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Background: Fatty—acid metabolism (FAM) is rewired in bladder cancer (BLCA),
yet its impact on intratumoral diversity and patient outcome is unclear.
Methods: To characterize FAM heterogeneity, we integrated spatial and single-
cell transcriptomic approaches. We employed high-dimensional weighted
correlation network analysis (hdWGCNA) alongside five distinct enrichment
methods (ssGSEA, AddModuleScore, AUCell, singscore, and UCell) to identify
modules with elevated FAM activity. Subsequently, machine learning algorithms
were applied to bulk RNA sequencing datasets to pinpoint the key gene with
highest predictive value. This candidate underwent validation through functional
experiments and analysis of clinical specimens.

Results: Malignant epithelial cells displayed the strongest FAM activity. Cross
—platform scoring and co—expression analysis produced a refined high—-FAM
gene set. Integrating this signature with bulk datasets singled out PRDX1 as a key
driver. PRDX1 was up—-regulated in tumors, predicted poorer prognosis, and was
enriched in malignant epithelial cells. Silencing PRDX1 curtailed BLCA cell
proliferation, migration, and invasion.

Conclusions: PRDX1 emerges as a FAM-linked oncogenic biomarker that fosters
BLCA progression. These findings define the metabolic hierarchy of BLCA and
nominate PRDX1 as a candidate target for personalized therapy.

KEYWORDS
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1 Introduction

Bladder cancer (BLCA) represents a major urological malignancy, accounting for
roughly 573,000 newly diagnosed patients and 212,000 fatalities worldwide during 2020 (1,
2). Urothelial carcinoma comprises more than 90% of diagnoses in industrialized nations,
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where both geographic location and patient age significantly affect
disease occurrence (3, 4). Even with progress in surgical techniques
and systemic treatments, patient prognosis continues to be dismal
owing to high rates of recurrence, disease advancement, and
therapeutic resistance, especially among those with muscle-
invasive or metastatic tumors (5, 6). Recurrence affects around
50-70% of non-muscle-invasive tumors, while muscle invasion
develops in as many as 30% of patients (7). Patients with
metastatic disease experience survival rates below 10% at five
years (8, 9). Such statistics underscore the urgent requirement to
identify molecular mechanisms underlying tumor aggressiveness
and create superior treatment approaches.

The reprogramming of cellular metabolism is a hallmark of
BLCA, with lipid alterations playing a central role in tumor
initiation and progression (10). Aberrant fatty acid metabolism
(FAM) in BLCA is not merely a byproduct of malignancy but
actively supports tumor growth, survival, and adaptation (11).
Specifically, BLCA cells display enhanced fatty acid uptake and
synthesis, reduced fatty acid oxidation (FAO), and marked lipid
droplet accumulation (12), changes that promote oxidative stress
resistance and membrane stability under hypoxic or nutrient-
limited conditions (13). Moreover, altered lipid composition has
been linked to epithelial-to-mesenchymal transition (EMT),
invasion, and immune evasion in aggressive BLCA subtypes (14).

Although PRDXI1 has been reported as an oncogenic factor and
adverse prognostic marker in BLCA, its role has not previously been
examined in the context of FAM heterogeneity. By integrating
multi-omics data and machine learning, our study uniquely
positions PRDX1 as a FAM-linked biomarker, thereby uncovering
a novel layer of its functional relevance in BLCA.

Traditional bulk transcriptomic methods lack cellular resolution,
limiting insights into cell-specific metabolic reprogramming. Single-
cell RNA sequencing (scRNA-seq) addresses this by uncovering
transcriptional heterogeneity and rare cell populations, offering new
perspectives on FAM dynamics. Spatial transcriptomics (ST) further
complements scRNA-seq by preserving tissue context and revealing
spatial patterns of metabolic alterations. However, limitations in
sample size and interpatient variability reduce the generalizability of
current findings. Thus, integrating multi-omics data is essential to
overcome these challenges, enabling more accurate identification of
metabolic biomarkers and therapeutic targets in BLCA (15).

In this study, we integrated scRNA-seq, ST, and bulk RNA-seq
data to systematically explore the functional landscape of FAM in
BLCA. Single-cell analysis revealed pronounced heterogeneity in
FAM activity among distinct cellular populations, with malignant
urothelial cells exhibiting elevated FAM-related gene expression.
Using a combination of machine learning approaches, we identified
PRDX1 as a central regulator of FAM dysregulation. PRDX1
expression correlated with tumor aggressiveness and poor
prognosis in public BLCA cohorts. Functional validation through
in vitro assays confirmed that PRDX1 modulates key enzymes
involved in lipid metabolism, thereby contributing to tumor cell
proliferation and oxidative stress resistance. This study reveals
novel metabolic features of BLCA and identifies PRDX1 as a
viable target for intervention.

Frontiers in Immunology

10.3389/fimmu.2025.1669822

2 Methods
2.1 Data collection

From the GEO repository, we obtained seven single-cell RNA
sequencing datasets (GSE129845, GSE130001, GSE135337,
GSE146137, GSE190888, GSE192575, and GSE211388), which
included 34 total samples consisting of 30 tumors and 4 normal
tissue controls (16). Clinical information and bulk RNA sequencing
data were acquired from both TCGA and GEO databases
(GSE13507, GSE32984). To incorporate spatial gene expression
information, we also utilized a spatial transcriptomics dataset
(GSE171351). Proteomic profiles from urine samples were
collected from five individuals with BLCA alongside five healthy
participants, following methods described in previous work (17).
Detailed information about all the datasets used in this study was
provided in Supplementary Table S1. We assembled a collection of
323 fatty acid metabolism-related genes by integrating information
from multiple sources: KEGG, REACTOME, MSigDB v5.2
Hallmark gene sets, and existing publications (18) (see
Supplementary Table S2). Additionally, protein expression of the
related genes was examined through the Human Protein Atlas
(HPA) (https://www.proteinatlas.org/) database. The flow chart
illustrating the operational procedure in this study (Figure 1).

