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Background: Pediatric acute myeloid leukemia (AML) is characterized by poor

prognosis and low survival rates following recurrence. While mitochondria and

programmed cell death (PCD) are implicated in various diseases, their role in

pediatric AML remains poorly understood. Identifying prognostic genes

associated with PCD and mitochondrial function could enhance

therapeutic approaches.

Methods: Transcriptomic data and gene sets were sourced from public

databases. Differentially expressed genes (DEGs) that intersected with PCD-

related genes (PCD-RGs) and mitochondrial-related genes (mito-RGs) were

selected as candidate genes. Regression analyses were performed to identify

prognostic genes, which were then used to develop and validate a prognostic

model. A nomogram was constructed, followed by functional analysis, immune

microenvironment assessment, molecular regulatory network investigation, drug

sensitivity profiling, and clinical validation through RT-qPCR.

Results: Twenty-six candidate genes were identified, with three—PDHA1, OGG1,

and OPA1—confirmed as potential prognostic markers through regression

analyses. The prognostic model demonstrated robustness in both internal and

external validations, and the nomogram exhibited good predictive power.

Pathway enrichment analysis highlighted the involvement of DNA replication

and epithelial-mesenchymal transition, alongside 14 differentially abundant

immune cells (p < 0.05). Molecular network analysis indicated that hsa-miR-

199a-5p regulates PDHA1 and OGG1. Drug sensitivity profiling identified

potential therapeutic agents, including SB505124_1194. RT-qPCR validation

confirmed consistent expression patterns for the prognostic genes.
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Conclusions: PDHA1, OGG1, and OPA1 were identified as potential prognostic

markers for pediatric AML, providing valuable insights for the development of

targeted therapeutic strategies. However, further validation in larger and more

diverse clinical cohorts is still required to confirm its clinical applicability.
KEYWORDS
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1 Introduction

Acute myeloid leukemia (AML) is a heterogeneous malignancy

characterized by disrupted hematopoietic stem cell regulation and

impaired differentiation, accounting for 15–20% of childhood

leukemia cases (1, 2). Pediatric AML is associated with a poor

prognosis, with a long-term survival rate of only 45–55% and a

recurrence rate of approximately 30% (3, 4). The primary treatment

strategies for AML include chemotherapy and hematopoietic stem

cell transplantation (HSCT) (5). In pediatric AML, however, the

failure rate of initial induction remission therapy is 10–15%, and only

about one-third of patients with induction failure achieve eventual

cure (6). This suboptimal prognosis is largely due to the inability to

maintain disease remission after initial therapy. Chemotherapy

causes significant toxicity, including myelosuppression, heightened

infection risk, and long-term organ damage (7). Although allogeneic

HSCT offers potential curative benefits, it carries risks such as graft-

versus-host disease, opportunistic infections, and transplant-related

mortality (8). Thus, identifying prognostic biomarkers and

developing novel predictive models are crucial for the clinical

management of pediatric AML. These efforts could yield new

therapeutic targets, ultimately improving treatment outcomes.

Programmed cell death (PCD) is a regulated, sequential process

that maintains a homeostatic balance between cell proliferation and

cell death. This process encompasses 18 distinct forms, including

apoptosis, necroptosis, and autophagy (9). Programmed cell death-

1 (PD-1) expression has been observed in the leukemic cells of adult

patients with AML, with reported frequencies ranging from 42% to

100%, but research on PCD in pediatric AML is limited (10). PCD is

often regulated by intracellular organelles, particularly

mitochondria, which play a pivotal role in inflammation

associated with PCD. Dysregulation of mitochondrial dynamics

can trigger various PCD pathways (11, 12). Notably, GSK621, an

agonist of AMP-activated protein kinase (AMPK), has been shown

to selectively eliminate AML cells, highlighting its potential as a

therapeutic agent (13). However, the interaction between PCD and

mitochondrial function in pediatric AML remains largely

unexplored, hindering the development of targeted therapies for

this population.

Utilizing extensive data resources on pediatric AML from

public databases, this study applied a comprehensive suite of
02
bioinformatics methods, including differential expression analysis,

prognostic model construction, clinical correlation assessment,

functional enrichment analysis, drug sensitivity prediction, and

experimental validation. These approaches were used to conduct

an in-depth investigation of prognostic genes associated with PCD

and mitochondrial function in pediatric AML progression. The

research also explored the molecular mechanisms implicated in

pediatric AML and offered new insights into disease pathogenesis.

This study provides a theoretical foundation for accurate prognostic

diagnosis and targeted clinical treatment optimization for pediatric

patients with AML.
2 Materials and methods

2.1 Data collection

The TARGET database was used to download the TARGET-

AML cohort, which includes gene expression profiles, clinical data,

and survival information from 187 pediatric AML tissue samples

(accessed on 2023-11-20). Additionally, the GEO database was

queried to obtain pediatric AML-related transcriptome datasets,

including GSE2191 and GSE192638. GSE2191 (platform: GPL8300)

contains tumor tissue data from 54 pediatric AML bone marrow

samples and 4 control bone marrow samples, while GSE192638

(platform: GPL24676) served as an external validation set,

comprising 41 pediatric AML bone marrow samples with survival

data. To investigate PCD and mitochondrial functions in pediatric

AML, 1,548 PCD-related genes (PCD-RGs) and 1,136

mitochondrial-related genes (mito-RGs) were sourced from

relevant literature (9) (Supplementary Table 1) and the MitoCarta

3.0 database (accessed on 2023-11-20) (Supplementary Table 2).
2.2 Acquisition of candidate genes

