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Objective: Esophageal squamous cell carcinoma (ESCC) is a malignancy
characterized by extensive epigenetic dysregulation. This study aims to
develop a robust prognostic model utilizing epigenetic-related genes (ERGs) to
improve survival prediction in ESCC patients, while simultaneously elucidating
potential mechanisms underlying immune microenvironment modulation.
Methods: This study employed transcriptomic data from The Cancer Genome
Atlas (TCGA) as the training cohort and data from GSE53625 in the Gene
Expression Omnibus (GEO) as an independent validation cohort. A total of 796
epigenetic regulator genes (ERGs) were curated from the EpiFactors database
and intersected with TCGA-ESCC gene expression profiles to identify ESCC-
associated ERGs. Differential expression analysis was then conducted to identify
differentially expressed ERGs (DE-ERGs). Using univariate Cox and LASSO
regression analyses, a prognostic risk model was constructed and thoroughly
evaluated through risk stratification curves, survival status distribution maps, risk
score heatmaps, survival analysis, ROC curves, and multivariate Cox regression.
Further analyses included assessing the prognostic model's association with
clinical features and risk stratification. To investigate the immune
microenvironment, immune cell infiltration correlation, single-sample gene set
enrichment analysis (ssGSEA), and immune checkpoint profiling were performed.
Drug sensitivity analysis was also carried out to identify potential therapeutic
agents showing differential efficacy between risk subgroups. Finally, the
expression patterns of key prognostic ERGs were validated using RT-gPCR.
Results: Through comprehensive differential expression analysis, we identified 345
DE-ERGs in ESCC. A robust prognostic signature comprising 13 critical ERGs—
PIWIL4, SATB1, GSE1, NCOR1, BUB1, SAP30L, CHEK1, MASTL, ATM, BMI1, DNAJC2,
UBE2D1, and SSRP1—was established using univariate Cox regression followed by
LASSO penalized regression analysis. The prognostic efficacy of this signature was
confirmed through multidimensional assessments using independent GEO
datasets. Immunological characterization revealed significant enrichment of
CD8* T cells, DCs, and pDCs in high-risk patients, along with elevated cytolytic
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activity, HLA expression, and MHC class | activity. Additionally, three immune
checkpoint molecules—TMIGD2, IDO1, and CD44—were found to be
differentially expressed between risk groups. Drug sensitivity analysis identified
four promising therapeutic compounds—PD-0325901, Bryostatin-1, ATRA, and
Roscovitine—with potential clinical utility for ESCC treatment. Experimental
validation via RT-gPCR confirmed consistent overexpression of GSE1, NCOR1,
BUB1, CHEK1, UBE2D1, and SSRP1 in ESCC cell lines, whereas PIWIL4 and ATM
showed significant downregulation.

Conclusion: The findings of this study offer clinically relevant insights for
prognostic stratification and characterization of the immune microenvironment
in ESCC patients. Moreover, these results provide novel perspectives that may
contribute to the development of more effective prognostic tools and targeted
therapeutic strategies for ESCC management.

esophageal squamous cell carcinoma, epigenetic, prognosis, immune

microenvironment, gene

1 Introduction

Esophageal cancer (EC) is among the most aggressive
malignancies, ranking as the seventh most commonly diagnosed
cancer and the sixth leading cause of cancer-related mortality
worldwide (1). Esophageal squamous cell carcinoma (ESCC) is
the predominant histological subtype and continues to exhibit
high incidence and mortality, especially in regions such as China
(2, 3). Although advances in early diagnostic techniques and
multimodal treatments have led to modest improvements in
outcomes, the prognosis for ESCC patients remains poor, with a
5-year overall survival rate of only 15-20% (4). Recent research has
increasingly focused on elucidating the molecular mechanisms of
ESCC pathogenesis, with numerous studies seeking biomarkers to
enhance risk stratification, guide therapy, and improve prognostic
accuracy (5-7). However, the molecular drivers of ESCC are still not
fully understood, and reliable biomarkers for early detection,
monitoring progression, and predicting outcomes remain lacking.
Due to its significant clinical burden and the limitations of current
treatments, ESCC continues to represent a major public health
challenge. Thus, there is a pressing need for innovative therapeutic
approaches and better prognostic tools to reduce the global health
impact of this devastating disease.

Cancer progression is driven by the accumulation of genomic
alterations, including both genetic and epigenetic aberrations. While
genetic mutations directly disrupt DNA sequences, epigenetic
modifications—such as changes in DNA methylation and histone
post-translational modifications—orchestrate tumorigenesis by
dysregulating transcriptional programs that drive malignant
transformation (8). These two key epigenetic mechanisms, DNA
methylation and histone marking, play a pivotal role in tumor
development, metastatic dissemination, and therapeutic resistance.
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Their cancer-specific patterns have become valuable biomarkers for
diagnostic stratification, disease monitoring, and personalized
treatment selection, thereby supporting improved clinical decision-
making (8). Moreover, pervasive dysregulation of epigenetic processes
is now recognized as a hallmark of cancer (9). In recent years,
immunotherapy has revolutionized oncology with unprecedented
breakthroughs in cancer treatment. Importantly, epigenetic profiles
of both immune and tumor cells show significant potential as
predictive biomarkers for patient response to immunotherapeutic
interventions (10). Growing evidence indicates that tumors exploit
diverse epigenetic mechanisms to evade immune surveillance,
highlighting a critical interplay between epigenetics and antitumor
immunity (11). Consequently, epigenetic-targeting agents have
attracted considerable attention as potent immunomodulators,
offering promising avenues for enhancing the efficacy of cancer
immunotherapy (11).