2.2 Data analysis

Raw scRNA-seq data were processed into Seurat objects and
integrated as previously described (19). Quality control retained
high-quality cells based on the following thresholds: (1) 200-5,000
genes detected per cell; (2) <15% mitochondrial gene content; and
(3) >3% erythrocyte gene expression. After normalization, a total of
115,628 qualified cells were included for downstream analysis.
Batch effects were corrected using Harmony integration. The data
underwent log-normalization followed by scaling through linear
regression methods. Using the “FindVariableFeatures” function, we
selected the 3,000 most variable genes. Principal component
analysis (PCA) was employed for dimensionality reduction, with
subsequent graph-based clustering executed through the
“FindClusters” algorithm. UMAP was utilized for visualization,
while canonical marker gene expression guided the annotation of
distinct cell populations. For bulk RNA-seq data, raw counts were
log2-transformed and normalized using the DESeq2 pipeline or
limma-voom.

2.3 High-dimensional weighted correlation
network analysis

Leveraging the hdWGCNA algorithm for high-dimensional
weighted gene co-expression network analysis, we constructed
cell-type-specific networks within high resistance activity state at
single-cell resolution (20). Scale-free topology networks were
implemented using a soft threshold power of 12, maintaining
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FIGURE 1
Work flow of the study.

>0.85 model fit index. The Construct Network function identified
robust gene modules, with eigengene connectivity (kME)
quantifying module-associated expression profiles (21). Key
disease-relevant modules were subsequently screened via UCell
scoring (22). Shared candidate genes derived from hdWGCNA
underwent differential expression validation, following
standardized protocols documented in the official pipeline
(https://smorabit.github.io/hdWGCNA/).

2.4 FAM score in scRNA

To assess FAM activity within single-cell RNA sequencing
datasets, we employed five distinct computational approaches:
AUCell, UCell, singscore, ssGSEA, and AddModuleScore (23, 24).
Based on IQR range methods, we stratified malignant cells into
three distinct FAM phenotypic categories: low FAM activity state
(LES), dynamic transition FAM activity state (DTFS), and high
FAM activity state (HFS). The FindMarkers function enabled
identification of genes showing differential expression in
association with increased FAM activity.

2.5 Infer the malignant epithelial cells

The inferCNV algorithm was utilized to detect malignant
epithelial cells through chromosomal copy number variation (CNV)
assessment. By computing the average squared magnitude of CNV
across all chromosomes, we generated a malignancy score that
captured the extent of clonally expanded CNV alterations (25). Cell
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malignancy status was determined through bimodal distribution
analysis of CNV scores relative to normal reference profiles,
enabling statistically robust epithelial malignancy classification.

2.6 Cellular trajectory reconstruction
analysis using gene counts and expression
analysis

Cellular differentiation trajectories were inferred using
CytoTRACE (26), a computational framework that quantifies
developmental potential from single-cell transcriptomes. This
algorithm employs an entropy-based metric calculated from two key
features: (1) the number of expressed genes per cell, and (2) the
distribution of highly variable genes associated with undifferentiated
states. Malignant epithelial cells identified through prior CNV analysis
were subjected to CytoTRACE scoring, with lower scores indicating
advanced differentiation status and higher scores signifying primitive
stem-like states.

2.7 Cell communication

Cell-cell communication dynamics were analyzed using
CellChat (v1.6.0) with integrated ligand-receptor co-expression
profiling (27). The standard pipeline employed CellChatDB-
human containing 2,021 curated interactions. Cell-type-specific
signaling networks were resolved through differential expression
analysis of ligands/receptors across defined subpopulations,
quantifying interaction probability alterations (28).
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2.8 Screening of feature genes

To identify the most informative feature genes, we first applied
six feature selection algorithms—Random Forest (RF), LASSO
regression, Decision Tree (DT), Adaptive Best Subset Selection
(ABESS), and Gradient Boosting Machine (GBM)—each of which
offers distinct strengths for high-dimensional data analysis (29).
The selected features were then used to build predictive models.
Specifically, we evaluated eight classification algorithms, including
k-nearest neighbor (KNN), linear discriminant analysis (LDA),
logistic regression (LR), Naive Bayes (NB), random forest
(Ranger), recursive partitioning and regression trees (RPART),
support vector machine (SVM), and extreme gradient boosting
(XGBoost), and compared their performance to select the optimal
model. To further interpret the contribution of selected features, we
applied SHAP (SHapley Additive exPlanations) analysis. SHAP
values provide a unified framework derived from game theory to
quantify the impact of each gene on model predictions. In this
context, positive SHAP values indicate that a gene promotes
classification into the high-risk group, whereas negative values
suggest association with the low-risk group. For biological
validation, we examined the enrichment of the identified core
genes across cell types using scRNA-seq data, and further
confirmed their expression differences in TCGA-BLCA and bulk
RNA-seq datasets with the Wilcoxon rank-sum test. Finally, the
predictive performance of the model was assessed using the area
under the receiver operating characteristic (ROC) curve.

2.9 Cell culture and transfection

BLCA cell lines (T24, UMUC-3, J82, and 5637) along with the
normal urethral epithelial cell line SV-HUC-1 were obtained from
the Gansu Province Clinical Research Center for Urinary System
Diseases. SV-HUC-1 cells were grown in Ham’s F12K medium,
while all malignant cell lines were cultivated in RPMI-1640
(Shanghai Yuanpei Biotechnology). Both culture media were
supplemented with 10% fetal bovine serum (FBS) from PAN
Biotech and 1% penicillin-streptomycin at 100 U/mL-100 pg/mL
concentration from Solarbio. Cells were incubated under standard
conditions maintaining 37 °C temperature, 5% CO, atmosphere,
and appropriate humidity levels. The small interfering RNAs
(siRNAs) directed against PRDX1 were procured from Tsingke
Biological, and the transfection reagent was sourced from Shanghai
GenePharma Biotechnology. The efficacy of the knockdown was
validated using Quantitative RT-PCR (qRT-PCR) analysis at 36
hours post-transfection. Moreover, concurrent phenotypic
experiments were conducted using the same procedure.

