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Single-cell sequencing technologies are fundamentally revolutionizing our

understanding of transplantation biology by providing high-resolution cellular

and molecular maps of graft rejection, immune tolerance, and injury. This review

systematically summarizes the application of technologies such as single-cell RNA

sequencing (scRNA-seq) and spatial transcriptomics in solid organ and islet

transplantation, aiming to elucidate the mechanisms that determine graft fate.

Single-cell analyses have revealed profound insights unattainable by traditional

methods, such as identifying key effector cell subpopulations—clonally expanded

CD8+ tissue-resident memory T cells (TRM) — in acute rejection, and discovering

new pathogenic pathways in chronic dysfunction, like antibody production driven

by innate-like B cells. In parallel, these atlases have also uncovered the complex

regulatory networks that mediate immune tolerance, composed of regulatory T

cells and specific macrophage subpopulations. Furthermore, this technology has

pioneered new clinical applications, including non-invasive monitoring through

urinary single-cell sequencing and pre-transplant quality assessment of donor

organs. By transitioning transplantation medicine from a morphology-based

diagnostic model to a new era of molecular endophenotyping based on precise

molecular signatures, single-cell technologies offer unprecedented opportunities

for developing personalized immunosuppressive regimens, finding new

therapeutic targets, and achieving non-invasive diagnostic monitoring. Although

clinical translation still faces challenges, it has the potential to become a key tool

for improving transplant outcomes in the future.
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1 Introduction: beyond the
microscope and bulk transcriptome

Solid organ transplantation is a revolutionary treatment for end-

stage organ failure, significantly extending patient survival and

improving quality of life (1, 2). However, despite substantial

progress in surgical techniques, immunosuppressive protocols, and

donor selection, long-term graft survival remains a challenge (3, 4).

This challenge stems from an interconnected triad: allograft rejection

(acute and chronic), lifelong systemic immunosuppression with its

associated toxicities (e.g., nephrotoxicity, malignancy, infection), and

eventual graft loss. Among these, graft rejection remains the most

common and critical post-transplant complication (5–7).

Currently, the gold standard for diagnosing rejection is the

pathological evaluation of graft biopsy tissue. However, this

standard has inherent limitations (8–10). Firstly, histological

assessment suffers from significant inter-observer variability,

which affects diagnostic precision and therapeutic decision-

making consistency (11). More importantly, while a pathological

slide can display morphological features of cellular infiltration and

tissue damage, it cannot deeply reveal the molecular and cellular

mechanisms driving these pathological processes (12, 13). It fails to

capture the immense heterogeneity within cell populations or to

delineate the dynamic evolution of the immune response (14).

At the molecular level, the advent of bulk RNA sequencing was

a significant advance, allowing researchers to quantify average gene

expression levels in a tissue sample (15–17). However, this

averaging of expression data is precisely its greatest drawback

(18–20). A tissue sample is a complex mixture of multiple cell

types, including parenchymal cells, endothelial cells, stromal cells,

and various infiltrating immune cells. Bulk transcriptomics mixes

the signals from these different cells, masking the contributions of

rare but functionally potent key cell subpopulations (such as specific

regulatory or effector immune cells) and failing to distinguish

transcriptional differences between different functional states of

the same cell type—differences that are critical in determining

graft fate (21, 22).

The emergence of the single-cell sequencing paradigm provides

an unprecedentedly powerful tool to address these limitations (23–

25). The suite of technologies represented by scRNA-seq can

measure the transcriptome of individual cells with unparalleled

resolution (26–28). This means researchers can unbiasedly identify

all cell types within a graft, precisely characterize their activation

states and functional profiles, discover rare cell populations that are

obscured in bulk analysis (29–31), and reconstruct the complex

intercellular communication networks that drive the alloimmune

response (32–35).

This technological advance is more than just an increase in

resolution; it is fundamentally changing the conceptual framework

of transplant immunology (36). Our perspective is shifting from a

cell-type-centric model to a cell-state-centric model. In the past, we

might have simply thought T cells cause rejection (37). Now, single-

cell studies reveal that under the broad category of T cells, there exist

multiple functionally distinct cell states, such as circulatingmemory T

cells, tissue-resident memory T cells (TRM), exhausted T cells, and
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proliferating T cells (38). Crucially, these states are not static; they

evolve dynamically with treatment and microenvironmental changes

(39). Therefore, what determines the graft’s outcome may not be the

presence or absence of a certain cell type, but rather the abundance,

spatial distribution, and interaction of specific cell states (40–43). This

shift redefines the core questions of transplant immunology and

points the way toward developing more precise therapeutic strategies,

from simply eliminating a class of cells to finely regulating specific cell

states (44).

