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Background: Pediatric acute myeloid leukemia (AML) is characterized by poor
prognosis and low survival rates following recurrence. While mitochondria and
programmed cell death (PCD) are implicated in various diseases, their role in
pediatric AML remains poorly understood. Identifying prognostic genes
associated with PCD and mitochondrial function could enhance
therapeutic approaches.

Methods: Transcriptomic data and gene sets were sourced from public
databases. Differentially expressed genes (DEGs) that intersected with PCD-
related genes (PCD-RGs) and mitochondrial-related genes (mito-RGs) were
selected as candidate genes. Regression analyses were performed to identify
prognostic genes, which were then used to develop and validate a prognostic
model. A nomogram was constructed, followed by functional analysis, immune
microenvironment assessment, molecular regulatory network investigation, drug
sensitivity profiling, and clinical validation through RT-gPCR.

Results: Twenty-six candidate genes were identified, with three—PDHA1, OGG1,
and OPAl—confirmed as potential prognostic markers through regression
analyses. The prognostic model demonstrated robustness in both internal and
external validations, and the nomogram exhibited good predictive power.
Pathway enrichment analysis highlighted the involvement of DNA replication
and epithelial-mesenchymal transition, alongside 14 differentially abundant
immune cells (p < 0.05). Molecular network analysis indicated that hsa-miR-
199a-5p regulates PDHAL1 and OGGL1. Drug sensitivity profiling identified
potential therapeutic agents, including SB505124_1194. RT-gPCR validation
confirmed consistent expression patterns for the prognostic genes.
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Conclusions: PDHAL, OGG1, and OPAL were identified as potential prognostic
markers for pediatric AML, providing valuable insights for the development of
targeted therapeutic strategies. However, further validation in larger and more
diverse clinical cohorts is still required to confirm its clinical applicability.

pediatric acute myeloid leukemia, programmed cell death, mitochondria, prognostic
model, prognosis genes

1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignancy
characterized by disrupted hematopoietic stem cell regulation and
impaired differentiation, accounting for 15-20% of childhood
leukemia cases (1, 2). Pediatric AML is associated with a poor
prognosis, with a long-term survival rate of only 45-55% and a
recurrence rate of approximately 30% (3, 4). The primary treatment
strategies for AML include chemotherapy and hematopoietic stem
cell transplantation (HSCT) (5). In pediatric AML, however, the
failure rate of initial induction remission therapy is 10-15%, and only
about one-third of patients with induction failure achieve eventual
cure (6). This suboptimal prognosis is largely due to the inability to
maintain disease remission after initial therapy. Chemotherapy
causes significant toxicity, including myelosuppression, heightened
infection risk, and long-term organ damage (7). Although allogeneic
HSCT offers potential curative benefits, it carries risks such as graft-
versus-host disease, opportunistic infections, and transplant-related
mortality (8). Thus, identifying prognostic biomarkers and
developing novel predictive models are crucial for the clinical
management of pediatric AML. These efforts could yield new
therapeutic targets, ultimately improving treatment outcomes.

Programmed cell death (PCD) is a regulated, sequential process
that maintains a homeostatic balance between cell proliferation and
cell death. This process encompasses 18 distinct forms, including
apoptosis, necroptosis, and autophagy (9). Programmed cell death-
1 (PD-1) expression has been observed in the leukemic cells of adult
patients with AML, with reported frequencies ranging from 42% to
100%, but research on PCD in pediatric AML is limited (10). PCD is
often regulated by intracellular organelles, particularly
mitochondria, which play a pivotal role in inflammation
associated with PCD. Dysregulation of mitochondrial dynamics
can trigger various PCD pathways (11, 12). Notably, GSK621, an
agonist of AMP-activated protein kinase (AMPK), has been shown
to selectively eliminate AML cells, highlighting its potential as a
therapeutic agent (13). However, the interaction between PCD and
mitochondrial function in pediatric AML remains largely
unexplored, hindering the development of targeted therapies for
this population.

Utilizing extensive data resources on pediatric AML from
public databases, this study applied a comprehensive suite of
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bioinformatics methods, including differential expression analysis,
prognostic model construction, clinical correlation assessment,
functional enrichment analysis, drug sensitivity prediction, and
experimental validation. These approaches were used to conduct
an in-depth investigation of prognostic genes associated with PCD
and mitochondrial function in pediatric AML progression. The
research also explored the molecular mechanisms implicated in
pediatric AML and offered new insights into disease pathogenesis.
This study provides a theoretical foundation for accurate prognostic
diagnosis and targeted clinical treatment optimization for pediatric
patients with AML.

2 Materials and methods
2.1 Data collection

The TARGET database was used to download the TARGET-
AML cohort, which includes gene expression profiles, clinical data,
and survival information from 187 pediatric AML tissue samples
(accessed on 2023-11-20). Additionally, the GEO database was
queried to obtain pediatric AML-related transcriptome datasets,
including GSE2191 and GSE192638. GSE2191 (platform: GPL8300)
contains tumor tissue data from 54 pediatric AML bone marrow
samples and 4 control bone marrow samples, while GSE192638
(platform: GPL24676) served as an external validation set,
comprising 41 pediatric AML bone marrow samples with survival
data. To investigate PCD and mitochondrial functions in pediatric
AML, 1,548 PCD-related genes (PCD-RGs) and 1,136
mitochondrial-related genes (mito-RGs) were sourced from
relevant literature (9) (Supplementary Table 1) and the MitoCarta
3.0 database (accessed on 2023-11-20) (Supplementary Table 2).