Emerging research has increasingly highlighted the pivotal role
of epigenetic dysregulation in the pathogenesis of ESCC (12). For
instance, the epigenetic regulator KDM4D has been identified as a
tumor suppressor in ESCC, exerting its effects through modulation
of the SYVN1/HMGBI ubiquitination axis (12). Additionally, a
positive feedback loop involving NKX2-5/LHX1 and UHRFI has
been implicated in ESCC tumorigenesis via epigenetic mechanisms
(13), while JMJD3 contributes to malignant progression through
epigenetic activation of the MYC oncogene (9). Recent studies have
further identified novel epigenetic drivers, such as non-canonical
WNT/B-catenin/MMP signaling activation and a YY1-mediated
regulatory network involving the long non-coding RNA ESCCAL-1
and ribosomal proteins (14). Despite these advances, critical gaps
remain in understanding how epigenetic modifications influence
ESCC prognosis and shape the tumor immune microenvironment.
The development of robust risk prediction models has emerged as a
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powerful tool for improving prognostic assessment and immuno-
oncology research (15, 16). In this context, the present study aims to
systematically investigate the impact of epigenetic alterations on
ESCC prognosis and the immune landscape by constructing and
validating a risk prediction model based on epigenetic-related genes
(ERGs). The research design and analytical workflow are
summarized in Figure 1.

2 Materials and methods
2.1 Data acquisition and collation

In this study, transcriptomic data from The Cancer Genome
Atlas (TCGA) (https://portal.gdc.cancer.gov/) served as the primary
training cohort, consisting of 81 ESCC specimens and 11 normal
tissue samples. The TCGA dataset provided comprehensive
clinicopathological annotations, including gender, age, TNM
stage, and overall clinical stage. For independent validation, we
used the GSE53625 dataset from the Gene Expression Omnibus

10.3389/fimmu.2025.1670600

(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/), which
comprises 179 paired tumor-normal samples along with clinical
metadata such as age, T stage, N stage, and clinical stage. The
epigenetic landscape was characterized using 796 ERGs obtained
from the EpiFactors database (https://epifactors.autosome.org/), a
comprehensive resource for epigenetic regulators.

2.2 Differentially expressed ERGs of ESCC

To identify epigenetically relevant genes in ESCC, we first
intersected the TCGA-ESCC transcriptome dataset with 796
known ERGs from the EpiFactors database, obtaining a subset of
ESCC-associated ERGs. Subsequently, differential expression
analysis was performed on these candidate genes using stringent
statistical criteria (P < 0.05 and [logFC| > 1) with the limma package
in R, identifying significantly dysregulated ERGs in ESCC
compared to normal controls. This systematic approach enabled
the robust identification of differentially expressed ERGs (DE-
ERGs) implicated in ESCC pathogenesis.

The transcriptomic and clinical data of
ESCC: TCGA
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FIGURE 1
The flowchart of this study
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2.3 Enrichment analysis

To elucidate the biological significance and pathway involvement
of the DE-ERGs in ESCC, we conducted comprehensive functional
enrichment analyses. Gene Ontology (GO) annotation was
performed using the clusterProfiler package in R, while pathway
enrichment analysis was carried out through Gene Set Enrichment
Analysis (GSEA) to identify significantly altered pathways. A
statistical significance threshold of P < 0.05 was applied to all
enrichment analyses.

2.4 Construction of risk prognostic model

To identify prognostic DE-ERGs in ESCC, we first conducted
univariate Cox proportional hazards regression analysis (P < 0.05)
using the survival package in R. Subsequently, to enhance model
generalizability and reduce overfitting, we performed LASSO
regression analysis with the glmnet R package, standardizing all
predictor variables prior to analysis. The optimal penalty parameter
(lambda.min) was selected through 1000 iterations of cross-
validation, identifying the value that yielded the minimum cross-
validation error. The prognostic model was independently validated
using the GSE53625 cohort from the GEO database. We developed
distinct risk stratification models for both the training and
validation cohorts, calculating each patient’s risk score as a linear
combination of prognostic DE-ERG expression levels. This risk
scoring system exhibited strong predictive performance, with
higher scores significantly associated with poorer survival
outcomes. The riskScore was calculated according to the formula:

Riskscore = ' (mrnaexp; x coef;)

In the risk score calculation, “n” represents the total number of
prognostically significant DE-ERGs in ESCC, while “i” denotes each
individual gene among these. The regression coefficient for each
gene is indicated by “coef”. For every patient, the riskScore was
computed as a linear combination of the expression levels of these
genes weighted by their respective coefficients. This score was
calculated for each sample in both the training and validation
cohorts. Using the median riskScore from the training cohort as a
cutoff, patients were stratified into high- and low-risk groups. To
maintain consistency, the same median cutoff value was applied to
classify samples in the validation cohort into corresponding
risk categories.

2.5 Validation of the risk prognostic model

During the initial analytical phase, we used R to generate
comprehensive graphical representations—including risk score
distribution curves, survival status distributions, and risk-
associated heatmaps—for both the training and validation
cohorts. These visualizations facilitated a systematic evaluation of
survival in ESCC patients. Subsequently, using the survival and
survminer packages in R, we conducted survival analysis to
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compare potential survival differences between risk groups. In
addition, receiver operating characteristic (ROC) curve analysis
was performed with the same packages to evaluate the predictive
accuracy of the riskScore model and established clinical parameters.
Finally, multivariate Cox regression analysis, implemented via the
survival package in R, was applied to determine whether the
riskScore retained independent prognostic value after adjusting
for other clinical covariates.

2.6 Differential analysis of risk prognostic
model

To systematically evaluate the expression patterns of the DE-
ERGs included in our prognostic risk model, we conducted
comparative analyses using the TCGA-ESCC dataset. First, we
examined differences in DE-ERGs expression between tumor and
normal tissues. Following data standardization, a heatmap was
generated to visualize these expression profiles. We then performed
subgroup analyses comparing DE-ERGs expression between high-
risk and low-risk patients within both the training and validation
cohorts. Differential expression patterns were visualized using box
plots created with the “reshape2” and “ggpubr” packages in R, while
hierarchical clustering heatmaps were constructed using the
“pheatmap” package to comprehensively illustrate expression
variations across risk groups and sample types.