This review will systematically survey the transformative

insights brought by single-cell technologies to the fields of solid

organ and islet transplantation. We will dissect the cellular and

molecular basis of rejection, tolerance, and injury in different organ

transplants, identify universal immunological principles across

organs, critically evaluate the current technical and translational

challenges, and chart a roadmap toward the future of precision

transplant medicine.
2 The high-resolution toolbox: from
single cells to spatial multi-omics

To better understand the content of the following sections, this

section provides a conceptual introduction to the key technologies

involved in this review. Together, these technologies form a

powerful toolbox that allows us to dissect the biological processes

of the graft from different dimensions and at different scales.
2.1 Foundational technology: ScRNA-seq

ScRNA-seq is the foundation of the single-cell revolution, with its

core objective being to obtain the complete messenger RNA (mRNA)

information, i.e., the transcriptome, from a single cell. Its workflow

typically begins with dissociating a tissue sample into a single-cell

suspension. Subsequently, individual cells are physically isolated using

microfluidics (e.g., the droplet method) or microwell plates. In each

separate reaction unit, the cell is lysed, and its mRNA is captured by

oligonucleotides with a poly(dT) sequence (45). The key innovation

lies in two unique DNA barcodes on these capture sequences: a

cellular barcode to identify which cell the mRNA came from, and a

unique molecular identifier (UMI) to distinguish original mRNA

molecules from amplification copies, thus enabling precise

quantification of gene expression (46–48). The greatest advantage

of scRNA-seq is that it overcomes the limitation of averaging

expression values across cells, a characteristic of traditional

methods, thereby revealing unprecedented cellular heterogeneity.
2.2 Expanding the omics universe:
integrating multilayer biological
information

Although scRNA-seq is powerful, it only provides one layer of

biological information. To get a more complete picture, researchers

have developed various multi-modal technologies (CITE-seq, scTCR/
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BCR-seq, scATAC-seq (49, 50), and so on) to simultaneously

measure multiple omics data at the single-cell level.

CITE-seq (Cellular Indexing of Transcriptomes and Epitopes by

sequencing): This is a powerful multi-modal technique that

simultaneously measures mRNA (transcriptome) and cell surface

proteins (immunophenotype) in the same cell by using antibodies

conjugated to oligonucleotides. CITE-seq directly links a cell’s

functional state (defined by gene expression) with its identifiable

protein markers, providing richer and deeper cell identity

information than a single omics layer (51, 52).

Single-cell T/B cell receptor sequencing (scTCR/BCR-seq): This

technique, combined with scRNA-seq, allows for the simultaneous

acquisition of a T or B cell’s transcriptome information and its unique

antigen receptor (TCR or BCR) sequence. The sequences of TCRs

and BCRs determine the antigen specificity of lymphocytes. With this

technology, researchers can track the clonally expanding alloreactive

lymphocytes in a graft and precisely analyze the functional phenotype

and activation state of these specific clones (53, 54).
2.3 Spatially resolved transcriptomics:
restoring positional context

A common limitation of single-cell technologies based on tissue

dissociation is the loss of the cells’ spatial location information within

the original tissue. The advent of spatial transcriptomics technology is

aimed at providing this missing spatial information. Spatial

transcriptomics technologies measure gene expression directly in

situ on a tissue section and map this expression information back

to its precise tissue coordinates (55). This allows researchers to

visualize the organization of different cell types in the graft

microenvironment, for example, how they interact and organize in

focal areas of rejection rich in immune cells or in fibrotic niches (56).
2.4 The challenge of computational
biology: data integration and analysis

These high-resolution technologies generate massive, high-

dimensional, multi-modal datasets, and their effective analysis
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requires advanced computational biology workflows. Key

analytical steps include cell type annotation using known marker

gene databases or supervised learning classifiers (57–59);

integration of data from different experiments, technology

platforms, or omics layers using complex algorithms (60–63); and

inference of cell-cell communication networks by analyzing the co-

expression patterns of ligand-receptor pairs (64–67). To help the

reader better understand these technologies, the following table

(Table 1) summarizes their core principles and applications in the

field of transplantation.
3 Deconstructing the allograft
response: organ-specific insights

This core section will systematically review the major findings

from single-cell research across various organ transplant fields,

highlighting the unique pathological features and immunological

principles revealed in different organs.
3.1 Kidney: mapping the rejection atlas and
pioneering non-invasive monitoring

Kidney transplantation is one of the most extensively studied

areas, where the application of single-cell technology has not only

greatly deepened the understanding of rejection heterogeneity but

has also brought transformative new directions for clinical practice.

ScRNA-seq has provided an unprecedented high-resolution

cellular map of kidney transplant rejection, with a level of detail

far exceeding traditional histological classifications (68). Studies

have been able to clearly distinguish different patterns of cellular

infiltration and activation states in antibody-mediated rejection

(ABMR), T-cell mediated rejection (TCMR), and chronic kidney

transplant rejection (CKTR) (69). For example, CKTR is

characterized by an increase in specific immune cell subsets (e.g.,

multiple subclasses of NKT cells, memory B cells) and the

emergence of a newly discovered, pro-fibrotic myofibroblast

population (70). ABMR, on the other hand, is closely associated

with inflammatory macrophages, activated fibroblasts, and the
TABLE 1 Overview of single-cell and spatial technologies in transplantation.

