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Optic nerve injury (ONI) initiates complex immune responses that can act as a

“double-edged sword,” promoting either neuroprotection or neurodegeneration

of retinal ganglion cells (RGCs). In this review, we integrate evidence on both

innate and adaptive immunity in ONI, emphasizing the dual roles of microglia,

Müller cells, astrocytes, T and B lymphocytes, and the complement system. While

glial activation and blood–retina barrier breakdown are critical determinants of

local inflammation, T-cell response, which are shaped by subset composition,

antigen specificity, and checkpoint signaling, can further shift the balance

between repair and injury. Recent advances, including single-cell and spatial

transcriptomic analyses, as well as experimental modulation of immune

checkpoints, reveal new opportunities—such as precise immune mapping,

checkpoint-targeted neuroprotection, and gene-based immunoregulation—

but also persistent challenges, including the need to clarify the spatiotemporal

dynamics of immune activity, overcome interspecies differences between rodent

and human models, and ensure the safety of immunomodulatory strategies in

the immune-privileged eye. By applying the “double-edged sword framework”

consistently across these immune mechanisms, we highlight how cellular

context and timing determine divergent outcomes. Finally, we discuss

emerging approaches such as regulatory T-cell enhancement, targeted

inhibition of complement overactivation, senolytics, and gene-editing

interventions, outlining translational perspectives for immune-guided

neuroprotection in ONI.
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1 Introduction

Optic nerve injury (ONI) is a major cause of irreversible vision

loss, primarily due to the degeneration of retinal ganglion cells

(RGCs) (1). The pathophysiology of ONI involves not only direct

axonal damage but also complex secondary processes driven by

immune and glial responses (2).

Recent evidence has increasingly highlighted that immune

responses function as a double-edged sword: while acute

activation of protective mechanisms may facilitate debris

clearance, axonal regeneration, and neurotrophic support, chronic

or dysregulated activity often results in neuroinflammation, blood–

retina barrier (BRB) disruption, and accelerated RGC death.

Framing ONI immunity within this dualistic paradigm provides a

unifying perspective to reconcile findings that otherwise appear

contradictory (3, 4).

In particular, the seemingly contradictory roles of T

lymphocytes (T cells) exemplify this duality. Their dual functions

should not be interpreted as a simple dichotomy, but rather as the

result of functional plasticity shaped by species differences, injury

models (e.g., acute ischemia and chronic glaucoma), temporal

dynamics of immune infiltration, and subset composition (e.g., T

helper 17 [Th17] vs. regulatory T cells [Treg]). Furthermore,

anatomical localization (retina versus optic nerve head) and

antigen-specific interactions, including immune checkpoint

regulation on neurons such as programmed cell death 1 (PD-1)

expression on RGCs, critically determine whether T-cell activity

becomes neuroprotective or pathogenic.

Microglia, as resident innate immune cells, rapidly respond to

axonal injury. They can phagocytose debris and secrete growth

factors that transiently support neuronal survival. However,

prolonged activation leads to the release of pro-inflammatory

cytokines such as tumor necrosis factor (TNF)-a and interleukin

(IL)-1b, which exacerbate neuronal degeneration. Müller cells,

another key retinal glial population, contribute to maintaining

BRB integrity and metabolic support under physiological

conditions. However, under stress, they amplify inflammatory

cascades and promote gliosis. Astrocytes similarly show dual

functions, providing structural and metabolic support early after

injury but later contributing to scar formation and neurotoxicity

(5–9).

Adaptive immune cells also display this duality. Tregs have been

shown to promote neuroprotection through IL-10 and

transforming growth factor (TGF)-b secretion, whereas Th17 and

CD8+ T cells may drive persistent inflammation and RGC apoptosis

in glaucoma and optic nerve crush models. Immune checkpoint

pathways, including PD-1 and cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), further modulate these responses, raising both

therapeutic opportunities and safety concerns (10–13).

