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Prostate cancer management has long been challenged by the limitations of
traditional screening tools like PSA testing, which contribute to significant rates of
overdiagnosis and overtreatment. While advanced imaging such as
multiparametric MRl (mpMRI) has improved the diagnostic pathway, the
integration of Artificial Intelligence (Al) is now catalyzing a paradigm shift across
the entire continuum of care. This comprehensive review details the transformative
role of Al in prostate cancer. In diagnostics, deep learning algorithms enhance the
interpretation of mpMRI by improving lesion detection, segmentation, and risk
stratification, thereby reducing unnecessary biopsies. In digital pathology, Al
provides automated and consistent Gleason grading, minimizing inter-observer
variability and refining prognostication. In the therapeutic domain, Al is crucial for
personalizing treatment by streamlining radiotherapy planning through automated
contouring, predicting patient outcomes and toxicity, and enabling the
development of adaptive therapy strategies for advanced disease. Multimodal Al
models that synthesize imaging, biomarker, and clinical data are creating robust
predictive tools for superior clinical decision support. Despite formidable
challenges related to prospective validation, data equity, and regulatory approval,
Al is paving the way for a new standard of care characterized by greater precision,
efficiency, and personalization.
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1 Introduction

Global cancer data from GLOBOCAN indicates that in 2022,
prostate cancer accounted for an estimated 1.47 million new cases
and 400,000 deaths globally, persisting as the most diagnosed
cancer among men in many nations and a leading cause of cancer
mortality (1). The global burden is rising with ageing populations
and widening geographic disparities, underscoring the need for
more precise, efficient diagnostic pathways. Prostate cancer presents
a complex clinical spectrum from slow-growing, indolent tumors
that may never require intervention to aggressive, life-threatening
diseases. For decades, the clinical approach to its detection and
management has been built upon a foundation of established, albeit
imperfect, tools. The evolution of this field is a story of continuous
refinement, driven by a quest for greater precision, reduced patient
harm, and more personalized care. This journey has progressed
from broad population screening to advanced molecular and
imaging techniques and now stands at the cusp of a new era
defined by the integration of Artificial Intelligence (AI).

The cornerstone of prostate cancer screening for over three decades
has been the Prostate-Specific Antigen (PSA) test. The principal
advantages of PSA testing are its non-invasive nature, low cost, and
widespread availability, making it an accessible first-line screening tool.
However, its utility is severely hampered by its low specificity for
clinically significant cancer. Elevated PSA levels are not exclusive to
malignancy; they are frequently caused by benign conditions such as
benign prostatic hyperplasia, a common non-cancerous enlargement of
the prostate, or prostatitis, an inflammation of the gland (2, 3). This
lack of specificity is the primary driver of the test’s main controversy:
the substantial risk of overdiagnosis—the detection of indolent cancers
that would never have caused symptoms or death—and consequent
overtreatment, subjecting men to invasive procedures with life-altering
side effects like incontinence and erectile dysfunction (2, 4).

Complementing the PSA test is the Digital Rectal Examination
(DRE) which is inexpensive and can occasionally detect aggressive
cancers in men with normal PSA levels. However, its diagnostic value is
highly subjective, depending heavily on the examiner’s experience, the
patient’s anatomy, and the tumor’s size and location. Cancers located in
the anterior part of the prostate are typically inaccessible to palpation.
Consequently, the DRE suffers from low sensitivity and specificity and
is no longer recommended by some guidelines as a standalone
screening tool, but rather as an adjunct to PSA testing (5, 6).

When screening tests suggest a risk of cancer, the definitive gold
standard for diagnosis has historically been the systematic
transrectal ultrasound (TRUS)-guided prostate biopsy. While this
method provides a definitive histological diagnosis, it is an invasive
procedure with inherent risks, including bleeding, infection, pain,
and urinary difficulties (7). More importantly, this “blind”
systematic approach can miss significant tumors or underestimate
the true grade of the disease, as the small core samples may not be
representative of the most aggressive part of the tumor.

To address these limitations, emerging biomarkers and liquid-
based assays—such as the Prostate Health Index (PHI), 4Kscore Test,
Prostate Cancer Gene 3 (PCA3) test, and liquid biopsies have been
introduced to complement the traditional biopsy pathway (8-12),
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offering varying strengths and limitations in improving risk
stratification and reducing unnecessary procedures (Table 1).

Simultaneously, the field of medical imaging underwent a
paradigm shift with the rise of multiparametric Magnetic Resonance
Imaging (mpMRI). Unlike ultrasound, mpMRI provides exquisite
anatomical detail and functional information about tissue
characteristics. Its high negative predictive value is particularly
valuable, as a negative mpMRI result can give patients and clinicians
confidence to safely avoid an immediate biopsy (13). However, its
application is constrained by high costs, long acquisition times, and
limited availability in many regions. Furthermore, the interpretation of
mpMRI scans requires extensive sub-specialized training and suffers
from considerable inter-reader variability, even among experts (14).

