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Objective: Esophageal squamous cell carcinoma (ESCC) is a malignancy

characterized by extensive epigenetic dysregulation. This study aims to

develop a robust prognostic model utilizing epigenetic-related genes (ERGs) to

improve survival prediction in ESCC patients, while simultaneously elucidating

potential mechanisms underlying immune microenvironment modulation.

Methods: This study employed transcriptomic data from The Cancer Genome

Atlas (TCGA) as the training cohort and data from GSE53625 in the Gene

Expression Omnibus (GEO) as an independent validation cohort. A total of 796

epigenetic regulator genes (ERGs) were curated from the EpiFactors database

and intersected with TCGA-ESCC gene expression profiles to identify ESCC-

associated ERGs. Differential expression analysis was then conducted to identify

differentially expressed ERGs (DE-ERGs). Using univariate Cox and LASSO

regression analyses, a prognostic risk model was constructed and thoroughly

evaluated through risk stratification curves, survival status distribution maps, risk

score heatmaps, survival analysis, ROC curves, and multivariate Cox regression.

Further analyses included assessing the prognostic model’s association with

clinical features and risk stratification. To investigate the immune

microenvironment, immune cell infiltration correlation, single-sample gene set

enrichment analysis (ssGSEA), and immune checkpoint profiling were performed.

Drug sensitivity analysis was also carried out to identify potential therapeutic

agents showing differential efficacy between risk subgroups. Finally, the

expression patterns of key prognostic ERGs were validated using RT-qPCR.

Results: Through comprehensive differential expression analysis, we identified 345

DE-ERGs in ESCC. A robust prognostic signature comprising 13 critical ERGs—

PIWIL4, SATB1, GSE1, NCOR1, BUB1, SAP30L, CHEK1, MASTL, ATM, BMI1, DNAJC2,

UBE2D1, and SSRP1—was established using univariate Cox regression followed by

LASSO penalized regression analysis. The prognostic efficacy of this signature was

confirmed through multidimensional assessments using independent GEO

datasets. Immunological characterization revealed significant enrichment of

CD8+ T cells, DCs, and pDCs in high-risk patients, along with elevated cytolytic
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activity, HLA expression, and MHC class I activity. Additionally, three immune

checkpoint molecules—TMIGD2, IDO1, and CD44—were found to be

differentially expressed between risk groups. Drug sensitivity analysis identified

four promising therapeutic compounds—PD-0325901, Bryostatin-1, ATRA, and

Roscovitine—with potential clinical utility for ESCC treatment. Experimental

validation via RT-qPCR confirmed consistent overexpression of GSE1, NCOR1,

BUB1, CHEK1, UBE2D1, and SSRP1 in ESCC cell lines, whereas PIWIL4 and ATM

showed significant downregulation.

Conclusion: The findings of this study offer clinically relevant insights for

prognostic stratification and characterization of the immune microenvironment

in ESCC patients. Moreover, these results provide novel perspectives that may

contribute to the development of more effective prognostic tools and targeted

therapeutic strategies for ESCC management.
KEYWORDS

esophageal squamous cel l carcinoma, epigenetic , prognosis , immune
microenvironment, gene
1 Introduction

Esophageal cancer (EC) is among the most aggressive

malignancies, ranking as the seventh most commonly diagnosed

cancer and the sixth leading cause of cancer-related mortality

worldwide (1). Esophageal squamous cell carcinoma (ESCC) is

the predominant histological subtype and continues to exhibit

high incidence and mortality, especially in regions such as China

(2, 3). Although advances in early diagnostic techniques and

multimodal treatments have led to modest improvements in

outcomes, the prognosis for ESCC patients remains poor, with a

5-year overall survival rate of only 15–20% (4). Recent research has

increasingly focused on elucidating the molecular mechanisms of

ESCC pathogenesis, with numerous studies seeking biomarkers to

enhance risk stratification, guide therapy, and improve prognostic

accuracy (5–7). However, the molecular drivers of ESCC are still not

fully understood, and reliable biomarkers for early detection,

monitoring progression, and predicting outcomes remain lacking.

Due to its significant clinical burden and the limitations of current

treatments, ESCC continues to represent a major public health

challenge. Thus, there is a pressing need for innovative therapeutic

approaches and better prognostic tools to reduce the global health

impact of this devastating disease.

Cancer progression is driven by the accumulation of genomic

alterations, including both genetic and epigenetic aberrations. While

genetic mutations directly disrupt DNA sequences, epigenetic

modifications—such as changes in DNA methylation and histone

post-translational modifications—orchestrate tumorigenesis by

dysregulating transcriptional programs that drive malignant

transformation (8). These two key epigenetic mechanisms, DNA

methylation and histone marking, play a pivotal role in tumor

development, metastatic dissemination, and therapeutic resistance.
02
Their cancer-specific patterns have become valuable biomarkers for

diagnostic stratification, disease monitoring, and personalized

treatment selection, thereby supporting improved clinical decision-

making (8). Moreover, pervasive dysregulation of epigenetic processes

is now recognized as a hallmark of cancer (9). In recent years,

immunotherapy has revolutionized oncology with unprecedented

breakthroughs in cancer treatment. Importantly, epigenetic profiles

of both immune and tumor cells show significant potential as

predictive biomarkers for patient response to immunotherapeutic

interventions (10). Growing evidence indicates that tumors exploit

diverse epigenetic mechanisms to evade immune surveillance,

highlighting a critical interplay between epigenetics and antitumor

immunity (11). Consequently, epigenetic-targeting agents have

attracted considerable attention as potent immunomodulators,

offering promising avenues for enhancing the efficacy of cancer

immunotherapy (11).