Differential expression analysis was performed on the GSE2191

dataset to compare pediatric AML and control groups using the

limma package (v 1.26.0) (14) (|log2FC| > 0.5, p < 0.05), identifying

differentially expressed genes (DEGs). The results were visualized

using ggplot2 (v 3.4.4) (15) for a volcano plot and Heatmap (v 4.1.0)
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(15) for a heatmap. The intersection of DEGs, PCD-RGs, and mito-

RGs was used to identify candidate genes.
2.3 Enrichment analysis and construction
of protein-protein interaction network

To further explore the biological functions and pathways

associated with the candidate genes, GO and KEGG analyses were

conducted using the clusterProfiler package (v 4.0.2) (16) (p < 0.05,

count > 1). The top 10 biological functions from the GO analysis (p

< 0.05) and the most significant pathways from the KEGG analysis

(p < 0.05) were displayed. The candidate genes were input into the

STRING database (with a confidence score threshold of > 0.4) to

examine protein-level interactions, and the PPI network was

visualized using Cytoscape software (v 3.10.1) (17).
2.4 Identification of prognostic genes

The 187 samples from the TARGET-AML cohort were

randomly divided into two groups: 131 samples for the training

set and 56 samples for the internal validation set, following a 7:3

ratio. The training set was used to identify candidate genes

associated with pediatric AML prognosis. Univariate and

multivariate Cox regression analyses were performed using the

survival package (v 3.1-12) (18) to identify survival-associated

genes (hazard ratio [HR] ≠ 1, p < 0.05), with the regression

results tested for proportional hazards (PH) assumptions (p >

0.05). Forest plots were generated using the forestplot package (v

3.1.1) (19) to visualize the regression results, followed by further

evaluation of the prognostic genes identified through these analyses.
2.5 Construction and validation of
prognostic model

The risk score for pediatric AML was calculated using the

following formula:

Risk score = h0(t) × exp(b1X1 + b2X2 + … + bnXn).
Subsequently, the surv_cutpoint function from the survminer

package (v 0.4.6) (20) (based on the maximum selection rank statistic

and log-rank test) was used to identify the optimal cutoff value within

the queue, with minprop = 0.4 set to prevent extreme imbalance.

Ultimately, pediatric AML patients were categorized into high-risk

and low-risk groups. Next, survminer package (v 0.4.6) was utilized to

draw risk curves and survival status plots to analyze the distribution

of pediatric AML patients in different datasets as a whole. A heatmap

illustrating the expression of prognostic genes between the two

groups was created. Overall survival (OS) between the two groups

was assessed using Kaplan-Meier (K-M) survival analysis with the

survminer package (v 0.4.6). The diagnostic performance of the

prognostic model was evaluated through receiver operating

characteristic (ROC) curves at 1, 2, and 3 years using the
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survivalROC package (v 1.0.3) (21) (with area under the curve

[AUC] ≥ 0.6). Using the same analytical approach, the model was

further validated in both the internal and external validation sets.
2.6 Clinical correlation analysis between
risk groups

To investigate survival differences between high-risk and low-

risk groups based on clinical characteristics, common clinical

factors in pediatric AML, such as age, CCAAT enhancer binding

protein alpha (CEBPA) mutation, white blood cell (WBC) count (≥

78.2757%, < 78.2757%), FAB classification (M0-M7), FLT3 ITD

mutation, gender, and WT1 mutation, were included. Samples

missing clinical data were excluded, and the remaining samples

were categorized based on various clinical characteristics for

correlation analysis. Stratified survival analysis for clinical factors

was then performed across the two risk groups, with K-M curves

plotted using the ggsurvplot function from the survminer package

(v 1.0.3). The clinical characteristic grouping for training set

samples is summarized in Table 1.
2.7 Independent prognostic analysis

Next, using the survival package (v 3.1-12) and forestplot

package (v 3.1.1), the risk score from the training set and the

aforementioned clinical factors were combined for univariate and

multivariate Cox regression analyses (p < 0.05) and PH assumption

testing (p > 0.05). Independent prognostic factors were identified,

and a nomogram was constructed using the rms package (v 6.1-0)

(22). The nomogram model was then evaluated through calibration

curves and ROC analysis for 1, 2, and 3 years.
2.8 Enrichment analysis based on risk
score

In the training set, DEGs between high-risk and low-risk groups

were identified using the DESeq2 package (v 1.38.0) (23). Log2 fold

change (log2FC) was calculated, and genes were ranked from largest

to smallest (p < 0.05, |log2FC| > 1). The clusterProfiler package (v

4.4.4) was used to perform Gene Set Enrichment Analysis (GSEA)

with the “c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt” and

“c5.go.v7.4.symbols.gmt” gene sets from MSigDB as the reference

(p < 0.05, |normalized enrichment score (NES)| > 1). Gene set

variation analysis (GSVA) was also conducted using the 50

hallmark gene sets from MSigDB, followed by differential analysis

of GSVA scores between the two risk groups using the limma

package (v 1.26.0). The low-risk group was used as the reference (t >

1 indicates activation of the pathway in the high-risk group, and t <

-1 indicates activation in the low-risk group). The top 5 most

significant functions from each enrichment analysis were visualized

using the enrichplot package (v 3.19) (24).
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2.9 Analysis of the immune
microenvironment

This study employed the ssGSEA algorithm to infer immune

cell infiltration from bulk RNA-seq data. Specifically, predefined

gene sets for 28 immune cell types (25) were applied to log2-

transformed expression matrices, generating enrichment scores for

each immune cell type across the samples. The ssGSEA scores are

dimensionless, rank-based enrichment values that reflect the

relative abundance and activity of cell types, rather than absolute

cell counts or proportions. To compare differences in immune cell

infiltration levels between two risk groups, the Wilcoxon rank sum

test (p < 0.05) was performed using the rstatix package (v 0.7.2) (26)

and the ggplot2 package (v 3.4.4), identifying differentially immune

cells. These immune cell distributions were visualized in box plots

using ggplot2. To assess correlations among differential immune
Frontiers in Immunology 04
cells, correlation (cor) analysis was performed using the R package

psych (v 2.2.9) (27) (|cor| > 0.3, p < 0.05), and results were

visualized as heatmaps via the ggplot2 package (v 3.4.4).

