel therapeutic

strategies (15).

Previous investigations into irAEs have largely been restricted to

static comparisons of gene expression between patient groups following

a single ICI administration. However, immune responses are inherently

dynamic and temporally regulated. To better capture this complexity,

the current study assessed transcriptomic profiles at three sequential

time points: pre-treatment, post-first treatment, and post-second

treatment. Differential expression and pathway enrichment analyses

were performed to systematically characterize the evolving

transcriptomic landscape in response to sintilimab administration.

This study leveraged transcriptomic data to perform an unbiased,

genome-wide eQTL analysis aimed at uncovering single-nucleotide

polymorphisms (SNPs) linked to gene expression changes implicated

in thyroid irAEs. By integrating SNP profiles with longitudinal

transcriptomic data, we reconstructed the genetic-transcriptional

regulatory network underlying thyroid irAEs, thus addressing a key

limitation in this field, namely, the constraints of small sample sizes in

rare adverse event studies. This multi-omics approach illuminated the

mechanistic connections between genetic variation and the

emergence of thyroid irAEs, revealing candidate molecular

pathways that might drive their development. Our findings also

pointed to a set of clinically actionable biomarkers with potential

utility for dynamic risk stratification in NSCLC patients undergoing

sintilimab treatment. Through this comprehensive framework, we

provided new insights into the genetic architecture of immune

toxicity, with broader implications for precision medicine in

cancer immunotherapy.
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Materials and methods

Study design and participants

This study was designed as a prospective, real-world

investigation. Eligible participants met the following criteria: (1)

hospitalization at the National Cancer Center/Cancer Hospital,

Chinese Academy of Medical Sciences between January 2021 and

December 2024; (2) histological or clinical confirmation of NSCLC;

(3) completion of at least two cycles of sintilimab administered

every 3 weeks; (4) age between 18 and 80 years; and (5) availability

of complete and evaluable baseline (BT) data prior to

treatment initiation.

Exclusion criteria included: (1) history of thyroid surgery or

radiotherapy to the cervical region; (2) preexisting thyroid disease

or dysfunction; and (3) severe cardiac, hepatic, renal, or

autoimmune disorders.

The study protocol was approved by the Ethics Committee of

the National Cancer Center/Cancer Hospital, Chinese Academy

of Medical Sciences (approval number: 2020122509100302).

Written informed consent was obtained from all participants

before enrollment.
Whole-Genome Resequencing

Peripheral blood samples were collected, and genomic DNA

was isolated using the TIANamp Genomic DNA Kit. DNA

concentration was quantified with a Qubit® 3.0 Fluorometer (Life

Technologies, CA, USA), while integrity and purity were assessed

via 1% agarose gel electrophoresis (120 V, 45 min). Library

preparation was performed following the TruSeq DNA Sample

Preparation Guide (Illumina, 15026486 Rev. C). Library quality was

verified by qPCR using the Bio-Rad iQ SYBR Green Kit.

Sequencing was conducted on the Illumina NovaSeq 6000

platform using paired-end (PE) protocols, generating 150-bp PE

reads with an average coverage depth of 30×. Clean reads were

aligned to the UCSC hg38 human reference genome using BWA.

Variant calling was subsequently performed using the Genome

Analysis Toolkit (GATK) to extract candidate polymorphic

SNP loci.
RNA sequencing

High-quality total RNA was extracted from peripheral

blood samples. RNA purity was assessed using a NanoDrop

spectrophotometer (NanoDrop Technologies, Wilmington, DE,

USA), and RNA integrity was evaluated using the Agilent 2100/

5400 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

Ribosomal RNA was depleted from total RNA prior to

library construction.

Fragmented RNA was used as a template for first-strand cDNA

synthesis primed with random hexamers. Second-strand synthesis
Frontiers in Immunology 03
was performed using DNA Polymerase I, RNase H, and a dNTP

mix in which dUTP replaced dTTP. The resulting double-stranded

cDNA underwent purification, end repair, adenylation, and adapter

ligation. Uracil-containing second strands were selectively digested

with USER enzyme (New England Biolabs) to ensure strand

specificity. Final libraries were purified using AMPure XP beads

(Beckman Coulter). Libraries that passed quality control were

sequenced on the Illumina NovaSeq X Plus platform using a

150-bp PE protocol.
Statistical analyses

The overall analytical workflow is illustrated in Figure 1.