Emerging research has increasingly highlighted the pivotal role

of epigenetic dysregulation in the pathogenesis of ESCC (12). For

instance, the epigenetic regulator KDM4D has been identified as a

tumor suppressor in ESCC, exerting its effects through modulation

of the SYVN1/HMGB1 ubiquitination axis (12). Additionally, a

positive feedback loop involving NKX2-5/LHX1 and UHRF1 has

been implicated in ESCC tumorigenesis via epigenetic mechanisms

(13), while JMJD3 contributes to malignant progression through

epigenetic activation of the MYC oncogene (9). Recent studies have

further identified novel epigenetic drivers, such as non-canonical

WNT/b-catenin/MMP signaling activation and a YY1-mediated

regulatory network involving the long non-coding RNA ESCCAL-1

and ribosomal proteins (14). Despite these advances, critical gaps

remain in understanding how epigenetic modifications influence

ESCC prognosis and shape the tumor immune microenvironment.

The development of robust risk prediction models has emerged as a
frontiersin.org
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powerful tool for improving prognostic assessment and immuno-

oncology research (15, 16). In this context, the present study aims to

systematically investigate the impact of epigenetic alterations on

ESCC prognosis and the immune landscape by constructing and

validating a risk prediction model based on epigenetic-related genes

(ERGs). The research design and analytical workflow are

summarized in Figure 1.
2 Materials and methods

2.1 Data acquisition and collation

In this study, transcriptomic data from The Cancer Genome

Atlas (TCGA) (https://portal.gdc.cancer.gov/) served as the primary

training cohort, consisting of 81 ESCC specimens and 11 normal

tissue samples. The TCGA dataset provided comprehensive

clinicopathological annotations, including gender, age, TNM

stage, and overall clinical stage. For independent validation, we

used the GSE53625 dataset from the Gene Expression Omnibus
Frontiers in Immunology 03
(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/), which

comprises 179 paired tumor-normal samples along with clinical

metadata such as age, T stage, N stage, and clinical stage. The

epigenetic landscape was characterized using 796 ERGs obtained

from the EpiFactors database (https://epifactors.autosome.org/), a

comprehensive resource for epigenetic regulators.
2.2 Differentially expressed ERGs of ESCC

To identify epigenetically relevant genes in ESCC, we first

intersected the TCGA-ESCC transcriptome dataset with 796

known ERGs from the EpiFactors database, obtaining a subset of

ESCC-associated ERGs. Subsequently, differential expression

analysis was performed on these candidate genes using stringent

statistical criteria (P < 0.05 and |logFC| ≥ 1) with the limma package

in R, identifying significantly dysregulated ERGs in ESCC

compared to normal controls. This systematic approach enabled

the robust identification of differentially expressed ERGs (DE-

ERGs) implicated in ESCC pathogenesis.
FIGURE 1

The flowchart of this study.
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2.3 Enrichment analysis

To elucidate the biological significance and pathway involvement

of the DE-ERGs in ESCC, we conducted comprehensive functional

enrichment analyses. Gene Ontology (GO) annotation was

performed using the clusterProfiler package in R, while pathway

enrichment analysis was carried out through Gene Set Enrichment

Analysis (GSEA) to identify significantly altered pathways. A

statistical significance threshold of P < 0.05 was applied to all

enrichment analyses.
2.4 Construction of risk prognostic model

To identify prognostic DE-ERGs in ESCC, we first conducted

univariate Cox proportional hazards regression analysis (P < 0.05)

using the survival package in R. Subsequently, to enhance model

generalizability and reduce overfitting, we performed LASSO

regression analysis with the glmnet R package, standardizing all

predictor variables prior to analysis. The optimal penalty parameter

(lambda.min) was selected through 1000 iterations of cross-

validation, identifying the value that yielded the minimum cross-

validation error. The prognostic model was independently validated

using the GSE53625 cohort from the GEO database. We developed

distinct risk stratification models for both the training and

validation cohorts, calculating each patient’s risk score as a linear

combination of prognostic DE-ERG expression levels. This risk

scoring system exhibited strong predictive performance, with

higher scores significantly associated with poorer survival

outcomes. The riskScore was calculated according to the formula:

Riskscore =on
i=1(mrnaexpi � coefi)

In the risk score calculation, “n” represents the total number of

prognostically significant DE-ERGs in ESCC, while “i” denotes each

individual gene among these. The regression coefficient for each

gene is indicated by “coef”. For every patient, the riskScore was

computed as a linear combination of the expression levels of these

genes weighted by their respective coefficients. This score was

calculated for each sample in both the training and validation

cohorts. Using the median riskScore from the training cohort as a

cutoff, patients were stratified into high- and low-risk groups. To

maintain consistency, the same median cutoff value was applied to

classify samples in the validation cohort into corresponding

risk categories.
2.5 Validation of the risk prognostic model

During the initial analytical phase, we used R to generate

comprehensive graphical representations—including risk score

distribution curves, survival status distributions, and risk-

associated heatmaps—for both the training and validation

cohorts. These visualizations facilitated a systematic evaluation of

survival in ESCC patients. Subsequently, using the survival and

survminer packages in R, we conducted survival analysis to
Frontiers in Immunology 04
compare potential survival differences between risk groups. In

addition, receiver operating characteristic (ROC) curve analysis

was performed with the same packages to evaluate the predictive

accuracy of the riskScore model and established clinical parameters.

Finally, multivariate Cox regression analysis, implemented via the

survival package in R, was applied to determine whether the

riskScore retained independent prognostic value after adjusting

for other clinical covariates.
2.6 Differential analysis of risk prognostic
model

To systematically evaluate the expression patterns of the DE-

ERGs included in our prognostic risk model, we conducted

comparative analyses using the TCGA-ESCC dataset. First, we

examined differences in DE-ERGs expression between tumor and

normal tissues. Following data standardization, a heatmap was

generated to visualize these expression profiles. We then performed

subgroup analyses comparing DE-ERGs expression between high-

risk and low-risk patients within both the training and validation

cohorts. Differential expression patterns were visualized using box

plots created with the “reshape2” and “ggpubr” packages in R, while

hierarchical clustering heatmaps were constructed using the

“pheatmap” package to comprehensively illustrate expression

variations across risk groups and sample types.
2.7 Clinical features analysis

To evaluate the clinical applicability of our prognostic risk model,

we performed comprehensive subgroup validation analyses in the

training cohort using the survival and survminer packages in R. This

stratified assessment enabled a rigorous evaluation of the model’s

predictive performance across key clinicopathological variables,

testing its robustness and generalizability across diverse patient

populations. Specifically, we conducted stratified analyses based on

gender (male vs. female), tumor invasion depth (T1–2 vs. T3–4),

nodal status (N0 vs. N1–3), distant metastasis (M0 vs. M1), and

overall tumor stage (I–II vs. III–IV).
2.8 Immune infiltration cell correlation
analysis