2.2 Acquisition of candidate genes

Differential expression analysis was performed on the GSE2191
dataset to compare pediatric AML and control groups using the
limma package (v 1.26.0) (14) (|log2FC| > 0.5, p < 0.05), identifying
differentially expressed genes (DEGs). The results were visualized
using ggplot2 (v 3.4.4) (15) for a volcano plot and Heatmap (v 4.1.0)
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(15) for a heatmap. The intersection of DEGs, PCD-RGs, and mito-
RGs was used to identify candidate genes.

2.3 Enrichment analysis and construction
of protein-protein interaction network

To further explore the biological functions and pathways
associated with the candidate genes, GO and KEGG analyses were
conducted using the clusterProfiler package (v 4.0.2) (16) (p < 0.05,
count > 1). The top 10 biological functions from the GO analysis (p
< 0.05) and the most significant pathways from the KEGG analysis
(p < 0.05) were displayed. The candidate genes were input into the
STRING database (with a confidence score threshold of > 0.4) to
examine protein-level interactions, and the PPI network was
visualized using Cytoscape software (v 3.10.1) (17).

2.4 |dentification of prognostic genes

The 187 samples from the TARGET-AML cohort were
randomly divided into two groups: 131 samples for the training
set and 56 samples for the internal validation set, following a 7:3
ratio. The training set was used to identify candidate genes
associated with pediatric AML prognosis. Univariate and
multivariate Cox regression analyses were performed using the
survival package (v 3.1-12) (18) to identify survival-associated
genes (hazard ratio [HR] # 1, p < 0.05), with the regression
results tested for proportional hazards (PH) assumptions (p >
0.05). Forest plots were generated using the forestplot package (v
3.1.1) (19) to visualize the regression results, followed by further
evaluation of the prognostic genes identified through these analyses.

2.5 Construction and validation of
prognostic model

The risk score for pediatric AML was calculated using the
following formula:

Risk score = h0(t) x exp(B1X1 + f2X2 + ... + BnXn).

Subsequently, the surv_cutpoint function from the survminer
package (v 0.4.6) (20) (based on the maximum selection rank statistic
and log-rank test) was used to identify the optimal cutoff value within
the queue, with minprop = 0.4 set to prevent extreme imbalance.
Ultimately, pediatric AML patients were categorized into high-risk
and low-risk groups. Next, survminer package (v 0.4.6) was utilized to
draw risk curves and survival status plots to analyze the distribution
of pediatric AML patients in different datasets as a whole. A heatmap
illustrating the expression of prognostic genes between the two
groups was created. Overall survival (OS) between the two groups
was assessed using Kaplan-Meier (K-M) survival analysis with the
survminer package (v 0.4.6). The diagnostic performance of the
prognostic model was evaluated through receiver operating
characteristic (ROC) curves at 1, 2, and 3 years using the
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survivalROC package (v 1.0.3) (21) (with area under the curve
[AUC] = 0.6). Using the same analytical approach, the model was
further validated in both the internal and external validation sets.

2.6 Clinical correlation analysis between
risk groups

To investigate survival differences between high-risk and low-
risk groups based on clinical characteristics, common clinical
factors in pediatric AML, such as age, CCAAT enhancer binding
protein alpha (CEBPA) mutation, white blood cell (WBC) count (=
78.2757%, < 78.2757%), FAB classification (M0-M7), FLT3 ITD
mutation, gender, and WT1 mutation, were included. Samples
missing clinical data were excluded, and the remaining samples
were categorized based on various clinical characteristics for
correlation analysis. Stratified survival analysis for clinical factors
was then performed across the two risk groups, with K-M curves
plotted using the ggsurvplot function from the survminer package
(v 1.0.3). The clinical characteristic grouping for training set
samples is summarized in Table 1.

2.7 Independent prognostic analysis

Next, using the survival package (v 3.1-12) and forestplot
package (v 3.1.1), the risk score from the training set and the
aforementioned clinical factors were combined for univariate and
multivariate Cox regression analyses (p < 0.05) and PH assumption
testing (p > 0.05). Independent prognostic factors were identified,
and a nomogram was constructed using the rms package (v 6.1-0)
(22). The nomogram model was then evaluated through calibration
curves and ROC analysis for 1, 2, and 3 years.

2.8 Enrichment analysis based on risk
score

In the training set, DEGs between high-risk and low-risk groups
were identified using the DESeq2 package (v 1.38.0) (23). Log2 fold
change (log2FC) was calculated, and genes were ranked from largest
to smallest (p < 0.05, [log2FC| > 1). The clusterProfiler package (v
4.4.4) was used to perform Gene Set Enrichment Analysis (GSEA)
with the “c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt” and
“c5.g0.v7.4.symbols.gmt” gene sets from MSigDB as the reference
(p < 0.05, |normalized enrichment score (NES)| > 1). Gene set
variation analysis (GSVA) was also conducted using the 50
hallmark gene sets from MSigDB, followed by differential analysis
of GSVA scores between the two risk groups using the limma
package (v 1.26.0). The low-risk group was used as the reference (t >
1 indicates activation of the pathway in the high-risk group, and t <
-1 indicates activation in the low-risk group). The top 5 most
significant functions from each enrichment analysis were visualized
using the enrichplot package (v 3.19) (24).
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TABLE 1 Grouping of clinical characteristics in the training set samples.