Together, these findings underscore that the impact of immune

activity on ONI depends on cellular identity, anatomical

localization, temporal dynamics, and context-dependent signaling

pathways. In this review, we aimed at determining the innate

and adaptive roles of immune cells in ONI by systematically

analyzing how these cells contribute to RGC loss or survival.
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We focus on key cellular interactions between microglia and

Müller cells, and explore how the breakdown of ocular immune

privilege influences disease progression. We also discuss emerging

therapeutic strategies that could manipulate immune pathways for

neuroprotection and regeneration. We provide a comprehensive

explanation of current concepts and identify new directions for

investigation and clinical intervention in ONI.
2 Immune cells

2.1 Innate immunity

Eyes are highly intricate and vital organs that play crucial roles

in facilitating human interaction with the environment. Despite

continuous exposure to harmful stimuli, such as infectious agents,

pollutants, and mechanical stress, the eyes have evolved robust

defense mechanisms. This includes innate immunity, which serves

as the first line of defense against pathogens.

Innate immunity is characterized by an immediate

physiological response to pathogens or foreign objects, typically

occurring within minutes to 96 h after exposure. At the ocular

surface, innate defenses such as antimicrobial peptides, lysozymes,

and lactoferrin in tear fluid protect against external pathogens. By

contrast, in the posterior segment, and specifically within the retina,

innate immune activity is organized around glial networks (retinal

microglia, Müller cells, and astrocytes), which differ fundamentally

from ocular-surface innate defenses in composition, localization,

and immune privilege constraints (BRB) (14).

Innate immunity is distinguished by a broad range of actions,

rapid responses, relative stability, and heritability that collectively

establish the foundation for specific immunity.

2.1.1 Innate immune cells in retinal and optic
nerve protection

Innate immune cells are the first line of defense in the retina and

optic nerve, both providing acute protection and being potential

drivers of chronic neuroinflammation. They include phagocytes

(neutrophils and mononuclear phagocytes), dendritic cells

(characterized by extensive branching processes and widespread

distribution throughout tissues and organs), natural killer T cells

(originating from bone marrow lymphoid stem cells), gamma delta

T cells, B-1 cells, and mast cells, as well as eosinophils and basophils.

They play roles in clearing damaged, senescent, and aberrant cells

and contribute to adaptive immune responses.

In the retina, the predominant cytokine producers are glial cells,

particularly microglia, Müller cells, and astrocytes. Microglia and

macrophages are pivotal innate immune cells located in the retina

and choroid, where they phagocytose apoptotic cells and debris to

maintain homeostasis (3, 15, 16). Retinal microglia, distributed in

the ganglion cell layer and plexiform layers, are highly responsive to

injury and release inflammatory cytokines such as IL-1b and TNF-

a (14, 17, 18). Müller cells provide structural and metabolic support

and also release ATP under stress, thereby perpetuating microglial

activation (19–22).
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RGCs themselves are not considered primary immune effectors.

Under physiological conditions, they contribute minimally, but

under stress or disease, they can upregulate pattern-recognition

receptors such as toll-like receptors (TLRs) and secrete cytokines in

a context-dependent manner (23–27). However, compared with

glia, their contribution to cytokine production is limited.

Microglial activation remains a key indicator of neurodegenerative

severity, with reduced activation correlating with preserved

optic nerve integrity. In ONI, activated microglia selectively target

damaged neurons and synapses for phagocytosis and complement-

mediated clearance. While these processes are essential for early

debris removal, excessive or chronic activation contributes to

synaptic degeneration, axonal disruption, and irreversible vision

loss (5–9, 28, 29).

Recent single-cell RNA sequencing studies have revealed

profound heterogeneity among retinal glia, identifying subsets of

microglia and Müller cells with divergent inflammatory or

neurotrophic profiles (30, 31). This heterogeneity helps explain

why findings from bulk studies sometimes appear contradictory.

Translating these insights into therapy is challenging: targeting glial

subtypes requires precise spatiotemporal modulation, and cross-

species differences between rodent and human retina complicate

direct extrapolation.

In summary, innate immune cell activity in ONI is

characterized by a dynamic balance: glial-derived cytokines and

phagocytic activity are essential for acute protection, whereas

chronic activation of the same pathways promotes RGC loss.

RGCs themselves can contribute under stress conditions;

however, their role is secondary to that of glia.