To characterize the immune landscape of ESCC, we applied the

CIBERSORT algorithm implemented with the e1071, parallel, and

preprocessCore R packages to estimate the relative proportions of

22 distinct immune cell types based on TCGA transcriptomic

profiles. Only samples meeting the significance threshold (P <

0.05) for immune cell fraction estimation were retained to ensure

data reliability. We then performed comprehensive correlation

analyses to examine: (1) associations between the DE-ERGs

included in our prognostic model and immune cell infiltration

patterns (using a significance threshold of P < 0.001), and (2)
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relationships between riskScore values in the training cohort and

immune infiltration patterns (with a significance threshold of P <

0.05). Spearman correlation analysis served as the core statistical

method. All analyses were conducted using the limma, reshape2,

ggpubr, and ggExtra packages in R, facilitating a systematic

evaluation of immune-microenvironment interactions in relation

to both molecular and clinical prognostic features.
2.9 Single sample gene set enrichment
analysis (ssGSEA)

To comprehensively evaluate the immune microenvironment

characteristics in ESCC, we performed ssGSEA using the GSVA,

limma, and GSEABase packages in R. This method enabled the

quantification of enrichment scores for both immune cell subsets

and immune-related functional pathways. Subsequently, we utilized

the limma, reshape2, and ggpubr packages to conduct comparative

analyses of immune profiles between high- and low-risk patient

subgroups in the training cohort, systematically assessing

differences in immune cell infiltration and functional activity.
2.10 Differential analysis of immune
checkpoints

To systematically assess differential expression patterns of

immune checkpoint-related genes across risk stratifications within

the training cohort, we conducted comprehensive analyses utilizing

the R environment. Employing the computational functionalities of

the limma, reshape2, ggplot2, and ggpubr packages, we performed

comparative evaluations to identify statistically significant

variations in immune checkpoint gene expression profiles

between high- and low-risk patient subgroups.
2.11 Drug sensitivity analysis

In order to identify potential therapeutic agents stratified

according to prognostic risk within the training cohort, a systematic

drug sensitivity analysis was performed using the limma, ggpubr, and

pRRophetic packages in R. By applying a stringent statistical threshold

(P < 0.001), this computational pharmacogenomic methodology

facilitated the discernment of compounds demonstrating differential

efficacy between high- and low-risk patient subgroups as defined by

our prognostic model. The results uncovered clinically relevant

pharmacological agents that could inform risk-stratified treatment

strategies for ESCC patients, thereby advancing the framework for

personalized therapeutic interventions.
2.12 Cell culture

This study utilized two human ESCC cell lines (KYSE-30 and

KYSE-150), with normal esophageal epithelial cells (NE-1) serving
Frontiers in Immunology 05
as controls. The ESCC cell lines were cultured in RPMI 1640

medium supplemented with 10% fetal bovine serum (FBS), while

normal esophageal epithelial cells were maintained in a mixed

medium composed of Defined Keratinocyte-SFM (DK-SFM) and

Epilife medium to preserve their epithelial characteristics. All cell

lines were incubated at 37 °C in a humidified atmosphere of 5% CO2

to ensure optimal growth conditions.
2.13 Real-time quantitative PCR

Total RNA was extracted from ESCC cell lines (KYSE-30 and

KYSE-150) and normal esophageal epithelial cells (NE-1) using

TRIzol Reagent (Life Technologies Invitrogen; Cat. #15596018)

following the manufacturer’s instructions. Complementary DNA

(cDNA) was synthesized from equal amounts of RNA through

reverse transcription, and subsequent amplification was carried out

with ChamQ Universal SYBR qPCR Master Mix (Vazyme; Cat.

#Q711-02). RT-qPCR was employed to evaluate mRNA expression

levels of target DE-ERGs. The b-actin gene was used as an internal

reference for normalization, and relative expression was calculated

via the comparative threshold cycle (2^(-DDCt)) method.
2.14 Statistical analysis

All statistical analyses and data visualizations were conducted

using R statistical software (v4.1.2) and GraphPad Prism (v9.0.0).

Differences between groups were assessed through one-way analysis

of variance (ANOVA), with a significance threshold set at P < 0.05.

To ensure methodological rigor and reproducibility, all

experimental procedures were independently repeated in triplicate.
3 Results

3.1 DE-ERGs of ESCC

Through computational intersection of the TCGA-ESCC

transcriptomic dataset with a curated set of 796 ERGs, we

identified 768 ERGs potentially associated with ESCC

pathogenesis (Figure 2A). Subsequent differential expression

analysis of these candidate ERGs uncovered 345 DE-ERGs in

ESCC relative to normal controls (Figure 2B).
3.2 Enrichment analysis

The GO enrichment of 345 DE-ERGs was mainly concentrated on:

histone binding, DNA-binding transcription factor binding,

transcription coactivator activity, transcription corepressor activity,

histone methyltransferase activity, protein methyltransferase activity,

N-methyltransferase activity, histone acetyltransferase activity, peptide-

lysine-N-acetyltransferase activity, peptide N-acetyltransferase activity,

histone-lysine N-methyltransferase activity and protein-lysine N-
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methyltransferase activity (Figure 2C). The patyway enrichment of 345