Differential gene expression analysis was conducted using the

DESeq2 package (version 1.34.0), while eQTL mapping was

performed using the Matrix eQTL package (version 2.3) in R

(version 4.3.3).
Differential expression analyses

RNA-seq quantification data were analyzed using the DESeq2

package (version 1.34.0) in R (version 4.3.3). Raw gene counts were

imported from a preprocessed expression matrix, accompanied by

metadata specifying experimental groups and covariates (sex and

age). Genes with low expression, defined as fewer than 10 counts in

fewer than k samples, where k corresponds to the sample size of the

smallest comparison group, were excluded to reduce noise and

retain biologically meaningful signals.

Categorical variables (e.g., sex and group) were encoded as

factors, while continuous variables (e.g., age) were standardized via

z-score transformation (mean-centered and scaled to unit variance).

Differential expression testing was performed using a negative

binomial generalized linear model that accounted for sex and age

as covariates. Dispersion estimates were moderated using empirical

Bayes shrinkage prior to Wald significance testing.

Differentially expressed genes (DEGs) were defined based on

dual criteria: an absolute log2 fold change >1 and an adjusted p-

value (padj, Benjamini–Hochberg correction) <0.05.

Gene expression can be influenced by a variety of

environmental and biological factors, including diet and lifestyle

(16), chemical exposure (17), hormonal fluctuations (18, 19), and

cellular states such as proliferation and differentiation (20). To

mitigate confounding from such variables, we implemented the

Longitudinal Concordant Gene Intersection (LCGI) method, a

robust analytic strategy designed to reduce false positives while

prioritizing sustained biological signals. This approach incorporates

longitudinal RNA-seq data from two post-treatment time points,

filtering genes by fold-change thresholds (A1T >1, A2T >0.5),

p-value significance (<0.05), and directional consistency across

time. The final DEG set was defined as the intersection of genes

meeting all criteria, thereby enriching for genes with persistent,

treatment-associated expression changes.
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Gene ontology functional annotation and
kyoto encyclopedia of genes and genomes
pathway enrichment analysis

To minimize basel ine confounding and achieve a

comprehensive characterization of pathways associated with

thyroid irAEs, we integrated enrichment analyses from two gene

sets: (1) concordantly regulated DEGs identified via the LCGI

method; and (2) combined DEGs from the post-treatment stages

A1T and A2T, excluding those differentially expressed at BT.

GO functional annotation and KEGG pathway enrichment

analyses were performed using the DAVID online platform

(https://davidbioinformatics.nih.gov/home.jsp). Visualization of

enrichment results was achieved through Sankey diagrams
Frontiers in Immunology 04
generated with Bioladder (https://www.bioladder.cn) and bubble

plots created via Wei Sheng Xin (http://www.bioinformatics.com.cn).
Construction of protein-protein interaction
networks

DEGs across the three time points were compared and

visualized using Venn diagrams. PPI networks were constructed

based on these DEGs using the STRING database. The resultant

interaction data were imported into Cytoscape software to analyze

network topology and facilitate visualization. Key genes within the

network were identified using the CytoHubba plugin employing the

maximal clique centrality (MCC) algorithm, while functionally
FIGURE 1

Research process for investigating immune-related thyroid dysfunction in NSCLC patients receiving sintilimab treatment.
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relevant gene clusters were detected using the MCODE plugin.