Technology
Biological layer
measured

Core principle
Key question answered in
transplantation

scRNA-seq Transcriptome
Capturing poly(A)-tailed mRNA from barcoded single
cells for sequencing

What cell types are present in the graft? What are
they doing (functional state)?

CITE-seq
Transcriptome + Surface
Proteins

Using antibodies conjugated with DNA barcodes to
simultaneously measure RNA and cell surface proteins

What is the protein phenotype of alloreactive T cells?
How do function and phenotype correlate?

scTCR/BCR-seq
Transcriptome + Antigen
Receptor Clonotype

Simultaneously sequencing the mRNA and the unique
TCR/BCR sequence of a single T/B cell

Which T or B cell clones have expanded in the graft?

scATAC-seq Chromatin Accessibility
Using a transposase to cut open chromatin regions,
revealing active gene regulatory elements

Which gene regulatory networks are rewired to drive
rejection or tolerance?

Spatial Transcriptomics
Spatially Resolved
Transcriptome

Mapping gene expression information on a tissue
section back to its original spatial coordinates

Where are the immune cells causing rejection
located? Who are they interacting with?
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activation of the complement signaling pathway (69, 71). Recent

multi-omics integration (mRNA/miRNA plus scRNA-seq)

identified six microvascular inflammation-associated miRNAs:

miR-139-5p (downregulated) and miR-142-3p/150-5p/155-5p/

222-3p/223-3p (upregulated), whose expression correlates with

rejection severity and regulates cell-specific pathways—including

endothelial MHC responses (miR-139-5p) and tubular metabolic

dysfunction (miR-222-3p) (72).

A landmark discovery is that during rejection, the T cell

infiltrate is actually dominated by a limited number of clonally

expanded, alloreactive CD8+ T cell clones (CD8_EXP_) (39). This

indicates that rejection is not a generalized process initiated by a

large variety of T cells, but a highly specific attack driven by a few

dominant clones. Critically, these CD8_EXP_ clones can persist in

the graft for months even after successful anti-rejection therapy.

They alter their phenotype, often transitioning to a TRM cell state.

These persistent TRM cells form a potential pool of clonal

populations that could be the source of future chronic or

recurrent rejection (39). This finding fundamentally challenges

our traditional notion of fully resolving rejection. Clinically, it has

been observed that acute rejection, even when histologically

resolved, is a major risk factor for long-term chronic rejection

and graft loss (36). Single-cell research provides a powerful

mechanistic explanation for this clinical phenomenon: systemic

anti-rejection therapies (like steroids) may temporarily clear most

circulating inflammatory cells, resulting in an improved histological

appearance, but they fail to effectively eliminate the TRM cell pool

deeply embedded in the tissue. These surviving TRM clones

continuously release low levels of inflammatory signals, driving a

slow but irreversible process of chronic fibrosis that ultimately leads

to graft failure. This suggests that future therapeutic strategies must

move beyond systemic immunosuppression and toward developing

new therapies that can specifically target or modulate the function

of this tissue-resident clonal population (73).

For chronic allograft dysfunction, the leading cause of graft loss,

single-nucleus RNA sequencing (snRNA-seq) has revealed its

complex cellular and molecular underpinnings. A study of kidney

biopsies from patients with chronic allograft dysfunction identified

two distinct states of fibrosis: a low extracellular matrix (ECM) and

a high ECM state, each with unique kidney cell subclusters, immune

cell types, and transcriptional profiles (74). Proximal tubular cells

(PTCs) were identified as the main drivers of fibrosis, transitioning

to an injured mixed tubular (MT1) phenotype that expressed

markers of activated fibroblasts and myofibroblasts (74). These

MT1 cells produced provisional ECM and recruited inflammatory

cells, thus driving the fibrotic process. Interestingly, MT1 cells in the

high ECM state showed signs of replicative repair, with evidence of

dedifferentiation and nephrogenic transcriptional signatures,

whereas those in the low ECM state exhibited severe metabolic

dysfunction, limiting their repair potential (74). This finding shifts

the paradigm of chronic rejection from a purely immune-driven

process to one where the injured parenchymal cell is an active

participant and driver of the pathology.