DE-ERGs was mainly concentrated on: antigen processing and

presentation, cell cycle, DNA replication, homologous

recombination, mismatch repair, nucleotide excision repair, oxidative

phosphorylation, p53 signaling pathway, phenylalanine metabolism,

purine metabolism, pyrimidine metabolism and RNA

degradation (Figure 2D).
3.3 Construction of risk prognostic model

Univariate Cox proportional hazards regression analysis of the

345 DE-ERGs revealed 29 genes significantly associated with patient

prognosis (P < 0.05) (Figure 3A). To enhance model generalizability

and reduce overfitting, LASSO regression analysis was employed,

identifying 13 optimal prognostic DE-ERGs based on minimal

cross-validation error (Figure 3B). Individual risk scores were
Frontiers in Immunology 06
computed for all samples using the established risk score

algorithm. In the training cohort (TCGA-ESCC), patients were

categorized into high-risk (n = 40) and low-risk (n = 40) subgroups

using the median riskScore as the cutoff. This stratification

approach was subsequently validated in the external GEO cohort,

which was similarly divided into high-risk (n = 90) and low-risk

(n = 89) groups.
3.4 Validation of the risk prognostic model

Risk stratification analysis revealed a consistent positive

association between risk scores and disease progression in both

cohorts, with high-risk patients demonstrating significantly elevated

ESCC risk relative to low-risk individuals (Figures 4A, 5A). Mortality

analysis further supported these observations, indicating markedly

higher fatality rates in the high-risk subgroups (Figures 4B, 5B).
FIGURE 2

DE-ERGs of ESCC. (A) 768 ERGs potentially implicated in ESCC pathogenesis. (B) 345 DE-ERGs in ESCC. (C) GO enrichment analysis. (D) GSEA
pathway enrichment analysis.
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Expression heatmaps of the 13 prognostic ERGs displayed distinct

molecular signatures differentiating the risk categories (Figures 4C,

5C). Survival analysis confirmed significantly worse clinical outcomes

among high-risk patients in both the training and validation cohorts

(Figures 4D, 5D). ROC curve evaluation indicated that the riskScore

exhibited superior predictive performance compared to conventional

clinical parameters, with nodal stage (N stage) and age identified as

additional significant prognostic indicators in the training and

validation cohorts, respectively (Figures 4E, 5E). Multivariate Cox

regression analyses performed across both cohorts confirmed that the

riskScore remained an independent prognostic factor for ESCC after

adjustment for relevant clinical covariates (Figures 4F, 5F).
3.5 Differential analysis of risk prognostic
model

Comprehensive expression profiling of the 13 DE-ERGs

included in our prognostic model revealed distinct patterns in

ESCC. Specifically, PIWIL4, SATB1, GSE1, NCOR1, SAP30L,

ATM, and BMI1 were significantly downregulated in tumor

tissues relative to normal controls, while BUB1, CHEK1, MASTL,

DNAJC2, UBE2D1, and SSRP1 showed pronounced upregulation

(Figures 6A, B). Comparative analysis between high- and low-risk

groups within the training cohort indicated significant differential

expression of PIWIL4, SATB1, GSE1, SAP30L, CHEK1, MASTL,
Frontiers in Immunology 07
ATM, BMI1, DNAJC2, and UBE2D1 (Figure 6C). This expression

signature was partially conserved in the validation cohort, with

PIWIL4, BMI1, DNAJC2, UBE2D1, and SSRP1 demonstrating

consistent risk-associated dysregulation (Figure 6D). These results

suggest that the identified DE-ERGs may contribute critically to

ESCC progression and facilitate molecular risk stratification.
3.6 Clinical features analysis

Stratified survival analysis confirmed the robust prognostic

capacity of our risk model across major clinicopathological

variables. The model consistently discriminated survival outcomes

between T1–2 and T3–4 tumor stages, nodal involvement status (N0

vs N1–3), and overall disease stage (I–II vs III–IV) (Figure 7). These

findings highlight the clinical applicability of our prognostic signature

in diverse patient populations with heterogeneous disease features.
3.7 Immune infiltration cell correlation
analysis

Comprehensive correlation analysis between the 13 DE-ERGs and

tumor-infiltrating immune cells revealed distinct immunomodulatory

associations. Specifically, SATB1 was positively correlated with naive B

cells and resting mast cells, but negatively correlated with macrophages
FIGURE 3

Construction of risk prognostic model. (A) Univariate Cox regression analysis obtained 29 candidates prognostic DE-ERGs. (B) LASSO regression
analysis.
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M0. GSE1 is positively correlated with naive B cells and resting mast

cells, but negatively correlated with activated mast cells. NCOR1 is

positively correlated with CD4 memory resting T cells. SAP30L is

positively correlated with resting mast cells, but negatively correlated

with activated mast cells. CHEK1 is negatively correlated with resting

mast cells. DNAJC2 is positively correlated with M0 macrophages and

negatively correlated with resting mast cells. ATM is positively

correlated with the CD4 memory resting state of T cells. MASTL is

positively correlated with macrophages M0. UBE2D1 is positively

correlated with T cells CD4 memory activated. SSRP1 is negatively

correlated with mast cells resting (Figure 8). The correlation analysis

between immune infiltrating cells and the riskScore of the risk

prognostic model revealed that: the riskScore was positively

correlated with activated NK cells, T cells CD8, and T cells follicular

helper, while negatively correlated with T cells CD4 memory resting

(Figure 9). These results suggest that specific expression patterns of DE-

ERGs may influence the tumor immune microenvironment through

differential regulation of immune cell infiltration.
Frontiers in Immunology 08
3.8 ssGSEA

Comprehensive immune characterization of the risk-stratified

cohorts revealed significant enrichment of CD8+ T cells, dendritic

cells (DCs), and plasmacytoid dendritic cells (pDCs) in high-risk

ESCC patients relative to low-risk individuals (Figure 10A).