Integration of these analyses enabled the identification of

significantly connected and functionally important gene modules.
eQTL analysis

Cis-acting genetic associations between SNPs and gene

expression levels were identified using a linear model framework

implemented in the MatrixEQTL R package (version 2.3). SNP-

gene pairs located within a 1-Mb window flanking each gene’s

transcription start site were tested for association. All significant cis-

eQTLs were defined by a false discovery rate (FDR) threshold of

<0.05 and retained for subsequent functional annotation.
Integrative analysis

Genes identified through cis-eQTL mapping were intersected

with DEGs derived from transcriptomic analyses. The overlapping

gene sets were then analyzed via the STRING online platform,

applying a network interaction confidence cutoff set to “confidence”

to delineate high-confidence PPIs. Integrating these data with prior

knowledge from the literature enabled the inference of putative

molecular mechanisms driving thyroid irAEs.
Results

Patient characteristics

A total of 29 patients were enrolled in this study.Within this cohort

receiving combined sintilimab and chemotherapy, 21 patients (72.41%)

maintained normal thyroid function indices at BT, including T3, T4,

FT3, FT4, and TSH, and exhibited persistently normal TSH levels

following treatment. In contrast, eight patients (27.59%) with normal

BT thyroid function developed abnormal TSH levels post-treatment

(Table 1). Importantly, no statistically significant differences were

observed between these two groups with respect to sex, age, tumor

histological subtype, disease stage, concomitant medication regimens,

or BT thyroid function parameters.
Differential expression analyses and
dynamic expression patterns

Differential expression analysis was performed to identify genes

exhibiting significant expression differences between the thyroid

irAEs group and controls across three distinct timepoints (BT, A1T,

A2T). Volcano plots (Figure 2) illustrate gene expression changes at

each stage. Raw p-values were adjusted using the Benjamini–

Hochberg procedure to control the FDR, generating padj. In these

plots, red dots denote genes meeting the criteria of padj < 0.05 and

absolute log2 fold change > 1, while green dots indicate genes with

padj < 0.05 and absolute log2 fold change > 1.
Frontiers in Immunology 05
TABLE 1 BT characteristics and clinical parameters comparison between
patients with normal thyroid function and thyroid dysfunction after
sintilimab combined with chemotherapy treatment.

Characteristic

Normal
Thyroid
Function
(n=21)
N = 211

Thyroid
Dysfunction
(n=8) N = 81

p-value2

Age 0.59

Mean (SD) 61 (10) 64 (10)

Median (Q1, Q3) 61 (56, 68) 67 (55, 72)

Min, Max 41, 77 50, 77

Sex >0.99

female 8 (38%) 3 (38%)

male 13 (62%) 5 (63%)

Histological Type 0.65

adenocarcinoma 16 (76%) 5 (63%)

squamous
carcinoma

5 (24%) 3 (38%)

Thyroid-stimulating
hormone

0.17

Mean (SD) 2.34 (1.06) 1.99 (1.68)

Median (Q1, Q3) 2.26 (1.54, 2.79) 1.59 (0.84, 2.32)

Min, Max 0.72, 5.63 0.66, 5.82

Staging 0.28

II 0 (0%) 1 (13%)

III 4 (19%) 3 (38%)

IV 16 (76%) 4 (50%)

missing 1 (4.8%) 0 (0%)

T stage 0.59

T1 2 (9.5%) 2 (25%)

T2 4 (19%) 3 (38%)

T3 4 (19%) 1 (13%)

T4 10 (48%) 2 (25%)

X 1 (4.8%) 0 (0%)

N stage 0.15

N0 3 (14%) 1 (13%)

N1 1 (4.8%) 0 (0%)

N2 5 (24%) 5 (63%)

N3 11 (52%) 1 (13%)

X 1 (4.8%) 1 (13%)

M stage 0.14

M0 3 (14%) 4 (50%)

M1 15 (71%) 4 (50%)

(Continued)
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To assess the impact of sintilimab treatment on gene

expression dynamics, we applied the LCGI method, identifying

genes with consistent directional changes, either upregulated or

downregulated, at both A1T and A2T stages, while rigorously

excluding genes exhibiting similar BT expression changes. This

approach yielded 13 DEGs, comprising two upregulated and 11

downregulated genes (Figure 3).