2.10 Quantitative RT-PCR

Total RNA extraction from four BLCA cell lines (UMUC-3, J82,
T24, and 253]) was performed using TRIzol reagent (Invitrogen,
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USA), followed by spectrophotometric quantification of RNA
concentrations. One microgram of extracted RNA underwent
reverse transcription to cDNA using the AJ reverse transcription
kit. QRT-PCR analysis was performed using a BIO-RAD CFX-96
system, with gene expression levels determined through the 2"AACt
method and normalized against -actin. Data are presented as mean
+ SD. Primer sequences are detailed in Supplementary Table S3.

2.11 Western blotting

Total protein was extracted using RIPA buffer (P0013B,
Beyotime, China) supplemented with protease inhibitors. Protein
concentrations were determined by the bicinchoninic acid (BCA)
assay. Samples were separated by SDS-PAGE and transferred onto
PVDF membranes. Membranes were blocked with 6% non-fat dry
milk before incubation with primary antibodies overnight at 4 °C.
Protein bands were identified utilizing the Odyssey imaging system
in conjunction with the appropriate secondary antibody (926-
32211, Li-Cor, USA) for visualization. This work utilized the
following antibodies: B-actin (Cat No. 66009-1-Ig, Proteintech)
and PRDX1 (Cat No. 66820-1-Ig, Proteintech).

2.12 Cell counting kit-8

The Cell Counting Kit-8 (CCK8) was utilized to evaluate the
proliferation of T24 and UMUC-3 cells. In accordance with the
guidelines, cells (2 x 10°/well) were inoculated in 100 pL of media
using 96-well plates, with three replicate plates established for
various time points. CCK-8 reagent (AbMole BioScience) was
applied at 10 pL per well at intervals of 0 to 96 hours. After a 2-
hour incubation, absorbance was measured at 450 nm using a
BioTek plate reader.

2.13 Colony formation assay

For clonogenic tests, 6-well plates were inoculated with 1 x 10?
cells per well in 2 mL of medium. Following an 8-10 days
cultivation at 37°C with 5% CO,, colonies were fixed with 4%
PFA (Biosharp #BL539A), stained with 0.1% crystal violet (Solarbio
#G1063), and subsequently photographed and quantified.

2.14 Wound-healing assay

Transfected cells (6x10°) attained confluence 48 hours after
transfection. Monolayers were scraped with sterile 200 pL tips,
rinsed with PBS, and subsequently treated with in serum-free
media. Migration was evaluated by photographing wounds at 0
and 24 hours using inverted microscopy, with closure rates
measured using Image]. Transwell migration assay BLCA cells
(1x10° in 200 pL of serum-free media) were inoculated into
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LABSELECT chambers (8 wm holes; #14342). The lower chambers
had 600 puL of RPMI-1640 enriched with 20% FBS as a
chemoattractant. After 24-48 hours of incubation at 37 °C with
5% CO,, the transmigrated cells were subjected to methanol fixation
(4%), crystal violet staining (0.1%; Solarbio #G1063), and
subsequent microscopic counting.

2.15 Nile red staining and ROS assays

Lipid accumulation in PRDXI1-silenced cells was visualized
using Nile Red fluorescent staining (Solarbio, China). Cells were
rinsed with PBS, fixed in 4% paraformaldehyde, and treated with
500 UL of Nile Red reagent for 15 minutes under light-protected
conditions. To measure intracellular reactive oxygen species (ROS),
BC cells cultured in six-well plates were exposed to 25 pM DCFH-
DA probe (HY-D0940, MedChemExpress) and maintained in
darkness for 30 minutes. Both lipid and ROS fluorescence signals
were documented through confocal microscopy imaging.

2.16 Statistical analysis

R software (version 4.3.3) along with GraphPad Prism (version
9.0) were utilized for conducting statistical evaluations. Based on
distribution patterns, continuous variables underwent analysis
through either Student’s t-test or Wilcoxon rank-sum test. For
categorical data, )* test or Fisher’s exact test was applied as
appropriate based on anticipated frequencies. Kaplan-Meier
methodology was employed to analyze survival data, with log-
rank test comparing groups, supplemented by Cox proportional
hazards regression for multivariate analysis. Each experiment was
replicated three times, with results presented as mean values
accompanied by standard deviation (SD). A p-value below 0.05
indicated statistical significance. The following notation indicates
significance thresholds: n.s. denotes non-significant results; *p <
0.05; *p < 0.01; **p < 0.001; ***p < 0.0001.

3 Results
3.1 Single-cell data integration

Batch effect adjustment was conducted to combine seven single-
cell datasets containing 34 specimens (4 control tissues and 30
tumor tissues) (Supplementary Figure SIA-C). Classical BLCA
markers were employed to identify cellular subtypes, which
included Macrophages, Monocytes, Dendritic Cells (DCs),
Endothelial Cells, B Cells, CD4 T Cells, CD8 T Cells, Epithelial
Cells, myofibroblast Cancer-Associated Fibroblasts (mCAFs), and
inflammatory Cancer-Associated Fibroblasts (iCAFs) (Figure 2A).
Marker gene bubble plots were generated to verify annotation
precision (Figure 2B). Five distinct computational methods
(AUCell, UCell, singscore, ssGSEA, and AddModuleScore)
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revealed markedly increased FAM activity within epithelial
regions across all approaches (Figure 2C; Supplementary Figure
S2A-C). Spatial transcriptomics profiling further revealed
pronounced FAM signature enrichment within tumor core
regions of BLCA specimens (Figure 2D). Given substantial
heterogeneity among epithelial cells, we employed inferCNV to
delineate malignant clones. This analysis identified five distinct
CNV clusters, with Cluster 1 exhibiting the highest malignancy
score (Figures 2E, F; Supplementary Figure S2D). Subsequent
UMAP-based reannotation epithelial cells (Figure 2G), which
demonstrated higher composite FAM activity than normal
epithelial controls (Figure 2H; Supplementary Figure S1E, F).