Into this complex landscape, Al has emerged as a transformative
force, promising to augment, streamline, and enhance nearly every
aspect of the prostate cancer pathway. Al, particularly in the form of
machine learning and deep learning, offers the ability to analyze vast
and complex datasets—from clinical parameters and biomarkers to
medical images and genomic profiles—to identify patterns and make
predictions that are often beyond the capability of human cognition. In
imaging, AI algorithms can assist radiologists by automatically
segmenting the prostate, highlighting suspicious areas, and
quantifying lesion characteristics, with the primary goal of improving
diagnostic accuracy while reducing inter-operator variability (15). A
recent meta-analysis confirms that Al-powered decision support
systems can significantly enhance the diagnostic accuracy of mpMRI
across various experience levels of radiologists (16). In a broader sense,
Al can integrate these disparate data sources to build personalized risk
models, predict treatment outcomes, and guide therapeutic strategies,
truly ushering in the era of personalized medicine (17).

This review evaluates how Al addresses key gaps in the prostate
cancer pathway, with emphasis on (i) imaging (lesion detection,
segmentation, staging, radiomics), (ii) digital pathology (cancer
detection and Gleason grading), and (iii) clinical decision support
(risk stratification, biopsy guidance, radiotherapy planning, and
adaptive strategies). We synthesize evidence for clinical utility,
outline implementation challenges, and highlight priorities for
prospective validation and equitable deployment.

2 The role of Al in prostate imaging

Medical imaging is the visual core of modern prostate cancer
diagnosis, and Al is fundamentally reshaping how these images are
acquired, analyzed, and interpreted. AI algorithms are being
developed to not only replicate but, in some cases, exceed human
performance in key diagnostic tasks, promising a future of more
accurate, consistent, and efficient radiological practice.

2.1 Enhancing MRI for lesion detection,
characterization, and staging

The interpretation of mpMRI is a complex task. Radiologists
must synthesize information from multiple sequences:
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TABLE 1 Overview of selected biomarkers for prostate cancer risk

stratification.

Biomarker

Sample
test type

Key
components
measured

Total PSA, free

Clinical utility

Combines the three
markers into a single
score to better predict

Blood PSA (fPSA), and K
PHI 1l and high-grad
(Serum) proPSA (-2 overatand high-grace
) prostate cancer,
isoform) K
reducing unnecessary
biopsies (8, 9).
Calculates the
percentage risk of
havi .
Total PSA, fPSA. aving aggressive
Blood . prostate cancer upon
4Kscore Test (Serum) intact PSA, and bi iding in th
eru human kallikrein 2 OPsy’ aiding ¢
decision to proceed
with an invasive
procedure (10).
Helps to stratify risk in
Measures the men with elevated PSA,
overexpression of particularly in the
Urine the PCA3 gene, repeat biopsy setting, as
PCA3 S L
(post-DRE) | which is highly it is not affected by
specific to prostate | prostate volume or
cancer cells. benign prostatic
hyperplasia (11).
A rapidly evolving field
used to detect tumor-
Circulating Tumor | specific genetic
Liquid Biopsies Blood Cells, cell-free mutations for diagnosis,
q P (Plasma) DNA, or prognosis, and

exosomes.

monitoring treatment

response non-invasively

(12).

high-resolution T2-weighted images providing anatomical context,
Diffusion-Weighted Imaging highlighting areas of restricted water
movement characteristic of dense cellularity found in tumors, and
the Apparent Diffusion Coefficient map which quantifies this
restriction. Deep learning models, particularly Convolutional Neural
Networks (CNNs), are exceptionally well-suited for this type of multi-
channel image analysis (18).

CNNs operate by applying a series of filters (or kernels) to input
images to learn a hierarchy of features. Early layers in the network
might learn to detect simple edges and textures, while deeper layers
combine these to recognize more complex structures, shapes, and
patterns indicative of cancerous lesions (19). Architectures like the
U-Net, which excels at biomedical image segmentation, and 3D
CNNs, which can process the entire volumetric data of an MRI scan
at once, are widely employed (20). These models can be trained on
thousands of expertly annotated scans to automatically perform
critical tasks like delineating the prostate gland boundaries and
segmenting suspicious lesions (21, 22). The output can be presented
to the radiologist as a “bounding box” or a colored overlay on the
scan, drawing their attention to areas of concern.

