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Soluble HLA-G is related to
malignant melanocytic lesions
and previous oncological disease
may increase circulating HLA-G
bearing large extracellular
vesicles
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Introduction: Human leukocyte antigen G (HLA-G) can induce tumor immune

escape, facilitating tumor progression. Extracellular vesicles (EVs) are also

involved in tumor progression, due to its activity on metastatic niche

preparation and immune system modulation. However, the role of EVs bearing

HLA-G, on its surface or cargo, is still few explored.

Methods: In this cross-sectional study, participants with benign (nevi) and

malignant melanocytic lesions were recruited. Plasma large EVs (LEVs, ~100-

900nm) were isolated by differential centrifugation and analyzed by nanoscale

flow cytometry, nanoparticle tracking analysis (NTA) and transmission electron

microscopy (TEM). Plasma soluble HLA-G (sHLA-G) and intravesicular HLA-G

(int-HLA-G) were measured by ELISA.

Results: We included 68 patients (37 melanoma and 31 nevi), presenting a mean

age of 57.9 ± 15.7 years-old and 67.6%were female. No differences were seen for

particle count and size by NTA (p>0.05), or for total LEVs between benign and

malignant lesions (p=0.8); however, sHLA-G levels were significantly higher in

melanoma (p=0.02). Among patients with benign lesions, previous neoplasmwas

related to higher LEVs-HLA-G+ count (p=0.001) and int-HLA-G levels (p=0.03).

Nevertheless, LEVs-HLA-G+ seems to be related to melanoma subtypes,

especially with acral lentiginous melanoma. Moreover, sHLA-G was elevated in

melanoma with head and neck localization (p=0.001). A preliminary in vitro assay

showed that HLA-G may increase IL-6 secretion by leukocytes in the same way

that plasma-derived LEVs from melanoma patients.
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Discussion: These results may suggest that sHLA-G may be a promising

biomarker to predict malignant melanocytic lesions; however, it is important to

consider previous neoplasms. Also, its application may be relevant for specific

histological subtypes and lesion sites.
KEYWORDS
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Introduction

Biomolecules can be carried by nanostructures called

extracellular vesicles (EVs), cell-derived nanoparticles composed

of a lipid bilayer membrane, which are found in different biological

fluids (1, 2). Exosomes (small EVs), microvesicles (large EVs -

LEVs) and apoptotic bodies are frequently reported as EVs,

according to their biogenesis and size (3–6). EVs can establish

communication between different cells (7, 8) and are involved in the

metastatic process, especially in the metastatic niche preparation

(9–12). In this context, tumor derived-EVs can modify the tumor

microenvironment (4), promoting epithelial-mesenchymal

transition of tumor cells (13) and stimulating tumor growth (8).

Also, EVs may mediate the modulation of the immune system,

especially in the induction of tumor evasion and transport of

immunoregulatory molecules (13).

Human leukocyte antigen G (HLA-G), a biomolecule related to

the immune system, can be detected as a soluble form on the

circulation (sHLA-G), on the cell surface, and on EV surface and

cargo (14, 15). HLA-G is expressed mostly during pregnancy and

immune privileged tissues (16), as the thymus. However, this

molecule can be positively regulated in oncologic contexts (17),

including melanoma, an immunogenic cutaneous malignancy

neoplasm derived from melanocytes (18). Immune evasion

triggered by HLA-G can occur in different ways, either by

inhibiting antigen presentation or inducing T-cell anergy (6, 19–

21). Also, HLA-G possibly modulates the secretion of cytokines,

such as interleukin (IL)-6 (22, 23), which is involved in immune

regulation (24) and maturation of dendritic cells (25), reinforcing

the formation of an immunosuppressive microenvironment (26).

Immunosuppression can be a significant factor in melanoma
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progression, particularly when promoted by tumor immune

escape and by the formation of metastatic niches (6, 10, 27).

In this regard, we hypothesized that melanocytic lesions may

lead to a constant release of EVs and that these EVs could carry

HLA-G. EVs, especially those associated with HLA-G, may be

related to cancer progression or phenotype modification (12) of

benign skin lesions, such as nevi. Therefore, this study aimed to

analyze sHLA-G and plasma EVs that contain HLA-G on their

membrane (LEVs-HLA-G+) or as its cargo (int-HLA-G) in patients

with melanocytic lesions, in addition to explore associations

between these parameters with clinical findings and serum and

intravesicular IL-6 levels.
Materials and methods

Study design and sample collection

In our cross-sectional study, adult participants with

melanocytic lesions and indication of surgical excision who

attended the Hospital Universitário Antônio Pedro (HUAP-

EBSERH, Niterói-RJ, Brazil) were recruited during 2023-2025. At

the recruitment, patients signed an informed consent form and

answered a questionnaire about sociodemographic conditions,

previous diseases and sun exposure. On the same day of lesion

excision, peripheral blood samples were collected in dry, 3.2%

citrate and ethylenediaminetetraacetic acid (EDTA) vacuum

collection tubes. To obtain plasma, samples were processed by

centrifugation (3400 rpm for 10 minutes at room temperature)

and stored at -80°C for subsequent analysis. Based on

histopathological results, participants were allocated into two

groups: nevi or melanoma. Pregnancy was an exclusion criterion.