2.1.2 Innate immune molecules
The complement system is an essential component of the

innate immune response (32) that consists of more than 30

distinct enzymatically active proteins in the serum and tissue

fluids in humans and other vertebrates (33). Although primarily

synthesized by hepatocytes, mononuclear macrophages, endothelial

and intestinal epithelial cells, and keratinocytes also produce

complement proteins (34, 35). Complement activation is initiated

by four principal pathways. The classical pathway mediated by

antigen-antibody complexes leads to the activation of complement

components (C) 1, 4, 2, and 3, which results in the formation of C3

and C5 convertases that cleave C5. This ultimately causes the

formation of C5b-9 membrane attack complexes (MACs) that

create pores in cell membranes, resulting in osmotic imbalance

and cell lysis. The Mannan-binding lectin pathway is activated

during the early stages of pathogen infection. Mannan-binding

lectin binds to bacterial mannose residues that activate a serine

protease complex with activity similar to that of C1q, initiating a

cascade reaction analogous to the classical pathway. The alternative

pathway is activated by bacteria, bacterial endotoxins, glucans,

yeast polysaccharides, and agglutinated immunoglobin (Ig)A and

IgG4. The complement system operates as an interactive network of

proteins that rapidly neutralizes microbial invaders or endogenous

stress signals through opsonophagocytosis and inflammation (36).

It contributes to tissue homeostasis and host immune surveillance
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by coordinating innate and adaptive immune signals. Both C3 and

C5 are pivotal components of the complement cascade. C3 has

emerged as a significant therapeutic target in inflammatory diseases

such as age-related macular degeneration (37, 38). It is involved in

cell regulation and plays a vital role in recruiting microglia and

macrophages and in modulating downstream pathways (39).

Although the complement system facilitates pathogen clearance

and debris removal, its overactivation in the retina might

induce neuronal injury. When C3 is upregulated, downstream

MACs form in ONI, as found in experimental animal models

and human glaucomatous tissues (40). While C3b-mediated

opsonization helps to clear apoptotic RGCs, uncontrolled MAC

formation disrupts the integrity of the neuronal membrane, which

directly contributes to RGC death. This duality highlights the

delicate balance between complement-mediated protection and

neurotoxicity in ONI pathogenesis.

Therapeutics targeting complement components are

promising treatment modalities in that C3 inhibitors, such as

pegcetacoplan, can reduce retinal inflammation and lesion

progression in geographic atrophy secondary to age-related

macular degeneration (41). Although glaucoma-specific trials are

still ongoing, preclinical findings of C3-targeted gene therapy have

reduced axonal and neuronal degeneration in models of chronic

glaucoma (42). Modulating complement regulators or enhancing

endogenous inhibitors (such as factor H) might preserve retinal

function in ONI, minimizing neurotoxic effects while maintaining

essential immune surveillance (40).

In conclusion, ocular innate immunity plays critical roles,

particularly innate immune cells and RGCs. These findings

enhance our understanding of ocular diseases and might facilitate

the development of innovative therapeutic strategies. Future studies

should explore interactions between the ocular and corporeal

immune systems to potentially contribute to the treatment of

other systemic conditions.
2.2 Adaptive immunity

Adaptive immunity is activated in response to sustained

pathogen exposure. Although the establishment of adaptive

immunity typically requires 1 to 2 weeks, it is characterized by

the specific recognition of pathogens and the generation of

immunological memory, rendering it essential for defense against

external threats (43). T cells are integral to adaptive immunity

(44, 45).

2.2.1 T cells
T cells are integral to adaptive immunity and are classified into

naïve, regulatory, effector, and memory subsets, which together

provide protection and maintain immune homeostasis throughout

life (46). Their activation and differentiation are tightly regulated by

signaling and metabolic cues, including mechanistic target of

rapamycin (mTOR), glucose and glutamine metabolism, and co-

stimulatory pathways such as CD28, which govern the transition

from quiescence to functional specialization (47–50). While these
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fundamental mechanisms are well established, their implications in

the retina warrant closer examination.

In the context of ONI, the relevance of T cells lies in how distinct

subsets interact with retinal cells to shape outcomes. Microglia, as the

first line of defense, recognize damage-associated signals and present

antigens to T cells (14). Depending on subset composition, T cells can

directly release cytotoxic factors (e.g., interferon [IFN]-g, IL-17)
that exacerbate RGC injury or exert immunoregulatory effects

through IL-10 and TGF-b to restrain inflammation and maintain

tolerance. Importantly, RGCs themselves may also modulate immune

activity: in chronic glaucoma models, aberrant expression of PD-1 on

RGCs promoted the transformation of microglia toward an M2

phenotype, thereby conferring neuroprotection (i.e., protective effects

of blocking PD-1 pathway on RGCs in a mouse model of chronic

ocular hypertension).