3.2 Dissecting FAM in malignant BLCA cells

The UMAP revealed heterogeneous FAM activity patterns
within tumors, particularly evident in malignant epithelial
populations (Figure 3A). Based on quartile distributions of FAM
scores, we stratified cells into three distinct categories: LFS, DTFS,
and HFS populations (Figures 3B, C). The differentiation status of
cancer cells was further investigated using the Monocle2 algorithm
through CytoTRACE analysis. The results demonstrated that LHS
cancer cells exhibited a lower degree of differentiation and possessed
a higher potential for differentiation (Figures 3D, E). We
subsequently correlated the FAM score with the CytoTRACE
score, as illustrated in Figures 3F, G. The yellow regions indicate
cells that exhibit high FAM and CytoTRACE scores, which largely
demonstrate a consistent overlap. We then conducted an analysis of
the CytoTRACE scores across the three groups (Figure 3H).
Additionally, our findings revealed a significant correlation
between CytoTRACE and FAM scores (Figures 3I). Figure 3]
illustrates the expression profiles of cell-specific marker genes in
relation to CytoTRACE.

3.3 Functional profiling of FAM in scRNA-
seq data

To investigate intercellular communication patterns, we applied
CellChat to the scRNA-seq data and analyzed interactions between
LFS, DTES, HEFS, and other cell populations. This analysis quantified
both interaction frequency and signaling strength across cell types
(Figures 4A, B). HES cells demonstrated notably higher signaling
activity, indicating superior intercellular communication capacity
(Figure 4C). Further pathway enrichment analysis identified key
signaling routes that were upregulated in HFS cells, including the
Androgen and JAK-STAT pathways (Figure 4D). To refine the
comparison between HFS and LES cells, we assessed ligand-receptor
pair expression. HFS cells showed a marked increase in potential
communication events with neighboring cell types, as reflected by a
greater number of ligand-receptor pairs (Figures 4E-G). Consistently,
heatmap visualization revealed elevated interaction probabilities in the
HES subgroup (Figure 4H).
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FIGURE 2

Elevated FAM activity in malignant epithelial cells of BLCA. (A) UMAP plot displaying the cellular landscape of BLCA. (B) Representative marker genes
used to annotate each cell type. (C) Bubble plot showing FAM gene set enrichment scores across cell types, calculated using AUCell, UCell,
singscore, ssGSEA, AddModuleScore, and Scoring. (D) H&E staining and corresponding heatmaps illustrating the spatial distribution of FAM activity.
(E) Malignant cells identified through K-means clustering based on inferred CNV profiles. (F) CNV score differences among six clusters. (G) Refined
cell annotation confirming the identity of malignant cell populations. (H) Bubble plot indicating higher FAM enrichment scores in malignant cells,
consistently observed across multiple scoring algorithms.

Frontiers in Immunology 06 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1669822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

10.3389/fimmu.2025.1669822

A B C  Malignant
FAM activity distribution in Malignant
' '
os H i
v sl '
1 i1 1
o » R I
Y \, h ® HFAM
5
gn‘ LFAM [ IFAM L 1 HFAM IFAM
H 3435cells )1 27480cells '\ 1 3435 cells
A 4 o Lam
74 [ o~
02{ Score <1815 (108) | Score > 3.202 (90%) o
o~ i ?
o 1 1 <
2 o ' . 3
5 N L L e
T 3 T 3
UMAP 1 Scorng
D 5] J
Q10
CytoTRACE Phenotype x RPL30-
{ = £ RPL41 I
80 o ] HLA-B-
£ 08
3 HLA-C:
Predicted o 25 o RPL22
owesan 5 H B o6 RPL23A Ej
§ §
H o8 2 H =3 RPL27:
108 é. 0o g £ RPS10:
Lo £ £ 5 04 SPINK1
02 o o -
i oomerect)  -25] ° SNCG:
S GNGS
5 02 RPL33
50! 2 PDCDG
3 L) 3 Q RPL26.
Component1 E 0.0 ; ';if;ﬁ?
o @ Q§ ((§ COXBA1 E
Qé N \ TMAT:
ell phenotypes ETH1
RPS15A
RPL36A
. . RPS11
Scoring CytoTRACE Scoring_CytoTRACE Color threshold: 0 RPS20-
6 100 ALDOA
RPS6:
u
8 75 RPS24
2 NTAN1
RPL19
s 80 ° COX8A
= = HLA-A
© 25 3 DUOX2
CTNNB1
2 46 8 10 RIN2
Scoring LIIghs E
PLAT:
S100A7 | —
FBP2
CDC42SE1
LGALS7.
H 1 CFH
MT-NDAL-
e o - s34348) = 15171, =0.00, s = 0.63, o, 1063, 0.64], 1y = 34350 DEFB1
S E—
1.00 2 CAPNS2
i RBP1
MDM2-
WNTSA
4 RAB21
S TMEM19
@ group S100A9
w ’ CLCA2
LFAM Y
Q B H S100A2
§ N E3 M g AQP3
= B neam i DAPL1
il TNFSF10-
> DSP-
© MT-ATPS:
S100A8.
HSPA1A
““ LY6D
MT-NDS:
Q o -04 -02 00 02 04 06 08
& Q‘\‘v eaBF ) - TR 060,45 0630641 < 141 Correlation with CytoTRACE
FIGURE 3

Identification and characterization of FAM-associated malignant cell subsets. (A) UMAP visualization showing the heterogeneity of FAM activity
among malignant cells. (B, C) Malignant cells were stratified into three groups-LFS, DTFS, and HFS-based on FAM activity scores. (D) The CytoTRACE
characteristics and FAM-related phenotypes of BLCA cells. (E) Boxplots showing differentiating ordering identically ordered by CytoTRACE.