This study was approved by the Research Ethics Committee of

Universidade Federal Fluminense under the approval

number 64852022.1.0000.5243.
Extracellular vesicles isolation

To isolate LEVs from plasma samples, we used a differential

centrifugation protocol (28). Briefly, plasma samples were thawed at

room temperature and centrifuged at 12,000 xg for 2 minutes to
frontiersin.org
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obtain platelet-poor plasma. Next, a second step of centrifugation at

20,000 xg for 20 minutes was performed to isolate LEVs (~100–900

nm). Both centrifugations were performed at 4°C.
Nanoscale flow cytometry

To quantify total LEVs and LEVs-HLA-G+, we performed a

nanoscale flow cytometry (nFC) approach (29). LEVs isolated from

plasma were resuspended in Annexin Binding Buffer (Invitrogen).

The buffer was filtered twice with a 0.22 μm filter to eliminate

particles that could interfere in this analysis. Samples were

incubated for 1 hour protected from light with a combination of

FITC-Annexin V (AnV) (Biolegend) with PE-anti-HLA-G (MEM-

G/9 clone, Invitrogen) and AnV with a mix of APC-anti-CD9

(MEM-61 clone, Invitrogen), APC-anti-CD63 (MEM-259 clone,

Invitrogen) and APC-anti-CD81 (1D6-CD81 clone, Invitrogen) for

tetraspanin determination. A centrifugation of 20.000 xg for 20

minutes at 4°C was performed after the incubation to remove

unbound antibodies. Samples were acquired in the Cytoflex S

flow cytometer (Beckman Coulter, USA) after calibration with

beads of 100–900 nm (Megamix FSC and SSC, BioCytex and

NIST, ThermoScientific). nFC data analysis was performed in

FlowJo software (10.0 version). Gating strategies are shown in

Supplementary Figure S1 and information on experiment control

acquisitions are shown in the Minimum Information for Flow

Cytometry (MIFlowCyt) report table (Supplementary Table S1),

according to the latest Minimum Information for Studies of EVs

(MISEV 2023) recommendation (30).
Nanoparticle tracking analysis

Nanoparticle tracking analysis (NTA) was performed to

characterize plasma LEVs as particles (31). Approximately 1.0 mL

of thawed LEVs suspensions were inserted in the ZetaView® system

(Particle Metrix, Germany) and reading was performed at 488 nm

wavelength, 23°C and pH 7.0. Defrosted samples were diluted in

filtered Phosphate Buffered Saline (PBS, Invitrogen) at proportions

of 1:300 to 1:2500. The Brownian movement and light scattering

were analyzed by the ZetaView® software (version 8.05.14 SP7).
Transmission electron microscopy

Transmission electron microscopy (TEM) was performed for

confirmation of plasma LEVs isolation and for its morphological

characterization using Corona’s group methodology with minor

modifications (32). Briefly, thawed LEVs isolates were fixed with 4%

paraformaldehyde (Sigma Aldrich) for 1 hour at 4-10°C. During 30

seconds, we treated the nickel grid (Ted Pella, Inc.) with polylysine

to promote a better sample adhesion. After that, we applied 20 μg of

fixed sample for 20 minutes to the grid and, to remove

contaminants or solution excess, we washed the grid six times

with deionized water. We performed a grid incubation with 2%
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uranyl acetate (Acs Cientıfíca) for 13 minutes at room temperature.

Lastly, the analysis was performed using the electron microscope

HT7800 (Hitachi High-Tech, Japan).
Functional assay

Whole blood from a healthy donor was collected in EDTA tubes

and erythrocytes were lysed with eBioscience™ 1X RBC Lysis

Buffer according to manufacturer’s recommendations. Leukocytes

were washed and resuspended in RPMI with 10% FBS exosome

depleted (GibcoTM), seeded in a 24-well plate at 0.05 x106 cells per

well, and cultured at 37 °C and 5% of CO2, for 24h. Leukocytes was

treated with recombinant HLA-G (Recombinant Human HLA G

His Protein - Novus Biologicals) and LEVs isolated from nevi and

melanoma patients. Samples from both patient groups with LEVs

rich in int-HLA-G were pooled to stimulate the leukocyte.

Supernatant was collected and centrifuged at 1400 RPM for

4 minutes.
Extracellular vesicle lysis and assessment
of HLA-G and IL-6

Techniques such as chemical, thermal, and mechanical methods

can be applied to achieve LEVs lysis. In this study, to promote LEV’s

lipid bilayer membrane fragmentation to access intravesicular

HLA-G and IL-6, we performed mechanical LEVs lysis using a

vortex mixer according to Goodrum and Li lysis protocol (33), with

a single modification. LEVs samples were vortexed once for 60

seconds at a 3.800 rpm rate. The lysis was confirmed by nFC and

TEM (Supplementary Figure S2).

Plasma sHLA-G and int-HLA-G, as well as, serum IL-6, int-IL-

6 and leukocyte culture supernatant IL-6 were measured by

enzyme-linked immunosorbent assay (ELISA). We used the

Human MHCG (Major Histocompatibility Complex Class I G,

FineTest®) and Human IL-6 ELISA MAXTM Deluxe Set

(Biolegend) commercial kits and the manufacturer's instructions

were followed. sHLA-G and IL-6 were measured on plasma samples

and thawed LEV lysates, as described above, and subsequently

submitted to ELISA. Optical density was measured on the

SpectraMax M3 instrument (Molecular Device, USA) at 450

nm wavelength.
Statistical analysis

Statistical analysis was conducted using GraphPad Prism (8.0.1

version) and R Studio (4.5.0 version) softwares. The Kolmogorov-

Smirnov normality test was applied and, according to variable’s

distribution, two independent groups were compared by t Student

test or Mann-Whitney test. ANOVA or Kruskall Wallis tests were

applied to three or more groups, with respective post-tests.