\| 107
Age

<9.214953 54
>9.214953 53
Gender

Female 58
Male 49

CEBP mutation
No 103
Yes 4

WBC_at_Diagnosis

>78.2757% 37
<78.2757% 70
FAB

Mo 3
M1 11
M2 29
M4 37
M5 23
M6 1
M7 3

FLT3 ITD mutation

No 95

Yes 12

WT1 mutation
No 101

Yes 6

2.9 Analysis of the immune
microenvironment

This study employed the ssGSEA algorithm to infer immune
cell infiltration from bulk RNA-seq data. Specifically, predefined
gene sets for 28 immune cell types (25) were applied to log2-
transformed expression matrices, generating enrichment scores for
each immune cell type across the samples. The ssGSEA scores are
dimensionless, rank-based enrichment values that reflect the
relative abundance and activity of cell types, rather than absolute
cell counts or proportions. To compare differences in immune cell
infiltration levels between two risk groups, the Wilcoxon rank sum
test (p < 0.05) was performed using the rstatix package (v 0.7.2) (26)
and the ggplot2 package (v 3.4.4), identifying differentially immune
cells. These immune cell distributions were visualized in box plots
using ggplot2. To assess correlations among differential immune
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cells, correlation (cor) analysis was performed using the R package
psych (v 2.2.9) (27) (Jcor| > 0.3, p < 0.05), and results were
visualized as heatmaps via the ggplot2 package (v 3.4.4).
Subsequently, the quickcor function in the ggcor package (v 0.7.2)
(28) was employed to analyze correlations between immune cells
with differential infiltration and prognostic genes (p < 0.05), with
correlation heatmaps generated using quickcor. Additionally, the
ggdotchart function in the ggpubr package (v 0.6.0) (29) was
utilized to create lollipop plots for visualization. Additionally, the
rstatix and ggplot2 packages were used to compare the expression
levels of 48 immune checkpoints (30) between the two risk groups,
generating box plots (Wilcoxon rank-sum test, p < 0.05). The
correlation between prognostic genes and differentially expressed
immune checkpoints was then analyzed using quickcor (28) (|cor| >
0.3, p < 0.05).

2.10 Construction of molecular regulatory
networks

The gene-gene interaction (GGI) network of prognostic genes
was constructed via GeneMANIA. To further investigate the
regulatory mechanisms of gene expression, miRNAs targeting
prognostic genes were predicted using the miRwalk and starBase
databases. The intersected miRNAs from both databases were then
analyzed. Following this, IncRNAs regulating the intersected
miRNAs were predicted using the starBase and miRNet
databases, with the IncRNAs identified by both databases being
intersected. The resulting IncRNA-miRNA-mRNA network was
constructed to explore the regulatory relationships among
prognostic genes.

2.11 Drug sensitivity analysis

To assess drug treatment response variability in pediatric AML,
chemotherapy and targeted therapy drugs were sourced from the
GDSC database. Using the oncoPredict package (v 0.5) (31), the
half-maximal inhibitory concentration (IC50) for each patient’s
response to chemotherapeutic and targeted therapy drugs was
predicted. Correlations between drug IC50 values and risk scores
(|cor| > 0.5, p < 0.05) were analyzed to infer drug sensitivity. Box
plots were generated using ggplot2 to display significant differences
in drug responses between the two risk groups (p < 0.05). Drugs
showing the strongest positive and negative correlations with the
risk score were presented. Additionally, small-molecule inhibitors
were obtained from the Beat AML dataset (32), and drug sensitivity
analysis was conducted similarly (|cor| > 0.4, p < 0.05).

2.12 Analysis of prognostic gene
expression based on the GSE2191 dataset

Subsequently, to validate the expression differences of
prognostic genes between the pediatric AML group and the
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control group, an analysis was conducted in the GSE2191 dataset,
and the results were presented using box plots.

2.13 RT-qPCR

To further validate the expression of prognostic genes in clinical
samples, five pairs of whole blood samples were collected from
Gansu Provincial Maternity and Child-care Hospital, comprising
five control samples (samples 1-5) and five AML samples (samples
6-10). The control donors were age-matched to the corresponding
AML patients (+ 2 years), with no known hematologic disorders,
ensuring comparability between groups. This study was approved
by the Institutional Review Board of Gansu Provincial Maternity
and Child-care Hospital, with all participants providing informed
consent prior to sample collection. Total RNA was extracted from
approximately 50 mg of each tissue sample using TRIzol reagent
(Ambion, Austin, USA) according to the manufacturer’s
instructions. RNA concentration and purity were assessed using a
NanoPhotometer N50, and samples with A260/A280 ratios between
1.8 and 2.0 were considered suitable for downstream applications.
First-strand cDNA was synthesized from 2 pg of total RNA using
the SureScript First-Strand cDNA Synthesis Kit (Servicebio,
Wuhan, China) in a 20 pL reaction volume. The reverse
transcription reaction was carried out under the following
conditions: 25°C for 5 min, 50°C for 15 min, and 85°C for 5 sec,
followed by hold at 4°C. RT-qPCR was performed using 2x
Universal Blue SYBR Green qPCR Master Mix (Servicebio,
Wuhan, China) on a CFX Connect Real-Time PCR System (Bio-
Rad, USA). Each 10 pL reaction contained 3 L of diluted cDNA, 5
pL of master mix, and 0.5 uM each of forward and reverse primers.
The amplification protocol consisted of an initial denaturation at
95°C for 1 min, followed by 40 cycles of 95°C for 20 sec, 55°C for 20
sec, and 72°C for 30 sec. Melting curve analysis was performed to
confirm primer specificity. The primer sequences were detailed in
Supplementary Table 3. GAPDH was used as the endogenous
control for normalization. Gene expression was quantified using
the 2724t method (33). Data visualization was conducted using
GraphPad Prism 10 (34), with comparisons between groups
assessed using the two-tailed Student’s t-test (unpaired). Statistical
significance was set at p < 0.05.