Furthermore, functional analysis indicated elevated levels of

cytolytic activity, HLA expression, and MHC class I activity in

the high-risk subgroup (Figure 10B).
3.9 Differential analysis of immune
checkpoints

Comparative analysis of immune checkpoint molecules

revealed significant differential expression of three key

immunoregulatory genes—TMIGD2, IDO1, and CD44—between

risk-stratified groups within the training cohort. Each of
FIGURE 4

Training cohort. (A) Risk curve. (B) Survival status map; (C) Risk heatmap; (D) Survival curve, the figure highlights the median survival periods of the
high-risk group and the low-risk group. (E) ROC curve; (F) Multivariate Cox regression analysis.
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these molecules exhibited distinct expression profiles that

clearly distinguished high-risk from low-risk ESCC patients

(Figure 10C). These results suggest that immune checkpoint

regulation may be altered during disease progression, with

potential implications for differential therapeutic responses across

prognostic subgroups.
3.10 Drug sensitivity analysis

Systematic drug sensitivity analysis identified four compounds

demonstrating differential efficacy between the prognostic risk

groups. Specifically, low-risk patients exhibited increased

sensitivity to PD-0325901, Bryostatin-1, and Roscovitine, whereas

high-risk patients displayed greater responsiveness to ATRA

(Figure 10D). These results suggest distinct molecular

vulnerabilities among risk-stratified ESCC subtypes, which may

guide the development of personalized therapeutic approaches.
Frontiers in Immunology 09
3.11 Validation of ERGs expression in ESCC

All primer sequences, detailed in Table 1, were synthesized by

Accurate Biology. RT-qPCR analysis using validated primers revealed

distinct dysregulation patterns of the DE-ERGs in ESCC cell lines

relative to normal esophageal epithelial cells (NE-1). Significant

upregulation of GSE1, NCOR1, BUB1, CHEK1, UBE2D1, and

SSRP1 was observed in both KYSE-30 and KYSE-150 cell lines,

while MASTL overexpression was specific to KYSE-150 and BMI1 to

KYSE-30. In contrast, PIWIL4 and ATM showed consistent

downregulation across both cell lines (Figure 11). These results

validate the prognostic DE-ERG signature and underscore cell line-

specific epigenetic alterations implicated in ESCC pathogenesis.

4 Discussion

In this study, we developed a novel ERGs-based prognostic

model that exhibits robust predictive performance for survival
FIGURE 5

Validation cohort. (A) Risk curve. (B) Survival status map; (C) Risk heatmap; (D) Survival curve, the figure highlights the median survival periods of the
high-risk group and the low-risk group, NR stands for “not reached”. (E) ROC curve; (F) Multivariate Cox regression analysis.
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FIGURE 6

Differential analysis of risk prognostic model. (A) Expression profiles of 13 DE-ERGs. (B) Difference expression heatmap of 13 DE-ERGs. (C) The differences of
DE-ERGs in the training cohort. (D) The differences of DE-ERGs in the validation cohort. Gene expression levels are shown as log2(TPM + 1) values derived
from RNA-seq analysis. Statistical significance between groups was determined by the Wilcoxon rank-sum test. *p < 0.05, **p < 0.01, ***p < 0.001.
FIGURE 7

Training cohort, clinical validation of the risk prognosis model. The figure highlights the median survival periods of the high-risk group and the low-
risk group. NR stands for “not reached”.
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outcomes in ESCC patients and offers mechanistic insights into

immune microenvironment regulation. The refined signature

consists of 13 DE-ERGs—PIWIL4, SATB1, GSE1, NCOR1, BUB1,

SAP30L, CHEK1, MASTL, ATM, BMI1, DNAJC2, UBE2D1, and

SSRP1—each showing significant dysregulation in ESCC

pathogenesis. Comprehensive immune characterization revealed a

distinct immunophenotype in high-risk patients, marked by

increased infiltration of CD8+ T cells, DCs, and pDCs, along with

elevated cytolytic activity, HLA expression, and MHC class I

activity. We further identified three immune checkpoint

molecules—TMIGD2, IDO1, and CD44—with expression levels

correlated to risk stratification. Pharmacogenomic evaluation

highlighted four potential therapeutic compounds—PD-0325901,

Bryostatin-1, ATRA, and Roscovitine—demonstrating differential
Frontiers in Immunology 11
efficacy between risk subgroups. Finally, experimental validation

using RT-qPCR confirmed the expression patterns of all 13

prognostic DE-ERGs in ESCC cell lines.

Based on their core biological functions, the 13 DE-ERGs can be

classified into four principal functional categories. The first group

comprises factors involved in chromatin remodeling and

transcriptional regulation—SATB1, NCOR1, SAP30L, BMI1, and

SSRP1—which mediate gene silencing or activation through higher-

order chromatin organization and recruitment of histone-

modifying complexes (17–21). SATB1 encodes a nuclear matrix

attachment region-binding protein that orchestrates chromatin

architecture by tethering genomic loci to the nuclear scaffold,

recruiting chromatin-remodeling complexes to dynamically

regulate transcription. Emerging evidence indicates that Wnt/b-
FIGURE 8

Comprehensive correlation analysis between the 13 DE-ERGs and tumor-infiltrating immune cells.
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catenin signaling upregulates SATB1 to drive colorectal cancer

initiation and progression (22), while PAK5-mediated

phosphorylation enhances its oncogenic potential in cervical

cancer (23). Additionally, reversible ubiquitination of SATB1 by

USP47 and SMURF2 promotes colon cancer proliferation (24). In

ESCC, triptolide exerts anti-tumor effects via the circNOX4/miR-

153-3p/SATB1 axis (25). NCOR1, a transcriptional corepressor,

mediates ligand-independent repression of nuclear receptors

through chromatin condensation and transcription factor

exclusion. It serves as an independent prognostic marker in breast

cancer (26), disrupts PPARa/g signaling in prostate cancer (27),

and promotes proliferation and senescence resistance in colorectal

cancer (28). In HPV-associated cervical cancer, the E6 protein

recruits NCOR1 to facilitate OCT4-mediated p53 suppression

(29). SAP30L, a component of histone deacetylase complexes,

represses RNA polymerase II-mediated transcription. The long

non-coding RNA SAP30L-AS1 promotes prostate cancer

progression by epigenetically silencing SAP30L (30). BMI1, a core

subunit of polycomb repressive complex 1, acts as an oncogenic

stem cell regulator and is frequently dysregulated in cancers. In
Frontiers in Immunology 12
ESCC, miR-218 suppresses tumor growth by targeting BMI1 (31),

which serves as both a cancer stem cell marker and therapeutic

target (32). Chlorogenic acid exhibits anti-tumor activity in ESCC

through dual inhibition of BMI1 and SOX2 (33). SSRP1, a subunit

of the FACT complex, facilitates transcriptional elongation and

DNA damage response and demonstrates oncogenic properties in

multiple malignancies. It regulates tumor growth and apoptotic

resistance via AKT signaling in colorectal cancer (34), and co-

overexpression with APE1 correlates with aggressive phenotypes

and poor prognosis in bladder cancer (35).