Multivariate analyses were performed to assess the associations

between clinical characteristics and total LEVs and LEV-HLA-G+.
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Initially, Poisson regression was used, and in the presence of

overdispersion (Pearson chi-square statistic/degrees of freedom >

1.5), Negative Binomial regression was chosen. The results were

expressed as Rate Ratio (RR) with their respective 95% confidence

intervals (95% CI). For continuous outcomes (concentration,

diameter, soluble and intravesicular HLA-G), linear regression

models were applied to log-transformed data (log-linear), with

results expressed as Geometric Mean Ratio (GMR) and 95% CI.

All models were adjusted for the following covariates: age, sex, skin

phototype, smoking, and history of previous neoplasm. The

analyses were conducted in a stratified manner for the nevi and

melanoma groups. Statistically significant results were considered

when p ≤ 0.05. Data is shown as mean ± standard deviation (SD) or

median and interquartile range (IQR) and graphics are shown as

mean and standard error (SEM).
Results

Participant’s demographics and clinical
data

Sixty-eight participants with melanocytic lesions presenting a

mean age of 57.9 ± 15.7 years-old were included and 67.6% were

female. According to the histopathological results, 31 individuals

were diagnosed with benign lesions (nevi) and 37 with melanoma.

In both groups, there was a predominance of females (77.4% and

59.5%) and white individuals (64.5% and 78.4%). The mean age in

the melanoma group was significantly higher (p=0.01), showing

that melanoma is an age-related skin disease. Nine (29.0%) patients

in the nevi group and 17 (45.9%) of melanoma group reported a

previous oncological disease (p=0.2). We clustered the lesion sites

(i.e., upper and lower limbs were grouped as limbs; and trunk and

dorse, as trunk) and observed that benign lesions were more

frequently observed in head and neck (35.5%, p=0.05) while

malignant lesions were more frequent in the trunk (43.2%,

p=0.04). In the nevi group, 16 (51.6%) patients presented

intradermal melanocytic lesions followed by compound (n=7,

22.6%), junctional (n=6, 19.4%), blue (n=1, 3.2%), and Spitz (n=1,

3.2%) subtypes. In the melanoma group, 19 (51.4%) and 18 (48.6%)

were in situ and invasive lesions, respectively. The majority of cases

were lentigo maligna melanoma (n=15, 40.5%), followed by 21.6%

(n=8) with superficial spreading, 19% (n=7) metastatic or invasive

(without histopathological subtype - not classified), 13.5% (n=5) in

situ (not classified), 5.4% (n=2) acral lentiginous and nodular

melanoma was not observed. These data are summarized in Table 1.
Similar patterns of plasma-derived LEV
were observed in nevi and melanoma

Total LEVs count was similar between nevi and melanoma

samples [1.10E+06 (5.80E + 05-2.04E+06) vs. 1.27E + 06 (5.17E +

05-2.27E+06), p=0.8]. However, particle concentration according to

NTA was slightly higher in nevi [6.86E + 10 (3.95E + 10-1.35E+11)]
Frontiers in Immunology 04
in comparison to melanoma [4.65E + 10 (2.75E + 10-7.35E+10)]

(p=0.06). Both groups had a peak around 100 nm at size

distribution, with mean diameter of 91.7 ± 11.5 and 88.2 ± 7.9

nm (p=0.2), respectively. LEVs morphology analyzed by TEM
TABLE 1 Characteristics of the participants with melanocytic lesions.

Parameters
All

(n = 68)
Nevi

(n = 31)
Melanoma
(n = 37)

p-
value

Female, n (%) 46 (67.6) 24 (77.4) 22 (59.5) 0.1

Age, mean ± SD
(years)

57.9 ± 15.7 52.8 ± 15.8 62.2 ± 14.5 0.01

Self-reported skin color, n (%)

White 49 (72.1) 20 (64.5) 29 (78.4) 0.3

Brown 18 (26.5) 11 (35.5) 7 (18.9) 0.2

Black 1 (1.4) 0 (0) 1 (2.7) >0.9

Site lesion, n (%)

Trunk 22 (32.4) 6 (19.4) 16 (43.2) 0.04

Head and neck 16 (23.5) 11 (35.5) 5 (13.5) 0.05

Limbs 24 (35.3) 9 (29.0) 15 (40.5) 0.4

Multiple sites 6 (8.8) 5 (16.1) 1 (2.8) 0.1

Previous neoplasm,
n (%)

26 (38.2) 9 (29.0) 17 (45.9) 0.2

Melanoma 9 (34.6) 2 (22.2) 7 (41.2) 0.4

Smoking, n (%) 11 (16.2) 5 (16.1) 6 (16.2) >0.9

Use of
corticosteroids, n
(%)

8 (11.8) 4 (12.9) 4 (10.8) >0.9

Comorbidities, n
(%)

56 (82.4) 24 (77.4) 32 (86.5) 0.4

Nevi histopathological subtypes, n (%)

Intradermal 16 (51.6) 16 (51.6) – –

Compound 7 (22.6) 7 (22.6) – –

Junctional 6 (19.4) 6 (19.4) – –

Blue 1 (3.2) 1 (3.2) – –

Spitz 1 (3.2) 1 (3.2) – –

Melanoma histopathological subtypes, n (%)

In situ 19 (51.4) – 19 (51.4) –

Invasive 18 (48.6) – 18 (48.6) –

In situ not classified 5 (13.5) – 5 (13.5) –

Lentigo maligna 15 (40.5) – 15 (40.5) –

Superficial spreading 8 (21.6) – 8 (21.6) –

Acral lentiginous 2 (5.4) – 2 (5.4) –

Invasive or
metastatic not
classified

7 (19) – 7 (19) –
front
Significant p-values (<0.05) are shown in bold.
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showed a spherical characteristic, with delimitation of the internal

content. These data can be observed in Figure 1.