Subsequently, the quickcor function in the ggcor package (v 0.7.2)

(28) was employed to analyze correlations between immune cells

with differential infiltration and prognostic genes (p < 0.05), with

correlation heatmaps generated using quickcor. Additionally, the

ggdotchart function in the ggpubr package (v 0.6.0) (29) was

utilized to create lollipop plots for visualization. Additionally, the

rstatix and ggplot2 packages were used to compare the expression

levels of 48 immune checkpoints (30) between the two risk groups,

generating box plots (Wilcoxon rank-sum test, p < 0.05). The

correlation between prognostic genes and differentially expressed

immune checkpoints was then analyzed using quickcor (28) (|cor| >

0.3, p < 0.05).
2.10 Construction of molecular regulatory
networks

The gene-gene interaction (GGI) network of prognostic genes

was constructed via GeneMANIA. To further investigate the

regulatory mechanisms of gene expression, miRNAs targeting

prognostic genes were predicted using the miRwalk and starBase

databases. The intersected miRNAs from both databases were then

analyzed. Following this, lncRNAs regulating the intersected

miRNAs were predicted using the starBase and miRNet

databases, with the lncRNAs identified by both databases being

intersected. The resulting lncRNA-miRNA-mRNA network was

constructed to explore the regulatory relationships among

prognostic genes.
2.11 Drug sensitivity analysis

To assess drug treatment response variability in pediatric AML,

chemotherapy and targeted therapy drugs were sourced from the

GDSC database. Using the oncoPredict package (v 0.5) (31), the

half-maximal inhibitory concentration (IC50) for each patient’s

response to chemotherapeutic and targeted therapy drugs was

predicted. Correlations between drug IC50 values and risk scores

(|cor| > 0.5, p < 0.05) were analyzed to infer drug sensitivity. Box

plots were generated using ggplot2 to display significant differences

in drug responses between the two risk groups (p < 0.05). Drugs

showing the strongest positive and negative correlations with the

risk score were presented. Additionally, small-molecule inhibitors

were obtained from the Beat AML dataset (32), and drug sensitivity

analysis was conducted similarly (|cor| > 0.4, p < 0.05).
2.12 Analysis of prognostic gene
expression based on the GSE2191 dataset

Subsequently, to validate the expression differences of

prognostic genes between the pediatric AML group and the
TABLE 1 Grouping of clinical characteristics in the training set samples.

N 107

Age

≤9.214953 54

>9.214953 53

Gender

Female 58

Male 49

CEBP mutation

No 103

Yes 4

WBC_at_Diagnosis

≥78.2757% 37

<78.2757% 70

FAB

M0 3

M1 11

M2 29

M4 37

M5 23

M6 1

M7 3

FLT3 ITD mutation

No 95

Yes 12

WT1 mutation

No 101

Yes 6
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control group, an analysis was conducted in the GSE2191 dataset,

and the results were presented using box plots.
2.13 RT-qPCR

To further validate the expression of prognostic genes in clinical

samples, five pairs of whole blood samples were collected from

Gansu Provincial Maternity and Child-care Hospital, comprising

five control samples (samples 1-5) and five AML samples (samples

6-10). The control donors were age-matched to the corresponding

AML patients (± 2 years), with no known hematologic disorders,

ensuring comparability between groups. This study was approved

by the Institutional Review Board of Gansu Provincial Maternity

and Child-care Hospital, with all participants providing informed

consent prior to sample collection. Total RNA was extracted from

approximately 50 mg of each tissue sample using TRIzol reagent

(Ambion, Austin, USA) according to the manufacturer’s

instructions. RNA concentration and purity were assessed using a

NanoPhotometer N50, and samples with A260/A280 ratios between

1.8 and 2.0 were considered suitable for downstream applications.

First-strand cDNA was synthesized from 2 µg of total RNA using

the SureScript First-Strand cDNA Synthesis Kit (Servicebio,

Wuhan, China) in a 20 µL reaction volume. The reverse

transcription reaction was carried out under the following

conditions: 25°C for 5 min, 50°C for 15 min, and 85°C for 5 sec,

followed by hold at 4°C. RT-qPCR was performed using 2×

Universal Blue SYBR Green qPCR Master Mix (Servicebio,

Wuhan, China) on a CFX Connect Real-Time PCR System (Bio-

Rad, USA). Each 10 µL reaction contained 3 µL of diluted cDNA, 5

µL of master mix, and 0.5 µM each of forward and reverse primers.

The amplification protocol consisted of an initial denaturation at

95°C for 1 min, followed by 40 cycles of 95°C for 20 sec, 55°C for 20

sec, and 72°C for 30 sec. Melting curve analysis was performed to

confirm primer specificity. The primer sequences were detailed in

Supplementary Table 3. GAPDH was used as the endogenous

control for normalization. Gene expression was quantified using

the 2-DDCt method (33). Data visualization was conducted using

GraphPad Prism 10 (34), with comparisons between groups

assessed using the two-tailed Student’s t-test (unpaired). Statistical

significance was set at p < 0.05.
2.14 Statistical analysis

All statistical analyses were conducted using R software (version

4.2.2; R Foundation for Statistical Computing, Vienna, Austria).

Specifically, the clusterProfiler package was used for GO and KEGG

enrichment analysis, the limma package for gene differential

expression analysis, the rms package for plotting nomogram, and

calibration curves, and the survivalROC package for ROC analysis.