To capture progressive transcriptional adaptations, we retained

a primary threshold of p < 0.05 and |log2 fold change| > 1

(highlighted as green dots on volcano plots) across all

comparisons, while relaxing the fold change cutoff to |log2FC| >

0.5 specifically for the adjacent A2T phase to detect subtler

expression shifts. Heatmaps (Figures 4, 5) visualize critical gene

expression patterns across samples post-first and second treatment

cycles, with hierarchical clustering dendrograms at the top

illustrating sample similarity.
GO functional annotation and pathway
enrichment analysis

GO enrichment results are visualized in the bubble plot

(Figure 6). Key enriched terms, considering both enrichment ratio

and p-value, converged on complement activation as a central

biological process, implicating neuro-immune crosstalk alongside

perturbations in metabolic and transport pathways that collectively

contribute to thyroid irAEs.

Subsequent KEGG pathway enrichment analysis, performed via

the DAVID database, identified 18 DEGs enriched across multiple
Frontiers in Immunology 06
pathways. Eleven significantly enriched pathways were visualized

using a bubble chart (Figure 7), and a Sankey diagram (Figure 8)

was constructed to systematically map the gene-pathway

relationships. These enrichment patterns emphasized the

functional interplay between the complement and coagulation

cascades (hsa04610) and the MAPK signaling pathway (hsa04010).
Construction of PPI networks

DEGs were analyzed for PPIs using the STRING database, and

the resulting network was visualized with Cytoscape software. After

filtering out disconnected nodes based on network topology, the

refined network comprised 29 nodes and 45 edges (Figure 8).

Key regulatory nodes were identified using the CytoHubba

plugin with the MCC algorithm, highlighting genes with high

connectivity or essential functional roles. Notably, PDGFRB, TEK,

FLT1, C1QB, SPP1, C1QC, and C1QA emerged as top candidates

(MCC ≥ 10).

Subnetwork detection via MCODE, using a K-core threshold of

2, revealed modules of densely interconnected nodes. The highest-

scoring subnetwork included PDGFRB, EFNA1, C1QB, TMEM119,
TABLE 1 Continued

Characteristic

Normal
Thyroid
Function
(n=21)
N = 211

Thyroid
Dysfunction
(n=8) N = 81

p-value2

X 3 (14%) 0 (0%)

Non-platinum 0.32

None 0 (0%) 1 (13%)

Pemetrexed 11 (52%) 4 (50%)

Taxanes 9 (43%) 2 (25%)

Vinorelbine 1 (4.8%) 1 (13%)

Platinum-based 0.43

Carboplatin 10 (48%) 4 (50%)

Cisplatin 0 (0%) 1 (13%)

None 11 (52%) 3 (38%)

Bevacizumab >0.99

Bevacizumab 9 (43%) 3 (38%)

None 12 (57%) 5 (63%)
1n (%).
2Wilcoxon rank sum test; Fisher’s exact test; Wilcoxon rank sum exact test.
FIGURE 2

Volcano plot highlighting significant gene expression variations
across the 3 distinct stages: BT, A1T, A2T.
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C1QA, TEK, HLA-DPB1, FLT1, and C1QC, connected by 16 edges.

This module surpassed the degree cutoff threshold, designating it as

the most functionally pivotal cluster within the PPI network.
eQTL and integrative analysis

Cis-eQTL analysis identified 514 significant associations involving

512 unique SNPs and 135 genes (Figure 9). Notably, the gene ADARB2

was found at the intersection of both the eQTL target gene set and

DEGs. Three SNPs, rs12763675, rs2209625, and rs10904542, were

implicated as putative eQTLs modulating ADARB2 expression,

suggesting a potential role in the pathogenesis of thyroid irAEs.

Further integrative analysis using the STRING database

revealed 173 distinct eQTLs regulating 37 genes that directly

interact with DEGs. These 37 genes, in turn, influenced 39

downstream target genes, highlighting a complex regulatory

network potentially contributing to thyroid irAE development.
Discussion

The LCGI approach robustly filters out transient fluctuations by

demanding consistent gene expression changes across multiple

timepoints, thereby elevating confidence in detecting biologically

meaningful and sustained signals. By requiring genes to exhibit

concordant directional dynamics, either persistent upregulation or

downregulation, across independent temporal measurements, LCGI
Frontiers in Immunology 07
effectively acts as an intrinsic experimental replicate. This design

dramatically reduces the joint false-positive rate (<0.0025, derived

from 0.05 × 0.05), markedly outperforming conventional single-

timepoint FDR-controlled analyses, a feature especially advantageous

in studies constrained by limited sample sizes.