Of note, to better explore LEVs markers, we demonstrate

tetraspanin labelling (CD9, CD63 and CD81) in our LEVs isolates

from pooled plasma samples from nevi and melanoma patients

(Supplementary Figure S3). It was possible to confirm that we were

capable of isolating tetraspanin positive particles, which

demonstrates that these LEVs are possibly a mixture of

microvesicles and exosomes. Importantly, 80-100nm particles

showed more CD9/CD63/CD81 positivity. Also, we identified that

melanoma-derived LEVs may be more enriched with CD9, CD63

and CD81 than nevi-derived EVs.

Total LEVs, particle concentration and diameter were also

analyzed according to six variables obtained by questionnaire:

gender, self-reported skin color, smoking status, history of

previous neoplasm, comorbidities and use of corticosteroids

(Table 2). In the nevi group, white individuals had a higher total

LEVs than brown individuals (p=0.02). There was no difference in

total LEVs counts according to smoking or the presence of

comorbidities, such as diabetes or hypertension. However,

previous malignancy disease influenced the results: total LEVs

(p=0.02) and particle concentration (p=0.01) were higher when

nevi participants experienced an oncologic disease. In the

melanoma group, previous neoplasm history also determined a

higher total LEVs count (p=0.05) but particle concentration was not

affected (p=0.6). The mean particle diameter was smaller in

melanoma females than males (85.5 ± 7.1 vs. 95.2 ± 12.4 nm;
Frontiers in Immunology 05
p=0.01) and melanoma smokers had slightly wider particles than

non-smokers (p=0.08).

Parameters such as lesion invasiveness had no significant

influence in analyzed components (Total LEVs count, particle

concentration, diameter, p>0,05). In the same way, melanoma

histopathological subtypes and primary lesion sites do not seem

to influence the LEVs counts in our study (p>0.05) (Supplementary

Figure S4).
Analysis of HLA-G forms in patients with
melanocytic lesions

sHLA-G was significantly increased in melanoma participants

when compared to nevi (3.68 ± 2.74 vs. 2.26 ± 1.44 ng/mL; p=0.02)

(Figure 2). Although not significant, LEVs-HLA-G+ was slightly

increased in nevi group with counts of 2.44E + 04 (1.36E + 04-4.68E

+04)/mL, while melanoma showed 1.44E + 04 (9.06E + 03-3.27E

+04) count/mL (p=0.09). However, int-HLA-G was not different

between groups (p=0.9). We also analyzed HLA-G according to

patient’s characteristics (Table 3). sHLA-G concentrations were not

significantly different (p>0.05) according to self-reported skin color,

smoking status or comorbidities in both groups. Interestingly, we

observed that the history of neoplasm also influenced LEV HLA-G

content, especially in the nevi group. Those nevi individuals whose

experienced an oncologic disease of some type of neoplasm showed

considerable increases in LEVs-HLA-G+ (p=0.001) and int-HLA-G
FIGURE 1

Plasma EV characterization in patients with melanocytic lesions. (A) Total LEVs (count/mL) by nFC. (B) Concentration and diameter of particles by
NTA. (C) Distribution of particle diameter by NTA (peak around 100 nm). (D, E) Analysis of LEV morphology by TEM for melanoma and nevi samples,
respectively. Data is presented by mean and standard error.
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TABLE 2 Total LEVs, particle concentration and diameter according to participants characteristics.

Parameters Nevi (n=31) Melanoma (n=37)

p Total LEVs
(count/mL)

p Concentration
(Particle/mL)

p Diameter
(nm)

p

.9
1.91E+06±1.95E+06

0.6
2.62E+10±1.64E+10

0.2
95.2±12.4

0.01
1.62E+06±1.33E+06 3.57E+10±1.97E+10 85.5±7.1

.7
1.54E+06±1.30E+06

0.6
3.21E+10±1.93E+10

0.9
88.1±8.0

0.8
2.12E+06±2.02E+06 3.21E+10±2.00E+10 88.9±9.2

.7
2.34E+06±1.91E+06

0.2
2.84E+10±1.55E+10

0.8
93.4±11.0

0.08
1.30E+06±9.88E+05 3.28E+10±1.96E+10 87.1±6.9

.6
2.38E+06±2.15E+06

0.05
3.08E+10±2.06E+10

0.6
87.3±7.9

0.5
1.25E+06±9.59E+05 3.30E+10±1.75E+10 89.0±8.1

.8
1.52E+06±1.31E+06

0.9
3.19E+10±1.95E+10

0.7
87.8±7.8

0.4
1.29E+06±7.75E+05 3.21E+10±1.61E+10 90.8±9.1

.2
1.07E+06±1.16E+06

0.4
5.09E+10±2.42E+10

0.1
82.1±3.1

0.1
1.41E+06±1.04E+06 2.94E+10±1.68E+10 89.0±8.1
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Total LEVs
(count/mL)

p Concentration
(Particle/mL)

p Diameter
(nm)

