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The tumor microenvironment (TME) plays a crucial role in tumor initiation,
progression, and metastasis, and immunotherapy targeting the TME has
received increasing attention. However, single-agent immunotherapy has
certain limitations and often requires combination with other adjuvant
strategies to enhance therapeutic efficacy. Among these, ultrasound has
emerged as a promising adjunct to cancer immunotherapy. By modulating the
TME, ultrasound combined with immunotherapy shows great potential in
enhancing antitumor responses. This review summarizes the application of
various ultrasound modalities in enhancing antitumor immunity, improving the
efficacy of immunotherapy, and regulating the TME. Ultrasound can amplify the
therapeutic effects of immunotherapy through multiple mechanisms, including
thermal effects, mechanical effects, microbubble cavitation, and sonodynamic
therapy. Thermal effects induced by high-intensity focused ultrasound (HIFU)
can destroy tumor tissues, releasing tumor antigens and heat shock proteins,
thereby activating systemic immune responses. Mechanical approaches such as
histotripsy can liquefy tumors without thermal damage, preserving antigenic
structures and enhancing immune responses within the TME. Ultrasound-
mediated microbubble cavitation increases vascular permeability, facilitating
the delivery of immune cells and immune checkpoint inhibitors into tumor
tissues and enhancing signal transduction to convert “cold” tumors into
immune-active "hot” tumors. Sonodynamic therapy generates reactive oxygen
species under ultrasound stimulation, inducing immunogenic cell death and
reshaping the TME. Furthermore, this review outlines the research progress of
ultrasound-immunotherapy combinations in various cancers, including lung
cancer, breast cancer, and melanoma, demonstrating superior efficacy
compared to immunotherapy alone. Ultrasound not only enhances antitumor
immune effects but also enables real-time monitoring of tumor progression and
immune modulation within the TME. Finally, the review discusses current
challenges and future prospects. By systematically summarizing the types of
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ultrasound-assisted immunotherapy, their mechanisms within the TME, and
recent advances in clinical applications, this article aims to provide a
theoretical foundation and technical reference for developing ultrasound-
immunotherapy strategies targeting the TME.

ultrasound, ultrasound-assisted immunotherapy, tumor microenvironment, tumor,
immunity, immunotherapy

1 Introduction

In recent years, immunotherapy for cancer patients has
attracted increasing attention. Immune signal transduction at
single-cell resolution has provided new insights for the
combination of immunotherapy and ultrasound in tumor
treatment. The tumor microenvironment (TME) plays a critical
role in tumor initiation, progression, and metastasis, particularly
the immune microenvironment, whose regulatory capacity directly
influences the efficacy of immunotherapy (1). In recent years, with
the widespread application of tumor immunotherapies such as
immune checkpoint inhibitors (ICI), the survival of patients with
advanced malignancies has been significantly prolonged (2).
However, not all patients benefit from these therapies. Especially
in the context of critical illness, some patients exhibit a markedly
suppressed TME, resulting in poor responses to immunotherapy
(3). For instance, in patients with advanced melanoma and lung
cancer, the overall response rate to immunotherapy is only 20%-
30%, and many “immune cold tumors” fail to mount effective
immune responses due to a lack of infiltrating T cells (4). Therefore,
enhancing tumor immunogenicity, improving response rates to
immunotherapy, and modulating the TME—particularly
achieving more efficient and individualized immune interventions
in critically ill cancer patients—have become key research priorities
in the field of tumor immunotherapy.

Medical ultrasound technology offers unique advantages in the
diagnosis and treatment of tumors in critical care settings, including
real-time imaging, the absence of ionizing radiation, and its
potential for physical therapy applications (5). Recent studies
have demonstrated that ultrasound can be applied not only in
tumor imaging diagnosis but also in modulating the TME through
thermal and mechanical effects (3). For instance, physical ablation
techniques such as high-intensity focused ultrasound (HIFU) can
directly kill tumor cells and release tumor-associated antigens,
thereby transforming lesions into “in situ vaccines” that elicit
systemic immune responses (6, 7). In addition, the cavitation
effect generated by ultrasound in combination with microbubble
contrast agents can significantly increase local vascular
permeability, facilitating the infiltration of immunotherapeutic
agents and effector immune cells into tumor tissues, thereby
enhancing local drug concentration (8-10). Simultaneously,
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ultrasound can induce immunogenic cell death (ICD) and the
release of inflammatory cytokines, activating antigen-presenting
cells such as dendritic cells (DCs), and enhancing T cell
infiltration and immune signal transduction within the TME (11,
12). Therefore, ultrasound holds promise as a powerful adjunct to
immunotherapy, facilitating the conversion of “immune cold
tumors” into “immune hot tumors,” thereby improving the
overall efficacy of immunotherapy in critically ill cancer patients
(13, 14). (Reviewer 2 Q1) However, ultrasound combined with
immunotherapy still has certain limitations. First, in clinical
practice, the selection of ultrasound parameters (such as
frequency, power, and pulse mode) varies widely, with different
standards across regions and subjective differences among
clinicians, which affects the comparability of treatment outcomes.
Second, many novel materials are still in the experimental stage and
generally face issues such as poor stability, insufficient
biocompatibility, and challenges in clinical translation (15).
Furthermore, in the field of critical care medicine, ultrasound
combined with immunotherapy lacks large-scale randomized
controlled trials to validate its long-term efficacy and safety (16).
Therefore, future efforts in critical care should focus on optimizing
clinical trial design, establishing standardized protocols, and
developing new materials to further advance ultrasound-
based immunotherapy.

(Reviewer 2 Q2) In the Surgical Intensive Care Unit (SICU),
tumor patients are often postoperative or present with severe
complications, frequently accompanied by immunodeficiency. As
a noninvasive and bedside-operable technique, ultrasound can not
only monitor tumor progression in real time but also reduce the
inconvenience of frequent transfers between hospital departments
(17). Meanwhile, addressing the immunodeficiency of SICU
patients, ultrasound ablation and cavitation technologies can
minimize surgical trauma while improving the immune
microenvironment and promoting postoperative recovery (18).
Looking forward, with the continuous development of integrated
imaging and therapy, ultrasound combined with immunotherapy is
expected to become an important adjunctive treatment for critically
ill patients in the SICU, playing a significant role in both
preoperative assessment and postoperative recovery.

Based on the aforementioned background, this review
systematically summarizes the current applications and research
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advances of ultrasound-assisted immunotherapy in tumors from
the perspective of the TME. First, we introduce the types of
ultrasound-assisted immunotherapy in cancer patients, the
relationship between inflammation and signal transduction in the
TME, and the underlying mechanisms. Subsequently, we focus on
three representative malignancies—lung cancer, breast cancer, and
melanoma—to explore the specific applications of ultrasound
technology in TME-related immunotherapy and the associated
research progress. We then conduct a comparative analysis of
current technological approaches and academic viewpoints, such
as the differences between thermal and mechanical ablation in
eliciting immune responses, as well as emerging explorations of
sonodynamic therapy in immune activation and immune signaling
(13). In addition, we evaluate the current research gaps and key
technical challenges in the field. Finally, drawing on the latest
research related to inflammation and signal transduction within
the TME, we discuss future prospects for integrated image-guided
immunotherapy, artificial intelligence (AI), targeted microbubble
carriers, and sonogenetics. In summary, this review systematically
outlines the categories of ultrasound-assisted immunotherapy and
its mechanisms of action within the TME—including cytokine
expression, immune cell modulation, and immune signal
transduction—and further explores its application and progress in
various tumor types. (Reviewer 5 Q1) This review will introduce the
types and mechanisms of ultrasound-assisted immunotherapy, as
well as its applications in various tumors, aiming to provide a
theoretical basis and technical reference for advancing image-
guided immunotherapeutic strategies targeting the TME.

2 Types and mechanisms of
ultrasound-assisted immunotherapy

2.1 Thermal effects of ultrasound and
immune activation

In the treatment of critically ill cancer patients, HIFU can
generate localized hyperthermia within tumor tissues, inducing
coagulative necrosis or programmed apoptosis of tumor cells
while simultaneously releasing a substantial quantity of tumor-
associated antigens, heat shock proteins (HSPs), and other danger-
associated molecular patterns (19-22). Studies have demonstrated
that maintaining moderate thermal levels (~43°C) facilitates local
immune cell infiltration, reduces stromal pressure, enhances
membrane permeability, and upregulates HSP expression (19).
HSPs can form complexes with antigenic peptides, which are
taken up by macrophages and DCs, leading to the expression of
pro-inflammatory cytokines and co-stimulatory molecules, thereby
activating tumor-specific adaptive immune responses (19, 23, 24).
In clinical management of critical oncology cases, evidence suggests
that HIFU ablation significantly enhances antitumor immune
activity in peripheral blood, maintaining stable levels of CD4"
and CD8* T cells and natural killer (NK) cells. This
immunological benefit surpasses the suppressive effects often
associated with traditional surgical interventions, further
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supporting the role of thermal ablation as an effective immune
adjuvant in immunotherapy (25-27). However, thermal ablation
alone presents certain limitations. Sustained high temperatures may
lead to extensive protein denaturation within tumor tissues, thereby
reducing the immunogenicity of released antigens and
compromising the efficacy of subsequent immune responses (28,
29). To address these limitations, non-thermal ultrasound ablation
technologies, primarily based on mechanical disruption, have
recently emerged. These approaches offer improved safety and
precision, particularly suitable for critically ill cancer
patients (Figure 1).