(F-G) The correlation was revealed when the FAM score was combined with the CytoTRACE score. (H) Comparison of CytoTRACE Scores Among
LHS, LDTS and LLS. () Pearson correlation test for CytoTRACE and FAM scores (J) The expression Profiles of Cell-Specific Marker Genes Linked to

CytoTRACE Analysis. ***P < 0.001.

3.4 Revealing HFS-specific co-expression
modules using hdWGCNA

The hdWGCNA framework was employed to detect gene co-
expression networks among malignant cells exhibiting high FAM
scores. We established a scale-free topology using a soft-thresholding
parameter set at 12, which led to the discovery of five separate modules
(Figures 5A, B). The cellular distribution within each module was
visualized through UMAP projection (Figure 5C). A heatmap further
displayed the relationships between different modules (Figures 5D, E).
Analysis via bubble plots demonstrated pronounced correlations of
the blue, green, and yellow modules with cells displaying elevated
FAM activity (Figures 5F). Subsequently, we extracted genes from
these three key modules (blue, green, and yellow) using a module
membership threshold (kME) exceeding 0.3, which generated 300
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genes for downstream investigation (Supplementary Table S4).
Comparing gene expression profiles of HFS versus LES populations
identified 1205 genes with increased expression linked to elevated
FAM activity (Supplementary Table S5). cross-referencing these
module-associated genes with the DEGs identified earlier produced
197 potential candidates involved in FAM enhancement within BLCA
(Figure 5M; Supplementary Table S6).

3.5 Machine learning—based identification
of OFGs

To identify the optimal feature genes (OFGs), multiple machine
learning algorithms were applied for screening. Random Forest
analysis identified a total of 166 candidate genes (Figure 6A), while
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FIGURE 4

Functional characterization of HFS, DTFS, and LFS malignant cells based on scRNA-seq—-derived cell-cell communication analysis. (A, B) CellChat
analysis depicting interaction frequency and strength between malignant subgroups (HFS, DTFS, LFS) and other cell types. (C) Overview of
intercellular communication patterns across various cell populations. (D) Heatmap showing differential enrichment of signaling pathways among
HFS, DTFS, and LFS cells. (E, F) Bar plots illustrating the number of predicted interactions between HFS or LFS malignant cells and surrounding cell
types. (G) Visualization of communication networks linking malignant subgroups with other cell populations. (H) Heatmap displaying the inferred

probability of incoming and outgoing signaling events for each subgroup.

LASSO regression yielded 65 genes (Figure 6B). ABESS further
selected 20 genes (Figure 6C). Additionally, 20 genes were identified
using DT and GBM methods (Figures 6D, E; Supplementary Table
S7). By intersecting the gene sets obtained from these five
algorithms, 14 hub genes were consistently shared across
methods: TUBA1B, YIF1A, AKR7A2, NQO1, PRDXI, PPT1,
ANAPCI11, P4HB, CCT5, TMEM141, SLC44A1, MRPL36, APLP2
(Supplementary Table S8).
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3.6 Single-cell resolution analysis of
identified OFGs

The HFS subgroup in the single-cell dataset was randomly
divided into training and testing cohorts. Diagnostic performance
of the identified OFGs remained robust in both sets, with all genes
showing AUC values above 0.7 (Figures 7A, B). In the previously
defined HFS, DTFS, and LFS groups, OFGs were significantly
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FIGURE 5

Identification of key gene modules associated with HFS malignant cells via hdWGCNA. (A) Plot of scale-free topology fit index and mean
connectivity across a range of soft-thresholding powers. (B) Hierarchical clustering dendrogram showing gene module classification; five distinct
modules were identified using the hdWGCNA framework. (C) UMAP visualization displaying the distribution of module feature scores across
malignant cells. (D) Top hub genes identified within each module based on intramodular connectivity. (E) Heatmap illustrating correlation patterns
among the five modules. (F) Bubble plot summarizing module scores for the five identified gene modules. (G) The volcanic map of the DEGs.

(H) Venn diagram showing the overlap between module-derived genes and DEGs, identifying shared candidates for further analysis.

enriched in HFS cells, exhibiting a marked upward trend in
expression levels (Figure 7C). Overall, these genes were
predominantly expressed in malignant cells, which also showed
the highest average expression (Figure 7D).

We performed 10 repetitions of fivefold cross-validation on the
training set to assess the robustness of each model. Most models
exhibited robustness in their predictions. Among these models,
RPART performed poorly, while naive Bayes demonstrated a
balanced precision and sensitivity, showing an AUC of 0.992
(Supplementary Figure S3A-C). Therefore, the naive Bayes
algorithm was adopted in the final machine-learning model,
SHAP analysis ranked the OFGs by their contribution to the
predictive model, identifying PRDX1 as a key potential driver
(Figure 7E). Notably, PRDX1 expression was consistently elevated
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across both the broader epithelial cell population (Figure 7F) and
the malignant epithelial subset (Figure 7G).