2.14 Statistical analysis

All statistical analyses were conducted using R software (version
4.2.2; R Foundation for Statistical Computing, Vienna, Austria).
Specifically, the clusterProfiler package was used for GO and KEGG
enrichment analysis, the limma package for gene differential
expression analysis, the rms package for plotting nomogram, and
calibration curves, and the survivalROC package for ROC analysis.
Differences between groups were compared using the Wilcoxon
rank-sum test (p < 0.05). Survival analysis was conducted with the
log-rank test to evaluate group differences (p < 0.05).
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3 Results

3.1 Identification of candidate genes,
enrichment analysis, and PPI construction

Differential expression analysis of the GSE2191 dataset revealed
2,391 DEGs, with 1,405 upregulated and 986 downregulated genes
in the pediatric AML group (Figure 1A). A heatmap generated
using these DEGs successfully distinguished the pediatric AML and
control groups (Figure 1B). The intersection of DEGs, PCD-RGs,
and mito-RGs identified 26 candidate genes (Figure 1C;
Supplementary Table 4). Subsequently, enrichment analysis was
performed to understand the functions and related pathways of the
candidate gene. GO enrichment analysis revealed a total of 441
enriched terms, including 365 biological processes (BPs), 21 cellular
components (CCs), and 55 molecular functions (MFs)
(Supplementary Table 5). The top 10 gene functions identified
included intrinsic apoptotic signaling pathway, mitochondrial outer
membrane, and BH domain binding (Figure 1D). KEGG
enrichment analysis identified 52 pathways (Supplementary
Table 6), with the top 10 significantly enriched pathways
including apoptosis, platinum drug resistance, and p53 signaling
(Figure 1E). PPI networks are essential for understanding the
structure and function of cellular networks, as well as the
pathogenesis of diseases. To explore potential interactions among
the 26 candidate genes, a PPI network was constructed, which
included 23 nodes and 96 edges. Key genes such as OPA1, PDHAI,
and BCL2L1 were identified in the network (Figure 1F).

3.2 Construction and validation of
prognostic model based on prognostic
genes

Based on 26 candidate genes, this study further explored which
genes hold significant prognostic value for survival outcomes in
pediatric AML. Using 131 samples from TARGET-AML (the data
was randomly split into a training set of 131 cases and a test set of 56
cases in a 7:3 ratio), through univariate Cox regression analysis, 7
candidate prognostic genes were identified, among which these
genes were all considered as high risk genes (HR > 1) (Figure 2A).
Multivariate Cox regression analysis and the PH assumption test (p
> 0.05) further confirmed 3 potential prognostic genes—PDHAL,
OGG]1, and OPAl—as significant (Figure 2B; Table 2).

The prognostic model was constructed as follows: Risk score =
ho(t) x (PDHAL x 0.46653 + OGGI1 x 0.373 + OPA1 x 0.32316).
Using the optimal cutoff value (cutpoint = 1.09), the 131 pediatric
patients with AML were divided into high-risk (66 samples) and
low-risk (65 samples) groups (Figure 2C). The survival status plot
indicated that higher risk scores correlated with a greater number of
deceased patients (Figure 2C). A heatmap based on the prognostic
genes effectively distinguished the two groups (Figure 2D). K-M
survival curves showed that the high-risk group had significantly
lower survival rates (p < 0.05) (Figure 2E), with AUCs for 1,2, and 3
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FIGURE 1

Screening for DEGs. (A) Volcano plot of DEGs in GSE2191. Differential expression was assessed with limma using |log2FC| > 0.5 and p < 0.05; genes
with log2FC > 0.5 (up) or < -0.5 (down) are highlighted. (B) Heatmap of DEGs in GSE2191. Expression values were normalized (z-score by gene) and
clustered using Euclidean distance and complete linkage. (C) Venn diagram showing intersection of DEGs, PCD-related genes (PCD-RGs), and
mitochondrial-related genes (mito-RGs) to define candidate genes. (D, E) Functional enrichment analysis of candidate genes via Gene Ontology
(GO: BP, CC, MF) and KEGG pathways performed with clusterProfiler (over-representation analysis; p < 0.05, count > 1). Top terms/pathways are
shown. Multiple testing correction: Benjamini—Hochberg (BH) where applicable; terms reported meet p < 0.05 after correction or as indicated in the
main text. (F) Protein—protein interaction (PPI) network of candidate genes obtained from STRING (confidence score > 0.4) and visualized in
Cytoscape.
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Construction of prognostic model. (A) Univariate Cox proportional hazards regression of candidate prognostic genes in the training set (n = 131).
Hazard ratios (HR) with 95% confidence intervals (Cl) and p values are shown; genes with p < 0.05 were considered significant. Proportional hazards
(PH) assumption was tested (p > 0.05 indicates PH satisfied). (B) Multivariate Cox regression of selected prognostic genes; HR (95% Cl) and p values
shown; PH assumption tested (p > 0.05). (C—E) Risk curve, survival status plot, heatmap of prognostic gene expression, and Kaplan—Meier K-M
survival analysis comparing high- and low-risk groups defined by surv_cutpoint (maximally selected rank statistic; minprop = 0.4). K-M curves were
compared with the log-rank test; p values are reported. (F) Diagnostic value of the prognostic model in GSE2191 assessed by time-dependent ROC
curves (survivalROC) at 1, 2, and 3 years; area under the curve (AUC) is reported. Statistical methods: Cox regression (survival package), log-rank test

for K-M, ROC AUC with confidence intervals.

years all greater than 0.6, demonstrating that the prognostic model
effectively predicts the survival of pediatric patients with
AML (Figure 2F).