2.2 Mechanical effects of ultrasound and
immunogenicity

The mechanical effects of ultrasound refer to tissue disruption
primarily mediated by physical forces such as acoustic cavitation
rather than thermal elevation. Representative technologies include
emerging therapies such as histotripsy (10, 13, 30). Histotripsy
utilizes high-pressure, low-duty cycle ultrasound pulses to induce
rapid oscillation and collapse of cavitation microbubbles within the
targeted tissue, mechanically “liquefying” tumor tissues into
acellular debris (31, 32). Unlike thermal ablation, which often
results in fibrotic scarring, histotripsy enables emulsification of
tissue, promoting antigen exposure and presentation, and is more
effective in eliciting immune responses (33). For example, Eric et al.
(34) demonstrated in a murine melanoma model that following
boiling histotripsy treatment of poorly infiltrated “cold” tumors, the
level of tumor antigen in draining lymph nodes markedly increased
within 24 hours—nearly tripling baseline levels—suggesting that
this technique may help overcome immune resistance in tumors
with low immunogenicity. Moreover, mechanical ablation preserves
the native structure of tumor antigens by avoiding heat-induced
denaturation, thereby facilitating effective dendritic cell activation
and T-cell-mediated immune responses (10, 35, 36). In the context
of critical oncology care, researchers have further compared the
efficacy of mechanical ablation combined with immune checkpoint
inhibitors (ICIs) versus ICIs alone, finding that the combination
strategy significantly enhances systemic antitumor immunity and
effectively suppresses distant tumor lesions (36, 37). Consequently,
a key focus of current research is to optimize ultrasound parameters
that favor mechanical effects while ensuring safety, in order to
maximize the immunotherapeutic potential of ultrasound-mediated
tissue ablation in critically ill cancer patients (32, 37, 38).

(Reviewer 5 Q3) Both mechanical and thermal effects are key
mechanisms through which ultrasound acts on tumors, and they
differ markedly in both their principles and duration.
Mechanistically, the thermal effect primarily results from tissue
absorption of ultrasonic energy and its conversion into heat, leading
to local temperature elevation, protein denaturation, and the
induction of ICD, whereas the mechanical effect arises mainly
from acoustic pressure fluctuations and cavitation during
ultrasound propagation, directly disrupting cell membranes,
altering permeability, and rupturing lysosomal and mitochondrial
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High-intensity focused ultrasound (HIFU) acts on tumor tissue, raising the local temperature to 43°C, thereby inducing the release of tumor-
associated antigens and heat shock proteins (HSPs). These HSPs form HSP-peptide complexes, which are subsequently phagocytosed by
macrophages or dendritic cells (DCs), leading to the expression of inflammatory cytokines and co-stimulatory molecules, ultimately activating

tumor-specific adaptive immune responses.

membranes, ultimately inducing tumor cell death (22, 39). In terms
of duration, the thermal effect typically exhibits a continuous, mild,
and relatively stable energy release, while the mechanical effect
features instantaneous and explosive energy output (40).
Moreover, under certain conditions, ultrasound-mediated
mechanical and thermal effects can overlap. During prolonged
ultrasound exposure, mechanical effects can induce relative
motion between cells and the extracellular matrix, enhance
cellular metabolism, cause microstructural damage, and increase
ROS production, all of which may lead to localized temperature
elevation (31). However, this heat generation is usually transient
and localized, without causing widespread tissue heating. Notably,
such localized thermal reactions induced by mechanical effects can
further enhance ROS generation and drug release, thereby
amplifying the overall antitumor efficacy of ultrasound therapy (41).

2.3 Ultrasound cavitation and
microbubble-mediated
immunomodulation

Ultrasound-induced cavitation refers to the oscillation, growth,
and eventual collapse of microbubbles in a fluid under ultrasonic
exposure, releasing high-energy physical forces (32, 42, 43). Due to
the aberrant vascular architecture and elevated interstitial pressure
in tumor tissues, passive drug penetration is often inefficient (44,
45). Ultrasound-targeted microbubble destruction (UTMD) utilizes
microjetting and shock waves generated by cavitation to create
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transient and reversible pores and fissures in the vascular
endothelium, thereby markedly enhancing the retention and
permeability of macromolecular drugs within tumor regions (46,
47). (Reviewer 2 Q4) It is noteworthy that UTMD can act on
vascular endothelial cells, enlarging the intercellular gaps and
thereby facilitating the diffusion and penetration of drug
molecules. However, this does not allow tumor cells to pass
through these gaps into the bloodstream, preventing systemic
dissemination. This is mainly because the diameter of the
endothelial gaps induced by UTMD is limited, permitting only
drug molecules to pass through, whereas the larger size of tumor
cells prevents them from crossing the endothelial barrier into
circulation (48, 49). Studies have demonstrated that UTMD not
only physically disrupts tumor microvasculature and reduces local
perfusion but also improves the uptake of immunotherapeutic
agents within tumor tissues, particularly benefiting drug
distribution in immunologically “cold” regions (4). For instance,
Dong et al. (50) employed low-frequency ultrasound with
microbubbles to transiently open the blood-brain barrier (BBB)
in a murine glioma model, successfully delivering a CXCL10
chemokine and IL-2/anti-PD-L1 antibody complex into the
tumor region. This approach enhanced CD8" T-cell infiltration
and cytotoxic activity. The phased delivery strategy, controlled via
ultrasound frequency, effectively optimized immune cell activation
and significantly improved the immunotherapeutic efficacy in
brain tumors.

Another pivotal mechanism of cavitation lies in inducing
localized tissue damage and cellular disruption, which
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subsequently releases tumor antigens and damage-associated
molecular patterns (DAMPs), thereby activating immune cells
and augmenting antitumor immune responses. Wu et al. (4), in a
murine breast cancer model, demonstrated that low-intensity
focused ultrasound-activated high-concentration microbubbles
induced cavitation that effectively blocked intratumoral blood
flow and directly lysed tumor cells, triggering ICD. Concurrently,
the number of intratumoral DCs and cytotoxic T lymphocytes
(CTLs) increased significantly, accompanied by elevated serum
levels of immune mediators such as IL-12 and TNF-o. Notably,
when combined with anti-PD-L1 therapy in this model, a
synergistic enhancement in tumor suppression was observed,
indicating that UTMD has the potential to amplify immune
checkpoint blockade efficacy (51). In addition, nanoscale
acoustically responsive carriers (e.g., nanobubbles, nanodroplets)
exhibit similar immunostimulatory mechanisms. Due to their
smaller size, these carriers can penetrate deeper into tumor cores
via enhanced permeability and retention (EPR) effects, thereby
further amplifying cavitation-mediated immune activation in
poorly accessible regions (14). Collectively, ultrasound cavitation
combined with microbubble technology demonstrates considerable
potential in activating antitumor immunity through dual
mechanisms—enhancing drug delivery efficiency and eliciting
immune responses. This strategy offers promising applications
in sensitizing tumors to immunotherapy and converting
“immune-cold” tumors into immunologically active “hot”
phenotypes (Figure 2).

Blood-brain barrier

10.3389/fimmu.2025.1670527

2.4 Sonodynamic therapy and
immunological effects

SDT is an emerging therapeutic strategy that employs
ultrasound to activate sonosensitizers, generating large quantities
of reactive oxygen species (ROS) to induce tumor cell death and
stimulate antitumor immune responses (52, 53). Mechanistically
similar to photodynamic therapy, SDT offers superior tissue
penetration and focal targeting capabilities due to the physical
properties of ultrasound. ROS generated during SDT can directly
induce ICD in tumor cells and promote the release of DAMPs,
including high mobility group box 1 protein (HMGBI), adenosine
triphosphate (ATP), and calreticulin (CRT), thereby facilitating
dendritic cell (DC) maturation and subsequent T cell-mediated
cytotoxic immune responses (54). (Reviewer 5 Q2) ROS play a dual
regulatory role in tumor initiation and progression. Low or
sustained levels of ROS generally promote tumor formation and
development, whereas high or acutely elevated levels of ROS exert
significant antitumor effects (55, 56). Within the TME, moderate
levels of ROS act as key signaling molecules that induce (ICD,
thereby promoting the maturation and activation of antigen-
presenting cells such as dendritic cells and enhancing antitumor
immune responses. However, tumor cells often upregulate
antioxidant factors—such as GSH—to resist oxidative damage
and eliminate excessive ROS, maintaining a low ROS level
conducive to their survival and proliferation, thus creating an
immunosuppressive TME favorable for tumor growth (57). In