A key technological breakthrough is the demonstration that

scRNA-seq of urinary sediment cells can effectively capture the
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immune landscape within a rejecting graft (75). During rejection, the

cellular composition of the urine (e.g., increased numbers of

macrophages and T cells) is highly consistent with that of the biopsy

tissue. More excitingly, the key alloreactive T cell clones found in the

tissue can also be detected in the urine (39). This provides a strong

proof-of-concept for developing a urine-based, non-invasive liquid

biopsy, which could potentially replace or supplement invasive kidney

biopsies for early and dynamic monitoring of rejection.
3.2 Liver: unveiling tissue residency and
immune privilege

Liver transplantation has attracted considerable attention due to

its unique phenomenon of immune privilege, meaning liver grafts

are relatively less prone to rejection and can even induce tolerance.

Single-cell technologies are uncovering the cellular and molecular

mechanisms behind this complex phenomenon.

Similar to the kidney, scRNA-seq studies in liver transplantation

have also revealed the central driving role of CD8+ TRMs in

rejection. Compared to functionally stable grafts, rejecting liver

grafts have a significantly increased number of CD8+ TRMs (76).

These cells exhibit a unique transcriptional signature, including high

expression of genes related to activation, cytotoxicity (GZMB, IFNG),

proliferation, and immune checkpoints (PD1, CTLA4) (76).

In studies of pediatric liver transplant rejection, single-cell

analysis has revealed key communication pathways between

immune cells. Specifically, the intercellular communication

between liver-resident macrophages, Kupffer cells and expanded

CD8+ T cells appears to promote T cell proliferation and

persistence within the graft, thereby exacerbating rejection (53).

The findings from liver research present an interesting paradox:

on one hand, the liver is considered an immune-privileged organ

capable of inducing tolerance; on the other hand, single-cell studies

show that when liver rejection does occur, its mechanism (driven by

aggressive CD8+ TRMs) is strikingly similar to that in non-

privileged organs like the kidney (76). This suggests that the

liver’s immune microenvironment is not simply suppressive, but

a site of highly dynamic interactions between pro- and anti-

inflammatory signals. The final outcome, whether it leans toward

tolerance or rejection, may depend on the balance between pro-

tolerance signals (e.g., from Kupffer cells in specific states) and pro-

inflammatory effector signals (e.g., from alloreactive TRMs).
3.3 Heart: spatially resolving the molecular
anatomy of rejection

Spatial transcriptomics has revolutionized heart transplant

research by systematically mapping rejection microenvironments,

revealing that traditional histology masks profound molecular

heterogeneity in acute cellular, antibody-mediated, and mixed-type

rejection—including distinct pre-treatment signatures predictive of

therapy response (77). Complementing this spatial atlas, scRNA-seq

deconstructed infiltrating cell heterogeneity in rejecting grafts:
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endothelial cells actively upregulate MHC class II to become antigen-

presenting cells that exacerbate immune attack (78), while specialized

macrophage subpopulations drive regional damage (78). Critically,

single-cell comparisons of tolerant versus rejecting grafts identified

HIF-2a in macrophages as a master regulator of transplant tolerance,

with pharmacological enhancement promoting graft acceptance in

mice (79), and cell-cell communication analysis revealed CXCR3

blockade as an effective strategy to suppress rejection by disrupting

chemokine-driven inflammatory circuits (80). This integrated spatial-

single cell approach uncovers both pathogenic mechanisms and

therapeutic opportunities with unprecedented resolution.
3.4 Lung: revealing immune dynamics in
acute and chronic rejection

Recent advances in single-cell technologies have revolutionized our

understanding of lung transplant rejection mechanisms. ScRNA-seq

has uncovered profound immune cell heterogeneity in chronic lung

allograft dysfunction (CLAD), particularly bronchiolitis obliterans

syndrome (BOS) (81). Studies reveal that innate-like B cells

differentiate into Mzb1-expressing plasma cells that locally produce

IgG antibodies, directly contributing to antibody-mediated rejection—a

finding validated in murine models where immunoglobulin depletion

alleviated BOS severity (81). Additionally, multi-omics approaches

(scRNA-seq plus scATAC-seq) demonstrate that mesenchymal cells

undergo stable pro-fibrotic reprogramming, driving persistent fibrosis

in rejecting lungs (82). In acute rejection, scRNA-seq of human lung

biopsies shows dynamic immune shifts: cytotoxic CD8+ TRM, gd T

cells, and exhausted CD8+ T cells expand during severe acute cellular

rejection, while regulatory T cells (Tregs) transiently increase in mild/

recovering phases (83). Concurrently, myeloid reprogramming occurs,

characterized by decreased classical monocytes/macrophages and

increased TREM2+ pro-fibrotic myeloid subsets (83). Critically, these

acute-phase cytotoxic T-cell expansions and myeloid reprogramming

(83) may drive persistent immune activation that subsequently

promotes B-cell/plasma-cell infiltration and mesenchymal fibrosis in

CLAD. This suggests that targeting acute-phase immune dynamics

could halt progression to chronic rejection—a clinically significant

implication for intervention strategies.
3.5 Islet transplantation: integrated
analysis, challenges and solutions

Islet transplantation for Type 1 Diabetes faces dual challenges:

inconsistent donor islet quality and post-transplant functional decline.