The performance of these models has been striking. In some
studies, AI has demonstrated diagnostic performance for clinically
significant cancer that is comparable to that of sub-specialist
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radiologists (23). One prominent study found that a U-Net-based
model achieved 78% accuracy in localizing lesions, which was
significantly higher than the 55% accuracy achieved by a group of
non-specialist radiologists, highlighting AI’s potential to
standardize and elevate care, especially in non-expert settings
(24). Other advanced architectures like the MiniSegCaps network
have also shown superior performance in both segmenting lesions
and automatically assigning a Prostate Imaging-Reporting and Data
System (PI-RADS) score, a standardized 1-to-5 scale of suspicion
used by radiologists (25). By processing the entirety of the mpMRI
data, these models have demonstrated the ability to distinguish
malignant from benign tissues with high accuracy, achieving area
under the curve (AUC) values—a measure of diagnostic
performance—of up to 0.91 in recent validations (26, 27).

2.2 Improving ultrasound-based detection
and targeting

While MRI is the premier imaging modality, its cost and
accessibility are limited. TRUS is far more ubiquitous but has
traditionally been poor at visualizing tumors, as many cancers are
“isoechoic,” meaning they have the same texture as surrounding
healthy tissue. Al is breathing new life into this modality. Deep
learning algorithms can be trained to perceive subtle textural and
pattern-based differences in B-mode ultrasound images that are
invisible to the human eye. For instance, systems using
sophisticated CNNs have been shown to differentiate between
benign and malignant prostate tissue on standard TRUS images
with a sensitivity of 86.23% and a specificity of 92.11% (28).

Beyond B-mode, Al is also being applied to more advanced
ultrasound techniques like elastography (which measures tissue
stiffness) and contrast-enhanced ultrasound. Al-assisted TRUS
has already demonstrated the ability to outperform human
readers in detecting clinically significant prostate cancer (csPCa)
(29). The implications are profound: a more intelligent, AI-
enhanced ultrasound could serve as a powerful triage tool,
improving cancer detection in community settings and potentially
reducing the reliance on expensive MRI. Furthermore, Al is critical
for improving MRI-US fusion biopsy, where a pre-procedural MRI
showing the tumor is fused with real-time ultrasound to guide the
biopsy needle. Al can automate and improve the accuracy of the
image registration process, ensuring that the needle is guided to the
true location of the tumor identified on the MRI, an area of active
and promising research (30).

2.3 Radiomics and multimodal Al for
integrated diagnostics

Radiomics represents a paradigm of extracting vast amounts of
quantitative data from medical images, moving beyond what the
human eye can see. The underlying hypothesis is that these
quantitative features contain latent information about tumor
biology and behavior. The process involves segmenting a region
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of interest (the tumor) and then applying algorithms to extract
hundreds or even thousands of features. These can be categorized
as: first-order (describing the distribution of pixel intensities, e.g.,
mean, skewness, kurtosis), second-order (describing textural
patterns and spatial relationships between pixels, e.g., contrast,
correlation, entropy), and higher-order features derived from
applying filters like wavelets.

Al specifically machine learning, is essential for making sense
of this high-dimensional feature space. Models can be trained on
these radiomic features to predict outcomes like the presence of
cancer, Gleason grade, or the likelihood of recurrence. Studies have
shown that models built on MRI radiomic features can accurately
differentiate malignant from benign tissues and are effective in
predicting cancer risk and aggressiveness (31, 32). A 2024
systematic review highlighted that radiomics-based models
consistently improve the prediction of extraprostatic extension
and seminal vesicle invasion compared to clinical models alone,
offering crucial information for surgical planning (33).

The true pinnacle of diagnostic Al lies in multimodal models
that integrate diverse data streams. A radiologist interpreting an
MRI does so with knowledge of the patient’s PSA level, age, and
biopsy history. Similarly, AT models that combine these clinical
parameters with imaging data consistently outperform models that
rely on a single data source alone. For example, an AT model might
learn that a lesion with ambiguous imaging features is much more
likely to be significant cancer if the patient also has a high PSA
density (PSA level divided by prostate volume). This integration of
complementary data sources is powerful, with combined models
achieving very high diagnostic accuracy and AUC values in external
validations (34, 35). This holistic approach more closely mimics
expert clinical reasoning, leveraging all available information to
arrive at the most accurate conclusion.

Al is fundamentally reshaping prostate imaging by enhancing both
high-resolution mpMRI and more common ultrasound technologies.
Deep learning models, particularly CNNs, are improving the accuracy
and consistency of lesion detection, segmentation, and scoring on MRI
scans, in some cases matching expert-level performance.
Simultaneously, Al is boosting the capabilities of ultrasound by
detecting subtle tumor patterns invisible to the human eye and
improving the precision of MRI-US fusion biopsies. Beyond direct
image interpretation, Al enables the field of radiomics—extracting vast,
invisible quantitative data from scans—and powers multimodal models
that integrate imaging features with clinical data like PSA levels to
predict cancer aggressiveness, mimicking expert reasoning for a more
holistic and accurate diagnosis.