<
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FIGURE 2
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Ultrasound-induced microbubble cavitation acts on brain tumors, opening the tight junctions of the blood—-brain barrier (BBB) while promoting the
release of drug-loaded nanoparticles and the delivery of anti—-PD-L1 antibodies, CXCL10 chemokines, IL-2, and other agents to form therapeutic
complexes. These drugs and cytokines bind to the surface of T cells and diffuse through the expanded BBB gaps into the tumor region to eliminate

tumor cells.
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contrast, ultrasound-mediated ROS release typically occurs as a
short-term, high-intensity, and localized oxidative burst, capable of
rapidly overcoming the tumor’s antioxidant defense barrier,
disrupting the immunosuppressive microenvironment, and
thereby achieving efficient tumor cell killing while enhancing the
overall efficacy of immunotherapy (58, 59). Additionally, ROS can
modulate the TME, for example by promoting the polarization of
tumor-associated macrophages from the immunosuppressive M2
phenotype to the immunostimulatory M1 phenotype and
enhancing antigen presentation, thus contributing to the reversal
of local immune suppression (60-62). (Reviewer 3 Q4) In tumor
therapy, inducing macrophages toward M1 polarization helps
enhance antitumor effects. This is primarily because Ml
macrophages can secrete various pro-inflammatory factors (e.g.,
TNEF-a, IL-12) and generate ROS, which directly or indirectly kill
tumor cells while activating the host immune system, thereby
inhibiting tumor growth and metastasis (63, 64). However,
excessive M1 polarization may trigger intense local immune-
inflammatory responses. To address this, controlled-release
strategies using biomaterials can finely regulate the degree of M1
polarization, thereby mitigating immune-mediated damage to
surrounding normal tissues (65, 66). In recent years, advances in
materials science have led to the development of various novel
sonosensitizers, including organic agents such as porphyrins and
phthalocyanines, inorganic nanomaterials such as metal oxides, and
hybrid materials such as metal-organic frameworks (MOFs) (67,
68). For instance, a novel fluorinated covalent organic polymer

Tumor tissue

mmunogenic Cell Death
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sonosensitizer nanomaterial (PFCE@THPPpf-COPs) was
developed to co-deliver perfluoroether, alleviating tumor hypoxia
and enhancing SDT efficacy. This nanoplatform, when combined
with anti-CD47 immunotherapy, significantly induced ICD,
activated antitumor immune responses, enhanced T cell and M1
macrophage infiltration, and eftectively suppressed tumor growth
and recurrence (69). Another study encapsulated a sonosensitizer,
the immune adjuvant R848, and tumor cell membranes within
nanoparticles, enabling ultrasound-triggered ROS release and co-
delivery of the adjuvant. This approach elicited potent systemic
antitumor immune responses and immune memory effects,
effectively eradicating both primary and metastatic lesions,
thereby exhibiting a “vaccine-like” effect (70) (Figure 3).

Notably, in addition to apoptosis, ROS may also induce
pyroptosis—a form of programmed cell death mediated by
inflammasomes and characterized by the massive release of pro-
inflammatory cytokines and DAMPs, thereby eliciting a more robust
immune response (71, 72). Previous studies have demonstrated that
optimizing the structure of sonosensitizers or simultaneously
inhibiting tumor cell antioxidant defense mechanisms—such as
depleting glutathione (GSH)—can enhance ROS-induced
pyroptosis, thereby significantly improving the immune activation
potential of SDT (73). Currently, sonodynamic immunotherapy still
faces several challenges, primarily including the limited generation of
ROS due to tumor hypoxia and the suboptimal selection and delivery
efficiency of sonosensitizers (73). Nevertheless, with the rapid
advancement of nanocarriers, composite materials, and targeted

DAMPs
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Sonodynamic therapy (SDT) applies ultrasound to tumor tissues, activating sonosensitizers that convert ultrasonic energy into reactive oxygen
species (ROS). The generated ROS induce immunogenic cell death (ICD) in tumor cells and promote the release of damage-associated molecular
patterns (DAMPs), including high mobility group box 1 (HMGB1), adenosine triphosphate (ATP), and calreticulin (CRT). These DAMPs facilitate the
maturation of dendritic cells (DCs), thereby triggering T cell-mediated cytotoxic immune responses. Alternatively, ROS can modulate the tumor
Microenvironment (TME) by promoting the polarization of macrophages from the M2 phenotype to the M1 phenotype, thus activating immune

regulatory functions within the TME.
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delivery systems, SDT is expected to become an important adjunctive
strategy in immunotherapy, particularly offering promising clinical
potential for overcoming the immunosuppressive microenvironment
of solid tumors. (Reviewer 2 Q3) Ultrasound may overcome the
immunosuppression of solid tumors primarily through the following
mechanisms: on one hand, sonosensitizers and nanocarriers can
generate ROS under ultrasound stimulation, inducing ICD and
promoting antigen release, thereby remodeling the immune
microenvironment and alleviating the immunosuppressive state of
the TME (74). On the other hand, ultrasound-mediated cavitation
can transiently increase tumor vascular permeability, facilitating the
infiltration of immune cells and ICIs into the tumor core, thereby
enhancing the efficacy of immunotherapy.

In summary, ultrasound significantly enhances the
responsiveness of critically ill cancer patients to immunotherapy
through multiple mechanisms, including thermal effects,
mechanical disruption, cavitation, and sonodynamic therapy.
(Reviewer 2 Q6) These effects can act independently or
synergistically. On this basis, they can also activate the endogenous
immune system, thereby achieving synergistic antitumor therapy
(10). For example, the combined application of ultrasound thermal
and mechanical effects in tumor treatment demonstrates significantly
greater efficacy than either approach alone; when this method is
combined with immune stimulation, it holds promise as a key
strategy for eliciting systemic and durable antitumor immunity
(37). These mechanisms not only facilitate antigen release and
immune cell infiltration but also improve drug delivery efficiency
and remodel the immune microenvironment—particularly
demonstrating translational potential in “immune-cold tumors.”

(Reviewer 5 Q1) In conclusion, ultrasound technology provides
strong physical support for tumor immunotherapy and effectively
promotes the clinical implementation and development of precise
treatment regimens for severe tumor cases. The following sections
will further explore the specific applications and efficacy of these
mechanisms in specific tumor types.

3 Application of ultrasound combined
with immunotherapy in lung cancer

(Reviewer 1 Q1) In the SICU, managing critically ill patients,
especially those with advanced malignancies, poses significant
challenges (75). Ultrasound combined with immunotherapy plays
an important role in their postoperative recovery and tumor
progression monitoring. This therapeutic approach not only helps
assess changes in postoperative tumor burden but also modulates
the TME, thereby enhancing the efficacy of immunotherapy (47). In
the field of critical care, common tumor types include lung cancer
and breast cancer; these critically ill cancer patients often experience
rapid disease progression and poor prognosis, making ultrasound
combined with immunotherapy highly valuable for improving
patient outcomes.
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Advanced-stage lung cancer, particularly non-small cell lung
cancer (NSCLC), is one of the primary indications for ICI therapy.
However, therapeutic efficacy is often limited by tumor heterogeneity
and variations in immune microenvironments across metastatic sites
(76-79). Among these, liver metastases—a common and prognostically
unfavorable form of spread in lung cancer—exhibit poor
responsiveness to immunotherapy due to the intrinsic immune
tolerance of hepatic tissue (80). To overcome the
immunosuppressive nature of such “immune-cold” metastatic
lesions, clinical efforts have explored the use of localized ultrasound-
based interventions to modulate the hepatic immune
microenvironment. An ongoing phase II clinical trial is currently
evaluating the efficacy of HIFU combined with PD-1 blockade in
lung cancer patients with liver metastases, under ultrasound guidance
(81). The therapeutic strategy involves HIFU ablation of liver
metastases one week prior to the initiation of immunotherapy. This
approach aims to induce tumor debulking and antigen release via
localized ablation, thereby enhancing the subsequent systemic immune
response to PD-1 inhibition. Concurrently, the study seeks to assess
HIFU-induced immune alterations and identify potential
immunological biomarkers. However, this trial remains under
follow-up, and the final results are expected to be released in
December 2026 (Table 1).

On the other hand, for primary lung lesions, the application of
ultrasound is limited due to the air-containing nature of pulmonary
tissue, which hinders direct imaging via transthoracic ultrasound.
Consequently, ultrasound in such cases is primarily employed for
interventional diagnostics and monitoring of metastatic lesions.
Among these, endobronchial ultrasound-guided transbronchial
needle aspiration (EBUS-TBNA) has emerged as the gold standard
technique for assessing hilar and mediastinal lymph node metastases
and obtaining tissue specimens. Notably, specimens acquired via EBUS
can be used not only for tumor staging but also for the evaluation of
immune biomarkers such as PD-L1 expression, thereby providing
critical guidance for immunotherapy decision-making. Thus, in the
context of expanding immunotherapeutic applications, the clinical
importance of EBUS is increasingly recognized: by integrating
imaging navigation with molecular diagnostics, EBUS offers vital
support for tailoring individualized immunotherapy strategies in
patients with advanced lung cancer.

For distant metastatic lesions of lung cancer (e.g., supraclavicular
lymph nodes, adrenal glands, liver), ultrasound imaging serves as an
important tool for therapeutic response evaluation during
immunotherapy (82-84). Given the challenges in imaging
interpretation, such as pseudoprogression frequently observed with
immunotherapy, multiparametric imaging modalities are required to
improve diagnostic accuracy. Contrast-enhanced ultrasound (CEUS)
offers real-time information on tumor perfusion and helps differentiate
between true disease progression and transient enlargement caused by
immune cell infiltration (85, 86). For instance, in the monitoring of
liver metastases, CEUS is highly sensitive to changes in tumor blood
flow: effective immunotherapy is typically indicated by reduced or
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TABLE 1 Applications of ultrasound combined with immunotherapy in different tumor types.

Ultrasound modalities

Combined immunotherapy

strategies

10.3389/fimmu.2025.1670527

Effects and advantages

Lung Cancer

Breast Cancer

Melanoma

Hepatocellular

HIFU local ablation, EBUS-TBNA biopsy,
CEUS for therapeutic monitoring, and FUS-
assisted BBB permeability enhancement.