Gender

Male 1.12E+06±8.57E+05
0.5

6.82E+10±6.12E+10
0.3

91.1±10.9

Female 1.53E+06±1.19E+06 4.75E+10±3.45E+10 91.9±11.9

Self-reported skin color

White 1.81E+06±1.24E+06
0.02

5.76E+10±4.54E+10
0.3

90.7±8.5

Brown 7.89E+05±4.07E+05 4.23E+10±3.38E+10 90.4±12.1

Smoking status

Smoker 1.10E+06±9.33E+05
0.4

6.86E+10±7.59E+10
0.3

92.3±10.7

Non-smoker 1.52E+06±1.17E+06 4.90E+10±3.32E+10 91.6±11.8

Previous neoplasm

Yes 2.64E+06±2.80E+06
0.02

7.19E+10±3.31E+10
0.01

88.4±6.3

No 1.03E+06±6.84E+05 3.73E+10±2.90E+10 93.1±12.9

Comorbidities

Yes 1.46E+06±1.02E+06
0.08

4.76E+10±3.63E+10
0.6

91.7±10.2

No 5.97E+05±3.11E+05 4.80E+10±2.41E+10 93.3±16.9

Corticosteroids therapy

Yes 5.44E+06±8.74E+06
0.8

5.58E+10±2.94E+10
0.4

94.9±5.5

No 1.49E+06±1.16E+06 4.64E+10±3.48E+10 89.9±10.1

Significant p-values (<0.05) are shown in bold.
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(p=0.03). We also observed a higher count of LEVs-HLA-G+ in

males than females from the melanoma group (3.15E + 04 ± 2.86E

+04 vs. 1.64E + 04 ± 1.14E+04, p=0.05), which was less evident for

sHLA-G (5.52 ± 4.88 vs. 3.15 ± 2.55ng/mL, p=0.08).

LEVs-HLA-G+ (p=0.4), sHLA-G (p=0.6) and int-HLA-G

(p=0.5) showed no differences according to melanoma

histological subtypes (Figure 3). Although only two samples from

acral lentiginous melanoma patients were included in our cohort,

this subtype showed the highest LEVs-HLA-G+ counts. Further, the

nevi group did not show significant differences between histological

subtypes (p>0.05) (Supplementary Figures S5-A). Regarding lesion

sites, we observed that patients with head and neck melanoma

lesions presented higher sHLA-G (6.73 ± 3.70ng/mL) than trunk

(3.61 ± 1.90ng/mL, p=0.03) and limbs (2.24 ± 1.52ng/mL, p=0.01).

However, nevi sites did not show any differences (p>0.05)

(Supplementary Figures S5-B). Furthermore, invasiveness of

lesions (i.e., whether melanoma was in situ or invasive) did not

influence any of the HLA-G forms (LEVs-HLA-G+, sHLA-G, int-

HLA-G, p>0.05).

To promote a deeper analysis, a binary logistic regression model

was fitted to assess the association between clinical and laboratory

characteristics and the outcome (melanoma vs. nevi). The model

included the following predictors: age, sex, skin color, smoking

status, history of previous neoplasm, and sHLA-G levels. After the

adjustments, only age (OR = 1.05; 95% CI: 1.01–1.10; p = 0.03) and

sHLA-G levels (OR = 1.34; 95% CI: 1.05–2.06; p = 0.04) were

independent predictors of melanoma.
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Moreover, to evaluate factors associated with total LEVs counts

in patients with nevi, a multiple linear regression model was created.

The model showed R² = 0.37 (adjusted R² = 0.21), with an overall

trend toward significance [F(5,20) = 2.32; p = 0.081]. Among the

covariates (age, sex, skin color, smoking, history of previous

neoplasm), only the history of neoplasm showed a statistically

significant association: b = 38.752 (95% CI: 5.760 – 71.745),

p=0.02. This indicates that nevi patients with prior neoplasia had,

on average, approximately 38,000 more total LEVs. Age, sex, race

and smoking did not show significant associations.
HLA-G may be responsible for increase of
IL-6 in melanoma patients

A pilot functional assay has shown that leukocyte stimulus with

recombinant HLA-G increases the release of IL-6 at the supernatant

(Figure 4A). A significant difference between IL-6 supernatant

concentrations was observed between the control leukocyte and

those stimulated with recombinant HLA-G at 100ng (p<0.001) and

the control leukocyte and those stimulated with LEVs from

melanoma patients in a proportion 1:10 (p=0.01). To assess if it is

occurring in the same way in patients, serum levels and

intravesicular IL-6 (int-IL-6) were measured.

Serum IL-6 concentrations in the melanoma group seem to be

slightly increased compared to the nevi group (9.85 ± 9.32 vs. 5.68 ±

4.81pg/mL, p=0.07, OR = 1.10, 95% CI 1.00–1.23 after multivariate
FIGURE 2

HLA-G content is variable in nevi and melanoma participants according to its origin: EV-surface, serum or intravesicular. (A) LEVs-HLA-G+ (count/mL)
by nFC. (B) Representative dot plots of LEVs labeled with Annexin-V and Anti-HLA-G for nevi and melanoma. (C) sHLA-G and int-HLA-G concentrations.
Data is presented by mean and standard error.
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TABLE 3 LEV-HLA-G +, sHLA-G and int-HLA-G according to participants characteristics.