3.7 Trajectory inference and signaling
features of PRDX1" malignant cells

To investigate the functional role of PRDX1, malignant cells
from BLCA samples were stratified based on PRDXI1 expression
into PRDX1" and PRDX1" subsets. CytoTRACE analysis indicated
that PRDX1" cells exhibited significantly enhanced stemness
features compared to their PRDX1™ counterparts (Figure 8A;
Supplementary Figure S4). Pseudotime trajectory analysis revealed
that PRDX1" high malignant cells preferentially occupy a late-stage
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The identification of hub ORGs is performed using machine learning techniques, (A)RF algorithm (B) the LASSO regression algorithm. (C) Adaptive
BEst Subset Selection (ABESS) algorithm. (D) Decision Tree (DT) algorithm. (E) Gradient Boosting Machine (GBM) algorithm. (F) Venn diagrams of five

algorithms.

transcriptional state along Component 1, whereas PRDX1-low/
negative cells map to earlier pseudotime positions, indicating that
PRDXI1 expression marks a progressive, more advanced malignant
phenotype (Figure 8B). We comprehensively evaluated the
intercellular communication profiles of PRDX1" and PRDX1"

malignant cells (Figures 8C-E). PRDX1" cells exhibited markedly
increased numbers of ligand-receptor interactions and stronger

Frontiers in Immunology

10

signaling intensity with surrounding cell types, indicating globally
enhanced communication capacity (Figures 8F-G). Intercellular
communication analysis revealed that the MDK-NCL axis serves as
a major route through which PRDX1" malignant cells interact with
diverse cell subtypes (Figure 8H). Moreover, PRDX1" cells
demonstrated elevated communication probabilities, as shown in
the heatmap. GALECTIN, PTN, and ANGPTL pathways were
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significantly more active in PRDX1" than in PRDX1 cells. For
incoming signals, TWEAK expression was predominantly enriched

in PRDX1" cells (Figure 8I).

3.8 Clinical relevance of PRDX1 in BLCA

Previous proteomic profiling of urine samples from five

individuals with BLCA and five healthy participants demonstrated
substantial elevation of PRDXI1 levels among cancer patients
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(Figure 9A), suggesting its value as a non-invasive diagnostic
indicator for initial screening. The TCGA dataset provided
additional confirmation, showing considerably higher PRDX1 levels
in cancerous tissues relative to neighboring normal samples, which
held true for matched tissue pairs (Figures 9B, C). Prognostic
assessment revealed that reduced PRDXI1 levels correlated with
improved patient survival (Figure 9D). Additionally, ROC curve
evaluation yielded strong diagnostic capability with an AUC value
of 0.804 (Figure 9E). In bulk RNA-seq datasets, PRDX1 expression
was notably elevated in muscle-invasive BLCA (Figure 9F) and

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1669822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al.

10.3389/fimmu.2025.1669822

CytoTRACE

5.0

Predicted 25
order g
10(essat) G
08 5

06 g oo
04 £
o

0.0 (More diff) -25

Component2

Phenotype

0 3
Component1

Log2(# of interaction pairs in PROX1+Malignant/
#of interaction pairs in PRDX1-Malignant)
-04 -02 02

+Normalepi
+Monacyte

- meAFs

o
[Macropraa
_ [

11 12 [N

Cell types interacting with PRDX1_malignant
(providing receptor)
]
8

s [ B
# of interaction pairs

F Number of interactions

Outgoing signaling patterns

s
q
o}
I S |

K
GALECTIN
VISFATIN
cxCL

B}
2

3
[
3382
H
EEEE

o3
&
IIII 1

0 3
Component1

® PRDX1+Malignant
® PRDX1-Malignant

Log2(# of interaction pairs in PROX1+Malignant/
ol

-0.

raction pairs in PROX1-Malignant)
o1 02

Cell types interacting with PRDX1_malignant
(providing igand)

[
#of interaction pairs.

Interaction weights/strength

o og

Incoming signaling pattems

coat
coet
oc
Endothelal
icaFs

A
Monooyte
Normalesi

Macrophage

FIGURE 8

PROX1+Malgnant

Endothelial

Monacyte

Normalepi

Normalepi

Monocyte

mCAFs

Macrophage

icAFs.

Endothelial

PROX1-Malignant.

F 1

PRDX1+Malignant

Component 2

group + PRDXI-Malignant * PRDX1Malgnant

Incoming interaction strength

&
3
2
k)
B

o

PROX1-Malignant

VEGFA - VEGFR2
'VEGFA - VEGFR1R2
VEGFA - VEGFR1
'SEMA3C - (NRP1+NRP2)
PTN - SDC4

PTN - SDC2

PTN - NCL.

NAMPT - INSR-

NAMPT - (ITGA5+ITGB1)
o

MDK - SDC2

MDK - SDC1

MDK - (ITGAB+ITGB1)
LGALS9 - HAVCR2
LGALS9 - CD44

GDF15 - TGFBR2
ANXA1 - FPR1
o
ANGPTL4 - SDC1
ANGPTL4 - CDHS
ANGPTL4 - (ITGA5+ITGB1)
ADM - CALCRL

05 o
Outgoing interaction strength

Iu

o.

Relative strength

priale
o oo

Gommun. Prop.

PROX1-Malignant -> B.

PRDX1-Malignant > CD4 T

PRDX1-Malignant > CD8 T

PRDX1-Malignant -> DC

PRDX1-Malignant -> Endott

PRDX1-Malignant -> iCAFs.

PRDX1-Malignant -> Macrophage |
PRDX1-Malignant -> mCAFs.

PRDX1-Malignant -> Monocyte

PRDX1-Malignant -> Normalepi

PRDX1+Malignant -> B.
PRDX1+Malignant -> CD4 T
PRDX1+Malignant -> CD8 T

PRDX1+Malignant -> DC

PRDX1+Malignant -> Endothelial{

PRDX1+Malignant -> iCAFs-

PRDX1+Malignant -> Macrophage |

PRDX1+Malignant -> mCAFs.