2.7 Clinical features analysis

To evaluate the clinical applicability of our prognostic risk model,
we performed comprehensive subgroup validation analyses in the
training cohort using the survival and survminer packages in R. This
stratified assessment enabled a rigorous evaluation of the model’s
predictive performance across key clinicopathological variables,
testing its robustness and generalizability across diverse patient
populations. Specifically, we conducted stratified analyses based on
gender (male vs. female), tumor invasion depth (T1-2 vs. T3-4),
nodal status (NO vs. N1-3), distant metastasis (M0 vs. M1), and
overall tumor stage (I-1I vs. III-1V).

2.8 Immune infiltration cell correlation
analysis

To characterize the immune landscape of ESCC, we applied the
CIBERSORT algorithm implemented with the e1071, parallel, and
preprocessCore R packages to estimate the relative proportions of
22 distinct immune cell types based on TCGA transcriptomic
profiles. Only samples meeting the significance threshold (P <
0.05) for immune cell fraction estimation were retained to ensure
data reliability. We then performed comprehensive correlation
analyses to examine: (1) associations between the DE-ERGs
included in our prognostic model and immune cell infiltration
patterns (using a significance threshold of P < 0.001), and (2)
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relationships between riskScore values in the training cohort and
immune infiltration patterns (with a significance threshold of P <
0.05). Spearman correlation analysis served as the core statistical
method. All analyses were conducted using the limma, reshape2,
ggpubr, and ggExtra packages in R, facilitating a systematic
evaluation of immune-microenvironment interactions in relation
to both molecular and clinical prognostic features.

2.9 Single sample gene set enrichment
analysis (ssGSEA)

To comprehensively evaluate the immune microenvironment
characteristics in ESCC, we performed ssGSEA using the GSVA,
limma, and GSEABase packages in R. This method enabled the
quantification of enrichment scores for both immune cell subsets
and immune-related functional pathways. Subsequently, we utilized
the limma, reshape2, and ggpubr packages to conduct comparative
analyses of immune profiles between high- and low-risk patient
subgroups in the training cohort, systematically assessing
differences in immune cell infiltration and functional activity.

2.10 Differential analysis of immune
checkpoints

To systematically assess differential expression patterns of
immune checkpoint-related genes across risk stratifications within
the training cohort, we conducted comprehensive analyses utilizing
the R environment. Employing the computational functionalities of
the limma, reshape2, ggplot2, and ggpubr packages, we performed
comparative evaluations to identify statistically significant
variations in immune checkpoint gene expression profiles
between high- and low-risk patient subgroups.

2.11 Drug sensitivity analysis

In order to identify potential therapeutic agents stratified
according to prognostic risk within the training cohort, a systematic
drug sensitivity analysis was performed using the limma, ggpubr, and
pRRophetic packages in R. By applying a stringent statistical threshold
(P < 0.001), this computational pharmacogenomic methodology
facilitated the discernment of compounds demonstrating differential
efficacy between high- and low-risk patient subgroups as defined by
our prognostic model. The results uncovered clinically relevant
pharmacological agents that could inform risk-stratified treatment
strategies for ESCC patients, thereby advancing the framework for
personalized therapeutic interventions.

2.12 Cell culture

This study utilized two human ESCC cell lines (KYSE-30 and
KYSE-150), with normal esophageal epithelial cells (NE-1) serving
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as controls. The ESCC cell lines were cultured in RPMI 1640
medium supplemented with 10% fetal bovine serum (FBS), while
normal esophageal epithelial cells were maintained in a mixed
medium composed of Defined Keratinocyte-SFM (DK-SFM) and
Epilife medium to preserve their epithelial characteristics. All cell
lines were incubated at 37 °C in a humidified atmosphere of 5% CO,
to ensure optimal growth conditions.

2.13 Real-time quantitative PCR

Total RNA was extracted from ESCC cell lines (KYSE-30 and
KYSE-150) and normal esophageal epithelial cells (NE-1) using
TRIzol Reagent (Life Technologies Invitrogen; Cat. #15596018)
following the manufacturer’s instructions. Complementary DNA
(cDNA) was synthesized from equal amounts of RNA through
reverse transcription, and subsequent amplification was carried out
with ChamQ Universal SYBR qPCR Master Mix (Vazyme; Cat.
#Q711-02). RT-qPCR was employed to evaluate mRNA expression
levels of target DE-ERGs. The B-actin gene was used as an internal
reference for normalization, and relative expression was calculated
via the comparative threshold cycle (2A(-AACt)) method.

2.14 Statistical analysis

All statistical analyses and data visualizations were conducted
using R statistical software (v4.1.2) and GraphPad Prism (v9.0.0).
Differences between groups were assessed through one-way analysis
of variance (ANOVA), with a significance threshold set at P < 0.05.
To ensure methodological rigor and reproducibility, all
experimental procedures were independently repeated in triplicate.

3 Results
3.1 DE-ERGs of ESCC

Through computational intersection of the TCGA-ESCC
transcriptomic dataset with a curated set of 796 ERGs, we
identified 768 ERGs potentially associated with ESCC
pathogenesis (Figure 2A). Subsequent differential expression
analysis of these candidate ERGs uncovered 345 DE-ERGs in
ESCC relative to normal controls (Figure 2B).