HIFU/LIFU ablation, CEUS dynamic
monitoring, and SWE-based prediction of
immune response.

CEUS for early identification of immune
response, FUS to enhance immune
activation, and SDT to boost antitumor
activity.

Ablation techniques such as HIFU, RFA,

Combined with PD-1/PD-L1 inhibitors to
enhance immune response against liver
metastases; EBUS-TBNA + ICI for treatment
evaluation.

Neoadjuvant chemotherapy + CEUS assessment;
SWE + ICI treatment.

FUS + CD40 agonist + ICI to activate antitumor
immunity; HDRT + LDRT + UTMD to enhance
immune cell infiltration in the TME.

HIFU + PD-1 inhibitor to induce ICD in HCC.

Tumor reduction + antigen release, modulation of
the immune microenvironment, sensitivity to
immunotherapy 1; evaluation of ICI efficacy.

Induction of ICD, remodeling of TME, Al-assisted
SWE to predict immune response.

Efficacy prediction; local ablation enhances T cell
activation and infiltration 1; growth of untreated
distant tumors |, survival 1.

Activation of DCs and T cells, sensitivity to anti-

Carcinoma MWA, PE], and CRA combined with PD-1 agents 1; antitumor efficacy 1, complete
immunotherapy. tumor ablation rate 1, local recurrence rate |.

Pancreatic SDT to activate T cell immunity and SDT + PD-LI inhibitor to induce immune “Diagnosis + therapy” integration; induction of

Cancer ultrasound-based “diagnosis + therapy” response against distant tumors. adaptive immune response, growth of distant
integration. tumors |.

Glioma MB-FUS to assist BBB penetration; SDT MB-FUS + ICI to facilitate BBB penetration and Overcoming BBB barrier to drug delivery, drug
combined with PDT. improve ICI delivery; SDT + PDT to induce ICD. | delivery efficiency in the CNS 1; intratumoral

ROS 1, antitumor efficacy 1.
Bladder Ultrasound combined with MBs for targeted | Ultrasound + MBs to deliver gemcitabine Precise drug delivery, drug side effects |, tumor
Cancer drug delivery. targeted to tumor tissue. growth |.

1 means up, | means down.

absent enhancement in the lesion center, suggesting tumor necrosis;
conversely, increased perfusion may raise concern for tumor
progression or excessive inflammatory response. Although no
dedicated studies have systematically evaluated CEUS for monitoring
immunotherapy response in lung cancer, its proven utility in assessing
antiangiogenic treatments, such as with tyrosine kinase inhibitors
(TKIs), provides a valuable reference (87). Future advancements in
CEUS may include the development of microbubbles targeted to PD-
L1 or other immune-related molecules, enabling molecular
visualization of immunological changes within lung cancer
metastases (88). Similar explorations have been reported in other
tumor models, such as the use of VEGFR2-targeted CEUS
microbubbles to monitor immunotherapy-induced vascular changes
in melanoma (89), an approach that could be extended to lung cancer-
related research.

It is noteworthy that focused ultrasound (FUS)-mediated BBB
opening combined with immunotherapy is emerging as a cutting-edge
therapeutic strategy for the clinical challenge of brain metastases in
critically ill patients with lung cancer (90, 91). Lung cancer is associated
with a high incidence of brain metastases; however, the majority of
systemic therapeutics fail to effectively penetrate the BBB, thereby
limiting the distribution of immune effectors to intracranial lesions.
(Reviewer 5 Q4) FUS can overcome this limitation and enhance tumor
sensitivity to drugs through the following mechanisms: first, FUS can
transiently open the tight junctions of the BBB via mechanical
cavitation, allowing macromolecular agents such as immune
checkpoint inhibitors (anti-PD-1/PD-L1 antibodies) and cell-based
therapies (e.g, CAR-T cells) to cross the BBB, thereby significantly
increasing the infiltration of immune effector cells into the central
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nervous system (92). Sabbag et al. (93) demonstrated that this
technique enables safe drug delivery and induces significant tumor-
suppressive effects in murine brain tumor models. Therefore, for lung
cancer patients with brain metastases, FUS under image guidance holds
the potential to enhance immunotherapeutic sensitivity and improve
the treatment prognosis of central nervous system metastases.
(Reviewer 5 Q4) It is worth noting that this BBB opening is
reversible and safe, without causing permanent damage (94).
Secondly, FUS can induce an increase in local ROS levels, thereby
activating antigen presentation and inducing ICD, which promotes the
transition of the TME from an immunosuppressive to an immune-
activated state and enhances the sensitivity of tumors to
immunotherapeutic agents (58). In addition, studies have shown that
FUS can improve local tumor perfusion and oxygenation, thereby
inhibiting hypoxia-induced overexpression of HIF-low and the
activation of its downstream drug resistance signaling pathways, such
as the PI3K/AKT pathway (95). In summary, FUS suppresses tumor
drug resistance and enhances the overall efficacy of immunotherapy
through multiple mechanisms, including reversible regulation of BBB
permeability, upregulation of ROS production, induction of ICD, and
modulation of hypoxia-related signaling pathways.

Overall, in the context of critical care for patients with lung
cancer, ultrasound functions as a “behind-the-scenes hero” by
indirectly enhancing the efficacy and personalization of
immunotherapy through tumor debulking via ablation, guiding
diagnostic sampling, and dynamically monitoring metastatic
lesions (36). Although its direct application to primary
pulmonary lesions remains challenging due to the air-containing
anatomy of lung tissue, ultrasound is gradually demonstrating
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significant potential in managing metastatic sites, modulating the
immune microenvironment, and activating systemic immune
responses (76, 96). This is particularly important in critically ill
lung cancer patients, where achieving rapid diagnosis and effective
treatment under safe conditions is paramount. In such complex
clinical scenarios, the multifaceted value of ultrasound is especially
prominent. With the advancement of clinical and translational
research, ultrasound is expected to become an indispensable
component of the comprehensive immunotherapeutic framework
for lung cancer.

4 Ultrasound-assisted immunotherapy
in breast cancer

Breast cancer, particularly triple-negative breast cancer
(TNBC), exhibits a generally low response rate to immunotherapy
due to the absence of specific molecular targets, prompting
increasing interest in combination strategies to enhance immune
efficacy (97, 98). (Reviewer 5 Q6) For example, Adams et al. found
that in metastatic TNBC, the objective response rate to
pembrolizumab monotherapy was 5.3% in previously treated
patients and 21.4% in treatment-naive, PD-L1-positive patients
(99, 100). In recent years, ultrasound technology has been
extensively applied in the diagnosis and treatment of breast
cancer, including for biopsy guidance, tumor ablation, and
dynamic assessment of neoadjuvant therapy responses, thereby
establishing a solid foundation for its integration with
immunotherapy (101). ICIs, such as PD-1/PD-L1 antibodies, have
shown preliminary efficacy in breast cancer, especially in TNBC
(102). For instance, a phase III clinical trial conducted by Schmid
et al. (103) demonstrated that the combination of atezolizumab and
paclitaxel significantly prolonged progression-free survival in PD-
Ll-positive TNBC patients. Although the overall sensitivity of
breast cancer to immunotherapy remains limited, multiple
combination strategies—such as chemotherapy, targeted
therapies, and local physical interventions like ultrasound ablation
—are being actively investigated to overcome the barriers of
“immune cold tumors” and expand the clinical indications of
immunotherapy (104, 105). In the comprehensive management
of critically ill breast cancer patients, leveraging ultrasound for
precise tumor localization and therapeutic monitoring, thereby
enhancing the specificity and response rate of immunotherapeutic
interventions, represents a critical research direction that warrants
further exploration.

4.1 Ultrasound ablation and mechanical
effects facilitate immune activation

Breast tumors are often located in superficial regions, making
them well-suited for local physical therapies such as HIFU and
radiofrequency ablation (RFA). Previous studies have demonstrated
that ablation of breast tumors can induce the release of tumor-
associated antigens and activate host immune responses (106).
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Particularly in TNBC models characterized by poor baseline
immune infiltration, local thermal ablation or mechanical
disruption holds the potential to convert “cold tumors” into “hot
tumors,” thereby enhancing the responsiveness to immunotherapy
(107, 108). Wu et al. (4) proposed a strategy combining low-intensity
focused ultrasound with targeted microbubble destruction (LIFU-
TMD), which was applied in combination with PD-L1 antibody in a
4T1 breast cancer model. The results showed that LIFU-TMD
caused rupture of aberrant tumor vasculature and a sharp decrease
in blood perfusion, creating a “starved” microenvironment favorable
to immune cell infiltration while inducing ICD, such as CRT
exposure. Immunological analysis revealed significantly increased
levels of DCs and CD8" T cells in both tumors and their draining
lymph nodes in the treated group, accompanied by elevated levels of
immune-promoting cytokines such as IL-12 and TNF-q, ultimately
leading to marked tumor suppression. These findings suggest that
ultrasound microbubble-mediated mechanical intervention may
substantially enhance TNBC sensitivity to ICIs, offering a novel
immunotherapeutic sensitization strategy for critically ill breast
cancer patients. Clinically, preliminary studies have explored the
use of HIFU in the treatment of advanced breast cancer. A recent
review noted that HIFU combined with immunotherapy not only
demonstrates favorable safety but also significantly improves
peripheral immune status, including increased CTL proportions
and decreased regulatory T cell (Treg) ratios (109, 110). These
studies provide both theoretical foundations and preliminary
evidence for the clinical application of “ultrasound ablation plus
immunotherapy” strategies in the management of critically ill breast
cancer patients.