Differences between groups were compared using the Wilcoxon

rank-sum test (p < 0.05). Survival analysis was conducted with the

log-rank test to evaluate group differences (p < 0.05).
Frontiers in Immunology 05
3 Results

3.1 Identification of candidate genes,
enrichment analysis, and PPI construction

Differential expression analysis of the GSE2191 dataset revealed

2,391 DEGs, with 1,405 upregulated and 986 downregulated genes

in the pediatric AML group (Figure 1A). A heatmap generated

using these DEGs successfully distinguished the pediatric AML and

control groups (Figure 1B). The intersection of DEGs, PCD-RGs,

and mito-RGs identified 26 candidate genes (Figure 1C;

Supplementary Table 4). Subsequently, enrichment analysis was

performed to understand the functions and related pathways of the

candidate gene. GO enrichment analysis revealed a total of 441

enriched terms, including 365 biological processes (BPs), 21 cellular

components (CCs), and 55 molecular functions (MFs)

(Supplementary Table 5). The top 10 gene functions identified

included intrinsic apoptotic signaling pathway, mitochondrial outer

membrane, and BH domain binding (Figure 1D). KEGG

enrichment analysis identified 52 pathways (Supplementary

Table 6), with the top 10 significantly enriched pathways

including apoptosis, platinum drug resistance, and p53 signaling

(Figure 1E). PPI networks are essential for understanding the

structure and function of cellular networks, as well as the

pathogenesis of diseases. To explore potential interactions among

the 26 candidate genes, a PPI network was constructed, which

included 23 nodes and 96 edges. Key genes such as OPA1, PDHA1,

and BCL2L1 were identified in the network (Figure 1F).
3.2 Construction and validation of
prognostic model based on prognostic
genes

Based on 26 candidate genes, this study further explored which

genes hold significant prognostic value for survival outcomes in

pediatric AML. Using 131 samples from TARGET-AML (the data

was randomly split into a training set of 131 cases and a test set of 56

cases in a 7:3 ratio), through univariate Cox regression analysis, 7

candidate prognostic genes were identified, among which these

genes were all considered as high risk genes (HR > 1) (Figure 2A).

Multivariate Cox regression analysis and the PH assumption test (p

> 0.05) further confirmed 3 potential prognostic genes—PDHA1,

OGG1, and OPA1—as significant (Figure 2B; Table 2).

The prognostic model was constructed as follows: Risk score =

h0(t) × (PDHA1 × 0.46653 + OGG1 × 0.373 + OPA1 × 0.32316).

Using the optimal cutoff value (cutpoint = 1.09), the 131 pediatric

patients with AML were divided into high-risk (66 samples) and

low-risk (65 samples) groups (Figure 2C). The survival status plot

indicated that higher risk scores correlated with a greater number of

deceased patients (Figure 2C). A heatmap based on the prognostic

genes effectively distinguished the two groups (Figure 2D). K-M

survival curves showed that the high-risk group had significantly

lower survival rates (p < 0.05) (Figure 2E), with AUCs for 1, 2, and 3
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FIGURE 1

Screening for DEGs. (A) Volcano plot of DEGs in GSE2191. Differential expression was assessed with limma using |log2FC| > 0.5 and p < 0.05; genes
with log2FC > 0.5 (up) or < -0.5 (down) are highlighted. (B) Heatmap of DEGs in GSE2191. Expression values were normalized (z-score by gene) and
clustered using Euclidean distance and complete linkage. (C) Venn diagram showing intersection of DEGs, PCD-related genes (PCD-RGs), and
mitochondrial-related genes (mito-RGs) to define candidate genes. (D, E) Functional enrichment analysis of candidate genes via Gene Ontology
(GO: BP, CC, MF) and KEGG pathways performed with clusterProfiler (over-representation analysis; p < 0.05, count > 1). Top terms/pathways are
shown. Multiple testing correction: Benjamini–Hochberg (BH) where applicable; terms reported meet p < 0.05 after correction or as indicated in the
main text. (F) Protein–protein interaction (PPI) network of candidate genes obtained from STRING (confidence score > 0.4) and visualized in
Cytoscape.
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years all greater than 0.6, demonstrating that the prognostic model

effectively predicts the survival of pediatric patients with

AML (Figure 2F).

The model’s reliability was confirmed through internal (from

TARGET-AML) and external validation (GSE192638). In the

internal validation set, the prognostic model identified an optimal

threshold (0.876), dividing the cohort into high-risk (34 samples)

and low-risk (22 samples) groups. The survival status plot, heatmap,

and K-M curve results (p < 0.05) were consistent with the training

set findings (Figures 3A–C). ROC analysis showed AUCs greater

than or equal to 0.60 for 1, 2, and 3 years (Figure 3D). In the

external validation set, the prognostic model identified an optimal

threshold (24.43), dividing the cohort into high-risk (19 samples)
Frontiers in Immunology 07
and low-risk (22 samples) groups. The survival status plot, heatmap,

K-M curve (p < 0.05), and ROC curve results were consistent with

the internal validation set (Figures 3E–H). These results confirm the

robustness of the prognostic model in assessing the risk of pediatric

patients with AML.
3.3 Stratified survival analysis

In the training cohort (from TARGET-AML), stratified analysis

based on clinical characteristics revealed significant differences in

DFS status between the two risk groups in several subgroups,

including those with high age, female gender, CEBPA wild-type,
FIGURE 2

Construction of prognostic model. (A) Univariate Cox proportional hazards regression of candidate prognostic genes in the training set (n = 131).
Hazard ratios (HR) with 95% confidence intervals (CI) and p values are shown; genes with p < 0.05 were considered significant. Proportional hazards
(PH) assumption was tested (p > 0.05 indicates PH satisfied). (B) Multivariate Cox regression of selected prognostic genes; HR (95% CI) and p values
shown; PH assumption tested (p > 0.05). (C–E) Risk curve, survival status plot, heatmap of prognostic gene expression, and Kaplan–Meier K-M
survival analysis comparing high- and low-risk groups defined by surv_cutpoint (maximally selected rank statistic; minprop = 0.4). K-M curves were
compared with the log-rank test; p values are reported. (F) Diagnostic value of the prognostic model in GSE2191 assessed by time-dependent ROC
curves (survivalROC) at 1, 2, and 3 years; area under the curve (AUC) is reported. Statistical methods: Cox regression (survival package), log-rank test
for K-M, ROC AUC with confidence intervals.
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elevated WBC count, FAB classification M4 stage, FLT3-ITD wild-