3.2 Enrichment analysis

The GO enrichment of 345 DE-ERGs was mainly concentrated on:
histone binding, DNA-binding transcription factor binding,
transcription coactivator activity, transcription corepressor activity,
histone methyltransferase activity, protein methyltransferase activity,
N-methyltransferase activity, histone acetyltransferase activity, peptide-
lysine-N-acetyltransferase activity, peptide N-acetyltransferase activity,
histone-lysine N-methyltransferase activity and protein-lysine N-
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methyltransferase activity (Figure 2C). The patyway enrichment of 345
DE-ERGs was mainly concentrated on: antigen processing and
presentation, cell cycle, DNA replication, homologous
recombination, mismatch repair, nucleotide excision repair, oxidative
phosphorylation, p53 signaling pathway, phenylalanine metabolism,
purine metabolism, pyrimidine metabolism and RNA
degradation (Figure 2D).

3.3 Construction of risk prognostic model

Univariate Cox proportional hazards regression analysis of the
345 DE-ERGs revealed 29 genes significantly associated with patient
prognosis (P < 0.05) (Figure 3A). To enhance model generalizability
and reduce overfitting, LASSO regression analysis was employed,
identifying 13 optimal prognostic DE-ERGs based on minimal
cross-validation error (Figure 3B). Individual risk scores were
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computed for all samples using the established risk score
algorithm. In the training cohort (TCGA-ESCC), patients were
categorized into high-risk (n = 40) and low-risk (n = 40) subgroups
using the median riskScore as the cutoff. This stratification
approach was subsequently validated in the external GEO cohort,
which was similarly divided into high-risk (n = 90) and low-risk
(n = 89) groups.

3.4 Validation of the risk prognostic model

Risk stratification analysis revealed a consistent positive
association between risk scores and disease progression in both
cohorts, with high-risk patients demonstrating significantly elevated
ESCC risk relative to low-risk individuals (Figures 4A, 5A). Mortality
analysis further supported these observations, indicating markedly
higher fatality rates in the high-risk subgroups (Figures 4B, 5B).
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Construction of risk prognostic model. (A) Univariate Cox regression analysis obtained 29 candidates prognostic DE-ERGs. (B) LASSO regression

analysis.

Expression heatmaps of the 13 prognostic ERGs displayed distinct
molecular signatures differentiating the risk categories (Figures 4C,
5C). Survival analysis confirmed significantly worse clinical outcomes
among high-risk patients in both the training and validation cohorts
(Figures 4D, 5D). ROC curve evaluation indicated that the riskScore
exhibited superior predictive performance compared to conventional
clinical parameters, with nodal stage (N stage) and age identified as
additional significant prognostic indicators in the training and
validation cohorts, respectively (Figures 4E, 5E). Multivariate Cox
regression analyses performed across both cohorts confirmed that the
riskScore remained an independent prognostic factor for ESCC after
adjustment for relevant clinical covariates (Figures 4F, 5F).

3.5 Differential analysis of risk prognostic
model

Comprehensive expression profiling of the 13 DE-ERGs
included in our prognostic model revealed distinct patterns in
ESCC. Specifically, PIWIL4, SATB1, GSE1, NCORI, SAP30L,
ATM, and BMII1 were significantly downregulated in tumor
tissues relative to normal controls, while BUB1, CHEK1, MASTL,
DNAJC2, UBE2D1, and SSRP1 showed pronounced upregulation
(Figures 6A, B). Comparative analysis between high- and low-risk
groups within the training cohort indicated significant differential
expression of PIWIL4, SATBI1, GSE1, SAP30L, CHEK1, MASTL,
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ATM, BMI1, DNAJC2, and UBE2D1 (Figure 6C). This expression
signature was partially conserved in the validation cohort, with
PIWIL4, BMI1, DNAJC2, UBE2D1, and SSRP1 demonstrating
consistent risk-associated dysregulation (Figure 6D). These results
suggest that the identified DE-ERGs may contribute critically to
ESCC progression and facilitate molecular risk stratification.

3.6 Clinical features analysis

Stratified survival analysis confirmed the robust prognostic
capacity of our risk model across major clinicopathological
variables. The model consistently discriminated survival outcomes
between T1-2 and T3-4 tumor stages, nodal involvement status (NO
vs N1-3), and overall disease stage (I-II vs III-IV) (Figure 7). These
findings highlight the clinical applicability of our prognostic signature
in diverse patient populations with heterogeneous disease features.

3.7 Immune infiltration cell correlation
analysis

Comprehensive correlation analysis between the 13 DE-ERGs and
tumor-infiltrating immune cells revealed distinct immunomodulatory
associations. Specifically, SATB1 was positively correlated with naive B
cells and resting mast cells, but negatively correlated with macrophages
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MO. GSEI is positively correlated with naive B cells and resting mast
cells, but negatively correlated with activated mast cells. NCORI is
positively correlated with CD4 memory resting T cells. SAP30L is
positively correlated with resting mast cells, but negatively correlated
with activated mast cells. CHEKI is negatively correlated with resting
mast cells. DNAJC2 is positively correlated with MO macrophages and
negatively correlated with resting mast cells. ATM is positively
correlated with the CD4 memory resting state of T cells. MASTL is
positively correlated with macrophages M0. UBE2D1 is positively
correlated with T cells CD4 memory activated. SSRP1 is negatively
correlated with mast cells resting (Figure 8). The correlation analysis
between immune infiltrating cells and the riskScore of the risk
prognostic model revealed that: the riskScore was positively
correlated with activated NK cells, T cells CDS8, and T cells follicular
helper, while negatively correlated with T cells CD4 memory resting
(Figure 9). These results suggest that specific expression patterns of DE-
ERGs may influence the tumor immune microenvironment through
differential regulation of immune cell infiltration.
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Comprehensive immune characterization of the risk-stratified
cohorts revealed significant enrichment of CD8" T cells, dendritic
cells (DCs), and plasmacytoid dendritic cells (pDCs) in high-risk
ESCC patients relative to low-risk individuals (Figure 10A).
Furthermore, functional analysis indicated elevated levels of
cytolytic activity, HLA expression, and MHC class I activity in
the high-risk subgroup (Figure 10B).