These findings indicate that the role of T cells in ONI cannot be

understood in isolation but must be interpreted through the lens of

subset identity, microglial antigen presentation, and neuronal

checkpoint regulation. Further exploration of these interactions

may be key to revealing mechanisms of optic nerve diseases and

developing new therapeutic strategies.

2.2.2 T-cell receptor
T cell activation is initiated by the specific binding of major

histocompatibility complexes (MHC) to T-cell receptor (TCR)ab
heterodimers that are stabilized by CD8 and CD4 binding to MHC

classes I and II, respectively (51). TCRab heterodimers are

associated with multiple signal transduction subunits (CD3g,
CD3d, CD3e, and CD3z) that activate downstream signaling

pathways. These subunits contain tyrosine-based immune

receptor activation motifs that recruit proteins with SH2 domains,

such as tyrosine protein kinase zeta-chain-associated protein kinase

70 (ZAP70) (52). The affinity, duration, and intensity of TCR

signaling determines the metabolic and functional programs of T

cells. The role of TCRs in ONI and repair remains equivocal. TCRs

are pivotal for antigen recognition and signal transduction,

initiating immune responses (53). A critical component of TCRs

is CD3z, which is expressed by mouse RGCs and amacrine cells to

regulate their development. The loss of CD3z impairs RGC axon

projections into the dorsal lateral geniculate nucleus and normal

amacrine cell development in the retina (54, 55). Molecules related

to TCR can modulate immune cell morphology and function. For

example, CD3z activation influences the cytoskeleton, thus

regulating immune cell morphology. Similar to neurons, immune

molecules might function as signals that affect synaptic growth,

development, morphology, and activity (55), and might play novel

roles in neuronal function and development.

By recruiting various adaptor and skeletal proteins, TCR

activation affects pathways such as the main branches of the

mitogen-activated protein kinase (MAPK) signaling pathway,

including the P38, extracellular signal-regulated kinase (ERK), Jun

N-terminal kinase (JNK), and phosphoinositide 3 kinase (PI3K)-

AKT-mTOR signaling pathways, which regulates cell survival,
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proliferation, and differentiation (56, 57). Activation of the p38/

MAPK pathway by ZAP70 requires the participation of discs large

homolog 1, which is an alternative approach (58). Unlike the dual

phosphorylation of P38 in the classical activation pathway, P38 is

phosphorylated via the monophosphorylation of TCRs, which

might affect T-cell function. ZAP70 recruits linker for activation

of T cells to promote rat sarcoma (RAS) and guanylate releasing

protein, which influences activation of the Erk/MAPK pathway

(Figure 1) (59). The TCR signaling pathway is strictly regulated by

various proteins, and different functions of T cells are regulated

throughout the life process. Therefore, understanding the influence

of immune molecules in TCR is important for understanding the

function of T cells and treating various diseases.

2.2.3 T-cell co-signaling molecules
The fate of naïve T cells is determined not only by TCR-MHC

interactions but also by co-signaling molecules on their surface.

These molecules, which include both co-stimulatory and co-

inhibitory factors, are collectively referred to as immune

checkpoints (72, 73). Most T-cell co-signaling molecules belong

to the Ig or tumor necrosis factor receptor superfamilies. Co-

stimulatory factors are essential for T-cell activation. In their

absence, even if the TCR is activated, T cells cannot proceed with

critical processes such as signal transduction, subpopulation

differentiation, and the production of inflammatory factors (72,

74). The most pivotal co-stimulator is CD28, which belongs to the

Ig superfamily. It reduces the T-cell activation threshold and

facilitates the recruitment of molecules such as PI3K and

lymphocyte-specific protein tyrosine kinase (75), thereby driving

transcriptional programs and effector function (74).

Co-inhibitory molecules are crucial for maintaining cellular

homeostasis and preventing excessive tissue damage. Notable

examples include T-cell Igs, mucin domain-containing 3,

cytotoxic T-lymphocyte antigen 4, and PD-1 (10, 11). CTLA-4

competes with CD28 to bind CD80 and CD86 ligands with greater

affinity. It inhibits the cell cycle by suppressing the AKT signaling

pathway and degrading tryptophan (12, 13). These checkpoints are

minimally expressed on naïve T cells but rapidly upregulated upon

activation, providing a feedback mechanism to prevent

overactivation (76).