Single-cell technologies now enable comprehensive pre-transplant

evaluation through scRNA-seq, which precisely quantifies functional

b-cell proportions (via INS/IAPP expression) (84) and endocrine cell

composition (a-cell GCG, d-cell SST markers) (85). Critically, scRNA-

seq reveals cellular stress responses (HSP90/FOS upregulation) and

functional maturity (MAFA/PDX1 expression) that predict graft

viability (86). Complementing this, snRNA-seq has emerged as a

transformative technology that enables analysis of cryopreserved
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samples while avoiding enzymatic dissociation artifacts. This

approach identifies novel cellular identifiers like ZNF385D for b-cells
and PTPRT for a-cells, while also resolving dynamic b-cell
subpopulations, from transcriptionally active INS-pre-mRNA-rich

cells to mature INS-mRNA-dominant clusters, with distinct

functional capacities (86).

Mechanistically, post-transplant failure involves coordinated

immune and cellular adaptation processes. Allogeneic rejection is

driven by cytotoxic CD8+ T cells that upregulate granzyme B

(GZMB) and interferon-g (IFNG) (85), alongside proinflammatory

M1 macrophages secreting CXCL9/10 chemokines (87).

Simultaneously, islet cells undergo pathogenic adaptation

characterized by antigen-presenting-like transformation (MHC-I/

PSMB8 upregulation) (84) and b-cell dedifferentiation (loss of

MAFA, gain of SOX9) (86). Cell communication networks further

exacerbate rejection through CCL5-XCR1 signaling between

proliferative T cells and CD8+ T cells (85), and TNFSF12-mediated

mesenchymal-macrophage crosstalk (87). This will enable the future

development of multidimensional evaluation frameworks for

personalized transplantation protocols. Such frameworks could

combine the advantages of snRNA-seq, like cryo-compatibility,

with the comprehensive cytoplasmic transcript capture of

scRNA-seq.
4 Universal themes across
transplantation fields

By integrating the organ-specific findings above, we can identify

some universal principles that have been revealed by single-cell

analysis and run through the entire field of transplant immunology.
4.1 Cellular interactions in rejection:
patterns of convergence and divergence

A common theme in kidney, liver, and heart transplantation is

that clonally expanded, cytotoxic CD8+ T cells, particularly those

with a TRM phenotype, are the core drivers of acute cellular

rejection (73, 88). Myeloid cells (macrophages and dendritic cells)

consistently appear as key mediators, maintaining the inflammatory

response and T cell activation state through crosstalk with T cells

(89). In contrast, the drivers of chronic rejection appear to be more

organ-specific. Although T cells are still involved, scRNA-seq has

uniquely revealed that in chronic lung rejection (BOS), the B cell

lineage producing local antibodies plays a key role (81); whereas in

the fibrotic processes of the kidney (CKTR) and lung (CLAD), pro-

fibrotic mesenchymal cell subpopulations take center stage (82).
4.2 The signature of operational tolerance:
a network-level perspective

Operational tolerance transcends singular cellular mechanisms,

constituting a tripartite network of peripheral, graft-intrinsic, and
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metabolically coordinated immunoregulation. Single-cell

technologies are revealing the complex regulatory networks

behind it. While the important role of Tregs in maintaining

immune tolerance is well known (90), single-cell research reveals

a more complex picture. Operational tolerance is not dominated by

a single cell type but is the result of a multi-cellular, multi-pathway

synergistic regulatory network.

Recently, scRNA-seq analysis of peripheral blood mononuclear

cells has revealed the systemic immune features of operational

tolerance. A pioneering study of a kidney transplant recipient

who achieved operational tolerance found that their immune

landscape was drastically different from that of a stable-function

recipient on standard immunosuppression, and instead more

closely resembled that of healthy controls (91). Specifically, the

tolerant patient had higher proportions of TCL1A+ naive B cells

and LSGAL1+ Tregs (91). Ligand-receptor analysis further revealed

interactions between B cells and Tregs that may enhance the

proliferation and suppressive function of Tregs (91). Furthermore,

MSC therapy in a rat liver models dissects tolerance induction via

monocyte polarization, neutrophil education (PD-L1 positive), and

exhausted CD8+ T cell generation (92). This finding expands our

view from mechanisms within the graft to the systemic immune

system, suggesting that tolerance is an active state with systemic

signatures detectable in peripheral blood, offering the possibility of

identifying or tracking tolerant individuals non-invasively, a key

goal in transplantation.
4.3 Mapping the initial insult: ischemia-
reperfusion injury at cellular resolution

Ischemia-reperfusion injury (IRI) is the initial, unavoidable

injury that every allograft must endure. ScRNA-seq provides a

dynamic cellular map of this process. IRI is not a single event but a

dynamic process, and scRNA-seq reveals how different cell types are

affected over time—from the initial ischemic phase (mainly

affecting cell metabolism) to the reperfusion phase (triggering a

dramatic inflammatory response) (93). In studies of the kidney and

liver, single-cell technology has precisely pinpointed the cell types

most sensitive to IRI. In the kidney, PTCs are the main site of

damage (94).