3.9 Differential analysis of immune
checkpoints

Comparative analysis of immune checkpoint molecules
revealed significant differential expression of three key
immunoregulatory genes—TMIGD2, IDO1, and CD44—between
risk-stratified groups within the training cohort. Each of
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Validation cohort. (A) Risk curve. (B) Survival status map; (C) Risk heatmap;

(D) Survival curve, the figure highlights the median survival periods of the

high-risk group and the low-risk group, NR stands for “not reached”. (E) ROC curve; (F) Multivariate Cox regression analysis.

these molecules exhibited distinct expression profiles that
clearly distinguished high-risk from low-risk ESCC patients
(Figure 10C). These results suggest that immune checkpoint
regulation may be altered during disease progression, with
potential implications for differential therapeutic responses across
prognostic subgroups.

3.10 Drug sensitivity analysis

Systematic drug sensitivity analysis identified four compounds
demonstrating differential efficacy between the prognostic risk
groups. Specifically, low-risk patients exhibited increased
sensitivity to PD-0325901, Bryostatin-1, and Roscovitine, whereas
high-risk patients displayed greater responsiveness to ATRA
(Figure 10D). These results suggest distinct molecular
vulnerabilities among risk-stratified ESCC subtypes, which may
guide the development of personalized therapeutic approaches.
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3.11 Validation of ERGs expression in ESCC

All primer sequences, detailed in Table 1, were synthesized by
Accurate Biology. RT-qPCR analysis using validated primers revealed
distinct dysregulation patterns of the DE-ERGs in ESCC cell lines
relative to normal esophageal epithelial cells (NE-1). Significant
upregulation of GSE1, NCOR1, BUBI1, CHEK1, UBE2D1, and
SSRP1 was observed in both KYSE-30 and KYSE-150 cell lines,
while MASTL overexpression was specific to KYSE-150 and BMI1 to
KYSE-30. In contrast, PIWIL4 and ATM showed consistent
downregulation across both cell lines (Figure 11). These results
validate the prognostic DE-ERG signature and underscore cell line-
specific epigenetic alterations implicated in ESCC pathogenesis.

4 Discussion

In this study, we developed a novel ERGs-based prognostic
model that exhibits robust predictive performance for survival
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FIGURE 8

Comprehensive correlation analysis between the 13 DE-ERGs and tumor-infiltrating immune cells.

outcomes in ESCC patients and offers mechanistic insights into
immune microenvironment regulation. The refined signature
consists of 13 DE-ERGs—PIWIL4, SATB1, GSE1, NCORI1, BUBI,
SAP30L, CHEK1, MASTL, ATM, BMI1, DNAJC2, UBE2D1, and
SSRP1—each showing significant dysregulation in ESCC
pathogenesis. Comprehensive immune characterization revealed a
distinct immunophenotype in high-risk patients, marked by
increased infiltration of CD8" T cells, DCs, and pDCs, along with
elevated cytolytic activity, HLA expression, and MHC class I
activity. We further identified three immune checkpoint
molecules—TMIGD?2, IDO1, and CD44—with expression levels
correlated to risk stratification. Pharmacogenomic evaluation
highlighted four potential therapeutic compounds—PD-0325901,
Bryostatin-1, ATRA, and Roscovitine—demonstrating differential
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efficacy between risk subgroups. Finally, experimental validation
using RT-qPCR confirmed the expression patterns of all 13
prognostic DE-ERGs in ESCC cell lines.

Based on their core biological functions, the 13 DE-ERGs can be
classified into four principal functional categories. The first group
comprises factors involved in chromatin remodeling and
transcriptional regulation—SATB1, NCORI1, SAP30L, BMII, and
SSRP1—which mediate gene silencing or activation through higher-
order chromatin organization and recruitment of histone-
modifying complexes (17-21). SATBI encodes a nuclear matrix
attachment region-binding protein that orchestrates chromatin
architecture by tethering genomic loci to the nuclear scaffold,
recruiting chromatin-remodeling complexes to dynamically
regulate transcription. Emerging evidence indicates that Wnt/f3-
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catenin signaling upregulates SATBI to drive colorectal cancer
while PAK5-mediated
phosphorylation enhances its oncogenic potential in cervical

initiation and progression (22),

cancer (23). Additionally, reversible ubiquitination of SATB1 by
USP47 and SMURF2 promotes colon cancer proliferation (24). In
ESCQG, triptolide exerts anti-tumor effects via the circNOX4/miR-
153-3p/SATBI axis (25). NCORI, a transcriptional corepressor,
mediates ligand-independent repression of nuclear receptors
through chromatin condensation and transcription factor
exclusion. It serves as an independent prognostic marker in breast
cancer (26), disrupts PPAR0/y signaling in prostate cancer (27),
and promotes proliferation and senescence resistance in colorectal
cancer (28). In HPV-associated cervical cancer, the E6 protein
recruits NCORI1 to facilitate OCT4-mediated p53 suppression
(29). SAP30L, a component of histone deacetylase complexes,
represses RNA polymerase II-mediated transcription. The long
non-coding RNA SAP30L-AS1 promotes prostate cancer
progression by epigenetically silencing SAP30L (30). BMI1, a core
subunit of polycomb repressive complex 1, acts as an oncogenic
stem cell regulator and is frequently dysregulated in cancers. In
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ESCC, miR-218 suppresses tumor growth by targeting BMI1 (31),
which serves as both a cancer stem cell marker and therapeutic
target (32). Chlorogenic acid exhibits anti-tumor activity in ESCC
through dual inhibition of BMI1 and SOX2 (33). SSRP1, a subunit
of the FACT complex, facilitates transcriptional elongation and
DNA damage response and demonstrates oncogenic properties in
multiple malignancies. It regulates tumor growth and apoptotic
resistance via AKT signaling in colorectal cancer (34), and co-
overexpression with APE1 correlates with aggressive phenotypes
and poor prognosis in bladder cancer (35).