The model’s reliability was confirmed through internal (from
TARGET-AML) and external validation (GSE192638). In the
internal validation set, the prognostic model identified an optimal
threshold (0.876), dividing the cohort into high-risk (34 samples)
and low-risk (22 samples) groups. The survival status plot, heatmap,
and K-M curve results (p < 0.05) were consistent with the training
set findings (Figures 3A-C). ROC analysis showed AUCs greater
than or equal to 0.60 for 1, 2, and 3 years (Figure 3D). In the
external validation set, the prognostic model identified an optimal
threshold (24.43), dividing the cohort into high-risk (19 samples)

Frontiers in Immunology

and low-risk (22 samples) groups. The survival status plot, heatmap,
K-M curve (p < 0.05), and ROC curve results were consistent with
the internal validation set (Figures 3E-H). These results confirm the
robustness of the prognostic model in assessing the risk of pediatric
patients with AML.

3.3 Stratified survival analysis
In the training cohort (from TARGET-AML), stratified analysis
based on clinical characteristics revealed significant differences in

DEFS status between the two risk groups in several subgroups,
including those with high age, female gender, CEBPA wild-type,
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elevated WBC count, FAB classification M4 stage, FLT3-ITD wild-
type (No), and WT1 wild-type (No) (p < 0.05). KM curves for each
subgroup demonstrated that patients with higher risk scores had
poorer prognosis (Figure 4).

3.4 Construction and evaluation of
pediatric AML prediction model

In the TARGET-AML training cohort, after incorporating the
aforementioned common clinical characteristics and risk scores,
regression analyses and PH assumption tests identified risk score (p
<0.05, HR = 2.022, 95% CI = 1.331-3.071) and WT1 mutation (p <
0.05, HR = 3.598, 95% CI = 1.402-9.234) as independent prognostic
factors (Figures 5A, B). The nomogram indicated that risk score had
the most significant impact on patient survival, followed by WT1
mutation. A higher total score correlated with a higher probability
of non-relapse, though the likelihood of non-relapse progressively
decreased with extended timeframes (1, 2, and 3 years) at the same
total score (Figure 5C). The calibration curve confirmed that the
survival probabilities for different years closely matched the
reference line (Figure 5D). Diagnostic evaluation revealed that the
AUC values of the nomogram model surpassed those of individual
prognostic factors (AUCs > 0.6), demonstrating its strong
predictive performance (Figures 5E-G).

3.5 GSEA and hallmark pathway differential
analysis

In the high- and low-risk groups of the training set, based on the
KEGG gene set (c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt)
from GSEA analysis, some pathways, such as reference translation
initiation, were then observed (Figure 6A; Supplementary Table 7).
GO gene set (c5.go.v7.4.symbols.gmt) analysis identified processes
like cotranslational protein targeting to the membrane (Figure 6B;
Supplementary Table 8). Additionally, GSVA analysis indicated
that apical surface and epithelial-mesenchymal transition (EMT)
pathways were activated in the high-risk group, while DNA repair
pathways were activated in the low-risk group (Figure 6C;
Supplementary Table 9). The findings of this study suggested that
DNA repair and epithelial-mesenchymal transition may play a role
in specific risk groups; however, given the small sample size and
potential cross-platform bias in this study, the reliability of this
conclusion requires validation in future studies with larger
sample sizes.

3.6 Description of the immune
microenvironment in pediatric AML

In addition, there were 14 immune cells with significant
differences in infiltration levels between the high- and low-risk
groups in the training set, including memory B cells, CD56dim
natural killer cells, and natural killer cells (p < 0.001) (Figure 7A).
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TABLE 2 PH assumption test.

Gene chisq lolj P

PDHAI 2363675 1 0.124189
0GGl1 036684 1 0.544732
OPAI1 1.475837 1 0.224427
GLOBAL 13.62714 7 0.058225

Correlation analysis revealed that more than half of the differential
immune cells had positive correlations, with the strongest positive
correlation between monocytes and follicular helper T cells (cor =
0.757, p < 0.001) (Figure 7B; Supplementary Table 10).
Additionally, OPA1 showed the strongest positive correlation
with activated CD4 T cells (cor = 0.495, p < 0.001) (Figure 7C;
Supplementary Table 11). In the high-risk group, 15 immune
checkpoints were significantly expressed, including TNFRSF14 (p
< 0.01) (Figure 7D). The strongest positive correlation was found
between CTLA4 and OPALI (cor = 0.513, p < 0.001), while CD44
and PDHA1 exhibited the strongest negative correlation (cor =
-0.269, p < 0.001) (Figure 7E; Supplementary Table 12).

3.7 Molecular regulatory networks

In the GGI network constructed using prognostic genes and
their neighboring genes, involvement in the acetyl-CoA
biosynthetic process was identified (Figure 8A). The intersection
of miRNAs and IncRNAs predicted by different databases resulted
in 7 miRNAs and 52 IncRNAs (Figures 8B, C). These were used to
construct an mRNA-miRNA-IncRNA regulatory network,
revealing that hsa-miR-199a-5p regulated both PDHAI and
OGG1 (Figure 8D). However, this regulatory relationship remains
a hypothetical deduction and requires experimental verification
for confirmation.