3 Al Applications in the diagnostic and
screening pathway

Building on the technical capabilities summarized in Section 2,
this section focuses on how AI outputs are used at key clinical
decision points to improve triage, diagnostic certainty, and early
treatment planning—without revisiting model architectures or
image-processing mechanics.
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3.1 Al-driven risk stratification and
biopsy triage

At the pre-biopsy decision point, non-PSA biomarkers—most
notably PHI, 4Kscore, PCA3, and selected liquid-biopsy assays—
provide complementary information alongside mpMRI and AI-
derived risk scores, supporting shared decision-making about
whether to proceed to biopsy (Table 1). In parallel, AT models
that integrate clinical variables, PSA-derived metrics, and
quantitative imaging features (radiomics and other multimodal
inputs) produce calibrated risk scores that guide biopsy decisions;
across multiple cohorts these approaches have demonstrated high
discrimination and, in some studies, have outperformed traditional
clinical calculators in identifying patients at increased risk of
aggressive disease (31, 32). Performance can be further
strengthened by incorporating advanced MRI-derived metrics; for
example, diffusion basis spectrum imaging features combined with
AT have accurately predicted csPCa, and when these Al-derived
scores are used alongside standard PI-RADS assessments, they can
raise diagnostic confidence and support more accurate triage
decisions (23, 36). Clinically, the principal utility is the potential
to reduce unnecessary biopsies while preserving detection of
significant cancers, thereby decreasing procedure-related harms
and anxiety (23, 36). In practice, sites often implement threshold-
based pathways (e.g., proceeding to biopsy above a predefined Al
+PI-RADS risk level and otherwise monitoring), with periodic
calibration checks to maintain performance.

3.2 Al in histopathological analysis

Once biopsy is performed, digital pathology becomes critical to
definitive diagnosis and grading. Al systems applied to whole-slide
images can rapidly highlight microscopic cancer foci and classify
tissue with high accuracy in study settings, facilitating case review and
prioritization (37). Importantly, AI assistance has demonstrated
performance at or approaching expert levels for Gleason grading
and can reduce the well-recognized inter-observer variability that
affects prognostically meaningful distinctions, such as between Grade
Group 2 (3 + 4) and Grade Group 3 (4 + 3) (38, 39). A recent large-
scale study confirmed that an Al-based grading system demonstrated
non-inferiority to expert uropathologists, suggesting its potential to
serve as a reliable “second reader” and standardize quality (40).
Validation across diverse international cohorts further supports the
generalizability of these approaches and their potential to standardize
diagnostic quality across institutions (41). In routine workflows, AI
functions best as an assistive tool, preserving the pathologist’s
authority while improving consistency and efficiency for complex
or high-volume cases.

Beyond improving diagnostic consistency in the biopsy setting,
histopathological grade is a primary driver of prognosis and
treatment selection, particularly due to its strong correlation with
metastatic potential (42). This link is especially critical in advanced
disease. For instance, in metastatic hormone-sensitive prostate
cancer (mHSPC), high Gleason scores (e.g., ISUP Grade Groups
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4-5) are strongly associated with specific, aggressive metastatic
patterns, including a higher burden of osseous metastases and a
greater likelihood of visceral disease (43). This established biological
link underscores the importance of accurate grading. Future
multimodal AI models that integrate digital pathology data
(Gleason patterns) with clinical data and whole-body imaging
(e.g., PSMA-PET or bone scans) could therefore provide a
comprehensive, automated assessment of disease burden and risk,
linking primary tumor biology directly to its systemic
expression (33).

3.3 Optimizing biopsy and early pre-
treatment planning

Al also supports the step between risk identification and definitive
treatment selection. “Virtual biopsy” methods use imaging-based Al to
estimate histologic grade before tissue processing, offering earlier
prognostic insight to guide counseling and set expectations while
awaiting pathology results (38). In addition, MRI-based radiomic
models provide clinically useful predictions of extraprostatic
extension, with studies reporting high AUC values that exceed the
subjective accuracy of conventional reads (44). These predictions
contribute directly to surgical planning particularly decisions about
nerve-sparing approaches and can help steer patients toward
surveillance versus timely definitive intervention based on a more
accurate, non-invasive assessment of grade and stage.

Al is applied at key clinical decision points in the prostate cancer
pathway, starting with biopsy triage, where models integrate clinical
data and imaging features to generate risk scores that help reduce
unnecessary procedures while accurately identifying high-risk
patients. Once a biopsy is performed, Al in digital pathology
analyzes tissue slides to assign Gleason grades with expert-level
accuracy, crucially reducing the inter-observer variability that can
affect patient prognosis. Finally, AT assists in pre-treatment planning
by using imaging-based “virtual biopsies” to predict histologic grade
and radiomic models to predict cancer staging, such as extraprostatic
extension, which directly informs surgical planning and the choice
between surveillance or definitive intervention.