4.2 Application of ultrasound imaging in
efficacy monitoring and response
prediction

Ultrasound examination serves as a routine tool for follow-up
management in breast cancer patients, offering the advantages of
real-time feedback and high repeatability. It is particularly suitable
for dynamically monitoring changes in tumor volume and tissue
characteristics (111). During immunotherapy, conventional B-
mode ultrasound can be used in conjunction with MRI/CT to
assess trends in tumor shrinkage or enlargement. Especially when
dealing with immune-related radiological phenomena such as
pseudoprogression, ultrasound provides high-frequency
evaluations of echogenic properties and blood perfusion, aiding in
the differentiation between true progression and transient increases
due to inflammatory responses (111, 112). CEUS has been widely
applied in assessing responses to neoadjuvant chemotherapy in
breast cancer, and its potential in immunotherapy monitoring is
gradually emerging (113, 114). In a comparative study by Liu et al.
(115), CEUS and MRI were evaluated for their performance in
determining ablation efficacy within three days post-microwave
ablation in 26 breast cancer patients. The results showed that both
modalities had high sensitivity and negative predictive value. While
MRI exhibited slightly better specificity and overall accuracy, CEUS
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successfully detected residual tumors missed by MRI in some cases,
indicating complementary diagnostic value. For critically ill breast
cancer patients, CEUS—being non-invasive, cost-effective, and
suitable for repeated examinations—offers a feasible alternative
for monitoring immunotherapy efficacy, particularly in scenarios
where MRI is contraindicated or not amenable to frequent
follow-up.

Emerging evidence suggests that shear wave elastography
(SWE) combined with immunologic response analysis is
becoming a novel focus in tumor imaging (116). Tumor stiffness
reflects stromal composition and immune cell infiltration; tumors
with high fibrosis and abundant cancer-associated fibroblasts
(CAFs) often present as immunologically “cold,” characterized by
low T cell infiltration and poor response to immunotherapy.
Voutouri et al. (117) conducted a study using multiple murine
tumor models, including breast cancer, and demonstrated a
significant inverse correlation between tumor shear modulus
measured by SWE and tumor suppression following ICI therapy
(e.g., PD-1 blockade). Tumors with higher baseline stiffness and
poorer perfusion responded less effectively to treatment.
Administration of matrix-softening agents such as Tranilast
improved perfusion and enhanced immune efficacy, indicating
that reducing tumor stiffness may potentiate immunotherapeutic
response. Building upon these findings, researchers incorporated AI
methodologies to automatically extract CAF-related features from
SWE images to predict immunotherapy response in TNBC patients.
A specific CAF subtype with a “wound-healing” signature was
identified, highly enriched in TNBC and closely associated with
increased stiffness and immunosuppression. Moreover, the team
developed a deep learning model trained on both murine and
clinical datasets to noninvasively estimate the abundance of this
CAF subtype using SWE imaging alone (118). Tumors with high
CAF levels exhibited poor responses to PD-1 monotherapy;
however, when combined with fibroblast growth factor receptor
(FGFR) inhibitors, immune tolerance was reversed. These findings
highlight the potential of Al-assisted SWE as a predictive imaging
tool for immunotherapy efficacy in breast cancer, offering
noninvasive, personalized decision-making support for critically
ill patients and facilitating the implementation of precision
immunotherapeutic strategies.

Taken together, current research in the field of breast cancer
suggests that ultrasound-assisted immunotherapy exerts its impact
on two critical fronts. On the therapeutic level, ultrasound
combined with immunotherapy enhances tumor immunogenicity
via localized physical modulation, induces ICD, and remodels the
TME, thereby helping to reverse the “immune-cold” tumor
phenotype. On the diagnostic and monitoring level, ultrasound
imaging technologies—such as CEUS and SWE—enable dynamic
evaluation of treatment responses, prognostic prediction, and
support for the development of personalized therapeutic
strategies, particularly suitable for the precise management of
critically ill breast cancer patients. Looking ahead, with the
advancement of clinical trials investigating ultrasound-
immunotherapy combinations (e.g., HIFU plus PD-1 blockade in
breast cancer), and the deeper integration of Al in ultrasound image
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analysis, ultrasound is expected to achieve clinical translational
breakthroughs in the immunotherapy of treatment-resistant breast
cancers, especially TNBC.

5 Application of ultrasound combined
with immunotherapy in melanoma

Melanoma is one of the earliest solid tumors to achieve
breakthroughs in immunotherapy, with PD-1 and CTLA-4
inhibitors significantly prolonging survival in patients with
advanced disease (119-121). However, approximately 40% to 60%
of patients exhibit a lack of durable responses to combined ICI
therapy, particularly in “T cell-excluded” immune-cold tumors,
which continue to pose a major challenge in the treatment of
critical-stage malignancies (122, 123). Given that melanoma
predominantly occurs in the skin or other superficial sites, it is
highly amenable to ultrasound imaging and intervention, offering
promising prospects for integrated application in this domain (124).

(Reviewer 5 Q5) Although the diagnosis of malignant
melanoma can rely on clinical ABCDE criteria and pathological
biopsy, ultrasound still plays a crucial role in its evaluation.
Specifically: (1) High-frequency ultrasound can detect melanoma
thickness and tumor invasion depth, which is of great importance
for preoperative assessment of resection margins, surgical risk
stratification, and postoperative prognostic evaluation (124). (2)
Ultrasound examination can identify early lymph node metastases
and guide image-assisted biopsy, thereby improving diagnostic
accuracy (125). (3) During immunotherapy, ultrasound enables
dynamic monitoring of disease progression with advantages of
noninvasiveness and repeatability, and can be used to assess
treatment response, detect recurrence, and guide subsequent
therapeutic strategies. In summary, ultrasound effectively
compensates for the static limitations of the ABCDE criteria and
pathological biopsy, providing significant advantages in melanoma
diagnosis, preoperative assessment, postoperative follow-up, and
disease monitoring. Therefore, ultrasound examination is both
necessary and of high clinical value for patients with melanoma.

5.1 Role of ultrasound in monitoring
immunotherapeutic efficacy in melanoma

During immunotherapy, melanoma patients require frequent
assessment of lesion dynamics, including primary tumors and
regional lymph node metastases. Ultrasound exhibits high
sensitivity in detecting subcutaneous and superficial lymph node
metastases, capable of identifying early lesions with diameters of
only a few millimeters (126). CEUS further enhances the
visualization of tumor perfusion and neovascularization, offering
critical insights for early evaluation of immunotherapeutic
response. In a study conducted by Heimer et al. (89) using a B16
murine melanoma model, VEGFR2-targeted microbubbles were
employed for CEUS detection. The results revealed a marked
reduction in tumor perfusion five days post-treatment in the
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immunotherapy group, along with significantly lower VEGFR2
signal intensity at the late molecular imaging stage compared to
controls. Immunohistochemical analysis demonstrated expanded
areas of tumor necrosis, increased TIL infiltration, and decreased
vascular density and VEGFR2 expression in the treatment group.
These findings suggest that CEUS quantitative parameters, such as
perfusion AUC and targeted microbubble binding intensity, may
serve as non-invasive imaging biomarkers capable of reflecting
therapeutic efficacy earlier than volumetric changes. CEUS has
thus proven effective in differentiating between immune responses
and irreversible progression in melanoma. Therefore, for melanoma
patients with ultrasound-visible visceral metastases such as those in
the liver or lymph nodes, CEUS can provide essential real-time
efficacy monitoring, particularly suited for the individualized
evaluation of immunotherapy in critically ill patients (126-128).

5.2 Ultrasound-assisted local therapy
enhances systemic immune response

For unresectable melanoma lesions, physical ablation and local
therapy play a pivotal role in inducing systemic antitumor
immunity, exemplified by the classical “abscopal effect” (129). As
a non-invasive ablation modality, FUS has demonstrated the
potential to enhance immune responses in preclinical studies of
melanoma. On one hand, HIFU can directly ablate melanoma
tissue, leading to massive tumor cell death and antigen release,
functioning as an “in situ tumor vaccine” (130). Hoogenboom et al.
(131) applied HIFU mechanical ablation to a murine melanoma
model and evaluated tissue fragmentation and pathological features
under varying pulse numbers. The results revealed that the method
effectively fragmented melanoma tissue, with residual viable cells
and microvasculature in the treatment zone, and the degree of
fragmentation was associated with the number of pulses and tumor
density. On the other hand, cavitation-based mechanical ablation
has shown unique advantages in melanoma models. Emerging
techniques such as histotripsy significantly enhance local immune
activity in T cell-poor “cold” tumors (10, 132). More importantly,
this process is accompanied by pronounced ICD, potentially
overcoming melanoma’s intrinsic low immunogenicity. Singh
et al. (133), using a murine B16F10 melanoma model,
implemented local boiling histotripsy combined with intratumoral
injection of CD40 agonistic antibody (HT40) alongside FUS and
ICI therapy to evaluate antitumor efficacy in “immune-cold”
tumors. The study found that HT40 markedly enhanced the
cytotoxic function of CD8" T cells, remodeled the TME, and
synergized with ICI to suppress growth of untreated distant
tumors and prolong survival. These findings indicate that FUS
and its derivative technique, histotripsy, exhibit considerable
potential in immune activation for melanoma. Not only can they
directly disrupt tumor tissue, but they also induce ICD and enhance
T cell infiltration, triggering systemic antitumor immunity. Their
synergistic application with immunotherapy offers a novel strategy
for converting “cold” melanoma and achieving abscopal effects.
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5.3 Exploration of sonodynamic therapy
and other emerging technologies in
melanoma