type (No), and WT1 wild-type (No) (p < 0.05). KM curves for each

subgroup demonstrated that patients with higher risk scores had

poorer prognosis (Figure 4).
3.4 Construction and evaluation of
pediatric AML prediction model

In the TARGET-AML training cohort, after incorporating the

aforementioned common clinical characteristics and risk scores,

regression analyses and PH assumption tests identified risk score (p

< 0.05, HR = 2.022, 95% CI = 1.331–3.071) and WT1 mutation (p <

0.05, HR = 3.598, 95% CI = 1.402–9.234) as independent prognostic

factors (Figures 5A, B). The nomogram indicated that risk score had

the most significant impact on patient survival, followed by WT1

mutation. A higher total score correlated with a higher probability

of non-relapse, though the likelihood of non-relapse progressively

decreased with extended timeframes (1, 2, and 3 years) at the same

total score (Figure 5C). The calibration curve confirmed that the

survival probabilities for different years closely matched the

reference line (Figure 5D). Diagnostic evaluation revealed that the

AUC values of the nomogram model surpassed those of individual

prognostic factors (AUCs > 0.6), demonstrating its strong

predictive performance (Figures 5E–G).
3.5 GSEA and hallmark pathway differential
analysis

In the high- and low-risk groups of the training set, based on the

KEGG gene set (c2.cp.kegg_medicus.v2023.2.Hs.symbols.gmt)

from GSEA analysis, some pathways, such as reference translation

initiation, were then observed (Figure 6A; Supplementary Table 7).

GO gene set (c5.go.v7.4.symbols.gmt) analysis identified processes

like cotranslational protein targeting to the membrane (Figure 6B;

Supplementary Table 8). Additionally, GSVA analysis indicated

that apical surface and epithelial-mesenchymal transition (EMT)

pathways were activated in the high-risk group, while DNA repair

pathways were activated in the low-risk group (Figure 6C;

Supplementary Table 9). The findings of this study suggested that

DNA repair and epithelial-mesenchymal transition may play a role

in specific risk groups; however, given the small sample size and

potential cross-platform bias in this study, the reliability of this

conclusion requires validation in future studies with larger

sample sizes.
3.6 Description of the immune
microenvironment in pediatric AML

In addition, there were 14 immune cells with significant

differences in infiltration levels between the high- and low-risk

groups in the training set, including memory B cells, CD56dim

natural killer cells, and natural killer cells (p < 0.001) (Figure 7A).
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Correlation analysis revealed that more than half of the differential

immune cells had positive correlations, with the strongest positive

correlation between monocytes and follicular helper T cells (cor =

0.757, p < 0.001) (Figure 7B; Supplementary Table 10).

Additionally, OPA1 showed the strongest positive correlation

with activated CD4 T cells (cor = 0.495, p < 0.001) (Figure 7C;

Supplementary Table 11). In the high-risk group, 15 immune

checkpoints were significantly expressed, including TNFRSF14 (p

< 0.01) (Figure 7D). The strongest positive correlation was found

between CTLA4 and OPA1 (cor = 0.513, p < 0.001), while CD44

and PDHA1 exhibited the strongest negative correlation (cor =

-0.269, p < 0.001) (Figure 7E; Supplementary Table 12).
3.7 Molecular regulatory networks

In the GGI network constructed using prognostic genes and

their neighboring genes, involvement in the acetyl-CoA

biosynthetic process was identified (Figure 8A). The intersection

of miRNAs and lncRNAs predicted by different databases resulted

in 7 miRNAs and 52 lncRNAs (Figures 8B, C). These were used to

construct an mRNA-miRNA-lncRNA regulatory network,

revealing that hsa-miR-199a-5p regulated both PDHA1 and

OGG1 (Figure 8D). However, this regulatory relationship remains

a hypothetical deduction and requires experimental verification

for confirmation.
3.8 Prediction of drugs and small-molecule
inhibitors

Screening 198 drugs from the GDSC database and 122 small-

molecule inhibitors from the Beat AML dataset identified 145 drugs

and 22 small-molecule inhibitors with significant differences

between the risk groups in the training set, including osimertinib,

buparlisib, saracatinib, and crizotinib (Figures 9A, B, E, F;

Supplementary Tables 13, 14). In both the GDSC and Beat AML

datasets, SB505124_1194 (cor = 0.50, p < 0.0001) and KI20227 (cor

= 0.60, p < 0.0001) were the drugs and small-molecule inhibitors

most positively correlated with the risk score, while I.BRD9_1928

(cor = -0.80, p < 0.0001) and RAF265 CHIR.265 (cor = -0.40, p <

0.0001) were the most negatively correlated (Figures 9C, D, G, H).

These candidate compounds are still in the exploratory phase, and

their efficacy in pediatric AML must be validated through in vitro

and in vivo studies before clinical translation can be considered.
TABLE 2 PH assumption test.

Gene chisq df P

PDHA1 2.363675 1 0.124189

OGG1 0.36684 1 0.544732

OPA1 1.475837 1 0.224427

GLOBAL 13.62714 7 0.058225
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3.9 Validation of prognostic gene expression

In the pediatric AML group of GSE2191, PDHA1 and OPA1

were overexpressed, while OGG1 was downregulated (Figure 10A).