Parameters Nevi (n=31) Melanoma (n=37)

LEV-HLA-G+
(count/mL)

p sHLA-G
(ng/mL)

p int-HLA-G
(ng/mL)

p

3.15E+04±2.83E+04
0.05

5.52±4.88
0.08

2.89±2.08
0.3

1.64E+04±1.14E+04 3.15±2.55 2.25±1.18

2.21E+04±1.88E+04
0.3

3.64±2.98
0.9

3.05±2.31
0.2

3.80E+04±4.04E+04 3.61±2.05 1.82±0.46

1.76E+05±2.17E+05
0.1

3.77±2.19
0.9

2.29±0.57
0.7

2.08E+04±1.51E+04 3.65±2.88 2.59±1.80

2.27E+04±1.43E+04
0.3

3.44±2.94
0.4

3.24±2.61
0.2

2.08E+04±2.14E+04 4.49±3.76 2.11±0.97

2.46E+04±2.47E+04
0.7

3.58±2.87
0.6

2.61±1.75
0.5

2.27E+04±1.31E+04 4.21±1.96 2.11±0.78

6.60E+04±1.11E+05
0.8

5.17±7.31
0.6

1.92±1.87
0.7

2.29E+04±1.86E+04 3.89±2.74 2.43±1.31
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LEV-HLA-G+
(count/mL)

p sHLA-G
(ng/mL)

p int-HLA-G
(ng/mL)

p

Gender

Male 2.91E+04±2.77E+04
0.9

2.27±0.98
0.9

2.94±1.54
0.6

Female 3.27E+04±2.85E+04 2.26±1.56 2.78±2.53

Self-reported skin color

White 4.21E+04±3.65E+04
0.2

2.16±1.64
0.7

3.12±2.71
0.4

Brown 4.73E+04±7.96E+04 2.41±1.11 2.31±1.53

Smoking status

Smoker 1.47E+05±1.96E+05
0.9

2.43±1.02
0.6

1.45±1.34
0.3

Non-smoker 3.88E+04±3.51E+04 2.23±1.51 3.03±2.40

Previous neoplasm

Yes 8.92E+04±6.98E+04
0.001

2.82±1.92
0.2

4.28±3.00
0.0

No 2.65E+04±2.18E+04 2.03±1.18 2.26±1.81

Comorbidities

Yes 4.43E+04±4.61E+04
0.2

2.36±1.49
0.5

2.92±2.44
0.7

No 1.64E+04±1.01E+04 1.90±1.27 2.40±2.04

Corticosteroids therapy

Yes 8.78E+04±9.26E+04
0.7

2.14±1.29
0.9

1.32±1.38
0.2

No 3.37E+04±2.81E+04 2.28±1.49 3.05±2.39

Significant p-values (<0.05) are shown in bold.
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adjustments) and although this cytokine is present in higher

concentrations inside LEVs, as int-IL-6, we observed no difference

between benign and malignant lesions (14.19 ± 4.12 vs. 14.37 ± 1.41,

p=0.7) (Figure 4B). Among melanomas, in situ lesions showed

11.39 ± 9.47pg/mL IL-6 serum compared to 6.43 ± 5.61pg/mL for

invasive lesions (p=0.08), with similar concentrations to int-IL-6

(14.50 ± 1.90 vs. 14.23 ± 0.70pg/mL, p=0.6). We also analyzed IL-6

and int-IL-6 according to patient’s characteristics (Table 4) and we

observed that smokers in the nevi group had higher serum IL-6 than

non-smokers (p=0.02). Additionally, serum IL-6 for the nevi group

showed statistical significance to histological subtypes (p=0.02),

especially between intradermal and compound (4.78 ± 3.6pg/mL vs.

10.71 ± 8.93pg/mL, p=0.04) and compound and junctional (10.71 ±

8.93 vs. 2.67 ± 1.49pg/mL, p=0.04). Dysplastic nevi lesions also

showed higher int-IL-6 (p=0.04) than serum IL-6 (p=0.8). On the

other hand, for the melanoma group we observed that serum IL-6

increased concentrations when the participants experienced a prior

oncological disease (p=0.02) and males showed less int-IL-6 than

females (p=0.03).
Discussion

HLA-G is an important immunomodulatory molecule, and we

expected to detect it in plasma samples of patients with melanocytic

lesions. Although HLA-G has tissue restricted expression, we

showed that this molecule was identified as its soluble circulating
Frontiers in Immunology 09
form and associated with LEVs. Some differences in sHLA-G, int-

HLA-G and LEVs-HLA-G+ counts were observed between

malignant and benign lesions, and, to our knowledge, this is the

first study that correlates LEVs and HLA-G in patients with

melanocytic lesions, especially according to histological subtypes

or lesion localization. Also, this is the first study that analyses the

influence of previous neoplasm on LEVs release and HLA-G forms.

As an immunomodulatory molecule, perhaps just the presence, but

not a high amount, of HLA-G is sufficient to promote immune

modulation (34, 35).

Our participants live in a coastal city of Brazil and 72.1% were

white. Ultraviolet (UV) radiation is capable of causing DNA

damage (36) and is the major carcinogenic factor for melanoma

(37). It is expected that cellular injury induced by UV radiation

promotes massive release of EVs by these cells (38). Thus, LEVs

counts may be higher in light-skinned individuals, but we only

observed this finding in the nevi group. In this way, we hypothesize

that the enormous cutaneous photodamage caused by UV radiation

predisposes white skin individuals to a greater appearance of nevi,

resulting in a high LEV release.

Release of EVs are influenced by age (39, 40), comorbidities (41,

42) and smoking (43). Although comorbidities were reported by

82.4% of participants, this variable had no influence in our results.