In the setting of ONI, the balance between co-stimulatory and

co-inhibitory signaling is a decisive factor in determining RGC fate.

Excessive CD28-mediated activation enhances pro-inflammatory

T-cell responses and microglial reactivity, which aggravates RGC

loss in rodent glaucoma models. By contrast, PD-1 and CTLA-4

signaling can restrain detrimental T-cell activity and protect RGCs

from secondary damage (77). Notably, PD-1+ T cells have been

detected in the human glaucomatous retina, underscoring the

translational relevance of checkpoint pathways (30, 78). However,

systemic checkpoint blockade, while beneficial in cancer, may

exacerbate retinal inflammation if applied indiscriminately. Thus,

T-cell co-signaling molecules exemplify the “double-edged sword”

nature of immunity in ONI, offering potential neuroprotection
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when appropriately modulated, but contributing to degeneration

when dysregulated.

2.2.4 T cells and ONI
Infiltration of T cells into the retina exerts diverse effects on

RGCs and optic nerves. Retinal T cells might exacerbate optic nerve

damage and contribute to vision loss. Acute injury induced T-cell

infiltration into the retina that promoted the persistent loss of RGCs

in a mouse model of glaucoma (79). The pathogenesis of glaucoma

might be associated with heat shock proteins (HSP), as HSP27 and

HSP60 expression is increased in clinical samples of patients with

glaucoma (31) (80). HSP60-induced reduction in RGCs and axons

might occur through Fas/FasL pathway signaling, which has been

shown mainly in in vivo mouse experiments (62). Chen et al.

suggested that the long-term loss of RGCs and axons after

glaucoma in mice is associated with HSP-related T cells,

specifically IFN-g-secreting CD4+ T cells that infiltrate and

damage RGCs in murine experimental glaucoma models (63).

Neurodegeneration in glaucoma might result from interactions

between T cells and microglia that they activate, leading to

the release of substances harmful to RGCs, such as TNF-a and

nitric oxide synthase-2, as validated in both rodent models and

human post-mortem glaucoma tissues (64). Conversely, T cells

might play a neuroprotective role in ONI, because CD4+CD25+ T

cells upregulate and increase RGC survival in optic nerve transection

model rats in in vivo studies (3, 30). The transfer of activated T

cells to rats following optic nerve compression demonstrated
Frontiers in Immunology 05
neuroprotective effects against secondary degeneration (81). T cells

play dual roles in the central nervous system of experimental animal

models (82). Their potential for nerve repair and adverse effects

emphasizes their clinical therapeutic value.

Importantly, the apparent contradiction between neuroprotective

and neurotoxic roles reflects not only T-cell subset heterogeneity (e.g.,

Tregs vs. Th17 vs. CD8+ cells) but also the timing and anatomical

context of immune infiltration (60, 83). Protective effects of Tregs

have been consistently observed in acute injury paradigms, while

pathogenic CD4+ and CD8+ subsets dominate in chronic glaucoma

models. However, direct validation in human tissue remains limited

and often relies on postmortem analysis, which cannot capture

dynamic immune kinetics.

Future investigations should prioritize dissecting the

spatiotemporal dynamics of T-cell responses, employing

longitudinal in vivo imaging and single-cell profiling to map

subtype-specific effects (84, 85). Moreover, the translational

potential of immune checkpoint modulation (e.g., PD-1, CTLA-4)

must be carefully evaluated for ocular contexts, balancing

neuroprotection against systemic immunosuppression risks.

Addressing these knowledge gaps will be essential to determine

whether T-cell-targeted interventions can be harnessed as viable

therapies for ONI Table 1.