3.8 Prediction of drugs and small-molecule
inhibitors

Screening 198 drugs from the GDSC database and 122 small-
molecule inhibitors from the Beat AML dataset identified 145 drugs
and 22 small-molecule inhibitors with significant differences
between the risk groups in the training set, including osimertinib,
buparlisib, saracatinib, and crizotinib (Figures 9A, B, E, F;
Supplementary Tables 13, 14). In both the GDSC and Beat AML
datasets, SB505124_1194 (cor = 0.50, p < 0.0001) and KI20227 (cor
= 0.60, p < 0.0001) were the drugs and small-molecule inhibitors
most positively correlated with the risk score, while LBRD9_1928
(cor = -0.80, p < 0.0001) and RAF265 CHIR.265 (cor = -0.40, p <
0.0001) were the most negatively correlated (Figures 9C, D, G, H).
These candidate compounds are still in the exploratory phase, and
their efficacy in pediatric AML must be validated through in vitro
and in vivo studies before clinical translation can be considered.
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FIGURE 3

Validation of prognostic model. (A—D) Internal validation set (n = 56): survival status plot, heatmap, Kaplan—Meier survival analysis (log-rank test), and
ROC curve (time-dependent ROC; AUC reported). (E—H) External validation set (GSE192638, n = 41): survival status plot, heatmap, Kaplan—Meier
survival analysis (log-rank test), and ROC curve (time-dependent ROC; AUC reported). Statistical tests and thresholds are the same as Figure 2. K-M

p values from log-rank test; ROC AUC with 95% CI.

3.9 Validation of prognostic gene expression

In the pediatric AML group of GSE2191, PDHAI and OPA1
were overexpressed, while OGG1 was downregulated (Figure 10A).
This was validated by RT-qPCR, which showed significant
differences in the expression levels of OGG1, PDHAI, and OPA1
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between case and control samples (p < 0.05). PDHA1 and OPA1
exhibited higher expression in AML samples compared to controls
(PDHAIL: p < 0.0001; OPAl: p < 0.01), while OGG1 was
downregulated in the AML group (p < 0.01) (Figures 10B-D).
These results confirmed the consistency between the RT-qPCR
findings and the bioinformatics analysis.
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4 Discussion

As a recently emerging disease with an unclear etiology,

pediatric AML has seen limited progress in primary treatment
approaches (35). The gene expression profiles of PCD-RGs and

mito-RGs in pediatric AML remain inadequately characterized (36,

37). In this study, three potential prognostic genes—PDHAI,
OGG], and OPA1—linked to PCD and mitochondrial function in
pediatric AML were precisely identified through differential

expression analysis and machine learning techniques. The

prognostic model established demonstrated that high-risk patients
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exhibited significantly reduced survival rates, a finding
independently validated in the GSE192638 dataset, confirming the
model’s robustness and generalizability. Furthermore, the

nomogram incorporating risk score and WT1 mutation exhibited
good predictive power for patient outcomes in pediatric AML
(AUC values > 0.6). Functional enrichment analysis revealed

critical pathways involved in pediatric AML progression, such as

translation initiation, DNA repair, apical surface regulation, and

EMT, offering valuable insights into the molecular mechanisms of

the disease. Drug prediction identified buparlisib and crizotinib as

potential therapeutic agents for pediatric AML, while
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Construction and validation of nomogram. (A, B) Univariate and multivariate Cox regression analyses combining clinical variables and risk score (HR,
95% ClI, p values). Variables with p < 0.05 in multivariate analysis were considered independent prognostic factors. PH assumption tested for each
model (p > 0.05 indicates satisfied). (C) Nomogram incorporating independent prognostic factors (risk score and WT1 mutation) to predict 1-, 2-,
and 3-year overall survival. (D) Calibration curves comparing predicted vs observed survival at 1, 2, and 3 years; calibration assessed by 1,000
bootstrap resamples. (E-G) ROC curves for independent prognostic factors and the nomogram at 1, 2, and 3 years (time-dependent ROC); AUC

values and 95% Cls are reported.

SB505124_1194 and RAF265 CHIR.265 emerged as promising
candidates in the Beat AML dataset. These findings not only
deepen our understanding of pediatric AML pathogenesis but
also provide actionable targets for drug development.

Initially recognized as a key gene in cuproptosis, PDHAL1 plays a
pivotal role in the reprogramming of glucose metabolism in tumor
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cells. It is involved in mitochondrial signaling pathways such as
oxidative phosphorylation, cellular respiration, and electron
transfer activity (38). In AML, PDHA1 mRNA expression is
typically reduced, whereas its expression is notably elevated in
lymphoid neoplasms, including diffuse large B-cell lymphoma
(DLBC) and thymoma (THYM) (38). A 2021 study by Cevatemre
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isk groups using the 50 Hallmark gene sets; differential GSVA scores

were tested using limma (empirical Bayes moderated t-statistic); pathways with adjusted p < 0.05 (BH) and |t| > 1 are shown.

et al. showed that silencing PDHA1 expression triggered the EMT
in A549 lung cancer cells (39), while Ma et al. found that
dichloroacetate activated PDHA1, exerting therapeutic effects in
A549 cells, highlighting the critical role of PDHA1 in modulating
cellular responses to therapy and tumor progression in non-small
cell lung cancer (40). These findings suggest that PDHA1 may have
context-dependent roles across different diseases. Notably, while
PDHAL is downregulated in adult AML, our study for the first time
reveals elevated PDHA1 expression in pediatric AML, where it
correlates with poor prognosis. This observation aligns with
previous studies and establishes PDHA1 as a potential diagnostic
and prognostic biomarker for pediatric AML, likely through its
regulation of mitochondrial metabolism in leukemic blasts. These
results not only enhance early diagnostic capabilities but also
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underscore PDHAL as a potential therapeutic target for metabolic
reprogramming in pediatric AML (38, 41).