More importantly, IRI is not just a transient injury; it can sow

the seeds for long-term chronic pathology. A study using snRNA-

seq in a mouse model of acute kidney injury (AKI) identified a

unique, pro-inflammatory and pro-fibrotic state of PTCs that fails

to repair, termed failed-repair proximal tubule cells (FR-PTCs) (95).

These FR-PTC cells emerge and persist after injury, express unique

genes including Vcam1, and secrete a range of pro-inflammatory

and pro-fibrotic cytokines such as Ccl2 and Tgfb2 (95).

Pseudotemporal trajectory analysis showed that FR-PTCs

represent an alternative, pathological branch diverging from the

successful repair trajectory (95). This concept provides a direct

mechanistic link between the initial, universal IRI and the later

development of chronic fibrosis. The initial ischemic hit may induce

a subset of tubular cells into this persistent pathological state, and
Frontiers in Immunology 06
these FR-PTC cells then drive inflammation and fibrosis through

continuous signaling, ultimately leading to the chronic graft

dysfunction described by McDaniels et al. (74).

To systematically summarize these findings, the following table

(Table 2) integrates key single-cell research outcomes across

different organs and clinical contexts (39, 53, 70, 75–77, 79, 81,

82, 94, 96).
5 From lab to clinic: challenges and
future outlook

Despite the brilliant achievements of single-cell technologies in

basic research, a series of technical and bioinformatic hurdles must

be overcome to translate these powerful findings into routine

clinical tools.
5.1 Technical and bioinformatic barriers to
clinical application

5.1.1 Sample processing issues: from biopsy to
data: the artifact challenge

Dissociating solid tissue into a high-quality, viable single-cell

suspension without introducing artificial transcriptomic changes is

the first and a huge challenge of the entire workflow. Traditional

tissue dissociation methods often require incubation with proteases

(like collagenase) at 37°C, which induces transcriptional cell stress

that can alter data interpretation (97). Studies have shown that 37°C

collagenase digestion induces a conserved core gene set of 512

genes, including heat shock proteins and stress-response genes (like

FOS and JUN) (98). These experimentally induced expression

changes could be misinterpreted as true biological signals.

To address this challenge, using proteases that are active at low

temperatures (cold-active proteases) for tissue dissociation has

emerged as a promising solution. This method allows the entire

dissociation process to be carried out at 4-6°C, a temperature at

which mammalian transcriptional machinery is largely inactive,

thus effectively preserving the in vivo gene expression patterns (99).

Comparative studies have confirmed that the cold protease method

can dramatically reduce gene expression artifacts, providing data

that more accurately reflects the true in vivo biological state (99).

Furthermore, the advent of snRNA-seq is another major

advancement, as it can process frozen tissue, thereby bypassing

the need for enzymatic digestion of fresh tissue and reducing stress

artifacts (86).

5.1.2 The challenge of distinguishing donor
versus recipient cells

This is a fundamental challenge unique to the field of

transplantation: how to distinguish which cells in a graft biopsy

sample originate from the donor and which from the recipient.

Without this distinction, we cannot accurately interpret the true

state of immune infiltration. New bioinformatic tools to solve this

problem (like scTx) have emerged, attempting to deconvolute the
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cell’s origin directly from scRNA-seq data using genetic variant

information. However, due to issues like differing cell proportions,

doublet contamination, and ambient RNA contamination, this

remains a complex and yet-to-be-perfected area (100).

5.1.3 Platform-specific biases and data
integration

Different commercial scRNA-seq platforms (e.g., 10x Genomics

Chromium, BD Rhapsody) have their own technical biases (101). They

may differ in gene capture sensitivity, cell type capture efficiency,

doublet rates, etc., which makes direct comparison across studies

difficult. Although integrating data from scRNA-seq, scATAC-seq,

CITE-seq, and spatial transcriptomics can provide extremely rich

information, the computational demand is enormous (102).

5.1.4 Computational bottlenecks: a guide to
analysis platforms

Effective analysis of these massive, high-dimensional datasets

requires complex computational workflows, and the choice of

analysis platform is a key step. Currently, analysis tools can be

broadly categorized into two types: code-based ecosystems and

graphical user interface (GUI) programs.

Code-based Ecosystems: For researchers with programming

skills, the R-based Seurat package and Bioconductor project, and

the Python-based scverse ecosystem (with Scanpy at its core), offer

the greatest flexibility, scalability, and reproducibility. These tools

are the gold standard for academic research, supporting the full
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pipeline from data preprocessing to complex downstream analyses

(like trajectory inference and multi-omics integration).