2.2.5 B cells
B cells contribute to adaptive immunity through antigen

presentation, antibody secretion, and the release of anti- or pro-
1FIGURE

Schematic of T-cell receptor (TCR) signaling pathways and downstream effector cascades. Upon antigen recognition, the TCR/CD3 complex
activates lymphocyte-specific protein tyrosine kinase (LCK) and ZAP70, initiating multiple downstream signaling cascades. These include the LAT–
GRB2–Ras–ERK pathway, PLCg1-mediated pathway, PI3K–AKT–mTOR axis, and Vav–Rac–JNK module. Collectively, these pathways regulate T-cell
activation, proliferation, cytoskeletal reorganization, and effector functions.
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inflammatory factors (86). Similar to T cells, B cells rarely enter the

normal central nervous system (CNS), but can cross the barrier in

pathological states (86, 87). Although little is known about B cells in

ONI, they serve as therapeutic targets in CNS diseases such as

multiple sclerosis. The results of therapies targeting CD20+ B cells

have been significant in patients with multiple sclerosis (87).

Interactions between various immune cells, including T and B

cells, affect their secretion and activation (87). Given that the

optic nerve is a part of the CNS, investigating B cells might

provide new insights into ONI treatment strategies.
2.3 Ocular and retinal immune privileges

The eyes have distinct immune privileges that are facilitated by

various mechanisms. The BRB is integral to maintaining retinal

homeostasis and function (88). The retina suppresses immune cell

activation and promotes immunosuppression via diverse neuro-

modulatory proteins (89). Ocular immunity encompasses the

anterior chamber, vitreous cavity, and posterior chamber, thereby

inducing systemic immune bias (70). It not only induces systemic

immunosuppression and reduces the occurrence of immune

responses but also facilitates eye treatment (71). The BRB comprises

inner and outer components that isolate the retina from the systemic

circulation, thus preventing inflammatory cell migration and ensuring

retinal stability (67). The inner BRB consists of capillary endothelial

cells, pericytes, and Müller cell protrusions that modulate retinal

endothelial cell activity (68, 69). The outer BRB is characterized by

tight junctions between adjacent pigment epithelial cells, and it

regulates capillary transport and blood solutes (88, 90).

Neurovascular units (NVUs) constitute the structural foundation

of the BRB and regulate blood component access to the retina.

The retinal NVU comprises the vascular system (endothelial cells

and pericytes), macroglia (astrocytes and Müller cells), neurons

(ganglion, anoplectic, and horizontal cells), and immune cells

(microglia and macrophages). Astrocytes and microglia form

surface NVUs in the superficial capillary plexus, whereas neurites

without long cells and glia, such as microglia, form intermediate

nerve plexus NVUs. Microglia envelop horizontal cells to form deep

nerve plexus NVUs.

A disrupted BRB disrupts retinal homeostasis due to immune

cell infiltration and inflammatory mediators (91). RGCs produce

vascular endothelial growth factor, which modulates the BRB (88).

Under physiological conditions, immune cells do not penetrate the

BRB or reach the retina. However, immune cell extravasation into

the retina is associated with various ocular diseases, including

glaucoma, uveitis, and diabetic retinopathy (65, 92, 93). In

instances of BRB damage, such as elevated intraocular pressure, T

cells can infiltrate the retina (30, 63, 66). The BRB and T cells play

pivotal roles in the pathogenesis of retinal and optic nerve diseases.

Evaluating T-cell responses to retinal injury might reveal novel

therapeutic targets for the treatment of retinal degeneration

(Figure 2). The mechanisms underlying ocular immune privilege

are progressively compromised in the context of ONI. A disrupted
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BRB facilitates the infiltration of peripheral immune cells and

complement factors into the retinal parenchyma, creating a pro-

inflammatory environment. Müller cell dysfunction and pericyte

loss destabilize the NVU, further impairing the immunosuppressive

microenvironment. Upregulated MHC molecules and lost

checkpoint regulation might trigger autoreactive responses that

sustain chronic inflammation and accelerate RGC loss.

Various immune cells can inflict irreversible damage on the retina

and optic nerves by compromising the ocular immunosuppressive

barrier. Investigating the mechanisms underlying this destructive

process might lead to new strategies for protecting the optic nerve

and mitigating disease severity. Furthermore, the collapse of immune

privilege in ONI complicates therapeutic strategies that rely on retinal

immune quiescence (94). Cell or gene therapymight be less effective in

inflamed retinal environments. Future approaches might need to

include adjunctive strategies to restore BRB integrity and re-

establish immune tolerance, such as modulating IL-10, TGF-b, or
vascular endothelial growth factor signaling. Preserving or

reconstructing ocular immune privileges might enhance both

neuroprotection and therapeutic responsiveness in ONI (95).
3 Discussion

Current clinical interventions for ONI, including glaucoma,

remain suboptimal and highlight the urgent need for more

effective therapies. Increasing evidence shows that immune

responses act as a double-edged sword: while timely activation of

glia and T cells can clear debris, promote axonal repair, and

preserve BRB function, prolonged or dysregulated activation

accelerates RGC degeneration. The integration of advancements

in immune cell research with cell, anti-aging, and gene therapies

might present innovative strategies for mitigating RGC loss and

improving visual outcomes (96, 97).