4 Other applications of Al in prostate
cancer treatment

The impact of Al extends profoundly into the therapeutic domain,
where it is being used to devise novel treatment strategies, personalize
therapy selection, meticulously plan procedures like radiotherapy, and
predict patient outcomes with unprecedented accuracy.

4.1 Al in devising adaptive treatment
strategies

A major challenge in treating advanced or metastatic prostate
cancer is the development of therapeutic resistance. Adaptive treatment
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strategies, which involve dynamically modulating therapy based on a
patient’s real-time response, aim to delay or prevent this resistance. The
biological rationale is to use treatment-free intervals to allow drug-
sensitive cancer cells to regrow and outcompete the pre-existing
resistant cells, thereby maintaining control of the tumor for a longer
period. Al and particularly deep reinforcement learning (DRL), is an
ideal framework for optimizing these complex, dynamic strategies.

In a DRL model, an AI “agent” learns an optimal drug
administration policy through trial and error. It interacts with a
virtual patient (often a mathematical model of tumor dynamics)
and learns which “actions” (e.g., give drug, withhold drug) lead to
the best long-term “rewards” (e.g., maximizing time to progression,
minimizing cumulative drug toxicity) (42, 45-47). Generative Al
models have also been employed to design adaptive intermittent
therapy schedules for androgen deprivation therapy (ADT),
processing longitudinal PSA data to determine the optimal timing
for treatment cycles (43). Frameworks like Intelligent Intermittent
ADT are being developed to account for patient heterogeneity,
deriving personalized drug schedules that prolong progression-free
survival while reducing the cumulative drug dose and its associated
side effects (48, 49).

4.2 Al for treatment recommendation and
clinical decision support

For men with localized prostate cancer, the choice between
treatment modalities—primarily radical prostatectomy (surgery) or
radiotherapy—is complex and preference-sensitive, with different
profiles of side effects. AT models are being developed as powerful
clinical decision support tools to help guide these difficult
conversations. By analyzing large datasets of patients with known
treatments and outcomes, machine learning algorithms can predict
the likelihood of success and the risk of specific side effects for an
individual patient under different treatment scenarios. These
models can uncover complex, non-linear relationships between
patient characteristics (age, comorbidities, tumor features) and
outcomes that are not captured by traditional prognostic models,
thereby helping to predict which patients are likely to benefit more
from surgery versus radiotherapy (50-53). Similarly, AI can forecast
a patient’s likely response to systemic therapies like ADT,
identifying those who may require earlier intensification of
treatment (54-57).

4.3 Al in radiotherapy planning, delivery,
and outcome prediction

Radiotherapy is a cornerstone of prostate cancer treatment that
depends on the millimeter-level precision of delivering a lethal dose
of radiation to the tumor while sparing surrounding healthy tissues
like the bladder and rectum. This process has traditionally involved
a time-consuming manual step where a radiation oncologist or
dosimetrist “contours” or delineates the clinical target volume
(CTV) and the organs at risk (OARs) on planning CT or MRI
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scans. This manual process is a major bottleneck and a significant
source of inter-observer variability.

AT has revolutionized this step. Al-based auto-contouring systems,
typically using CNNs, can learn from thousands of expertly contoured
plans to automatically segment the prostate, CT'Vs, and OARs on new
patient scans with extremely high speed and accuracy. This not only
saves hours of physician time but also dramatically improves the
consistency and standardization of treatment planning (58, 59).
Recent studies show that deep learning-based auto-contouring is
now achieving a level of accuracy comparable to human experts,
making it suitable for clinical implementation (60). Beyond
contouring, Al is central to knowledge-based treatment planning
(KBP). KBP algorithms learn from a library of high-quality,
previously delivered treatment plans to predict the optimal
achievable dose distribution for a new patient, ensuring that the
tumor is precisely targeted while minimizing dose to healthy tissues,
which directly translates to fewer side effects (59). AI models are also
being used to predict treatment-related toxicity before the first dose is
ever delivered by analyzing planned dosimetric parameters and patient
anatomy, allowing for plan modifications to mitigate risk (61-63).

4.4 Al-driven biomarkers for precision
medicine

Perhaps one of the most exciting frontiers is the use of Al to
discover novel biomarkers that can predict treatment response and
prognosis from standard, routinely collected data. For example, deep
learning models can analyze the morphology of cancer cells on a
standard digital pathology slide and extract “Al-derived biomarkers”
that are invisible to the human eye but are highly predictive of
outcomes like biochemical recurrence after surgery or response to
ADT. These “digital biomarkers” effectively act as a low-cost surrogate
for expensive and time-consuming molecular genomic tests,
providing powerful prognostic information from a simple H&E
stained slide (54, 55). Multi-modal deep learning architectures are
now being developed to integrate these digital pathology biomarkers
with clinical, imaging, and genomic data to build comprehensive
prognostic models that can predict patient outcomes with far greater
accuracy than any single traditional tool (52, 53).