PRDX1+Malignant > Monocyte

PROX1+Malignant -> Normalepi-

Trajectory analysis and cellular communication in PRDX1+ malignant cells. (A) The distribution of PRDX1 in malignant cells was visualized by a UMAP
plot. (B) CytoTRACE analysis of PRDX1+ malignant cells. (C) Raincloud plot of CytoTRACE scores in PRDX1" malignant cells and PRDX1 malignant
cells. (D, E) Bar plots showed the number of interactions between PRDX1* malignant cells and other cell types. (F) The correlation between
differential outgoing contacts and the degree of incoming interactions in PRDX1* malignant cells and PRDX1- malignant cells. (G, H) Quantity and
intensity of cellular communications between PRDX1* malignant cells and other cell types. (I) PRDX1* malignant cells interacting with various cell
ligand-receptor bubble diagrams. (J) A heat map summarizing the outgoing and incoming signal pathways of PRDX1* malignant cells and other cell

types.

Frontiers in Immunology

12

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1669822
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Wang et al. 10.3389/fimmu.2025.1669822
A B TCGA-BLCA c TCGA-BLCA E
- Type B8 Normal EE BCa TCGA-BCa: PRDX1
Urine proteomics 1 BN 1 BC 10. P=0003;, | A = g e 1 2
0.0022 : ’ - m ad o
20 |- # " 0 B
: o i £ s
- . Bon
24 - 2o |
%15 . X 8 8 ° g o5 z°
= — 2 R s H g
u e i 3 3 9351 5200014 83
510 R <8 g
o . T [=} » 0.00
= - g z ) 5 0 o
< Survival time(years) L
05 8 7 2 High {134 13 Q
Z Low B9 33 0 .
- [} 5 10 15 o .
EY ES Time(years) 0o o2 0

Normal BCa

Normal

T 04 os os
2 1 - Specificity

F GSE13507 G GSE13507 H GSE32894 | GSE32894
invasiveness B muscle invasive B8 non-mus cle invasive progression B No B Yes grade B3 61 B G2 B G3-G4 stage B3 T1 BE T2-74 B3 T
16 4.6e-06 16- 00089 3.6e-07 7.6e-06
2 0.00035 2 063

15 15 — - e

g g g

fu £, <

Low grade High grade
FIGURE 9

Differences in PRDX1 expression levels in BLCA and their correlation with clinical pathological features. (A) PRDX1 expression levels in urine
proteomics; (B) PRDX1 expression levels in urine proteomics from 5 BLCA patients and 5 normal individuals; (C) Paired comparison of PRDX1
expression levels between 403 BLCA and 19 normal tissues; (D) Relationship between PRDX1 expression levels and overall survival of BC patients;
(E) ROC curve assessing the sensitivity and specificity of PRDX1 as a predictive marker for BLCA. (F) PRDX1 expression in muscle-invasive vs. non—
muscle-invasive bladder cancer samples in the GSE13507. (G) PRDX1 expression in bladder cancer patients with and without disease progression in
GSE13507. (H) PRDX1 expression across tumor grades in the GSE32894 dataset. (I) PRDX1 expression across pathological stages in the GSE32894.
(J) Immunohistochemical staining of PRDX1 in adjacent non-cancerous tissues; (K) Immunohistochemical staining of PRDX1 in BLCA tissues.

showed a strong association with disease progression (Figure 9G), as
well as with advanced tumor grade and stage (Figures 9H, I).
Immunohistochemistry results obtained from the Human Protein
Atlas (HPA) database further illustrated the spatial expression patterns
of PRDXI in tissue samples, corroborating its upregulation in tumor
tissues (Figures 9], K).

3.9 In vitro verification

To clarify the role of PRDXI in BLCA, its expression was
assessed across cell lines. Both RT-PCR and Western blot confirmed
elevated PRDX1 levels in BLCA cells (T24, UMUC-3, J82, 253])
relative to normal SV-HUC-1 cells (Figures 10A-C). Effective
knockdown in UMUC-3 and T24 was validated by qRT-PCR
(Figure 10D). Functional assays demonstrated that PRDX1
silencing reduced proliferation (CCK-8, Figure 10E), colony
formation (Figure 10F), and significantly impaired migratory and
invasive capacities (wound healing and Transwell, Figures 10G, H).
Our results indicated that knockout of PRDXI1 resulted in a
substantial increase in ROS levels (Supplementary Figure S5A) in
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addition, Nile Red staining results demonstrated a substantial
reduction in intracellular lipid droplets following PRDXI1
knockdown (Supplementary Figure S5B).

4 Discussion

Cancer cells characteristically undergo metabolic rewiring,
which allows tumors to survive and flourish in challenging
environments (30). Growing research indicates that disrupted
FAM serves as a key factor driving BLCA progression,
complementing recognized changes in glucose utilization and
amino acid processing, including glutamine addiction (31).
Although FAM deregulation occurs across various cancer types—
such as breast, prostate, lung, and kidney tumors—the regulatory
mechanisms and functional relevance within BLCA are still
inadequately characterized (32).

Consistent with prior reports, we confirmed that PRDXI is
upregulated and associated with poor prognosis in BLCA. The
unique contribution of our study lies in contextualizing PRDX1
within fatty acid metabolism heterogeneity, revealing its close
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association with lipid metabolic pathways in addition to its well- We utilized scRNA-seq technology to profile FAM heterogeneity
known antioxidant activity. This dual connection suggests a BLCA-  throughout bladder tumors. Applying five distinct scoring approaches
specific role for PRDXI1, expanding our understanding of its  to an assembled FAM gene panel revealed substantially increased
oncogenic functions. FAM activity within epithelial cells, particularly those with malignant
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characteristics. Metabolic diversity was additionally validated through
spatial transcriptomic analysis. Notably, FAM activity showed
variation both between different cell populations and among
malignant epithelial subsets. Activity scores enabled stratification of
malignant cells into three categories: LFS, DTFS, and HFS
populations. Our functional investigations revealed that HEFS cells
exhibited enhanced cell-cell communication capabilities and increased
stemness characteristics.