Aging, immune cells, and RGCs are intricately interconnected

(97). Aging increases vulnerability to diseases and diminishes the

effectiveness of immunotherapy. Immunosenescence, characterized

by elevated pro-inflammatory levels, metabolic dysregulation, and

reduced T-cell input, is associated with various ocular diseases,

including glaucoma and diabetic retinopathy (98). Most of these

findings have been obtained based on in vivo mouse models of

experimental glaucoma or ocular hypertension, whereas validation

in human aging cohorts and postmortem retinal tissues remains

sparse. Immune cells undergo diverse changes with aging, such as

the loss of TCR diversity, microglial transformation into pro-

inflammatory cells, and RGC destruction (99, 100).

While elevated intraocular pressure (IOP) significantly

contributes to glaucoma development, aging is also a critical

factor (101). Rates of RGC survival are lower in older than in

younger mice at equivalent IOP levels (99, 101). Elevated IOP leads

to the generation of senescence-associated phenotypes in RGCs,

and promotes apoptosis and senescence in peripheral RGCs. The

removal of senescent cells can effectively protect RGCs and

maintain visual function (99).
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FIGURE 2

Structural and functional disruption of the blood–retina barrier (BRB) following optic nerve injury (ONI). The schematic illustrates a comparison
between normal (top) and ONI (bottom) conditions of the retina, highlighting alterations in the inner and outer BRB. Under normal conditions, retinal
capillaries are ensheathed by intact endothelial cells, pericytes, and Müller cells, with preserved tight junctions and organized neurovascular units. In
contrast, ganglion cell loss, microglial activation, and inflammatory cell infiltration following ONI lead to cytokine release, tight junction breakdown,
and basement membrane injury. Vascular leakage and pericyte loss further compromise the integrity of the BRB. In the outer BRB, photoreceptor
cell degeneration and impaired retinal pigment epithelium barrier function are accompanied by disorganized tight junctions, which contribute to
retinal edema and neuroinflammation.
TABLE 1 Protective vs. detrimental immune pathways in optic nerve injury.

Immune
component

Protective effects Detrimental effects Type of evidence

T cells
Tregs promote RGC survival via IL-10/TGF-b;
constrain microglia activation (3, 30, 60, 61)

Th17/CD8+ amplify inflammation and cytotoxicity; HSP-
reactive T cells drive chronic RGC/axon loss (62–66)

In vivo mouse ONC/glaucoma;
Human HSP expression/serology

Microglia
Acute debris clearance; transient neurotrophic
support (19–22)

Chronic activation → TNF-a/iNOS, BRB breakdown,
synapse loss (5, 6, 9, 29, 37)

In vivo rodent ONI/glaucoma;
Human post-mortem summary

Müller cells
BRB maintenance; neurotrophic factor
production (67–69)

Prolonged reactivity → cytokine surge, gliosis (29, 70, 71)
In vitro primary/cell line; in vivo
rodent glaucoma; scRNA-seq Human

Astrocytes Structural/repair support (17, 69)
Reactive astrocytes via IL-1a/C1q/TNF-a promote
neurotoxic microglia (29, 31, 71)

In vivo ONC/glaucoma; human DR/
GL postmortem

Complement
system

C1q-mediated developmental synaptic pruning
C3 overactivation → chronic neuroinflammation/RGC
loss