Graphical User Interface (GUI) Programs: For clinicians or

experimental biologists lacking a programming background, a

range of user-friendly GUI programs (e.g., SciDAP (103), Partek

Flow, Loupe Browser, CELLxGENE, BBrowserX) increases

accessibility. These platforms typically offer graphical point-and-

click workflows for data visualization and standard analyses.

However, their convenience often comes at the cost of flexibility,

and they may not support the latest algorithms or highly customized

analyses. The choice of platform depends on the research question,

dataset size, and the user’s computational skills, a trade-off that needs

careful consideration at the start of a project.
5.2 The path to clinical utility: from data to
decisions

After overcoming the technical barriers, the ultimate goal is to

transform this massive amount of data into useful information that

can guide clinical decisions.

5.2.1 Developing validated non-invasive
biomarkers: urinary scRNA-seq vs. cell-free DNA

A key goal for clinical application is to move away from reliance

on invasive biopsies. The discovery that urine cell scRNA-seq can

monitor kidney rejection provides an important proof-of-concept for
TABLE 2 Key cellular and molecular findings from single-cell studies in solid organ and islet transplantation.

Organ Clinical context
Key cell roles identified by
single-cell sequencing

Key molecular pathways/markers Ref

Kidney Acute Cellular Rejection
Clonally expanded CD8+ T cells, especially
TRM subtype

Adaptive phenotype (dependent on immunosuppressant),
persistent clonal reservoir

(39)

Chronic Rejection/Fibrosis
NKT cell subclasses, memory B cells, pro-
fibrotic myofibroblasts

Increased immune cell infiltration, extracellular matrix
remodeling

(70)

Non-invasive Monitoring
Macrophages, T cells in urine (clones consistent
with biopsy)

Urinary cell atlas can reflect intra-renal rejection status (39, 75)

Ischemia-Reperfusion Injury Proximal tubule cells
Ferroptosis pathway,
PHYH upregulation

(94)

Liver Acute Cellular Rejection CD8+ TRM cells
Activation, cytotoxicity, proliferation, and immune
checkpoint (PD1, CTLA4) genes

(76)

Rejection Mechanism
Interaction between Kupffer cells and CD8+ T
cells

CD2-CD58 signaling pathway promotes T cell
proliferation

(53)

Heart Acute Rejection (all types)
Spatially heterogeneous cellular neighborhoods
(T cells, macrophages, endothelial cells)

IFNg/TNFa, IL6-JAK-STAT3 signaling pathway
(associated with treatment response)

(77)

Operational Tolerance HIF-2a-expressing macrophages HIF-2a pathway is crucial for inducing tolerance (79)

Lung Chronic Rejection (BOS)
Innate-like B cells and their differentiated
plasma cells

Local IgG production (Mzb1, Bhlhe41) (81)

Chronic Rejection (CLAD) Pro-fibrotic mesenchymal cells Stable, pro-fibrotic transcriptional and epigenetic changes (82)

Islet Graft Quality Assessment
Proportion and health status of b-cells, a-cells,
and other endocrine cells

Gene expression profiles related to cell stress and
function

(96)

Failure Mechanism T lymphocytes, myeloid cells
Interaction between immune cells and islet cells, leading
to graft destruction

(80, 84, 87)
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this (39, 75). In parallel, donor-derived cell-free DNA (dd-cfDNA)

has emerged as a promising non-invasive biomarker (104). These two

technologies are not in competition but are highly complementary,

each providing different but equally important information.

dd-cfDNA: dd-cfDNA consists of DNA fragments released into

the recipient’s blood upon the death of graft cells (105). An elevated

level of dd-cfDNA in the blood is a highly sensitive but non-specific

indicator of graft injury (106). It can act as a quantitative indicator,

indicating that the graft is undergoing damage, but it cannot specify

the cause of the damage (e.g., rejection, infection, or ischemia)

(106). dd-cfDNA has a short half-life (about 30 minutes to 2 hours),

making it a dynamic monitoring tool that can detect injury earlier

than traditional biomarkers (105). Commercial dd-cfDNA tests are

already available, making them more readily implementable in the

clinic (107).

Urinary scRNA-seq: Unlike dd-cfDNA, urinary scRNA-seq

provides qualitative, high-resolution information. It doesn’t just

measure whether there is damage, but reveals the underlying causes

and mechanisms. By analyzing the immune and kidney cells in the

urine, scRNA-seq can identify specific pathogenic cell types (like

clonally expanded T cells), their activation states, and the molecular

pathways driving rejection. It can provide a detailed mechanistic

profile of the injury rather than just a damage alert.