Melanoma patients often exhibit poor responsiveness to
chemotherapy and a high propensity for brain metastasis,
necessitating novel therapeutic approaches to complement
traditional regimens (119, 121). In recent years, the application of
SDT in melanoma has garnered increasing attention (38). Zheng et al.
(134) developed a thermosensitive chitosan hydrogel based on CuO,
nanoparticles and buthionine sulfoximine (BSO), designed to
enhance chemo-sonodynamic therapy for melanoma. The study
revealed that this hydrogel promoted oxygen generation through a
Fenton-like reaction, elevated ROS levels, and induced
ferroptosis, thereby significantly enhancing antitumor efficacy
against melanoma while concurrently accelerating the healing of
infected wounds. Furthermore, considering the prominent
neovascularization and lymphatic metastasis commonly associated
with melanoma, emerging studies have shown that high-dose
radiotherapy (HDRT), targeted ultrasound contrast microbubbles
against tumor-associated antigens or angiogenic markers, and other
molecular imaging-guided therapies offer promising outcomes in
local control of melanoma (135). For instance, Patel et al. (136)
conducted a Phase II clinical trial to evaluate the efficacy of HDRT
combined with low-dose radiotherapy (LDRT) in patients with
metastatic tumors, including immunotherapy-resistant melanoma.
The results demonstrated that HDRT+LDRT significantly increased
T cell and NK cell infiltration within tumor sites, improved the
objective response rate and local control of melanoma lesions, and
exhibited favorable safety profiles. Although these cutting-edge
approaches remain in early-stage research, they underscore the
feasibility and potential of “ultrasound plus molecular targeting”
strategies in the precision treatment of melanoma.

It is worth emphasizing that immune-related adverse events
(irAEs) are relatively common among melanoma patients receiving
immunotherapy, and effective monitoring and mitigation of these
side effects are of critical importance (137, 138). Ultrasound offers
unique value in this context. For instance, in assessing organ-specific
inflammation such as thyroiditis or immune-mediated hepatitis,
conventional B-mode ultrasound enables noninvasive detection of
parenchymal structural alterations, providing essential reference
data for clinical interventions (139, 140). (Reviewer 3 Q7) Han
et al. (141) reported that UTMD can enhance antitumor immune
responses against melanoma by improving the local TME,
promoting antigen release, and facilitating immune cell infiltration.
In addition, UTMD can increase the local tissue penetration of
drugs and modulate the tumor immune environment, thereby
achieving a synergistic antitumor effect between ultrasound and
immunotherapy, resulting in a “1 + 1>2” therapeutic outcome.
Moreover, some studies have proposed that UTMD may reduce
the incidence of certain immunotherapy-associated adverse effects
by modulating tumor vascular permeability and enhancing immune
cell infiltration; however, this hypothesis requires further
validation (141).
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In summary, melanoma, as one of the most rapidly advancing
solid tumors in the field of immunotherapy, is emerging as a critical
experimental platform for ultrasound-immunotherapy
combination strategies. From therapeutic monitoring—such as
early detection of immune responses via CEUS molecular imaging
—to local interventions like FUS or histotripsy for inducing
systemic antitumor immunity, and to novel technologies
including SDT and targeted microbubble therapy, various
ultrasound-based approaches have demonstrated promising
results in melanoma. As these strategies continue to progress
toward clinical implementation, ultrasound-assisted
immunotherapy holds great promise for improving long-term
survival and prognosis in the management of refractory
melanoma within critical care settings.

6 Ultrasound-assisted immunotherapy
in other tumor types

Beyond lung cancer, breast cancer, and melanoma, the concept
of ultrasound-assisted immunotherapy is gradually being explored
in other solid tumors, demonstrating distinct therapeutic
advantages and mechanistic features.

6.1 Hepatocellular carcinoma

HCC is the most common form of primary liver cancer and
represents the fifth leading cause of cancer-related death and the
third leading cause of all-cause mortality worldwide (142, 143). The
response rate of HCC to monotherapy with ICIs remains limited,
while physical ablation is one of the current standard local
treatment modalities for HCC (144). In recent years, studies have
attempted to combine HIFU or percutaneous RFA with
immunotherapy for the comprehensive management of
intermediate to advanced HCC (145, 146). Luo et al. (147)
conducted a comparative analysis of RFA with several other
ablation techniques for liver cancer, including microwave ablation
(MWA), percutaneous ethanol injection (PEI), and cryoablation
(CRA), to evaluate therapeutic efficacy and safety. The results
demonstrated that MWA and CRA achieved similar overall
outcomes to RFA but offered higher complete ablation rates and
lower local recurrence for larger tumors. Additionally, PEI
combined with RFA further enhanced therapeutic efficacy,
although it was associated with increased complication risk,
thereby reasonably suggesting that combining HIFU with RFA
may reduce the incidence of treatment-related complications.
Yang et al. (148) developed a mechanical high-intensity focused
ultrasound (mHIFU) system enhanced with perfluorohexane
nanodroplets (NDs-PFH) and applied it in an HCC model to
lower the cavitation threshold and induce ICD. The results
revealed that this strategy not only significantly inhibited the
growth of primary and distant tumors but also enhanced
antitumor immune responses by activating DCs and T cells, and
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synergistically improved the efficacy of immune checkpoint
blockade (e.g., PD-1 inhibitors). In conclusion, combining local
ablation with immunotherapy may provide a synergistic treatment
strategy for patients with intermediate to advanced HCC,
improving response rates and long-term survival benefits.

6.2 Pancreatic cancer

(Reviewer 1 Q3) Pancreatic cancer is considered one of the most
challenging “immune-cold tumors” due to its poor response to ICIs,
which is not only related to its highly dense stromal architecture
and immunosuppressive TME (149-151), but also to its inherent
biological characteristics, such as rapid tumor proliferation, early
distant metastasis, and resistance to conventional chemotherapy.
These factors collectively contribute to the limited curative
outcomes and poor prognosis of advanced pancreatic cancer (152,
153). In the critical care management of pancreatic cancer,
ultrasound technologies have primarily been applied in local
ablation and enhanced drug delivery. A study conducted by
Nesbitt et al. (154) employed a bilateral pancreatic cancer mouse
model to evaluate whether microbubble-mediated SDT could
induce adaptive immune responses, and further examined its
synergistic effects with anti-PD-L1 therapy on untreated distant
tumors. The results demonstrated that SDT combined with anti-
PD-LI significantly inhibited distal tumor growth and increased
infiltration of CD4" and CD8" T cells, suggesting that this strategy
could activate systemic immune responses and improve checkpoint
inhibitor efficacy. In another investigation, Delaney et al. (155)
developed ultrasound contrast agent microbubbles composed of
poly(lactic acid) (PLA) and PEG-PLA shells, encapsulating
gemcitabine for both therapy and imaging of pancreatic ductal
adenocarcinoma (PDAC). The results showed that the
microbubbles exhibited excellent imaging performance and some
antitumor potential. In this system, ultrasound functioned both as a
diagnostic modality and a therapeutic trigger, enabling a theranostic
approach to tumor management. These findings indicate that
although pancreatic cancer remains a formidable challenge for
immunotherapy, ultrasound, as a multifunctional tool, is offering
novel strategies to overcome immune resistance and achieve
integrated diagnosis and treatment.

6.3 Glioma

Gliomas represent one of the most challenging types of neuro-
oncology tumors, with poor responsiveness to immunotherapy
primarily due to the presence of the BBB and the “immune-
privileged” status of the brain (156, 157). In recent years, FUS
combined with microbubble technology has entered the clinical trial
stage, aiming to repeatedly and controllably open the BBB in glioma
regions to facilitate the delivery and therapeutic efficacy of
immunoactive agents such as anti-PD-1 antibodies and CAR-T
cells. Arvanitis et al. (158) developed and validated a closed-loop
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controlled microbubble-enhanced FUS (MB-FUS) system in a
murine glioblastoma model, combining this modality with PD-1
immune checkpoint inhibition. The study demonstrated that the
system enhanced intratumoral delivery and immunostimulatory
activity of anti-PD-1, significantly prolonged survival, and induced
the formation of memory T cells, resulting in protective immunity
upon tumor rechallenge. This line of investigation is rapidly
advancing and may offer a novel combinatorial strategy for
immunotherapy of critical central nervous system malignancies.
Additionally, photodynamic and sonodynamic therapies (PDT/
SDT) for glioma are under preliminary exploration. These
approaches utilize sonosensitizers and ultrasound to generate
ROS within tumor tissues, thereby eliciting immune responses
and eliminating residual tumor cells (159). These emerging
technologies hold promise for overcoming current therapeutic
limitations and providing new hope for refractory glioma.