AT’s role in prostate cancer treatment extends to personalizing
therapy and enhancing procedural precision. It is used to devise
adaptive treatment strategies, such as dynamic drug schedules
optimized by reinforcement learning to combat resistance and
serves as a clinical decision support tool by predicting individual
patient outcomes and side effects for different treatment choices like
surgery versus radiotherapy. In the critical field of radiotherapy, AI
revolutionizes planning through “auto-contouring,” which rapidly
and consistently delineates tumors and healthy organs, and
“knowledge-based planning,” which optimizes radiation dosage to
minimize toxicity. Furthermore, AI is pioneering precision
medicine by discovering novel “digital biomarkers” from standard
pathology slides, extracting powerful prognostic information
invisible to the human eye to better predict treatment response
and patient outcomes.
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5 Overarching challenges and future
directions for clinical translation

Despite the immense promise and rapid progress of Al in
prostate cancer management, the path from a promising
algorithm in a research paper to a trusted, integrated tool in
routine clinical practice is fraught with significant challenges.
Overcoming these hurdles is essential for realizing the full
potential of Al to improve patient care.

5.1 The need for rigorous clinical validation
and prospective studies

A fundamental and non-negotiable requirement is rigorous and
extensive clinical validation. Many published Al models report high
performance on internal or retrospective datasets, but this
performance often degrades significantly when the model is tested
on new data from different hospitals, different scanners, or different
patient populations—a problem known as poor generalizability.
There is a critical need for large-scale, multi-center, prospective
clinical trials to transparently evaluate and confirm the
performance, safety, and clinical utility of these AI tools in real-
world settings before they can be widely adopted (3, 10, 64, 65).

While AI models for prostate cancer display promising
retrospective performance, there remains a pronounced gap
between experimental outcomes and real-world clinical efficacy.
Retrospective studies can artificially inflate accuracy due to dataset
selection and methodological biases; only prospective, multi-center
clinical trials can establish true clinical utility. The majority of
prostate cancer Al algorithms have yet to undergo such validation,
limiting their ability to influence clinical guidelines and care
delivery. For implementation, multi-center prospective trials
should transparently evaluate both diagnostic and prognostic
capabilities in diverse populations, as demonstrated by initiatives
such as the PI-CAI Challenge and digital pathology-based lymph
node metastasis detection studies (21, 24, 27). Without such
rigorous evidence, Al systems risk real-world failure and erosion
of clinical trust. The efficacy-outcome gap must be addressed with
standardized validation protocols (21, 27).

5.2 Addressing data equity, bias, and
ensuring equitable Al deployment

The performance of any AI model is intrinsically linked to the
data on which it was trained. If the training data is not diverse and
representative of the full spectrum of the patient population, the
resulting model can perpetuate and even amplify existing health
disparities. For example, an AI model trained predominantly on
data from one ethnic group may perform poorly on others due to
subtle differences in anatomy, disease presentation, or imaging
characteristics (66).

The risks of bias and inequity in healthcare AI are now recognized
as both ethical and clinical challenges. Demographic imbalance in AI
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datasets can result in systematically reduced accuracy for
underrepresented races, ages, genders, or socioeconomic groups,
perpetuating or worsening health disparities (22, 25, 28, 31, 34, 56,
65). Studies in prostate cancer and other domains have documented
disparities in Al performance across marginalized populations (31, 34,
54, 56, 62, 66).

Mitigating bias in artificial intelligence requires a coordinated
approach throughout all stages of the AI lifecycle. During
development, it is essential to utilize diverse and representative
datasets; when certain cohorts are underrepresented or rare,
synthetic data can be employed to simulate their inclusion and
improve model robustness (58, 61, 64, 67). The deployment of
fairness metrics—such as demographic parity, equal opportunity,
and equalized odds—supports continuous monitoring and
facilitates the correction of detected disparities as models are
evaluated and updated (57, 59, 63, 68). Regulatory bodies have
also instituted requirements for transparency, routine auditing, and
post-market surveillance of Al systems, reflecting the need for
ongoing accountability and continuous improvement (31, 43, 56,
66). Ultimately, the pursuit of data equity transcends technical
considerations; it represents an ethical imperative to prevent the
deepening of structural disparities as AI technologies become
increasingly embedded in healthcare decision-making (25, 31,
54, 60).