Many studies reported EVs as potential biomarkers, whether for

early diagnosis, minimally invasive monitoring of the patient or

cancer-induced modifications, in glioblastoma (44), pancreatic and

lung cancer (45). Melanoma derived-EVs can modulate the tumor
FIGURE 3

Different forms of HLA-G according to melanoma subtypes (A) and clustered lesion sites (B) for 37 patients. IS NC: In situ not classified, defined by
absence of additional information in histopathological report; LMM: lentigo maligna melanoma; SSM: superficial spreading melanoma; AM: acral
melanoma; IM NC: Invasive or Metastatic not classified, defined by absence of additional information in histopathological report; T: Trunk; HN: Head
and neck; L: Limbs. Data is presented by mean and standard error.
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microenvironment, angiogenesis and inhibit anticancer activity of

natural killer cells (6, 12, 27, 46, 47). Furthermore, melanoma

derived-EVs have been reported to induce resistance to drug

therapy (48, 49).

Surprisingly, we observed no differences for total LEVs, particle

concentration and diameter between patients with benign and

malignant lesions. Bollard and colleagues (2024) reported that

plasma EVs presented similar size in melanoma patients when

compared to healthy controls (50). This corroborates with our

findings and our cohort characteristics, such as a composition of

mostly thin melanomas, suggesting that the LEV count is not

sensitive enough to differentiate benign lesions from malignant

lesions that are still too thin. Also, our samples were taken after a

clinical assessment by the dermatology team often in the afternoon

and fasting was not possible in most cases. So, it is possible that

contaminants such as lipoproteins have overestimated our

LEV results.

EVs facilitate cell-communication and are associated with

development of metastases (51, 52). In melanoma, metastases

occur preferentially by the lymphatic system and EVs are capable

of preparing sentinel lymph nodes (46). Thus, we hypothesized that

melanoma patients may produce more LEVs than nevi patients,

however in thin melanomas these LEVs may be still circulating

mainly in the lymphatic system instead of the bloodstream.

Proteomics data reports about 1,000 molecules transported by

EVs (53) and vesicular cargo is associated with the cell origin (8).

HLA-G overexpression happens in cancer context to avoid
Frontiers in Immunology 10
immunological recognition (27) and Grange et al demonstrated

that HLA-G carried by EVs is capable of performing

immunomodulatory processes, such as inhibiting the maturation

of dendritic cells induced by renal cancer stem cells (20). Thus, an

immunosuppressive condition may be related with LEVs-HLA-G+

in melanocytic lesions, especially in nevi participants. Lower counts

of these LEVs were observed in the melanoma group, however, this

does not indicate the absence of an immunosuppressive process

which can be performed by sHLA-G. In this context, cellular

malignant transformation and high inflammatory infiltration (16,

54) are related to higher levels of sHLA-G, such as observed for

melanoma patients in this study. Unfortunately, it was not possible

to evaluate tissue HLA-G expression and inflammatory infiltrate in

our cohort due to the impossibility of recovering formalin-fixed and

paraffin-embedded samples in most cases, limiting our

comprehens i on abou t i t s r e l a t i on sh ip wi th tumor

microenvironment. However, we performed a pilot functional

assay of leukocyte stimulation with recombinant HLA-G and

plasma-derived LEVs, and the results suggest that HLA-G may

influence IL-6 secretion.

Although we cannot say for sure that both results are due HLA-

G presence once LEVs are composed of many molecules with

similar or any effect, the result with recombinant HLA-G is a

strong indication that it may influence IL-6 expression. It has

been described that HLA-G may interact with immune cells, such

as dendritic, T and NK cells, by ILT2, ILT4 and KIR2DL4 receptors,

resulting in upregulation of some cytokines, such as, IL-6, IL-8, IL-
FIGURE 4

In vitro supernatant, serum and intravesicular IL-6 concentrations. (A) Leukocyte-culture supernatant measurement of IL-6 (pg/mL) after stimulus
with 100 ng/mL of recombinant HLA-G, nevi-LEVs (1:100 and 1:10) and melanoma-LEVs (1:100 and 1:10). (B) Nevi and melanoma’s participants
serum IL-6 and int-IL-6 concentrations, respectively. Data is presented by mean and standard error.
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10 and TNF-a (22, 55). In the context of IL-6, it has already been

described that HLA-G can lead to the expression of IL-6 in dendritic

cells by STAT activation (25). Interestingly, this interaction is still

controversial once in some neoplasm types, such as glioma, that

high levels of HLA-G is negatively related to IL-6 (56). In

melanoma, IL-6 is related to poor prognosis and has been

proposed as a potential checkpoint inhibition (57–59).

Additionally, this cytokine is associated with several other cancer

types (60–63) and may promote a melanoma inflammatory and

immunosuppressive microenvironment (26). Its signaling is

essential to STAT3 activation, which is involved with cell

proliferation, differentiation and carcinogenesis (64, 65). Although

IL-6 serum levels were not statistically different between nevi and

melanoma patients in our cohort, this preliminary in vitro assay

suggests that besides the known HLA-G role, in melanoma, it may

influence immune cells in the tumor microenvironment to produce

this cytokine. Taking it all together we may suggest an interplay

between HLA-G and IL-6 in melanoma progression. Although the

relationship between HLA-G and IL-6 is not clear in some cancer

types, in melanoma, IL-6 signaling associated with HLA-G

expression seems to amplify immunosuppression and

cancer evasion.