6.4 Urologic and gynecologic malignancies

Urologic and gynecologic malignancies also exhibit promising
potential for the integration of ultrasound with immunotherapy.
Renal cell carcinoma (RCC) is relatively responsive to
immunotherapy; however, for some patients who are ineligible for
surgery due to tumor burden or anatomical constraints, non-
invasive ablative modalities such as HIFU can serve as a bridging
therapy (160, 161). In a murine model of muscle-invasive bladder
cancer (MIBC), ultrasound combined with microbubble-mediated
targeted delivery of gemcitabine, alongside radiotherapy, was
evaluated for therapeutic efficacy and toxicity. The results
demonstrated that this approach effectively delayed tumor
progression while significantly reducing acute intestinal toxicity
commonly associated with conventional chemoradiotherapy,
highlighting its potential to enhance the safety profile of MIBC
treatment (162). In the field of gynecologic oncology, advanced
cervical and ovarian cancers are entering the era of immunotherapy
investigation, with ultrasound microbubble-assisted drug or gene
delivery emerging as a novel adjunctive strategy. For instance,
targeted ultrasound molecular imaging (USMI) of VEGFR2 has
been shown to effectively evaluate early-stage cervical cancer (FIGO
stage 1A1/IA2), accurately distinguishing lesions <3 mm from
normal tissue. The imaging signal correlated well with
microvessel density, indicating the potential of USMI for early,
noninvasive screening and laying the groundwork for subsequent
integration with immunotherapy (163).

(Reviewer 2 Q5) Furthermore, in addition to the
aforementioned common solid tumors, ultrasound combined with
immunotherapy also plays a significant role in hematologic
malignancies. Gonzalo et al. (164) reported that using
endobronchial ultrasound with transbronchial needle aspiration
(EBUS-TBNA) for newly diagnosed lymphoma demonstrated
moderate sensitivity and very high specificity, with even higher
sensitivity for detecting lymphoma relapse. Diagnostic efficiency
could be further improved through rapid on-site evaluation,
increased sample volume, and flow cytometry. As a minimally
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invasive approach, this technique provides a reliable diagnostic
tool for patients with suspected mediastinal lymph nodes or masses.
(Reviewer 2 Q3) Compared with hematologic malignancies,
ultrasound combined with immunotherapy demonstrates greater
advantages in solid tumors. First, ultrasound can clearly assess
tumor volume, blood flow, and histological characteristics, which is
challenging in hematologic malignancies. Second, ultrasound-
mediated ablation and cavitation effects can directly act on solid
tumors, promoting antigen release and immune cell infiltration,
thereby improving the local immune microenvironment. Finally,
ultrasound combined with nanoparticles offers higher precision and
targeting in solid tumors (165). Therefore, from the perspective of
ultrasound-assisted immunotherapy, its application in solid tumors
appears more promising than in hematologic malignancies and
holds potential as an important strategy to overcome
immune tolerance.

Overall, the integration of ultrasound and immunotherapy
across various solid tumors remains in the exploratory stage, yet
research efforts are commonly focused on enhancing immune
infiltration, promoting antigen release, and overcoming both
structural and functional barriers. In the future, as the biological
characteristics of different cancer types are more deeply elucidated,
ultrasound technologies are expected to be precisely optimized
according to tumor-specific features. For instance, in highly
fibrotic tumors (e.g., pancreatic and biliary cancers), mechanical
forces may be applied to disrupt the stromal barrier; in tumors with
prominent anatomical barriers (e.g., gliomas and bladder cancer),
localized cavitation may enable targeted drug delivery; and in
tumors with potential for abscopal effects, ultrasound ablation
could be used to trigger systemic immune responses. These
strategies are anticipated to continually expand the clinical
boundaries of ultrasound-mediated tumor immunotherapy
and intervention.

7 Discussion

Ultrasound-mediated immunotherapy represents a
multidisciplinary integration of acoustics, bioengineering, and
immunology. Divergences in research focus and technical
approaches among different investigative teams have led to
several contentious directions. Overall, the current discrepancies
in scientific perspectives and technological strategies can be
summarized into the following major aspects (1) The debate
between thermal and mechanical ablation: The conventional view
holds that HIFU-based thermal ablation effectively reduces tumor
burden and releases tumor-associated antigens, thereby exerting a
certain degree of immune activation. However, recent studies have
indicated that high-temperature ablation may denature antigenic
structures, induce localized hypoxia, and exacerbate the
immunosuppressive microenvironment, making it suboptimal
from an immunoactivation standpoint (96). In contrast,
mechanical ablation techniques such as histotripsy, which avoid
thermal effects, better preserve the native conformation of tumor
antigens and generate tissue fragments that are more readily

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1670527
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

internalized and processed by immune cells such as DCs, thus being
considered more favorable for eliciting systemic immune responses
(166). In summary, each modality has distinct advantages: thermal
ablation is clinically mature and widely applied, especially suitable
for severe patients with heavy tumor burden, whereas mechanical
ablation shows superior immunogenic effects but still requires
further standardization in terms of device parameters and
operational protocols. Future research may focus on exploring
“thermal-mechanical synergy” strategies, wherein moderate
heating is first employed to improve tumor permeability and
perfusion, followed by mechanical pulses to enhance antigen
release, ultimately achieving complementary effects and optimized
immune activation (2). Technical divergence in cavitation
microbubble applications: Some studies emphasize the use of
conventional ultrasound contrast agent microbubbles for UTMD,
which leverage cavitation effects to induce local blood flow
disruption, enhance drug delivery, and stimulate localized
immune activation; these systems are user-friendly and amenable
to clinical translation (4). Alternatively, other researchers focus on
the development of functionalized or targeted microbubbles, and
even acoustically responsive nanocarriers capable of delivering
checkpoint inhibitors such as anti-PD-1/PD-L1 and anti-CTLA-4
antibodies (47). Although functional microbubbles offer higher
targeting specificity and therapeutic efficacy, they are hindered by
high production costs, poor stability, and translational barriers.
There is currently no consensus on which approach is superior. A
tiered strategy may be feasible, wherein conventional UTMD is
prioritized for rapid intervention in patients with complex immune
states or severe disease, while functional microbubbles are reserved
for specific indications or precision medicine scenarios, contingent
upon data from large-scale clinical trials (3). Positioning and future
prospects of SDT: Some studies suggest that SDT may serve as an
alternative modality for deep-seated or phototherapy-insensitive
tumors (e.g., brain tumors, pancreatic cancer), given its potential to
induce ICD and function as an immune-activating tool. Critics,
however, point out the limitations of SDT, including tumor
hypoxia, the scarcity of effective sonosensitizers, and the limited
penetration depth of acoustic energy, all of which contribute to
inconsistent therapeutic efficacy (167). Notably, advances in
materials science are gradually addressing these bottlenecks, with
the introduction of novel platforms such as oxygen-carrying
nanoparticles and MOF-based sonosensitizers (46, 68). In the
future, SDT may be utilized in combination with immunotherapy
to control multifocal or disseminated lesions in critically ill patients
who are unsuitable for ablation-based interventions. (Reviewer 1
Q2) Furthermore, it is important to note that improper application
of ultrasound—such as inappropriate parameter settings, excessive
energy, or prolonged exposure—may negatively affect tumor
treatment. Therefore, the careful selection of ultrasound
frequency and intensity, combined with prior clinical experience,
is crucial for balancing the therapeutic effects of ultrasound in
tumor management.

(Reviewer 1 Q4) Conventional treatments such as surgery,
radiotherapy, chemotherapy, and targeted therapy are often
limited in efficacy due to the immunosuppressive characteristics
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of tumors, drug resistance, and the influence of the TME (168).
Addressing these challenges, ultrasound combined with
immunotherapy demonstrates distinct advantages: on one hand,
ultrasound can improve the local TME and inhibit tumor growth
through thermal and mechanical effects (51); on the other hand,
ultrasound combined with immunotherapy can enhance the
infiltration and distribution of drugs or immune cells within the
tumor, thereby improving the efficacy of immunotherapy (169).
Therefore, ultrasound combined with immunotherapy not only
exerts local effects on tumors such as lung cancer and breast
cancer but also produces systemic synergistic effects, playing a
crucial role in enhancing overall therapeutic outcomes. (Reviewer
3 Q2) Compared with other imaging modalities, ultrasound offers
several advantages over techniques such as radiofrequency ablation,
Gamma Kanife, cryoablation, or image-guided interventions like
TACE. It enables real-time imaging, is noninvasive or minimally
invasive, and provides high soft-tissue resolution. During
examinations, ultrasound allows clear visualization of tumor
morphology and surrounding tissue changes, which is important
for assessing local tumor structures (170, 171). Moreover,
ultrasound is not only a diagnostic tool but can also be used
therapeutically, directly acting on tumor tissue through thermal
and mechanical effects, modulating the local TME, enhancing
immunotherapy efficacy, and promoting drug diffusion by
increasing endothelial cell gap permeability to improve antitumor
effects (48, 49). However, ultrasound has limitations, including
limited penetration depth, lower energy concentration, operator-
dependent variability, and certain constraints in treating deep-
seated tumors (172, 173).

Overall, the current technological approaches in ultrasound-
mediated immunotherapy are not mutually exclusive; rather, they
each demonstrate distinct advantages depending on the biological
characteristics of different tumors and specific clinical application
scenarios. (Reviewer 1 Q5) In the field of critical care medicine,
ultrasound combined with immunotherapy demonstrates
significant clinical potential in critically ill cancer patients,
particularly those with complex immune status. Ultrasound can
noninvasively modulate the TME locally, enhancing drug
penetration and immune cell infiltration (18). Moreover, as a
noninvasive technique, ultrasound allows real-time monitoring of
tumor progression, facilitating personalized treatment strategies for
critically ill cancer patients (17). This approach helps improve the
overall efficacy of immunotherapy and plays an important role in
postoperative recovery. Future research should focus on delineating
the appropriate indications for each technique while exploring the
synergistic potential of their combinatory use. For patients
undergoing cancer immunotherapy, ultrasound may emerge as a
powerful tool for personalized intervention, facilitating the
advancement of tumor treatment toward a new era of precision
and efficiency.