The second category encompasses genes involved in cell cycle
checkpoint control and genome integrity maintenance—BUBI,
CHEKI1, MASTL, and ATM—which function as key components
of the spindle assembly checkpoint and DNA damage response
pathways (36-39). BUBI, a critical mitotic serine/threonine kinase,
regulates chromosome segregation and contributes to DNA damage
response. In bladder cancer, it promotes oncogenesis through
STAT3 pathway activation (40), and in triple-negative breast
cancer, it confers radioresistance via regulation of non-
homologous end joining (41). BUB1 expression also shows
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Training cohort. (A) Analysis of differences in immune cells. (B) Analysis of differences in immune function. (C) Differential analysis of immune

checkpoints. (D) Drug sensitivity analysis. *p < 0.05, **p < 0.01.

promise as a predictive biomarker for immunotherapy response
and clinical outcomes in breast cancer (42). CHEKI1, a Ser/Thr
protein kinase, plays a central role in DNA damage checkpoint
control by inducing cell cycle arrest in response to genomic
instability. Ginsenoside Ro has been shown to enhance 5-
fluorouracil sensitivity in esophageal cancer by disrupting
autophagic flux through the ESR2-NCF1-ROS pathway, leading
to CHEKI1-mediated DNA damage activation (43). Clinically,
CHEKI1 genetic polymorphisms are associated with postoperative
prognosis in thoracic ESCC patients after radical resection (44).
MASTL, a microtubule-associated serine/threonine kinase initially
linked to autosomal dominant thrombocytopenia, contributes to
oncogenesis through multiple mechanisms. It promotes
chromosomal instability and metastasis in breast cancer (45),
enhances tumor progression and chemoresistance via Wnt/f3-
catenin signaling in colorectal cancer (46), and modulates EGFR
signaling in pancreatic cancer (47). ATM, a PI3K-related kinase,
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acts as a master regulator of DNA damage response alongside ATR
to maintain genomic integrity. In ESCC, the long noncoding RNA
SNHG20 drives tumor progression by activating the ATM-JAK-
PD-L1 axis (48). HMGBI-mediated radioresistance in ESCC
involves PI3K/AKT/ATM pathway activation (49), and ATM
polymorphisms may serve as predictors of radiation therapy
outcomes (50).

The third functional category involves the regulation of
pluripotency and cell fate determination, represented by PIWIL4.
Genes in this group support stem cell self-renewal and pluripotency,
and their dysregulation is often associated with abnormal cellular
reprogramming and dedifferentiation (51). PIWIL4, a member of
the evolutionarily conserved Argonaute protein family, is essential
for germline stem cell maintenance and development. Clinically,
reduced expression of PIWIL4, along with PIWILI and PIWIL2, is
correlated with unfavorable survival in renal cell carcinoma (52). In
breast cancer, PIWIL4 shows marked overexpression in primary
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TABLE 1 List of primers.

10.3389/fimmu.2025.1670600

Gene Forward Reverse
PIWIL4 ATACCAGCTCAAGACTGTCGG CATACCATTCGTTACGTGTTGCT
SATBI1 TGCCAATCCTCCTCTTGTTACCTG GCACAAAACGCTATGTCATGCC
GSE1 TGTGTTGCCATGTTACTATGCC TACTGACAATGCACCCAACCT
NCOR1 AGCTCCATCCTCTCCAATTTCG TAGCTGCCTCTTCTTCAAGCTG
BUB1 AACTTGCGTCTACACCATTCCAC TGGGCTTTTCTCTTGAATTGGACT
SAP30L ACATTCTGCCTACAACCATCCCA TACAAAGAACAGGCTTCTCCACGA
CHEKI1 CTCAGACTTTGGCTTGGCAAC TTCTCCAGCGAGCATTGCAGT
MASTL CCCAAATCAGATCAAGTCGGGAA GCCCTGCCTAGTAACAGCTC
ATM ACTATCCCAATACACTGCTGGAGA TTTGAGCAACTGACTGGCAAAC
BMI1 TAGTATGAGAGGCAGAGATCGGG TTTATTCTGCGGGGCTGGGAG
DNAJC2 CATGCTGAAAACACTTGATCCCA TGATCTGTCTCTGTGTAGCCTT
UBE2D1 GAGTGATCTACAGCGCGATCC GGCCCCATAATAGTGGCTTGC
SSRP1 GCCTGAGGAGATTCCCAACCT GGCTGCACAAGGGAAACCAA
B-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA

tumors and the MDA-MB-231 cell line. Functional analyses
indicate that PIWIL4 knockdown significantly inhibits cell
migration and induces apoptosis, with only minimal effects on
proliferation (53). Furthermore, the PIWIL4/SUPT5H complex has
been identified as a promising prognostic biomarker for predicting
clinical outcomes and immune microenvironment features in
intrahepatic cholangiocarcinoma (54).
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The fourth category comprises multifunctional auxiliary
regulators—GSE1, DNAJC2, and UBE2D1—which play essential
cooperative roles across diverse biological processes. GSE1 encodes
a proline-rich nuclear protein with coiled-coil domains that
functions as part of the BRAF35-HDAC repressor complex. This
oncogenic driver is overexpressed in breast cancer, where its activity
is suppressed by the tumor-suppressive miR-489-5p (55). In gastric
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cancer, GSE1 promotes tumor progression via SLC7A5-mediated
enhancement of growth and metastasis (56), and contributes to
trastuzumab resistance (57). DNAJC2, a member of the M-phase
phosphoprotein family frequently altered in head and neck
squamous cell carcinomas, acts as an oncogenic driver in
colorectal cancer. Its expression is negatively regulated by miR-
627-3p, and overexpression accelerates uncontrolled proliferation
(58). UBE2D1, an E2 ubiquitin-conjugating enzyme, mediates
ubiquitination of p53 and HIF1la through EI1-E3 interactions and
plays a significant role in gastric cancer pathogenesis. Knockdown
of UBE2D1 impairs cancer cell migration by reducing SMAD4
ubiquitination (59).