The second category encompasses genes involved in cell cycle

checkpoint control and genome integrity maintenance—BUB1,

CHEK1, MASTL, and ATM—which function as key components

of the spindle assembly checkpoint and DNA damage response

pathways (36–39). BUB1, a critical mitotic serine/threonine kinase,

regulates chromosome segregation and contributes to DNA damage

response. In bladder cancer, it promotes oncogenesis through

STAT3 pathway activation (40), and in triple-negative breast

cancer, it confers radioresistance via regulation of non-

homologous end joining (41). BUB1 expression also shows
FIGURE 9

Comprehensive correlation analysis between the risk prognostic model of the training cohort and tumor-infiltrating immune cells.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1670600
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Su et al. 10.3389/fimmu.2025.1670600
promise as a predictive biomarker for immunotherapy response

and clinical outcomes in breast cancer (42). CHEK1, a Ser/Thr

protein kinase, plays a central role in DNA damage checkpoint

control by inducing cell cycle arrest in response to genomic

instability. Ginsenoside Ro has been shown to enhance 5-

fluorouracil sensitivity in esophageal cancer by disrupting

autophagic flux through the ESR2-NCF1-ROS pathway, leading

to CHEK1-mediated DNA damage activation (43). Clinically,

CHEK1 genetic polymorphisms are associated with postoperative

prognosis in thoracic ESCC patients after radical resection (44).

MASTL, a microtubule-associated serine/threonine kinase initially

linked to autosomal dominant thrombocytopenia, contributes to

oncogenesis through multiple mechanisms. It promotes

chromosomal instability and metastasis in breast cancer (45),

enhances tumor progression and chemoresistance via Wnt/b-
catenin signaling in colorectal cancer (46), and modulates EGFR

signaling in pancreatic cancer (47). ATM, a PI3K-related kinase,
Frontiers in Immunology 13
acts as a master regulator of DNA damage response alongside ATR

to maintain genomic integrity. In ESCC, the long noncoding RNA

SNHG20 drives tumor progression by activating the ATM-JAK-

PD-L1 axis (48). HMGB1-mediated radioresistance in ESCC

involves PI3K/AKT/ATM pathway activation (49), and ATM

polymorphisms may serve as predictors of radiation therapy

outcomes (50).

The third functional category involves the regulation of

pluripotency and cell fate determination, represented by PIWIL4.

Genes in this group support stem cell self-renewal and pluripotency,

and their dysregulation is often associated with abnormal cellular

reprogramming and dedifferentiation (51). PIWIL4, a member of

the evolutionarily conserved Argonaute protein family, is essential

for germline stem cell maintenance and development. Clinically,

reduced expression of PIWIL4, along with PIWIL1 and PIWIL2, is

correlated with unfavorable survival in renal cell carcinoma (52). In

breast cancer, PIWIL4 shows marked overexpression in primary
FIGURE 10

Training cohort. (A) Analysis of differences in immune cells. (B) Analysis of differences in immune function. (C) Differential analysis of immune
checkpoints. (D) Drug sensitivity analysis. *p < 0.05, **p < 0.01.
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tumors and the MDA-MB-231 cell line. Functional analyses

indicate that PIWIL4 knockdown significantly inhibits cell

migration and induces apoptosis, with only minimal effects on

proliferation (53). Furthermore, the PIWIL4/SUPT5H complex has

been identified as a promising prognostic biomarker for predicting

clinical outcomes and immune microenvironment features in

intrahepatic cholangiocarcinoma (54).
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The fourth category comprises multifunctional auxiliary

regulators—GSE1, DNAJC2, and UBE2D1—which play essential

cooperative roles across diverse biological processes. GSE1 encodes

a proline-rich nuclear protein with coiled-coil domains that

functions as part of the BRAF35-HDAC repressor complex. This

oncogenic driver is overexpressed in breast cancer, where its activity

is suppressed by the tumor-suppressive miR-489-5p (55). In gastric
TABLE 1 List of primers.

Gene Forward Reverse

PIWIL4 ATACCAGCTCAAGACTGTCGG CATACCATTCGTTACGTGTTGCT

SATB1 TGCCAATCCTCCTCTTGTTACCTG GCACAAAACGCTATGTCATGCC

GSE1 TGTGTTGCCATGTTACTATGCC TACTGACAATGCACCCAACCT

NCOR1 AGCTCCATCCTCTCCAATTTCG TAGCTGCCTCTTCTTCAAGCTG

BUB1 AACTTGCGTCTACACCATTCCAC TGGGCTTTTCTCTTGAATTGGACT

SAP30L ACATTCTGCCTACAACCATCCCA TACAAAGAACAGGCTTCTCCACGA

CHEK1 CTCAGACTTTGGCTTGGCAAC TTCTCCAGCGAGCATTGCAGT

MASTL CCCAAATCAGATCAAGTCGGGAA GCCCTGCCTAGTAACAGCTC

ATM ACTATCCCAATACACTGCTGGAGA TTTGAGCAACTGACTGGCAAAC

BMI1 TAGTATGAGAGGCAGAGATCGGG TTTATTCTGCGGGGCTGGGAG

DNAJC2 CATGCTGAAAACACTTGATCCCA TGATCTGTCTCTGTGTAGCCTT

UBE2D1 GAGTGATCTACAGCGCGATCC GGCCCCATAATAGTGGCTTGC

SSRP1 GCCTGAGGAGATTCCCAACCT GGCTGCACAAGGGAAACCAA

b-actin TGGCACCCAGCACAATGAA CTAAGTCATAGTCCGCCTAGAAGCA
FIGURE 11

Validation of the mRNA expression level of DE-ERGs in ECCC cell lines. *p < 0.05, **p < 0.01, ***p < 0.001, each experiment was repeated three
times.
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cancer, GSE1 promotes tumor progression via SLC7A5-mediated

enhancement of growth and metastasis (56), and contributes to

trastuzumab resistance (57). DNAJC2, a member of the M-phase

phosphoprotein family frequently altered in head and neck

squamous cell carcinomas, acts as an oncogenic driver in

colorectal cancer. Its expression is negatively regulated by miR-

627-3p, and overexpression accelerates uncontrolled proliferation

(58). UBE2D1, an E2 ubiquitin-conjugating enzyme, mediates

ubiquitination of p53 and HIF1a through E1-E3 interactions and

plays a significant role in gastric cancer pathogenesis. Knockdown

of UBE2D1 impairs cancer cell migration by reducing SMAD4

ubiquitination (59).