Nevertheless, this field still faces notable research gaps and
technical bottlenecks. Although ultrasound-immunotherapy
strategies show promising potential, their clinical translation is
challenged by multiple factors, including gaps in fundamental
mechanistic understanding, limitations in material development,
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the need for robust clinical validation, and the establishment of
comprehensive regulatory frameworks.

First, at the mechanistic level, numerous uncertainties remain.
For example, what are the key mediators of immune responses
induced by ultrasound? The mechanisms by which different
ultrasound parameters—such as frequency, power, and duty cycle—
affect immune activation are still poorly understood (37). Currently,
no unified theory exists to guide the precise optimization of
ultrasound settings specifically for enhancing immune responses,
and the lack of standardized parameterization contributes to
significant variability in results across studies (3). Establishing a
standardized ultrasound immunotherapy parameter system is an
urgent task in basic research and requires extensive validation
through animal models and acoustic field simulations. Second, the
development of sonosensitizers and nanocarrier materials remains at
an early stage. Most current sonosensitizers are derived from
photosensitizer structures and exhibit limitations such as high
hydrophobicity, poor targeting, and low biocompatibility (174).
Meanwhile, the design and scalable production of targeted
microbubbles are also constrained. Future efforts should focus on
developing “sonoimmunotherapeutic nanomedicines” that possess
intelligent responsiveness and immune-targeting capabilities, such
as nanoparticles or multifunctional microbubble systems capable of
precise localization and immune activation. These advances will
impose higher demands on materials science, pharmaceutics, and
tumor immunology (175). Third, insufficient clinical validation
remains a major bottleneck for broader implementation. Most
current evidence is derived from small animal xenograft models,
while clinical studies are still in early exploratory stages. The immune
status and tumor heterogeneity in human patients, especially those in
critical care settings, are far more complex than in animal models,
limiting the translational applicability of preclinical findings. Finally,
regulatory oversight and equipment compatibility also require
concurrent improvement. Ultrasound-immunotherapy spans both
medical imaging and oncology, and traditional departmental
divisions may impede technological integration and blur
responsibility boundaries. In response to the comprehensive
management needs of critically ill cancer patients, it is essential to
establish interdisciplinary collaborative mechanisms in clinical
practice at an early stage, involving oncology, radiology, intensive
care, pharmacy, and engineering teams (176).

In summary, the clinical translation of ultrasound
immunotherapy hinges on resolving mechanistic uncertainties,
overcoming material limitations, expanding clinical validation,
and establishing a comprehensive interdisciplinary platform and
technological ecosystem. For patients with complex tumors and
those in critical care settings, this strategy holds promise as a pivotal
enabling technology for future precision immunotherapy.

Looking ahead, we anticipate that the integration of ultrasound
and immunotherapy in critically ill oncology patients will gradually
progress from experimental exploration to clinical application, with
several key trends warranting close attention (1) Imaging-
immunotherapy integration: With the advancement of precision
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medicine, tumor treatment increasingly emphasizes real-time
imaging surveillance and individualized feedback modulation
(177). Ultrasound is expected to evolve into a therapeutic
platform integrating both diagnosis and intervention. For
instance, during ultrasound ablation or UTMD, real-time
ultrasound imaging can monitor changes in tumor perfusion,
tissue stiffness, and lesion margins; post-treatment, CEUS
can noninvasively assess local immune responses and TME
changes, thus aiding efficacy evaluation and refinement of
immunotherapeutic regimens (3). This closed-loop model
integrating imaging and therapy will improve decision-making
accuracy, especially for dynamic monitoring and individualized
immune interventions in critically ill patients with solid tumors
(2). Al-assisted systems: Al technology will serve as a major driver
in ultrasound-immunotherapy convergence by significantly
enhancing image processing and clinical decision-making
efficiency. (Reviewer 2 Q7) In recent years, artificial intelligence
(AI) has rapidly advanced and, in combination with medical
imaging technologies such as ultrasound, has achieved significant
progress in disease diagnosis and treatment. Studies have shown
that AT can extract features from baseline ultrasound images, such
as elastography, to predict immune phenotypes and treatment
responses in TNBC patients (118). (Reviewer 2 Q7) The study by
Wang et al. (178) demonstrated that Al-assisted ultrasound
imaging exhibited high sensitivity (0.88), specificity (0.75), and
area under the curve (AUC 0.89) in predicting lymph node
metastasis in breast cancer, significantly outperforming
conventional non-Al ultrasound imaging. Similarly, Ji et al. (179)
showed that deep learning-based models analyzing EBUS images,
when combined with regions of interest, lymph node size on CT,
and PET-CT results, significantly improved the diagnostic accuracy
for mediastinal lymph node metastasis. Notably, the integration of
PET-CT data yielded the most substantial improvement in model
performance, highlighting the potential of Al-assisted ultrasound
for precise detection in lung cancer. Future development may
include Al-driven decision support systems that incorporate
ultrasound imaging and clinical parameters to recommend
ultrasound treatment settings, immunotherapy strategies, and
potential efficacy assessments (180). Such systems could provide
intelligent therapeutic planning for clinicians, particularly in
screening and managing patients with high immune resistance or
heavy tumor burden, thereby improving therapeutic efficacy and
safety (181) (3). Targeted microbubbles and sonogenetics: Targeted
microbubble technologies are advancing toward multifunctionality.
Next-generation microbubbles may not only serve for molecular
imaging but also act as carriers for delivering CRISPR-Cas9 gene
editing tools or mRNA vaccines to tumor sites, enabling
ultrasound-triggered, site-specific release and precise regulation
(182). Additionally, sonogenetics—a burgeoning interdisciplinary
field—is expanding ultrasound’s capacity to modulate cellular
function. This approach leverages genetic engineering to express
mechanosensitive receptors [e.g., Piezo channels (183)] in specific
cells such as T or NK cells, allowing FUS to remotely activate
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cytotoxic functions (184). This strategy holds particular promise in
critical care settings by achieving spatiotemporal control of immune
cell activation and reducing systemic toxicity and adverse effects.
While most sonogenetics research currently focuses on
neuromodulation, its principles are fully extensible to
immunotherapy and may offer revolutionary advances in future
cell-based therapies (159).

8 Conclusion

In conclusion, this review systematically summarizes the
research progress and clinical potential of ultrasound combined
with immunotherapy across various tumor types. Through
mechanisms such as thermal effects, mechanical forces, cavitation,
and sonodynamic therapy, ultrasound modulates the TME and
significantly enhances antitumor immune responses. When
integrated with imaging-based monitoring, targeted delivery, and
Al-assisted technologies, ultrasound-immunotherapy is gradually
demonstrating its advantages of personalization, precision, and
non-invasiveness in the treatment of cancers including lung
cancer, breast cancer, and melanoma. Compared to monotherapy
with ICIs, ultrasound-guided immunotherapy allows real-time
monitoring of tumor progression and immune modulation at the
TME level, thereby amplifying therapeutic efficacy. However,
standardized treatment parameters and large-scale clinical
validation remain lacking. Future directions will focus on the
establishment of standardized protocols, extensive clinical trials,
and the integration of emerging technologies such as Al to further
advance the application of ultrasound-assisted immunotherapy
in oncology.
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ICIs
TME
HIFU
ICD
DCs

Al
EBUS
HSPs
NK
UTMD
BBB
DAMPs
CTLs
EPR
ROS
SDT
HMGB1
ATP
CRT
MOFs
GSH
NSCLC
EBUS-TBNA
CEUS

FUS

immune checkpoint inhibitors

tumor microenvironment
high-intensity focused ultrasound
immunogenic cell death

dendritic cells

artificial intelligence

endobronchial ultrasound

heat shock proteins

natural killer

ultrasound-targeted microbubble destruction
blood-brain barrier
damage-associated molecular patterns
cytotoxic T lymphocytes

enhanced permeability and retention
reactive oxygen species

sonodynamic therapy

high mobility group box 1 protein
adenosine triphosphate

calreticulin

metal-organic frameworks
glutathione

non-small cell lung cancer
endobronchial ultrasound-guided transbronchial needle aspiration
Contrast-enhanced ultrasound

focused ultrasound
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TNBC
RFA

LIFU-TMD

Treg
SWE
CAFs
FGFR
BSO
HDRT
LDRT
irAEs
HCC
MWA
PEI

CRA
NDs-PFH
PLA
PDAC
MB-FUS
PDT/SDT
RCC
MIBC
USMI

10.3389/fimmu.2025.1670527

triple-negative breast cancer
radiofrequency ablation

low-intensity focused ultrasound with targeted microbubble
destruction

regulatory T cell

shear wave elastography
cancer-associated fibroblasts
fibroblast growth factor receptor
buthionine sulfoximine

high-dose radiotherapy

low-dose radiotherapy
immune-related adverse events
Hepatocellular Carcinoma
microwave ablation

percutaneous ethanol injection
cryoablation

perfluorohexane nanodroplets
lactic acid

pancreatic ductal adenocarcinoma
microbubble-enhanced FUS
photodynamic and sonodynamic therapies
Renal cell carcinoma
muscle-invasive bladder cancer

ultrasound molecular imaging.
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