This was validated by RT-qPCR, which showed significant

differences in the expression levels of OGG1, PDHA1, and OPA1
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between case and control samples (p < 0.05). PDHA1 and OPA1

exhibited higher expression in AML samples compared to controls

(PDHA1: p < 0.0001; OPA1: p < 0.01), while OGG1 was

downregulated in the AML group (p < 0.01) (Figures 10B–D).

These results confirmed the consistency between the RT-qPCR

findings and the bioinformatics analysis.
FIGURE 3

Validation of prognostic model. (A–D) Internal validation set (n = 56): survival status plot, heatmap, Kaplan–Meier survival analysis (log-rank test), and
ROC curve (time-dependent ROC; AUC reported). (E–H) External validation set (GSE192638, n = 41): survival status plot, heatmap, Kaplan–Meier
survival analysis (log-rank test), and ROC curve (time-dependent ROC; AUC reported). Statistical tests and thresholds are the same as Figure 2. K-M
p values from log-rank test; ROC AUC with 95% CI.
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4 Discussion

As a recently emerging disease with an unclear etiology,

pediatric AML has seen limited progress in primary treatment

approaches (35). The gene expression profiles of PCD-RGs and

mito-RGs in pediatric AML remain inadequately characterized (36,

37). In this study, three potential prognostic genes—PDHA1,

OGG1, and OPA1—linked to PCD and mitochondrial function in

pediatric AML were precisely identified through differential

expression analysis and machine learning techniques. The

prognostic model established demonstrated that high-risk patients
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exhibited significantly reduced survival rates, a finding

independently validated in the GSE192638 dataset, confirming the

model’s robustness and generalizability. Furthermore, the

nomogram incorporating risk score and WT1 mutation exhibited

good predictive power for patient outcomes in pediatric AML

(AUC values > 0.6). Functional enrichment analysis revealed

critical pathways involved in pediatric AML progression, such as

translation initiation, DNA repair, apical surface regulation, and

EMT, offering valuable insights into the molecular mechanisms of

the disease. Drug prediction identified buparlisib and crizotinib as

potential therapeutic agents for pediatric AML, while
FIGURE 4

Stratified survival analysis between risk models and clinical characteristics (log-rank test), (ns, not significant). (A) Distribution of risk scores across
different clinical pathological subgroups. (B) Kaplan-Meier curves for high- and low-risk groups within different clinical pathological subgroups.
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SB505124_1194 and RAF265 CHIR.265 emerged as promising

candidates in the Beat AML dataset. These findings not only

deepen our understanding of pediatric AML pathogenesis but

also provide actionable targets for drug development.

Initially recognized as a key gene in cuproptosis, PDHA1 plays a

pivotal role in the reprogramming of glucose metabolism in tumor
Frontiers in Immunology 11
cells. It is involved in mitochondrial signaling pathways such as

oxidative phosphorylation, cellular respiration, and electron

transfer activity (38). In AML, PDHA1 mRNA expression is

typically reduced, whereas its expression is notably elevated in

lymphoid neoplasms, including diffuse large B-cell lymphoma

(DLBC) and thymoma (THYM) (38). A 2021 study by Cevatemre
FIGURE 5

Construction and validation of nomogram. (A, B) Univariate and multivariate Cox regression analyses combining clinical variables and risk score (HR,
95% CI, p values). Variables with p < 0.05 in multivariate analysis were considered independent prognostic factors. PH assumption tested for each
model (p > 0.05 indicates satisfied). (C) Nomogram incorporating independent prognostic factors (risk score and WT1 mutation) to predict 1-, 2-,
and 3-year overall survival. (D) Calibration curves comparing predicted vs observed survival at 1, 2, and 3 years; calibration assessed by 1,000
bootstrap resamples. (E–G) ROC curves for independent prognostic factors and the nomogram at 1, 2, and 3 years (time-dependent ROC); AUC
values and 95% CIs are reported.
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et al. showed that silencing PDHA1 expression triggered the EMT

in A549 lung cancer cells (39), while Ma et al. found that

dichloroacetate activated PDHA1, exerting therapeutic effects in

A549 cells, highlighting the critical role of PDHA1 in modulating

cellular responses to therapy and tumor progression in non-small

cell lung cancer (40). These findings suggest that PDHA1 may have

context-dependent roles across different diseases. Notably, while

PDHA1 is downregulated in adult AML, our study for the first time

reveals elevated PDHA1 expression in pediatric AML, where it

correlates with poor prognosis. This observation aligns with

previous studies and establishes PDHA1 as a potential diagnostic

and prognostic biomarker for pediatric AML, likely through its

regulation of mitochondrial metabolism in leukemic blasts. These

results not only enhance early diagnostic capabilities but also
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underscore PDHA1 as a potential therapeutic target for metabolic

reprogramming in pediatric AML (38, 41).

OGG1, a well-known DNA repair enzyme, plays a critical role

in inflammation modulation and metabolic homeostasis (42). In

mammalian cells, OGG1 primarily mediates the removal of 8-oxoG

through the base excision repair (BER) pathway. Unrepaired 8-

oxoG can lead to G:C to T:A substitution mutations during DNA

replication, serving as a biomarker for oxidative DNA damage.