We investigated the underlying molecular mechanisms by
combining differentially expressed genes distinguishing HFS from
LFS populations with central genes determined through hdWGCNA
analysis, creating a preliminary FAM-related gene panel. Various
machine learning techniques subsequently refined this panel to
pinpoint critical markers associated with tumor heterogeneity and
patient outcomes. Through this strategy, we discovered 14 OFGs
linked to elevated FAM activity. By incorporating urine proteomic
profiles, PRDX1 was identified as a pivotal biomarker, demonstrating
robust predictive capacity, increased tumor expression, and
correlation with unfavorable outcomes.

PRDXI1 belongs to the peroxiredoxin protein family and
participates in maintaining cellular redox balance while shielding
cells against oxidative injury (33). Nevertheless, within tumors, such
protective antioxidant activity might counterintuitively promote
cancer cell persistence through ROS neutralization, thus enabling
continued growth and apoptotic evasion (34). We observed markedly
increased PRDX1 levels in both BLCA tissues and cultured cell lines,
where elevated expression linked to worse patient outcomes and more
aggressive clinical characteristics, including higher tumor grades and
stages. In addition to its diagnostic and prognostic value, PRDX1"
malignant cells were found to exhibit enhanced stemness, increased
intercellular communication, and enrichment of key oncogenic
pathways, suggesting a potential role in maintaining aggressive
tumor phenotypes. Previous studies in other cancers, including
breast and lung cancer, have implicated PRDX1 in promoting
epithelial-mesenchymal transition (EMT), immune evasion, and
chemotherapy resistance (35). As a key antioxidant enzyme, PRDX1
is sensitive to overoxidation at its catalytic cysteine in response to
various stress stimuli. In the nucleus, oligomeric PRDXI interacts with
transcription factors such as p53, c-Myc, NF-kB, and AR, thereby
modulating gene expression involved in cell survival and death (36,
37). In the cytoplasm, PRDX1 exhibits anti-apoptotic activity by
regulating ROS-dependent signaling pathways through effectors
including ASK1, p66Shc, GSTpi/JNK, and c-Abl (38). Through
these mechanisms, PRDX1 functions as a multifaceted regulator of
cell growth, apoptosis, and differentiation. Increasing evidence
indicates that PRDX1 and its redox-associated pathways contribute
to tumor progression and metastasis in multiple cancers, including
breast, lung, and esophageal malignancies (35). Recent studies have
demonstrated that the antioxidant protein PRDXI1 plays a pivotal role
in sustaining lipophagic flux in macrophages. Loss of PRDX1 results
in elevated oxidative stress, impaired autophagic processing,
intracellular cholesterol accumulation, and decreased levels of free
cholesterol. These disruptions lead to the suppression of the nuclear
receptor NRIH3 activity, ultimately impairing cholesterol efflux and
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accelerating the development of atherosclerotic lesions (39). Although
this mechanism has been primarily described in macrophages, it
suggests a broader regulatory role for PRDX1 in lipid metabolism
and cholesterol homeostasis, which may be relevant in the context of
tumor-associated metabolic reprogramming.

In our urinary proteomics analysis, PRDX1 was found to be
significantly upregulated in the urine of BLCA patients compared to
healthy controls, suggesting its potential utility as a non-invasive
diagnostic biomarker. This finding aligns with the growing interest
in urine-based markers for BLCA, given the limitations and
invasiveness of repeated cystoscopy in routine surveillance.
Previous studies support our observation, Qun et al. identified
PRDXI1 is positively correlated with the recurrence and
progression of BLCA in patients (40). Tabaei et al. compared
protein profiles from NMIBC and MIBC tissue samples using
two-dimensional electrophoresis followed by LC-MS/MS
identification. This approach highlighted several potential non-
invasive diagnostic and prognostic biomarkers, with PRDXI
showing a pronounced up-regulation in NMIBC (41). Whether
similar mechanisms operate in BLCA warrants further
investigation. Together, our results highlight PRDX1 as both a
marker of malignancy and a potential therapeutic target in BLCA.

Recent studies have further revealed that PRDXI1 not only
functions as an antioxidant enzyme but also plays a critical role
in regulating ferroptosis and lipid ROS metabolism. For instance,
PRDX1 suppresses ferroptotic cell death by scavenging lipid
peroxides, thereby promoting tumor cell survival under oxidative
stress. In addition, PRDX1 has been implicated in modulating the
tumor immune microenvironment, facilitating immune escape
through redox-dependent pathways. These findings provide new
mechanistic insight into our observation of PRDX1 upregulation in
BLCA and suggest that targeting PRDX1 may represent a promising
therapeutic strategy by sensitizing tumor cells to ferroptosis and
restoring anti-tumor immunity.

Our analyses showed a consistent and robust correlation
between PRDX1 expression and FAM activity, suggesting that
PRDX1 may be involved in metabolic heterogeneity in BLCA.
However, whether PRDX1 directly regulates FAM pathways in
BLCA cells remains to be determined. The current evidence
supports an association, but causality cannot be inferred. It is
possible that PRDX1 upregulation represents part of a broader
metabolic and oxidative stress adaptation program rather than a
direct driver of lipid metabolism. Future mechanistic studies, such
as lipidomics profiling in PRDX1 knockdown cells or CRISPR-
based perturbation combined with metabolic flux assays, will be
needed to clarify this relationship.

This study has several limitations. First, our functional
validation was limited to in vitro assays, and in vivo studies such
as xenograft models will be required to confirm the role of PRDX1
in tumor progression and therapeutic targeting. Second, the clinical
validation relied on retrospective datasets; independent, prospective
cohorts are needed to establish the robustness of PRDX1 as a
biomarker. These limitations highlight the need for further
experimental and translational studies to strengthen our findings.
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5 Conclusion

This study provides the first single-cell-level characterization of
FAM heterogeneity in BLCA and redefines a FAM-related gene
signature. Integrating bulk RNA-seq and machine learning, we
identified key FAM-associated genes, with PRDXI1 validated as a
central biomarker. These findings offer a foundation for
personalized metabolic-targeted therapies in BLCA.
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