The prognostic model established in this study integrates 13
ERGs with demonstrated predictive utility in ESCC. Among these,
four genes—SATB1, CHEK1, ATM, and BMI1—have previously
documented roles in ESCC pathogenesis. In contrast, the remaining
nine genes (PIWIL4, GSE1, NCOR1, BUBI1, SAP30L, MASTL,
DNAJC2, UBE2D1, and SSRP1) represent novel contributors, as
their potential functions in ESCC progression and prognosis had
not been previously elucidated. Our comprehensive analysis
indicates that these nine genes not only exhibit strong prognostic
biomarker potential but are also significantly involved in
modulating the ESCC immune microenvironment. These findings
offer valuable insights that may inform future research into
epigenetic mechanisms underlying ESCC tumor biology, immune
regulation, and therapeutic resistance.

Accumulating evidence highlights the critical role of epigenetic
dysregulation in shaping tumor biology and influencing therapeutic
responses. In cancer cells, an altered epigenome remodels the
immune landscape of the tumor microenvironment (TME),
undermining antitumor immunity, accelerating malignant
progression, and promoting resistance to immunotherapy. Key
epigenetic changes—such as abnormal histone post-translational
modifications, DNA methylation patterns, and RNA modifications
—distinguish malignant from nonmalignant cells and regulate
oncogene and tumor suppressor function, thereby driving
tumorigenesis. Single-cell transcriptomic and epigenomic analyses
have revealed associations between chromatin accessibility states
and immune cell composition within tumors. Epigenetic plasticity
in cancer is closely tied to genes located in open chromatin regions
that enable intercellular communication. Moreover, epigenetic
enzymes and transcriptional regulators in malignant cells control
the expression of ligands, receptors, and cytokines essential for
immune cell differentiation, migration, and activation (60).
Therapeutic targeting of epigenetic machinery offers potential for
reprogramming the TME through transcriptional and metabolic
changes in local immune populations. Such approaches may inhibit
immunosuppressive cells (e.g., MDSCs and Tregs) while promoting
the function of antitumor effector T cells, professional antigen-
presenting cells (APCs), and even cancer cells acting as
nonprofessional APCs. Epigenetic modulators can also enhance
tumor immunogenicity by reactivating silenced tumor-associated
antigens, upregulating neoantigen expression and MHC machinery,
and inducing immunogenic cell death (ICD) (61). Notably,
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epigenetic mechanisms contribute to immunotherapy resistance
by modulating specific immune subsets within the TME (60).
Therefore, combining epigenetic agents with immunotherapies
represents an emerging strategic approach in oncology. Advances
in the specificity and affinity of epigenetic drugs, along with the
development of small molecules targeting a wider range of
epigenetic and immune pathways—integrated with state-of-the-
art genomic and immunomonitoring technologies—are expected
to drive rational combination strategies and expand mechanistic
understanding (62).

The ERGs identified in the present study were found to be
significantly associated with immune-related processes. Specifically,
the deficiency of SATB1 has been implicated in the initiation and
progression of autoimmune disorders. In murine models, conditional
knockout of Satbl in CD4+ T cells resulted in T cell hyperactivation
and widespread inflammatory cell infiltration across multiple organs.
SATBI appears to confer protection against immune-mediated tissue
damage by modulating chemokine expression (63). In prostate
cancer, GSE1 is frequently upregulated, whereas TACSTD2 exhibits
downregulation; this inverse correlation promotes metastatic
dissemination, castration resistance, and disease progression, while
also modulating clinical and immune parameters in patients (64).
Furthermore, NCORI plays an essential role in T cell development
through its regulation of thymocyte survival. Additionally, NCOR1
fine-tunes the balance between immune tolerance and inflammation
by controlling metabolic pathways such as glycolysis and fatty acid
oxidation in dendritic cells across both murine and human models
(65, 66). SAP30L demonstrates a positive correlation with resting
mast cells and a negative association with activated mast cells,
suggesting a modulatory role in mast cell function. In soft tissue
sarcomas, CHEKI1 serves as an unfavorable prognostic biomarker
associated with immunosuppressive phenotypes, showing significant
overexpression in immune-low tumors and correlating with altered
patterns of tumor-infiltrating immune cells (67). Integrin-ovP3 is
upregulated on therapy-resistant tumor cells via chronic activation of
ATM/Chk2 and NF-xB pathways. Inhibition of integrin-ovf3
enhanced therapeutic responses by stimulating host immunity,
mechanistically through impairing dendritic cell phagocytosis and
subsequent T cell cross-priming (68). Tumor-infiltrating immune
cells have emerged as critical determinants of immunotherapy
efficacy. Prognostic models incorporating immune features—such
as a ceRNA network involving MASTL, or populations including
CD4+ memory T cells, monocytes, and neutrophils—show utility in
predicting clinical outcomes in gastric cancer (69). UBE2D]I, a gene
linked to cuproptosis, serves as a prognostic indicator in lung
adenocarcinoma and participates in shaping the immune
microenvironment (70). Moreover, the SSRP1/SLC3A2 axis in
arginine transport represents a novel therapeutic target to
counteract immune evasion and tumor progression in peripheral
T-cell lymphoma (71). Collectively, these findings suggest that the
ERGs identified in this study may influence ESCC prognosis via
regulation of the tumor immune microenvironment. Further
mechanistic investigations are warranted to elucidate the precise
underlying pathways.
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IDO1 functions as a pleiotropic mediator involved in multiple
pathophysiological processes, including antimicrobial defense,
immunoregulation, neuropathology, and antioxidant responses.
Predominantly expressed in antigen-presenting cells—such as
dendritic cells, monocytes, and macrophages—IDO1 induces
immunosuppression through tryptophan depletion leading to T cell
anergy and the production of immunomodulatory kynurenine
metabolites. Clinically, elevated IDO1 expression following
neoadjuvant therapy is associated with poor pathologic response
and unfavorable prognosis in ESCC (72). Moreover, tumor-
associated IDO1 overexpression serves as an independent predictor
of disease recurrence and distant metastasis (73). Integrated multi-
omics analyses have identified IDO1 as a co-expression partner of
PD-1 on tumor-associated macrophages, underscoring its utility as
both a prognostic biomarker and a promising immunotherapeutic
target in ESCC (74). CD44 facilitates cell-cell interactions, adhesion,
and migration via extracellular matrix binding and growth factor
receptor signaling. This multifunctional molecule contributes to
lymphocyte homing, hematopoietic differentiation, and metastatic
spread. In ESCC, microRNA-34a suppresses tumor progression by
directly targeting CD44, thereby inhibiting invasion and metastasis
(75). The TWIST1-CD44-MMP13 axis has been implicated in
epithelial-mesenchymal transition, functioning as both a diagnostic
marker and a therapeutic target in aggressive ESCC (76). TMIGD2,
an immunoregulatory surface receptor, modulates T cell activation,
angiogenesis, and cytokine production through coreceptor signaling.
Growing evidence supports its clinical relevance across malignancies:
microRNA-486-3p-mediated regulation of TMIGD2 influences
cisplatin resistance in ovarian cancer (77), while miR-615-5p exerts
antitumor effects in cervical cancer via TMIGD2 targeting (78).