OGGl1, a well-known DNA repair enzyme, plays a critical role
in inflammation modulation and metabolic homeostasis (42). In
mammalian cells, OGG1 primarily mediates the removal of 8-0xoG
through the base excision repair (BER) pathway. Unrepaired 8-
0x0G can lead to G:C to T:A substitution mutations during DNA
replication, serving as a biomarker for oxidative DNA damage.
Additionally, OGGL is involved in the transcriptional regulation of
nuclear factor kappa B, activation of small GTPases, and inhibition
of poly (ADP-ribose) polymerase (PARP)-mediated cell death, all of
which are pivotal in modulating inflammation, tumor progression,
and age-related disorders (43). In studies of the DNA BER pathway,
the OGGL1 Ser326Cys polymorphism has been linked to the risk of
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FIGURE 7

Immune microenvironment analysis. (A) Differences in immune cell infiltration (ssGSEA scores for 28 immune cell types) between high- and low-risk
groups. ssGSEA was applied to log2-transformed expression matrix; group comparisons used Wilcoxon rank-sum test (two-sided); p < 0.05
considered significant. (B) Correlation heatmap of differentially abundant immune cells computed by Spearman correlation (or Pearson as specified
in Methods); correlations with |cor| > 0.3 and p < 0.05 are highlighted. (C) Correlation heatmap between prognostic genes and differential immune
cells using Spearman correlation (p < 0.05); |cor| > 0.3 indicated on heatmap. (D) Immune checkpoint expression comparisons (48 checkpoints)
between risk groups using Wilcoxon rank-sum test (two-sided); p < 0.05 considered significant. (E) Correlation heatmap between prognostic genes
and differentially expressed immune checkpoints by Spearman correlation (|cor| > 0.3, p < 0.05). Significance annotations throughout: ns (p > 0.05);
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.

pediatric ALL: the OGG1 Cys/Cys genotype increases ALL risk,  valuable prognostic marker and offers new insights into biomarker
while combined XRCC1/OGG1 or OGG1/MUTYH genotypes  discovery for pediatric AML. However, its direct association with
confer protection against this malignancy (44). Recent studies in ~ PCD remains unclear and warrants further investigation.

relapsed AML show that low OGGI expression in leukemic cells OPAI, a mitochondrial inner membrane GTPase, regulates
correlates with higher mutation burdens (45). However, the  mitochondrial dynamics, bioenergetics, cristae architecture, and
prognostic value of OGG1 in pediatric AML remains largely = mtDNA stability (46). AML cells are highly reliant on oxidative
unexplored. Our bioinformatics and qPCR results revealed  phosphorylation and mitochondrial dynamics, processes regulated
significantly lower OGG1 expression in pediatric AML, consistent by fusion genes such as OPA1 (47). A recent study showed that
with the findings of Gotoh et al. (45). This suggests that OGGl isa  pharmacological inhibition of OPA1 with MYLS22 or genetic
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FIGURE 8

GGl network and molecular regulatory network. (A) GGI network of prognostic genes. (B, C) Venn diagrams of miRNAs and IncRNAs. (D) Regulatory

network of mMRNA-miRNA-IncRNA interactions.

depletion of mitochondrial fusion genes exerted robust anti-
leukemic effects in AML (48). Dysregulated mitochondrial
dynamics, including OPAl-mediated fusion, are observed not
only in AML but also in other leukemias. A 2019 study by Silic-
Benussi et al. demonstrated that the ROS-OMA1-OPAL1 axis plays a
significant role in drug resistance in pediatric T-cell ALL. ROS
scavengers and siRNA-mediated knockdown of the mitochondrial
protease OMA1 inhibited OPA1 cleavage and cell death, providing
evidence for ROS-targeted therapies in refractory pediatric T-ALL
(49). In the present study, high expression of OPAIl was
significantly associated with poor prognosis in pediatric AML,
confirming its role as a reliable prognostic marker for AML.

In clinical practice, prognostic models are essential for
estimating and quantifying patient outcomes (50). The
nomogram addresses a critical need in modern medicine by
offering a tool to tailor medical decisions to individual risk
profiles, aligning with the principles of personalized medicine
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(51). Compared to existing models, the 1-year AUC for Yang
et al’s pediatric AML stem cell transplantation model was 0.70,
while our model achieved an AUC of 0.73 (52). Similarly, Song
et al’s nomogram exhibited a 1-year AUC of 0.62, compared to 0.69
in our study (53). These results highlight the superior accuracy and
clinical utility of the prognostic model and nomogram developed in
this study, demonstrating their effectiveness in predicting pediatric
AML prognosis and providing robust risk stratification and
treatment guidance for clinical practice.

During organismal growth and development, the transmission
of genetic information and the regulation of cellular functions are
essential for maintaining normal physiology (54, 55). Dysregulation
of this information, such as abnormal RNA splicing, is a key factor
underlying hematopoietic dysfunction in pediatric AML. Recent
studies have shown that aberrant splicing triggers DNA damage and
impairs repair mechanisms in the pediatric AML hematopoietic
system (56). While RAD51 and XRCC3 polymorphisms have been
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FIGURE 9

Drugs and small-molecule inhibitors prediction. (A, E) Correlations between predicted drug sensitivity (IC50) and risk scores in high- and low-risk
groups. IC50 values for chemotherapies/targeted therapies were predicted using oncoPredict based on GDSC; correlations were tested by
Spearman (or Pearson if specified) with reported correlation coefficient (r) and p value; thresholds for reporting: |cor| > 0.5 and p < 0.05 for

GDSC drugs, |cor| > 0.4 and p < 0.05 for Beat AML small molecules. (B, F) Boxplots of predicted IC50 values between high- and low-risk groups
(Wilcoxon rank-sum test; two-sided; p < 0.05 considered significant). (C, D, G, H) Scatterplots showing correlations between selected compounds
(SB5051241194, |.BRD91928, KI20227, RAF265 CHIR.265) and risk scores; correlation coefficients and p values shown; ns (p > 0.05).

linked to an increased susceptibility to adult AML, combined
variant alleles of these DNA repair genes significantly elevate the
risk of AML in pediatric populations (57). EMT is a dynamic
process involved in embryonic development, inflammation, wound
repair, fibrosis, and cancer progression (58). Higher expression of
EMT transcription factors, such as ZEBI, correlates with AML
progression (58). In an MLL-AF9 oncogene-driven AML mouse
model, short hairpin RNA (shRNA)-mediated Zebl knockdown
reduced bone marrow infiltration in vivo, and in vitro studies
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showed impaired tumor cell invasion (59). These findings
underscore the role of DNA repair dysregulation and EMT in the
spread of leukemic cells, offering critical insights into the
pathogenesis of pediatric AML and the development of effective
treatment strategies.