5.3 The black box problem and the
imperative for explainable Al

Many of the most powerful deep learning models operate as
“black boxes,” with internal decision processes that are not readily
interpretable by humans. This lack of transparency is a significant
barrier to clinical trust, adoption, and regulatory approval. If a
clinician cannot understand why an AI model made a specific
recommendation particularly if it contradicts established
judgment—they may hesitate to act (67). Explainable AI (XAI)
is now considered a non-negotiable requirement for clinical
deployment. Clinicians must be able to interpret not just
outputs but also why and how a model made its decisions,
especially when stakes are high for patient safety or legal
liability (11, 14, 37, 44).

Recent advances in XAI have introduced a range of
interpretability methods that help clarify how models reach their
decisions. CAM-based approaches, such as Grad-CAM and Grad-
CAM-++, generate intuitive heatmaps that visually indicate which
image regions were most influential in shaping the model’s output.
In parallel, perturbation-based techniques like LIME and SHAP
systematically alter input features to quantify their impact on the
prediction. Additionally, attention-based mechanisms contribute by
assigning importance weights to different features or regions within
the data, providing further insights into which aspects are
prioritized by the AI during inference (7, 9, 36, 38, 40, 41, 49, 52).

For prostate cancer, Grad-CAM-based visualizations have
correlated with regions radiologists use to identify clinically
significant cancer, and pathologists have rated these visual
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explanations highly for building trust in automation (7, 41, 45,
47). Large-scale reviews show that LIME achieves higher fidelity for
case-level explanation, while SHAP offers consistency across
features (36, 38, 40, 46). Therefore, interpretability not only
builds clinician and patient confidence, but it is also increasingly
required by the FDA and other regulators—now included in device
approval frameworks (43-45, 50).

5.4 Reqgulatory and integration challenges

Finally, practical and regulatory hurdles abound. For an AT tool
to be useful, it must be seamlessly integrated into existing clinical
workflows—necessitating interoperability with PACS and EHR
systems, which can be technically complex and costly. Diagnostic
or therapeutic Al tools are classified as medical devices and face
stringent regulatory oversight. Navigating approval pathways (such
as those set by the FDA or EMA), which now require clear
validation and post-market surveillance, is a time-consuming and
expensive process (68). The PI-CAI challenge has provided a
framework for standardized evaluation, showing that best-in-class
AT systems can match radiologist performance, setting a benchmark
for regulatory submissions (69).

Significant challenges hinder the clinical translation of Al in
prostate cancer, starting with the critical need for rigorous
validation through large-scale, prospective trials to ensure models
are generalizable and effective in real-world settings, moving
beyond promising retrospective results. A second major hurdle is
data equity and bias, as models trained on non-diverse datasets risk
perpetuating or amplifying health disparities, making the use of
representative data and fairness metrics an ethical imperative.
Furthermore, the “black box” nature of many algorithms erodes
clinical trust, creating a non-negotiable demand for Explainable AI
(XAI) to make the model’s decision-making process transparent to
clinicians. Finally, practical barriers, including the technical
complexity of integrating AI into existing hospital workflows
(EHRs/PACS) and navigating the stringent, costly regulatory
approval process for medical devices, must be overcome for
widespread adoption.

6 Conclusion

The management of prostate cancer is undergoing a profound
transformation, driven by the power of Al Al is moving beyond the
realm of research and is rapidly becoming an indispensable clinical
tool. By augmenting the interpretation of medical images, Al is
enabling earlier and more accurate diagnosis. By integrating
complex, multimodal data, it is delivering on the promise of
personalized risk stratification, helping to mitigate the long-
standing problem of overtreatment. In the therapeutic setting, Al
is optimizing the precision of radiotherapy, guiding complex
treatment decisions, and pioneering novel adaptive strategies to
combat drug resistance. The breadth of these applications, from
screening to advanced therapeutics (Table 2), represents a
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TABLE 2 Al applications, implications, and challenges across the prostate cancer continuum.

Clinical stage/

Domain

Key Al application

Mechanistic or immunological
implication

10.3389/fimmu.2025.1670671

Key translational challenge

1. Screening & Triage

Al-driven risk stratification (integrating
PSA, age, clinicals) (31, 32).

N/A (primary focus is statistical risk
assessment).

Reducing unnecessary biopsies while
preserving detection of clinically significant
prostate cancer (csPCa) (23, 36). Data
equity and model bias in diverse
populations (66).

2. Diagnosis (Imaging)

3. Diagnosis (Pathology)

mpMRI: Deep learning (CNNs, U-Net) for
lesion detection, segmentation, and PI-
RADS scoring (20-22). Ultrasound: AI-
enhanced TRUS for detecting isoechoic
lesions (28).

Digital Pathology: Al-assisted Gleason
grading to reduce inter-observer variability
(e.g, 3 + 4 vs 4 + 3) (38-40). “Virtual
Biopsy”: Al prediction of grade from
imaging (38).