PD-0325901 exhibits synergistic antitumor effects when
combined with the CK2 inhibitor CX-4945 in head and neck
squamous cell carcinoma, effectively countering therapeutic
resistance (79). It has demonstrated promising clinical activity in
phase I/II trials across multiple malignancies, including non-small
cell lung cancer, advanced melanoma, hormone receptor-positive
breast cancer, and KRAS-mutant colorectal and pancreatic cancers
(80-83). Bryostatin-1, a macrocyclic lactone PKC modulator, has
advanced to phase II clinical trials in various solid tumors, where it
has shown disease-stabilizing properties (84). Mechanistically, it
confers cytoprotection in prostate cancer by regulating PKC
isoform translocation and inhibiting PKC-dependent TNF-o
release (85). In advanced EC, sequential administration of
Bryostatin-1 with paclitaxel has produced clinically meaningful
antitumor responses (86). ATRA, the biologically active
metabolite of vitamin A, serves as a key regulator of cellular
differentiation and apoptosis through mechanisms involving
nuclear receptor activation and epigenetic reprogramming (87).
Beyond its established efficacy in acute promyelocytic leukemia and
neuroblastoma, ATRA exhibits multifaceted antitumor effects, such
as reprogramming pancreatic stellate cells to inhibit desmoplasia
and invasion (88), suppressing colorectal carcinogenesis via miR-
3666 (89), and reversing tamoxifen resistance in breast cancer
through Pinl targeting (90). Roscovitine demonstrates broad-
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spectrum anticancer activity via multiple mechanisms: inhibition
of estrogen receptor-o. phosphorylation in hormone-responsive
breast cancer (91), cdk5-mediated regulation of invasive breast
cancer proliferation (92), chemosensitization of colorectal cancer
cells to conventional cytotoxic agents (93), and central analgesic
effects through modulation of NMDA receptor 2B subunit
expression (94). Although Bryostatin-1 has documented efficacy
in EC, the other three agents—PD-0325901, ATRA, and
Roscovitine—identified through our ESCC risk model represent
novel therapeutic candidates worthy of further exploration in
esophageal squamous cell carcinoma. Their established
mechanisms across diverse cancers, coupled with our risk-
stratified sensitivity results, position these compounds as
promising candidates for targeted therapy development in ESCC.

In the present study, we systematically constructed and validated
a comprehensive risk prediction model for ESCC based on ERGs
using transcriptomic data from the TCGA database. The robustness
and generalizability of this prognostic model were further confirmed
through rigorous external validation with independent datasets from
the GEO repository. Our results provide compelling evidence
supporting the significant influence of this ERGs -based risk
stratification system on both clinical outcomes and immune
microenvironment features in ESCC patients. Additionally,
experimental validation of key ERGs incorporated in the risk
model was conducted via RT-qPCR. Despite these insights, several
limitations should be acknowledged. First, the statistical power of our
conclusions may be constrained by the relatively limited sample size
in the current analysis; future multicenter studies with larger cohorts
are warranted to further validate and refine the predictive model.
Second, the precise biological functions, immunomodulatory roles,
and molecular mechanisms of the identified ERGs in ESCC
pathogenesis remain incompletely understood. Elucidating these
aspects through comprehensive functional studies represents an
essential direction for future research, which would not only
deepen our understanding of ESCC biology but may also
contribute to the development of novel epigenetically targeted
therapeutic strategies.

5 Conclusion

This study systematically established and validated a robust 13-
gene signature of DE-ERGs with significant prognostic value in
ESCC. The model offers important insights into the interplay
between epigenetic dysregulation and ESCC pathogenesis while
improving predictive accuracy for clinical outcomes. Furthermore,
comprehensive analyses revealed distinct immune microenvironment
features linked to risk stratification, underscoring the potential of this
signature to inform immunotherapeutic strategies. Integrated
pharmacogenomic profiling identified four promising therapeutic
agents showing differential sensitivity across risk subgroups. These
findings open new avenues for targeted therapy development in
ESCC. The present work constitutes a notable advancement in
precision oncology for this malignancy, with meaningful
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implications for prognostic evaluation and personalized treatment.
Future validation efforts and clinical translation of these results may
substantially enhance therapeutic decision-making and improve
outcomes in ESCC management.
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