Buparlisib, an oral pan-class I PI3K inhibitor, suppresses the
PI3K pathway to induce antiproliferative and proapoptotic effects in
various tumor types, including ovarian, glioblastoma, breast, and
prostate cancers (60). In patients with AML, a daily dose of 80mg
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Validation of prognostic gene expression. (A) Differential expression analysis of prognostic genes. Boxplots show median and interquartile range;
group comparisons by Wilcoxon rank-sum test. (B—D) RT-qPCR expression levels of OGG1, PDHAL and OPAL. n = 5. Expression quantification

used 2" AACt

annotations: ns (p > 0.05); **p < 0.01; ****p < 0.0001.

buparlisib inhibited the PI3K/AKT/mTOR pathway with acceptable
tolerability and preliminary activity (61). Given its broad anti-
neoplastic effects, buparlisib has also been tested in AML and
ALL, with studies confirming its ability to inhibit PI3K activity,
making it a promising treatment for patients with ALL (62).
Crizotinib, first approved in 2011, specifically targets anaplastic
lymphoma kinase (ALK) (63). Earlier studies have demonstrated
crizotinib’s potential in treating hematological cancers with ALK
rearrangements. Maesako and Yanagimachi et al. showed that
crizotinib effectively reduced leukemia cell burden in patients
with ALK-rearranged AML and pediatric AML harboring the
RAN-binding protein 2-anaplastic lymphoma kinase fusion gene
(64, 65). Together, these agents exhibit significant therapeutic
potential for both hematological malignancies, such as AML and
ALL, as well as solid tumors. They are expected to offer novel
approaches for pediatric AML treatment. However, further research
is necessary to fully clarify their efficacy and safety, enabling more
optimized clinical applications.

Pediatric AML demonstrated notable sensitivity to two small-
molecule inhibitors, SB505124_1194 (a selective TGFBR inhibitor)
and RAF265 CHIR.265 (a BRAF inhibitor). These compounds have
shown efficacy in various diseases. Given the role of TGFp signaling
in leukemogenesis, SB505124_1194 was tested in pediatric AML. In
2022, Yu et al. reported that pediatric patients with AML could
potentially benefit clinically from SB505124 1194 treatment (66).
While its efficacy in hepatocellular carcinoma (HCC) is attributed to
modulation of the TGFJ pathway (67), this mechanism is also
involved in AML stem cell maintenance, supporting its potential for
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normalized to GAPDH. Group comparisons used two-sided unpaired Student’s t-test; p < 0.05 considered significant. Significance

translation into leukemia treatment. Regarding RAF265 CHIR.265,
early studies by Khazak et al. demonstrated that RAF265 effectively
suppresses wild-type Raf kinases and inhibits mitogen-activated
protein kinase (MAPK) signaling in cancer cell lines (68).
Preclinical studies in medullary thyroid cancer (MTC) showed
synergistic antitumor effects when combined with ZSTK474 (69).
In 2023, Li et al. identified a novel application for RAF265 as an
antiviral therapeutic against Herpes simplex virus-1 (HSV-1),
where its mechanism of action involves regulation of cytoskeleton
rearrangement and modulation of cellular translation machinery,
highlighting its potential for multitargeted therapeutic applications
(68). Together, these small-molecule inhibitors represent valuable
candidates for further investigation in pediatric AML. Future
research should aim to fully elucidate their mechanisms of action,
optimize their therapeutic potential, and explore the possibility of
combination therapies with other drugs or treatment modalities to
improve outcomes for pediatric patients with AML.

5 Conclusions

In this study, transcriptome data and bioinformatics
approaches were utilized to identify PDHAI, OGG1, and OPAl
as potential prognostic genes in pediatric AML. The constructed
prognostic model and nomogram demonstrate preliminary
predictive value, but require further validation in a multicenter
cohort. Enrichment analysis linked these genes to genetic
information transmission and cellular function regulation
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pathways between high- and low-risk groups. Through drug
prediction analysis, buparlisib, crizotinib, SB505124_1194, and
RAF265 CHIR.265 were identified as promising novel therapeutic
agents for pediatric AML. Although this approach has provided
valuable insights into the pathogenesis and prognosis of pediatric
AML, it is not without limitations. Issues related to data quality,
inherent assumptions in the employed algorithms, and reliance on
RT-qPCR techniques raise concerns. Therefore, additional clinical
cohort validation is essential to ensure the robustness and reliability
of this method. Concurrently, increasing the sample size and
conducting more functional experiments to validate the currently
identified prognostic genes are necessary to ensure the research
findings stand up to scrutiny in practical applications. Furthermore,
with a training sample size of only 131, there is a risk of overfitting.
To enhance the generalizability and stability of the results, future
studies should explore the possibility of using external cohorts (such
as datasets beyond GSE192638) or bootstrapping methods
for validation.
Translated with DeepL.com (free version).
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