The prognostic model established in this study integrates 13

ERGs with demonstrated predictive utility in ESCC. Among these,

four genes—SATB1, CHEK1, ATM, and BMI1—have previously

documented roles in ESCC pathogenesis. In contrast, the remaining

nine genes (PIWIL4, GSE1, NCOR1, BUB1, SAP30L, MASTL,

DNAJC2, UBE2D1, and SSRP1) represent novel contributors, as

their potential functions in ESCC progression and prognosis had

not been previously elucidated. Our comprehensive analysis

indicates that these nine genes not only exhibit strong prognostic

biomarker potential but are also significantly involved in

modulating the ESCC immune microenvironment. These findings

offer valuable insights that may inform future research into

epigenetic mechanisms underlying ESCC tumor biology, immune

regulation, and therapeutic resistance.

Accumulating evidence highlights the critical role of epigenetic

dysregulation in shaping tumor biology and influencing therapeutic

responses. In cancer cells, an altered epigenome remodels the

immune landscape of the tumor microenvironment (TME),

undermining antitumor immunity, accelerating malignant

progression, and promoting resistance to immunotherapy. Key

epigenetic changes—such as abnormal histone post-translational

modifications, DNA methylation patterns, and RNA modifications

—distinguish malignant from nonmalignant cells and regulate

oncogene and tumor suppressor function, thereby driving

tumorigenesis. Single-cell transcriptomic and epigenomic analyses

have revealed associations between chromatin accessibility states

and immune cell composition within tumors. Epigenetic plasticity

in cancer is closely tied to genes located in open chromatin regions

that enable intercellular communication. Moreover, epigenetic

enzymes and transcriptional regulators in malignant cells control

the expression of ligands, receptors, and cytokines essential for

immune cell differentiation, migration, and activation (60).

Therapeutic targeting of epigenetic machinery offers potential for

reprogramming the TME through transcriptional and metabolic

changes in local immune populations. Such approaches may inhibit

immunosuppressive cells (e.g., MDSCs and Tregs) while promoting

the function of antitumor effector T cells, professional antigen-

presenting cells (APCs), and even cancer cells acting as

nonprofessional APCs. Epigenetic modulators can also enhance

tumor immunogenicity by reactivating silenced tumor-associated

antigens, upregulating neoantigen expression and MHCmachinery,

and inducing immunogenic cell death (ICD) (61). Notably,
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epigenetic mechanisms contribute to immunotherapy resistance

by modulating specific immune subsets within the TME (60).

Therefore, combining epigenetic agents with immunotherapies

represents an emerging strategic approach in oncology. Advances

in the specificity and affinity of epigenetic drugs, along with the

development of small molecules targeting a wider range of

epigenetic and immune pathways—integrated with state-of-the-

art genomic and immunomonitoring technologies—are expected

to drive rational combination strategies and expand mechanistic

understanding (62).

The ERGs identified in the present study were found to be

significantly associated with immune-related processes. Specifically,

the deficiency of SATB1 has been implicated in the initiation and

progression of autoimmune disorders. In murine models, conditional

knockout of Satb1 in CD4+ T cells resulted in T cell hyperactivation

and widespread inflammatory cell infiltration across multiple organs.

SATB1 appears to confer protection against immune-mediated tissue

damage by modulating chemokine expression (63). In prostate

cancer, GSE1 is frequently upregulated, whereas TACSTD2 exhibits

downregulation; this inverse correlation promotes metastatic

dissemination, castration resistance, and disease progression, while

also modulating clinical and immune parameters in patients (64).

Furthermore, NCOR1 plays an essential role in T cell development

through its regulation of thymocyte survival. Additionally, NCOR1

fine-tunes the balance between immune tolerance and inflammation

by controlling metabolic pathways such as glycolysis and fatty acid

oxidation in dendritic cells across both murine and human models

(65, 66). SAP30L demonstrates a positive correlation with resting

mast cells and a negative association with activated mast cells,

suggesting a modulatory role in mast cell function. In soft tissue

sarcomas, CHEK1 serves as an unfavorable prognostic biomarker

associated with immunosuppressive phenotypes, showing significant

overexpression in immune-low tumors and correlating with altered

patterns of tumor-infiltrating immune cells (67). Integrin-avb3 is

upregulated on therapy-resistant tumor cells via chronic activation of

ATM/Chk2 and NF-kB pathways. Inhibition of integrin-avb3
enhanced therapeutic responses by stimulating host immunity,

mechanistically through impairing dendritic cell phagocytosis and

subsequent T cell cross-priming (68). Tumor-infiltrating immune

cells have emerged as critical determinants of immunotherapy

efficacy. Prognostic models incorporating immune features—such

as a ceRNA network involving MASTL, or populations including

CD4+ memory T cells, monocytes, and neutrophils—show utility in

predicting clinical outcomes in gastric cancer (69). UBE2D1, a gene

linked to cuproptosis, serves as a prognostic indicator in lung

adenocarcinoma and participates in shaping the immune

microenvironment (70). Moreover, the SSRP1/SLC3A2 axis in

arginine transport represents a novel therapeutic target to

counteract immune evasion and tumor progression in peripheral

T-cell lymphoma (71). Collectively, these findings suggest that the

ERGs identified in this study may influence ESCC prognosis via

regulation of the tumor immune microenvironment. Further

mechanistic investigations are warranted to elucidate the precise

underlying pathways.
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IDO1 functions as a pleiotropic mediator involved in multiple

pathophysiological processes, including antimicrobial defense,

immunoregulation, neuropathology, and antioxidant responses.