Another intriguing find in our work was the high sHLA-G

associated with head and neck lesions. Lesions located in the head
Frontiers in Immunology 11
and neck confer a poor prognostic in melanoma (66). The potential

explanation is related to the anatomic variation in the superficial

veins (67) and lymphatic drainage of the head and neck (68),

especially among individuals (69). Compared to trunk and limbs,

there is a great overlay of lymphatic pathways, as the head and neck

region accommodates approximately 300 lymph nodes (68). This

anatomical variation may facilitate the melanoma spread resulting

in a worse prognosis for these patients. Additionally, this larger

lymph capillary network may contribute to the greater

dissemination of sHLA-G and/or LEV-HLA-G+, making this a

good marker for lesion at this anatomical site.

In regards to cutaneous melanoma subtypes, lentigo maligna

and superficial spreading are commonly observed, and their

pathogenesis may indicate high or low accumulation of solar

damage (70), respectively. Despite that, acral melanoma, a rare

subtype of melanoma not associated with sun exposure, but perhaps

with trauma (70), even with only two cases, showed to be potentially

related to increased LEVs-HLA-G+, indicating that HLA-G may be

an important new target in this melanoma subtype (21, 71).

However, this needs to be evaluated in a large acral melanoma

cohort to confirm these results. In a similar way, nevi subtypes are

so heterogeneous and may be a confounder in some comparison

between benign and malignant lesions. Also, it is important to

mention that correlations between the different forms of HLA-G
TABLE 4 IL-6 and int-IL-6 concentrations according to participants characteristics.

Parameters
Nevi (n=31) Melanoma (n=35)

IL-6 (pg/mL) p int-IL-6 (pg/mL) p IL-6 (pg/mL) p int-IL-6 (pg/mL) p

Gender

Male 8.80 ± 9.44
0.9

14.45 ± 0.33
>0.9

13.75 ± 12.12
0.2

13.76 ± 1.46
0.03

Female 5.58 ± 4.39 12.50 ± 6.33 7.25 ± 5.88 14.97 ± 1.10

Self-reported skin color

White 5.74 ± 5.08
0.2

15.03 ± 1.52
0.5

10.91 ± 9.98
0.6

14.47 ± 1.52
0.4

Brown 9.10 ± 8.83 11.51 ± 7.25 7.11 ± 5.69 13.92 ± 1.03

Smoking status

Smoker 9.99 ± 4.88
0.02

10.40 ± 7.39
0.5

6.88 ± 5.38
0.4

14.69 ± 0.55
0.6

Non-smoker 4.32 ± 3.83 14.14 ± 4.35 10.47 ± 9.90 14.30 ± 1.53

Previous neoplasm

Yes 4.73 ± 4.09
0.4

15.39 ± 1.59
0.2

12.31 ± 8.92
0.02

14.16 ± 1.77
0.6

No 7.84 ± 7.42 12.15 ± 6.12 7.04 ± 7.16 14.51 ± 1.13

Comorbidities

Yes 5.25 ± 3.86
0.6

12.09 ± 6.52
0.9

10.59 ± 9.57
0.2

14.42 ± 1.49
0.08

No 5.44 ± 6.48 13.24 ± 4.69 5.44 ± 6.77 10.78 ± 6.40

Corticosteroids therapy

Yes 5.25 ± 4.98
0.8

7.41 ± 9.07
0.06

7.95 ± 5.07
0.9

11.76 ± 5.35
0.4

No 5.75 ± 4.88 14.85 ± 3.29 10.10 ± 9.77 14.37 ± 1.40
fron
Significant p-values (<0.05) are shown in bold.
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and other clinical features such as tumor staging and recurrence

were not possible since patients had melanoma at initial stages and

other severity markers were not available (e.g. ulceration was only

observed in three patients).

Even though previous studies showed a correlation between a

current disease with LEV count, such as breast cancer (72–74), it

seems that a history of previous neoplasm also influences LEV

release. We observed an increase of LEVs counts in nevi and

melanoma patients when any previous cancer diagnosis was

considered. In the same way, LEVs-HLA-G+ and int-HLA-G were

increased when nevi participants experienced a cancer diagnosis,

but not in melanoma participants. This appears to be the first work

that relates these variables, which raises some questions about

which mechanisms are involved in this process. Thinking that the

half-life of LEVs may be short, we hypothesized that immune

system cells could be reprogrammed (75), directing them toward

a highly LEV-secreting phenotype. Likewise, a microenvironment

previously affected by a tumor mass and permanently activated,

especially by the presence of inflammatory cells and soluble factors,

could be responsible for the release of these LEVs, even despite the

primary neoplastic lesion excision. Furthermore, these LEVs may be

related to the recurrence of the oncological disease and, therefore, in

our patients with a history of previous neoplasm, these results may

trigger an alert to a complete evaluation and clinical follow up.

Considering these results, we highlight that melanoma

heterogeneity may be an important factor in LEVs and HLA-G

release patterns. This heterogeneity is featured especially by the

highest tumor mutational burden (76), which may be seen at several

histological melanoma subtypes with distinct progression profiles

(77). Additionally, in some cases, HLA-G presence, even at low

concentrations, is sufficient to promote an immunosuppressive

microenvironment, such as by trogocytosis molecule transfer

(78–80).

In summary, our results suggest that sHLA-G may be a

promising marker to predict malignant melanocytic lesions. In

melanoma, HLA-G seems to reflect tumor aggressiveness and

could be an important biomarker in these cases. Additionally, our

results suggest that it is important to consider previous

malignancies in the assessment of LEVs and HLA-G, due to its

influence in these components. Lastly, further studies are needed to

improve the comprehension of LEVs and HLA-G roles in

oncological contexts, especially in different melanoma subtypes.
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