Models learn “unseen” textural patterns
(radiomics) indicative of dense cellularity
and altered tissue microarchitecture (31,
33).

Al-derived “digital biomarkers” capture
morphological features linked to genomic
instability or cell phenotypes, acting as a
surrogate for molecular tests (54, 55).

High inter-scanner/inter-protocol
variability; poor generalizability (64, 65).
The “black box” problem and need for XAI
to build clinician trust (67).

Workflow integration with Laboratory
Information Systems (LIS) and EHRs.
Standardization of whole-slide imaging.
Regulatory approval as a diagnostic device
(68).

4, Treatment (Local)

Radiotherapy: Al-based auto-contouring of
organs-at-risk (OARs) and clinical target

volumes (CTVs) (58, 59). Knowledge-Based
Planning (KBP) for dose optimization (59).

N/A (primary focus is physics and
geometry optimization to spare healthy
tissue).

Ensuring robustness of auto-contouring
across anatomical variations (60). Clinical
acceptance and integration into treatment
planning systems (58).

5. Treatment (Advanced)

Clinical Stage/Domain

Adaptive Therapy: Deep reinforcement
learning (DRL) to optimize intermittent
Androgen Deprivation Therapy (ADT)
schedules (46, 48). Prognostication:
Multimodal models (imaging + path +
genomics) to predict treatment response/
toxicity (52, 53).

Key AI Application

DRL models learn tumor evolutionary
dynamics (e.g., competition between drug-
sensitive and resistant cell populations)
(46). Digital biomarkers act as surrogates
for molecular pathways (e.g., AR signaling,
DNA repair) (54, 55).

Mechanistic or Immunological Implication

Need for robust “virtual patient” models to
train DRL agents (45, 47). Data
heterogeneity in multimodal models.
Ethical and regulatory hurdles for AI-
driven treatment decisions (68).

Key Translational Challenge

1. Screening & Triage

Al-driven risk stratification (integrating
PSA, age, clinicals) (31, 32).

N/A (primary focus is statistical risk
assessment).

Reducing unnecessary biopsies while
preserving detection of clinically significant
prostate cancer (csPCa) (23, 36). Data
equity and model bias in diverse
populations (66).

2. Diagnosis (Imaging)

3. Diagnosis (Pathology)

mpMRI: Deep learning (CNNs, U-Net) for
lesion detection, segmentation, and PI-
RADS scoring (20-22). Ultrasound: AI-
enhanced TRUS for detecting isoechoic
lesions (28).

Digital Pathology: Al-assisted Gleason
grading to reduce inter-observer variability
(e.g, 3 +4vs 4+ 3) (38-40). “Virtual
Biopsy”: Al prediction of grade from
imaging (38).

Models learn “unseen” textural patterns
(radiomics) indicative of dense cellularity
and altered tissue microarchitecture (31,
33).

Al-derived “digital biomarkers” capture
morphological features linked to genomic
instability or cell phenotypes, acting as a
surrogate for molecular tests (54, 55).

High inter-scanner/inter-protocol
variability; poor generalizability (64, 65).
The “black box” problem and need for XAI
to build clinician trust (67).

Workflow integration with Laboratory
Information Systems (LIS) and EHRs.
Standardization of whole-slide imaging.
Regulatory approval as a diagnostic device
(68).

4, Treatment (Local)

Radiotherapy: Al-based auto-contouring of
organs-at-risk (OARs) and clinical target

volumes (CTVs) (58, 59). Knowledge-Based
Planning (KBP) for dose optimization (59).

N/A (primary focus is physics and
geometry optimization to spare healthy
tissue).

Ensuring robustness of auto-contouring
across anatomical variations (60). Clinical
acceptance and integration into treatment
planning systems (58).

5. Treatment (Advanced)

Adaptive Therapy: Deep reinforcement
learning (DRL) to optimize intermittent
Androgen Deprivation Therapy (ADT)
schedules (46, 48). Prognostication:
Multimodal models (imaging + path +
genomics) to predict treatment response/
toxicity (52, 53).

DRL models learn tumor evolutionary
dynamics (e.g., competition between drug-
sensitive and resistant cell populations)
(46). Digital biomarkers act as surrogates
for molecular pathways (e.g., AR signaling,
DNA repair) (54, 55).

Need for robust “virtual patient” models to
train DRL agents (45, 47). Data
heterogeneity in multimodal models.
Ethical and regulatory hurdles for AI-
driven treatment decisions (68).
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significant leap forward. While formidable challenges related to
robust clinical validation, data bias, interpretability, and regulatory
approval must be systematically addressed, the trajectory is clear.
The continued collaboration between data scientists, engineers,
clinicians, and patients will undoubtedly cement AT’s role as a
cornerstone of a new standard of care one that is more precise,
efficient, personalized, and ultimately, more effective for every man
with prostate cancer.
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