Mouse glaucoma/degeneration;
human glaucoma tissue
F
rontiers in Immun
ology
 07
Dual (double-edged) roles of major immune components involved in optic nerve injury, including T cells, microglia, Müller cells, astrocytes, and the complement system. For each component,
both protective and detrimental effects are listed alongside the predominant type of supporting evidence (in vitro, in vivo, or human postmortem/clinical studies). References correspond to those
cited in the main text. The table complements Figure 2 by providing a structured comparative overview, allowing evaluation of context-dependent immune functions and the translational
relevance of different findings.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1671438
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xu et al. 10.3389/fimmu.2025.1671438
Substantial translational challenges remain. Most senolytic

and cryopreservation approaches are confined to in vitro and

preclinical settings. Cell cryopreservation and anti-aging

approaches can potentially treat senescent immune cells and

RGCs. Current cryopreservation technology has advanced as stem

cell-derived or cryopreserved RGCs have been transplanted into the

retina (102, 103). However, genetic changes and immune cell

cytotoxicity during cryopreservation are obstacles to the

development of cell-specific immunotherapy, and connections

between original and transplanted neurons need to be

strengthened (103, 104). These observations are currently limited

to in vitro systems and preclinical animal models, with no human

clinical applications reported to date. Cryopreserved immune cells

might help preserve immunological function in ONI. The

reintroduction of cryopreserved immune cells with enhanced

neuroprotective phenotypes could also counteract immune

dysregulation and facilitate retinal repair.

Senolytic therapies that selectively target senescent cells might

protect RGCs and maintain visual function. Anti-aging drugs, such

as dasatinib, can reduce DNA damage, reactive oxygen species, and

inflammatory cytokines, thereby protecting the retina and reducing

RGC death without significant adverse effects (99, 105).

Nevertheless, the systemic safety profile of these drugs and

ocular-specific delivery strategies require careful evaluation before

translation to clinical settings. Cellular senescence is widespread in

multiple corporeal systems, and anti-aging drugs can target a

variety of diseases and provide considerable health benefits.

Advancements in cellular, genetic, and protein analyses have led

to the identification of neuroprotective immune cell subsets and their

beneficial genes (106, 107). Gene-editing technologies, such as

CRISPR/Cas9 and base-editing systems, enable precise modulation

of immune pathways to enhance tissue regeneration and

neuroprotection. To date, these strategies have remained restricted

to animal models, without human clinical translation, underscoring a

critical research bottleneck.

For example, downregulated pro-inflammatory effectors such as

TNF-a or C3 in microglia, or enhancement of CD4+CD25+

regulatory T cells, might reduce neuroinflammation and preserve

BRB function. Inhibiting TNF-a protects the BRB by preventing

cytokine-induced vascular permeability (108). Likewise, the genetic

deletion of complement C3 in microglia reduced neuroinflammatory

damage in retinal degeneration models (109). Moreover,

CD4+CD25+ regulatory T cells exert neuroprotective effects by

secreting anti-inflammatory cytokines and mitigating RGC loss in

ONI models (61). The expression of CD3z in RGCs similarly

supports dendritic and axonal connectivity, improving neuronal

survival and synaptic refinement (55).

In summary, the central challenge in ONI is to balance

protective and detrimental immunity. Future investigations

should focus on tailoring immune-based gene therapies to

optimize optic nerve repair. By leveraging immune regulation and

regenerative medicine, novel interventions can achieve functional

optic nerve restoration and visual rehabilitation.
Frontiers in Immunology 08
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Immune responses in ONI embody a double-edged sword:

under appropriate conditions, microglia, Müller cells, T cells, and

astrocytes contribute to tissue repair, neuroprotection, and BRB

preservation, whereas chronic activation or loss of regulation

accelerates degeneration through cytokine release, complement

overactivation, and checkpoint dysregulation. Our review

highlights the dual nature of these immune pathways, integrating

evidence from innate and adaptive immunity, aging and

immunosenescence, and therapeutic modulation.

Recent progress has revealed protective mechanisms such as the

neurotrophic effects of Müller cells, the regulatory capacity of Tregs, and

the BRB-stabilizing function of CD3z. Conversely, detrimental

mechanisms include chronic microglial activation, Th17- and CD8+-

mediated cytotoxicity, complement-driven neuroinflammation, and

astrocyte-derived neurotoxicity. Advances in single-cell transcriptomics

have further emphasized the heterogeneity of retinal immune cells,

underscoring the importance of the spatiotemporal context in

shaping outcomes.

Future research has to define the spatiotemporal rules of

immune activity and develop targeted interventions that amplify

protective immunity while restraining harmful responses. By

reframing ocular immunity as a double-edged sword, the field can

shift from descriptive studies toward rational, mechanism-based

therapies for optic nerve protection and regeneration.
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