Importantly, given that irAEs reflect progressive disturbances in

immune homeostasis, such as sustained T-cell activation and

cumulative inflammatory cytokine release, LCGI selectively enriches

for genes with durable transcriptional responses intimately linked to

irAE pathogenesis, while efficiently excluding ephemeral stress-induced

gene expression. This targeted focus on stable molecular signatures not

only enhances mechanistic insight but also improves the identification

of robust biomarkers predictive of irAE onset.

Among the 13 genes identified via LCGI, several emerged as

central hub nodes within the PPI network and have been

experimentally validated for their pivotal roles in immune

regulation. Notably, SPP1 (secreted phosphoprotein 1, also

known as Osteopontin) orchestrates both innate and adaptive

immune responses by modulating immune cell activation,

proliferation, and differentiation, thereby finely tuning the

magnitude of immune reactions (21). Through interactions with

integrins (e.g., avb3) and the CD44 receptor, SPP1 facilitates

immune cell trafficking to sites of inflammation (22, 23). Its

chemotactic properties likely promote T-cell migration into

healthy tissues, potentially driving the pathogenesis of irAEs.

Functionally, SPP1 modulates the secretion of key pro-

inflammatory cytokines, including IL-1b, TNF-a, and IL-6, while

concurrently dampening cytotoxic CD8+ T cell activity (23). Prior
FIGURE 3

Venn diagram of DEGs across the three distinct stages: BT, A1T, A2T.
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studies have demonstrated a strong positive correlation between SPP1

expression and the infiltration of diverse immune cell subsets in cancer,

implicating it in the establishment of an immunosuppressive tumor

microenvironment (24, 25). Moreover, genetic variants of SPP1 have

been significantly linked to susceptibility and clinical severity in

autoimmune diseases such as systemic lupus erythematosus (SLE)

and rheumatoid arthritis (RA), underscoring its potential as a

biomarker for irAEs (21).

Within the PPI network, C1QA, C1QB, and C1QC formed a

prominent subnetwork identified through CytoHubba and MCODE

analyses, implicating their involvement in thyroid irAEs. C1q, a

hexameric protein complex composed of these three distinct subunits,

plays a central role in maintaining immune homeostasis by mediating

immune complex clearance, regulating phagocytosis, balancing

cytokine production, and modulating T-cell subsets. Dysfunction of

C1q has been directly linked to the onset and progression of

autoimmune diseases such as SLE and RA, underscoring its crucial

function in immune tolerance and disease susceptibility (26).

Elevated C1q expression correlates strongly with disease activity

and inflammatory severity in autoimmune conditions, including
Frontiers in Immunology 08
RA (27) and Takayasu arteritis (TA). Moreover, fluctuations in C1q

levels have emerged as a promising biomarker for monitoring the

therapeutic efficacy of immunosuppressive treatments (28).

Notably, during the A1T stage, transcripts of C1QA, C1QB, and

C1QC were significantly upregulated relative to controls, suggesting

that immune hyperactivation following sintilimab administration

might increase susceptibility to thyroid irAEs.

These observations illuminated the dual role of C1q in

autoimmune pathophysiology and treatment response, emphasizing

the necessity for careful endocrine irAE monitoring in patients

undergoing ICI therapy.

Based on the constructed PPI network and the outcomes of GO

and KEGG enrichment analyses, we proposed a pathogenic cascade

underpinning thyroid irAEs, driven by coordinated gene functional

disruptions. Downregulation of FLT1 undermines vascular endothelial

stability (29), which, in concert with decreased TEK expression,

perturbs ANGPT/TIE2 signaling homeostasis. This destabilizes

VE-cadherin-mediated adherens junctions, compromising endothelial

barrier integrity and markedly increasing vascular permeability (30).