Additionally, OGG1 is involved in the transcriptional regulation of

nuclear factor kappa B, activation of small GTPases, and inhibition

of poly (ADP-ribose) polymerase (PARP)-mediated cell death, all of

which are pivotal in modulating inflammation, tumor progression,

and age-related disorders (43). In studies of the DNA BER pathway,

the OGG1 Ser326Cys polymorphism has been linked to the risk of
FIGURE 6

Functional enrichment analysis. (A, B) Gene Set Enrichment Analysis (GSEA) for KEGG and GO gene sets (MSigDB c2.cp.kegg and c5.go;
permutations = gene_set; p < 0.05 and |normalized enrichment score (NES)| > 1 considered significant). Adjusted p values (BH) are reported where
applicable. (C) Gene Set Variation Analysis (GSVA) comparing high- vs low-risk groups using the 50 Hallmark gene sets; differential GSVA scores
were tested using limma (empirical Bayes moderated t-statistic); pathways with adjusted p < 0.05 (BH) and |t| > 1 are shown.
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pediatric ALL: the OGG1 Cys/Cys genotype increases ALL risk,

while combined XRCC1/OGG1 or OGG1/MUTYH genotypes

confer protection against this malignancy (44). Recent studies in

relapsed AML show that low OGG1 expression in leukemic cells

correlates with higher mutation burdens (45). However, the

prognostic value of OGG1 in pediatric AML remains largely

unexplored. Our bioinformatics and qPCR results revealed

significantly lower OGG1 expression in pediatric AML, consistent

with the findings of Gotoh et al. (45). This suggests that OGG1 is a
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valuable prognostic marker and offers new insights into biomarker

discovery for pediatric AML. However, its direct association with

PCD remains unclear and warrants further investigation.

OPA1, a mitochondrial inner membrane GTPase, regulates

mitochondrial dynamics, bioenergetics, cristae architecture, and

mtDNA stability (46). AML cells are highly reliant on oxidative

phosphorylation and mitochondrial dynamics, processes regulated

by fusion genes such as OPA1 (47). A recent study showed that

pharmacological inhibition of OPA1 with MYLS22 or genetic
FIGURE 7

Immune microenvironment analysis. (A) Differences in immune cell infiltration (ssGSEA scores for 28 immune cell types) between high- and low-risk
groups. ssGSEA was applied to log2-transformed expression matrix; group comparisons used Wilcoxon rank-sum test (two-sided); p < 0.05
considered significant. (B) Correlation heatmap of differentially abundant immune cells computed by Spearman correlation (or Pearson as specified
in Methods); correlations with |cor| > 0.3 and p < 0.05 are highlighted. (C) Correlation heatmap between prognostic genes and differential immune
cells using Spearman correlation (p < 0.05); |cor| > 0.3 indicated on heatmap. (D) Immune checkpoint expression comparisons (48 checkpoints)
between risk groups using Wilcoxon rank-sum test (two-sided); p < 0.05 considered significant. (E) Correlation heatmap between prognostic genes
and differentially expressed immune checkpoints by Spearman correlation (|cor| > 0.3, p < 0.05). Significance annotations throughout: ns (p > 0.05);
*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001.
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depletion of mitochondrial fusion genes exerted robust anti-

leukemic effects in AML (48). Dysregulated mitochondrial

dynamics, including OPA1-mediated fusion, are observed not

only in AML but also in other leukemias. A 2019 study by Silic-

Benussi et al. demonstrated that the ROS-OMA1-OPA1 axis plays a

significant role in drug resistance in pediatric T-cell ALL. ROS

scavengers and siRNA-mediated knockdown of the mitochondrial

protease OMA1 inhibited OPA1 cleavage and cell death, providing

evidence for ROS-targeted therapies in refractory pediatric T-ALL

(49). In the present study, high expression of OPA1 was

significantly associated with poor prognosis in pediatric AML,

confirming its role as a reliable prognostic marker for AML.

In clinical practice, prognostic models are essential for

estimating and quantifying patient outcomes (50). The

nomogram addresses a critical need in modern medicine by

offering a tool to tailor medical decisions to individual risk

profiles, aligning with the principles of personalized medicine
Frontiers in Immunology 14
(51). Compared to existing models, the 1-year AUC for Yang

et al.’s pediatric AML stem cell transplantation model was 0.70,

while our model achieved an AUC of 0.73 (52). Similarly, Song

et al.’s nomogram exhibited a 1-year AUC of 0.62, compared to 0.69

in our study (53). These results highlight the superior accuracy and

clinical utility of the prognostic model and nomogram developed in

this study, demonstrating their effectiveness in predicting pediatric

AML prognosis and providing robust risk stratification and

treatment guidance for clinical practice.

During organismal growth and development, the transmission

of genetic information and the regulation of cellular functions are

essential for maintaining normal physiology (54, 55). Dysregulation

of this information, such as abnormal RNA splicing, is a key factor

underlying hematopoietic dysfunction in pediatric AML. Recent

studies have shown that aberrant splicing triggers DNA damage and

impairs repair mechanisms in the pediatric AML hematopoietic

system (56). While RAD51 and XRCC3 polymorphisms have been
FIGURE 8

GGI network and molecular regulatory network. (A) GGI network of prognostic genes. (B, C) Venn diagrams of miRNAs and lncRNAs. (D) Regulatory
network of mRNA-miRNA-lncRNA interactions.
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linked to an increased susceptibility to adult AML, combined

variant alleles of these DNA repair genes significantly elevate the

risk of AML in pediatric populations (57). EMT is a dynamic

process involved in embryonic development, inflammation, wound

repair, fibrosis, and cancer progression (58). Higher expression of

EMT transcription factors, such as ZEB1, correlates with AML

progression (58). In an MLL-AF9 oncogene-driven AML mouse

model, short hairpin RNA (shRNA)-mediated Zeb1 knockdown

reduced bone marrow infiltration in vivo, and in vitro studies
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showed impaired tumor cell invasion (59). These findings

underscore the role of DNA repair dysregulation and EMT in the

spread of leukemic cells, offering critical insights into the

pathogenesis of pediatric AML and the development of effective

treatment strategies.