These two technologies can work in synergy to form a powerful

future clinical monitoring paradigm. One can envision a two-step

workflow: first, use the relatively low-cost, rapid-turnaround
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dd-cfDNA for routine, frequent screening. When dd-cfDNA

levels rise significantly, this would act as an alert, triggering the

second step, a more detailed and informative urinary scRNA-seq

analysis. This approach could pinpoint the root cause of the injury,

thereby guiding precise therapeutic interventions and potentially

avoiding invasive biopsies in many cases. Table 3 summarizes the

comparison of these two non-invasive monitoring modalities.

5.2.2 Personalized immunosuppression and
discovering new therapeutic targets

ScRNA-seq has revealed that rejection is not a single disease, but

a group of heterogeneous conditions driven by different molecular

endophenotypes (77). This opens the door to precision medicine. In

the future, treatment regimens could be personalized according to the

cellular and molecular pathways driving a specific patient’s rejection,

while attempting to reduce immunosuppressants in lower-risk

patients to minimize drug toxicity (36). Furthermore, by providing

an unbiased map of all active cells and pathways in a disease state,

single-cell analysis is a powerful engine for drug discovery. It can not

only identify entirely new therapeutic targets (such as HIF-2a,
CXCR3, the B-cell pathway in BOS) but can also predict which

drug targets are more likely to succeed in clinical trials by confirming

their specific expression in disease-relevant tissues and cell types (79).

Table 4 summarizes the main challenges and corresponding

solutions for the clinical application of single-cell sequencing

technologies (45, 68, 100–102).
TABLE 3 Comparison of non-invasive monitoring modalities: dd-cfDNA vs. urinary scRNA-seq.

Feature Donor-derived cell-free DNA (dd-cfDNA) Urinary scRNA-seq

Analyte DNA fragments in circulation Intact cells in urine

Information Provided Quantitative: Overall level of graft injury
Qualitative: Cell identity, cell state, activation pathways,
clonotype

Specificity for Rejection Low (elevated by any cell death) High (can identify specific alloreactive cells)

Sensitivity for Early Injury Very High High

Clinical Readiness Commercially available tests Emerging, primarily research-based

Core Advantage Frequent, lower-cost screening tool Detailed, mechanistic diagnostic tool

Proposed Clinical Use Routine monitoring/screening as an alert for injury Diagnostic follow-up to abnormal screens to guide therapy
TABLE 4 Challenges and solutions for the clinical translation of single-cell sequencing in transplantation.

Challenge Impact on clinical application Emerging solutions/future directions Ref

Tissue Dissociation Artifacts
Reduces data reliability and reproducibility, affecting result
interpretation

Standardized operating procedures; shifting to snRNA-
seq for frozen tissues

(68)

Distinguishing Donor vs.
Recipient Cells

Inability to accurately interpret immune infiltration,
confounding cell origins

Development of deconvolution algorithms (e.g., scTx)
that do not require extra genotyping

(100)

Reliance on Invasive Biopsies Limits frequent monitoring, increases patient burden and risk
Development of urine- and blood-based single-cell
liquid biopsy techniques

(108)

Data Complexity and Integration Hinders the development of simple, actionable clinical metrics
Applying AI/machine learning to discover biomarkers;
establishing standardized analysis pipelines

(102)

Inter-Platform Differences
Makes cross-study comparisons difficult, affecting the
generalizability of results

Systematic platform benchmarking; developing
computational methods to correct for platform biases

(109)
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6 Conclusion: toward a new era of
precision transplant medicine

Single-cell technologies have fundamentally changed our

understanding of transplantation biology. It has taken us from a

low-resolution, static perspective to a high-definition, dynamic map

of the allograft microenvironment, revealing unprecedented and

profound cellular heterogeneity and complexity in rejection,

tolerance, and injury (Figure 1). Currently, the field is moving

from simply identifying and classifying cell types to elucidating the

causal mechanisms that lead to graft failure. By integrating multi-

omics and spatial data, we are beginning to understand the gene

regulatory networks, protein interactions, and tissue structures that

determine graft fate (77).

The ultimate promise of these technologies lies in their clinical

translation (108). The future of transplant medicine will involve

combining single-cell data from non-invasive liquid biopsies with

clinical and histological information. This will usher in a new era of

precision medicine, characterized by (1) Predictive Diagnostics:

Identifying high-risk patients before clinical symptoms of rejection

appear; (2) Personalized Therapy: Tailoring immunosuppressive

regimens based on an individual’s unique molecular rejection

signature; (3) Innovative Therapeutics: Developing novel drugs that
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target the specific cell states and molecular pathways driving

graft injury.

Although significant challenges remain, the rapid development

of technology and computational methods gives us reason to believe

that within the next decade, single-cell analysis will become an

indispensable tool for the transplant clinician, leading us into a new

era of higher graft survival rates and better quality of life

for recipients.
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FIGURE 1

Single-cell technologies deconstruct the complex cellular landscape of transplanted organs.
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