Simultaneously, upregulation of PDGFRB exacerbates barrier
FIGURE 4

Heatmap of DEGs after the first treatment of sintilimab.
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dysfunction, facilitating vascular leakage and inflammatory

cell infiltration.

Concurrently, elevated expression of C1QA, C1QB, and C1QC

activates the classical complement cascade, promoting formation of C3

convertase (31) and membrane attack complexes (MAC) that directly

induce lysis of thyroid follicular cells (32). Downregulation of keratins

further destabilizes the cellular cytoskeleton (33), synergizing with

complement-mediated damage to release autoantigens such as

thyroglobulin (Tg) and thyroid peroxidase (TPO).

Reduced SPP1 expression impairs macrophage-mediated

clearance of apoptotic debris (34), intensifying antigen exposure,

while disrupting the Treg/Th17 balance (35), thereby diminishing

immunosuppressive control and amplifying pro-inflammatory

responses. The resulting autoantigens are efficiently presented by

antigen-presenting cells with upregulated HLA-DPB1, triggering

activation of autoreactive CD4+ T cells. These T cells secrete

interferon-gamma (IFN-g), which further upregulates HLA-DPB1
Frontiers in Immunology 09
expression (36) and complement production, establishing a self-

perpetuating feedback loop of antigen presentation and

inflammatory amplification. This cascade culminates in relentless

thyroid autoimmune injury (Figure 10).

Leveraging STRING-based analysis of eQTL-targeted genes, we

identified 12 genes that directly interacted with 11 candidate genes

(FLT1, PDGFRB, TEK, C1QA, C1QB, C1QC, HLA-DPB1, SPP1,

KRT72, KRT73, KRT18) implicated in thyroid irAE pathogenesis.

These 12 genes were linked to 75 SNPs. Notably, C3 emerged as a

central bridging gene, engaging directly with four key mechanistic

genes, SPP1, C1QA, C1QB, and C1QC, while genetically associated

with three specific SNPs (rs189966229, rs9749508, and

rs148292769). This revealed a novel genetic-immunological axis

centered on C3-associated eQTLs, orchestrating complement-

mediated tissue injury as a core driver of thyroid irAEs.

The identified SNPs modulated C3 expression, positioning it as a

pivotal node that translated genetic susceptibility into downstream
FIGURE 5

Heatmap of DEGs after the second treatment of sintilimab.
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FIGURE 6

Bubble plot of GO enrichment analysis highlighting key terms.
FIGURE 7

Sankey and bubble chart: gene-pathway associations.
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FIGURE 8

PPI network revealing key regulatory hubs in cellular pathways related to thyroid irAEs.
FIGURE 9

Genomic loci associated with gene expression levels identified through eQTL analysis.
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effector pathways. Through its interactions with SPP1 and the

complement initiators C1QA/B/C, C3 formed a “complement-

matrix axis” that promoted macrophage polarization toward a pro-

inflammatory phenotype, thereby amplifying pathogenic

immune responses.
Conclusion

In summary, our longitudinal transcriptomic investigation

delineated dynamic gene expression profiles associated with thyroid

irAEs during sintilimab therapy. By integrating genomic variants with

transcriptomic data via eQTL analysis, we constructed a comprehensive

genetic framework underlying thyroid irAEs, illuminating the intricate

links between genetic variation and clinical phenotypes. Notably, this

study is the first to identify C3 eQTLs as a central regulatory nexus

bridging genetic susceptibility and complement-driven thyroid irAEs.

Therapeutic targeting of this pathway holds promise for dissociating

antitumor efficacy from autoimmune toxicity, offering a refined

strategy for precision immunotherapy.

Despite these scientifically and clinically impactful findings,

limitations remain. Restricted by sample size and follow-up

duration, validation in larger, longitudinal clinical cohorts is
Frontiers in Immunology 12
essential. Furthermore, mechanistic insights into SNP functionality

require dedicated in vitro and in vivo studies to unravel the causal

pathways linking genetic variation to irAE pathogenesis.
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