Buparlisib, an oral pan-class I PI3K inhibitor, suppresses the

PI3K pathway to induce antiproliferative and proapoptotic effects in

various tumor types, including ovarian, glioblastoma, breast, and

prostate cancers (60). In patients with AML, a daily dose of 80mg
FIGURE 9

Drugs and small-molecule inhibitors prediction. (A, E) Correlations between predicted drug sensitivity (IC50) and risk scores in high- and low-risk
groups. IC50 values for chemotherapies/targeted therapies were predicted using oncoPredict based on GDSC; correlations were tested by
Spearman (or Pearson if specified) with reported correlation coefficient (r) and p value; thresholds for reporting: |cor| > 0.5 and p < 0.05 for
GDSC drugs, |cor| > 0.4 and p < 0.05 for Beat AML small molecules. (B, F) Boxplots of predicted IC50 values between high- and low-risk groups
(Wilcoxon rank-sum test; two-sided; p < 0.05 considered significant). (C, D, G, H) Scatterplots showing correlations between selected compounds
(SB5051241194, I.BRD91928, KI20227, RAF265 CHIR.265) and risk scores; correlation coefficients and p values shown; ns (p > 0.05).
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buparlisib inhibited the PI3K/AKT/mTOR pathway with acceptable

tolerability and preliminary activity (61). Given its broad anti-

neoplastic effects, buparlisib has also been tested in AML and

ALL, with studies confirming its ability to inhibit PI3K activity,

making it a promising treatment for patients with ALL (62).

Crizotinib, first approved in 2011, specifically targets anaplastic

lymphoma kinase (ALK) (63). Earlier studies have demonstrated

crizotinib’s potential in treating hematological cancers with ALK

rearrangements. Maesako and Yanagimachi et al. showed that

crizotinib effectively reduced leukemia cell burden in patients

with ALK-rearranged AML and pediatric AML harboring the

RAN-binding protein 2-anaplastic lymphoma kinase fusion gene

(64, 65). Together, these agents exhibit significant therapeutic

potential for both hematological malignancies, such as AML and

ALL, as well as solid tumors. They are expected to offer novel

approaches for pediatric AML treatment. However, further research

is necessary to fully clarify their efficacy and safety, enabling more

optimized clinical applications.

Pediatric AML demonstrated notable sensitivity to two small-

molecule inhibitors, SB505124_1194 (a selective TGFbR inhibitor)

and RAF265 CHIR.265 (a BRAF inhibitor). These compounds have

shown efficacy in various diseases. Given the role of TGFb signaling

in leukemogenesis, SB505124_1194 was tested in pediatric AML. In

2022, Yu et al. reported that pediatric patients with AML could

potentially benefit clinically from SB505124_1194 treatment (66).

While its efficacy in hepatocellular carcinoma (HCC) is attributed to

modulation of the TGFb pathway (67), this mechanism is also

involved in AML stem cell maintenance, supporting its potential for
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translation into leukemia treatment. Regarding RAF265 CHIR.265,

early studies by Khazak et al. demonstrated that RAF265 effectively

suppresses wild-type Raf kinases and inhibits mitogen-activated

protein kinase (MAPK) signaling in cancer cell lines (68).

Preclinical studies in medullary thyroid cancer (MTC) showed

synergistic antitumor effects when combined with ZSTK474 (69).

In 2023, Li et al. identified a novel application for RAF265 as an

antiviral therapeutic against Herpes simplex virus-1 (HSV-1),

where its mechanism of action involves regulation of cytoskeleton

rearrangement and modulation of cellular translation machinery,

highlighting its potential for multitargeted therapeutic applications

(68). Together, these small-molecule inhibitors represent valuable

candidates for further investigation in pediatric AML. Future

research should aim to fully elucidate their mechanisms of action,

optimize their therapeutic potential, and explore the possibility of

combination therapies with other drugs or treatment modalities to

improve outcomes for pediatric patients with AML.
5 Conclusions

In this study, transcriptome data and bioinformatics

approaches were utilized to identify PDHA1, OGG1, and OPA1

as potential prognostic genes in pediatric AML. The constructed

prognostic model and nomogram demonstrate preliminary

predictive value, but require further validation in a multicenter

cohort. Enrichment analysis linked these genes to genetic

information transmission and cellular function regulation
FIGURE 10

Validation of prognostic gene expression. (A) Differential expression analysis of prognostic genes. Boxplots show median and interquartile range;
group comparisons by Wilcoxon rank-sum test. (B–D) RT-qPCR expression levels of OGG1, PDHA1, and OPA1. n = 5. Expression quantification
used 2^-DDCt normalized to GAPDH. Group comparisons used two-sided unpaired Student’s t-test; p < 0.05 considered significant. Significance
annotations: ns (p > 0.05); **p < 0.01; ****p < 0.0001.
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pathways between high- and low-risk groups. Through drug

prediction analysis, buparlisib, crizotinib, SB505124_1194, and

RAF265 CHIR.265 were identified as promising novel therapeutic

agents for pediatric AML. Although this approach has provided

valuable insights into the pathogenesis and prognosis of pediatric

AML, it is not without limitations. Issues related to data quality,

inherent assumptions in the employed algorithms, and reliance on

RT-qPCR techniques raise concerns. Therefore, additional clinical

cohort validation is essential to ensure the robustness and reliability

of this method. Concurrently, increasing the sample size and

conducting more functional experiments to validate the currently

identified prognostic genes are necessary to ensure the research

findings stand up to scrutiny in practical applications. Furthermore,

with a training sample size of only 131, there is a risk of overfitting.

To enhance the generalizability and stability of the results, future

studies should explore the possibility of using external cohorts (such

as datasets beyond GSE192638) or bootstrapping methods

for validation.

Translated with DeepL.com (free version).
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