Predominantly expressed in antigen-presenting cells—such as

dendritic cells, monocytes, and macrophages—IDO1 induces

immunosuppression through tryptophan depletion leading to T cell

anergy and the production of immunomodulatory kynurenine

metabolites. Clinically, elevated IDO1 expression following

neoadjuvant therapy is associated with poor pathologic response

and unfavorable prognosis in ESCC (72). Moreover, tumor-

associated IDO1 overexpression serves as an independent predictor

of disease recurrence and distant metastasis (73). Integrated multi-

omics analyses have identified IDO1 as a co-expression partner of

PD-1 on tumor-associated macrophages, underscoring its utility as

both a prognostic biomarker and a promising immunotherapeutic

target in ESCC (74). CD44 facilitates cell-cell interactions, adhesion,

and migration via extracellular matrix binding and growth factor

receptor signaling. This multifunctional molecule contributes to

lymphocyte homing, hematopoietic differentiation, and metastatic

spread. In ESCC, microRNA-34a suppresses tumor progression by

directly targeting CD44, thereby inhibiting invasion and metastasis

(75). The TWIST1-CD44-MMP13 axis has been implicated in

epithelial-mesenchymal transition, functioning as both a diagnostic

marker and a therapeutic target in aggressive ESCC (76). TMIGD2,

an immunoregulatory surface receptor, modulates T cell activation,

angiogenesis, and cytokine production through coreceptor signaling.

Growing evidence supports its clinical relevance across malignancies:

microRNA-486-3p-mediated regulation of TMIGD2 influences

cisplatin resistance in ovarian cancer (77), while miR-615-5p exerts

antitumor effects in cervical cancer via TMIGD2 targeting (78).

PD-0325901 exhibits synergistic antitumor effects when

combined with the CK2 inhibitor CX-4945 in head and neck

squamous cell carcinoma, effectively countering therapeutic

resistance (79). It has demonstrated promising clinical activity in

phase I/II trials across multiple malignancies, including non-small

cell lung cancer, advanced melanoma, hormone receptor-positive

breast cancer, and KRAS-mutant colorectal and pancreatic cancers

(80–83). Bryostatin-1, a macrocyclic lactone PKC modulator, has

advanced to phase II clinical trials in various solid tumors, where it

has shown disease-stabilizing properties (84). Mechanistically, it

confers cytoprotection in prostate cancer by regulating PKC

isoform translocation and inhibiting PKC-dependent TNF-a
release (85). In advanced EC, sequential administration of

Bryostatin-1 with paclitaxel has produced clinically meaningful

antitumor responses (86). ATRA, the biologically active

metabolite of vitamin A, serves as a key regulator of cellular

differentiation and apoptosis through mechanisms involving

nuclear receptor activation and epigenetic reprogramming (87).

Beyond its established efficacy in acute promyelocytic leukemia and

neuroblastoma, ATRA exhibits multifaceted antitumor effects, such

as reprogramming pancreatic stellate cells to inhibit desmoplasia

and invasion (88), suppressing colorectal carcinogenesis via miR-

3666 (89), and reversing tamoxifen resistance in breast cancer

through Pin1 targeting (90). Roscovitine demonstrates broad-
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spectrum anticancer activity via multiple mechanisms: inhibition

of estrogen receptor-a phosphorylation in hormone-responsive

breast cancer (91), cdk5-mediated regulation of invasive breast

cancer proliferation (92), chemosensitization of colorectal cancer

cells to conventional cytotoxic agents (93), and central analgesic

effects through modulation of NMDA receptor 2B subunit

expression (94). Although Bryostatin-1 has documented efficacy

in EC, the other three agents—PD-0325901, ATRA, and

Roscovitine—identified through our ESCC risk model represent

novel therapeutic candidates worthy of further exploration in

esophageal squamous cell carcinoma. Their established

mechanisms across diverse cancers, coupled with our risk-

stratified sensitivity results, position these compounds as

promising candidates for targeted therapy development in ESCC.

In the present study, we systematically constructed and validated

a comprehensive risk prediction model for ESCC based on ERGs

using transcriptomic data from the TCGA database. The robustness

and generalizability of this prognostic model were further confirmed

through rigorous external validation with independent datasets from

the GEO repository. Our results provide compelling evidence

supporting the significant influence of this ERGs -based risk

stratification system on both clinical outcomes and immune

microenvironment features in ESCC patients. Additionally,

experimental validation of key ERGs incorporated in the risk

model was conducted via RT-qPCR. Despite these insights, several

limitations should be acknowledged. First, the statistical power of our

conclusions may be constrained by the relatively limited sample size

in the current analysis; future multicenter studies with larger cohorts

are warranted to further validate and refine the predictive model.

Second, the precise biological functions, immunomodulatory roles,

and molecular mechanisms of the identified ERGs in ESCC

pathogenesis remain incompletely understood. Elucidating these

aspects through comprehensive functional studies represents an

essential direction for future research, which would not only

deepen our understanding of ESCC biology but may also

contribute to the development of novel epigenetically targeted

therapeutic strategies.
5 Conclusion

This study systematically established and validated a robust 13-

gene signature of DE-ERGs with significant prognostic value in

ESCC. The model offers important insights into the interplay

between epigenetic dysregulation and ESCC pathogenesis while

improving predictive accuracy for clinical outcomes. Furthermore,

comprehensive analyses revealed distinct immunemicroenvironment

features linked to risk stratification, underscoring the potential of this

signature to inform immunotherapeutic strategies. Integrated

pharmacogenomic profiling identified four promising therapeutic

agents showing differential sensitivity across risk subgroups. These

findings open new avenues for targeted therapy development in

ESCC. The present work constitutes a notable advancement in

precision oncology for this malignancy, with meaningful
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implications for prognostic evaluation and personalized treatment.

Future validation efforts and clinical translation of these results may

substantially enhance therapeutic decision-making and improve

outcomes in ESCC management.
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