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Multi-omics dissection of fatty
acid metabolism heterogeneity
identifies PRDX1 as a prognostic
marker in bladder cancer
Li Wang1,2†, Zhe Chang1,2†, Si-yu Chen1,2†, Jian-wei Yang1,2,
Kang-yu Wang1,2, Kun-peng Li1,2, Shun Wan1,2,
Shan hui Liu1,2* and Li Yang1,2*

1Department of Urology, Gansu Province Clinical Research Center for Urinary System Disease, The
Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China, 2Institute of Urology,
Gansu Province Clinical Research Center for Urinary System Disease, The Second Hospital & Clinical
Medical School, Lanzhou University, Lanzhou, China
Background: Fatty−acid metabolism (FAM) is rewired in bladder cancer (BLCA),

yet its impact on intratumoral diversity and patient outcome is unclear.

Methods: To characterize FAM heterogeneity, we integrated spatial and single-

cell transcriptomic approaches. We employed high-dimensional weighted

correlation network analysis (hdWGCNA) alongside five distinct enrichment

methods (ssGSEA, AddModuleScore, AUCell, singscore, and UCell) to identify

modules with elevated FAM activity. Subsequently, machine learning algorithms

were applied to bulk RNA sequencing datasets to pinpoint the key gene with

highest predictive value. This candidate underwent validation through functional

experiments and analysis of clinical specimens.

Results: Malignant epithelial cells displayed the strongest FAM activity. Cross

−platform scoring and co−expression analysis produced a refined high−FAM

gene set. Integrating this signature with bulk datasets singled out PRDX1 as a key

driver. PRDX1 was up−regulated in tumors, predicted poorer prognosis, and was

enriched in malignant epithelial cells. Silencing PRDX1 curtailed BLCA cell

proliferation, migration, and invasion.

Conclusions: PRDX1 emerges as a FAM−linked oncogenic biomarker that fosters

BLCA progression. These findings define the metabolic hierarchy of BLCA and

nominate PRDX1 as a candidate target for personalized therapy.
KEYWORDS

fatty acid metabolism, BLCA, PRDX1, machine learning, urology
1 Introduction

Bladder cancer (BLCA) represents a major urological malignancy, accounting for

roughly 573,000 newly diagnosed patients and 212,000 fatalities worldwide during 2020 (1,

2). Urothelial carcinoma comprises more than 90% of diagnoses in industrialized nations,
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where both geographic location and patient age significantly affect

disease occurrence (3, 4). Even with progress in surgical techniques

and systemic treatments, patient prognosis continues to be dismal

owing to high rates of recurrence, disease advancement, and

therapeutic resistance, especially among those with muscle-

invasive or metastatic tumors (5, 6). Recurrence affects around

50-70% of non-muscle-invasive tumors, while muscle invasion

develops in as many as 30% of patients (7). Patients with

metastatic disease experience survival rates below 10% at five

years (8, 9). Such statistics underscore the urgent requirement to

identify molecular mechanisms underlying tumor aggressiveness

and create superior treatment approaches.

The reprogramming of cellular metabolism is a hallmark of

BLCA, with lipid alterations playing a central role in tumor

initiation and progression (10). Aberrant fatty acid metabolism

(FAM) in BLCA is not merely a byproduct of malignancy but

actively supports tumor growth, survival, and adaptation (11).

Specifically, BLCA cells display enhanced fatty acid uptake and

synthesis, reduced fatty acid oxidation (FAO), and marked lipid

droplet accumulation (12), changes that promote oxidative stress

resistance and membrane stability under hypoxic or nutrient-

limited conditions (13). Moreover, altered lipid composition has

been linked to epithelial-to-mesenchymal transition (EMT),

invasion, and immune evasion in aggressive BLCA subtypes (14).

Although PRDX1 has been reported as an oncogenic factor and

adverse prognostic marker in BLCA, its role has not previously been

examined in the context of FAM heterogeneity. By integrating

multi-omics data and machine learning, our study uniquely

positions PRDX1 as a FAM-linked biomarker, thereby uncovering

a novel layer of its functional relevance in BLCA.

Traditional bulk transcriptomic methods lack cellular resolution,

limiting insights into cell-specific metabolic reprogramming. Single-

cell RNA sequencing (scRNA-seq) addresses this by uncovering

transcriptional heterogeneity and rare cell populations, offering new

perspectives on FAM dynamics. Spatial transcriptomics (ST) further

complements scRNA-seq by preserving tissue context and revealing

spatial patterns of metabolic alterations. However, limitations in

sample size and interpatient variability reduce the generalizability of

current findings. Thus, integrating multi-omics data is essential to

overcome these challenges, enabling more accurate identification of

metabolic biomarkers and therapeutic targets in BLCA (15).

In this study, we integrated scRNA-seq, ST, and bulk RNA-seq

data to systematically explore the functional landscape of FAM in

BLCA. Single-cell analysis revealed pronounced heterogeneity in

FAM activity among distinct cellular populations, with malignant

urothelial cells exhibiting elevated FAM-related gene expression.

Using a combination of machine learning approaches, we identified

PRDX1 as a central regulator of FAM dysregulation. PRDX1

expression correlated with tumor aggressiveness and poor

prognosis in public BLCA cohorts. Functional validation through

in vitro assays confirmed that PRDX1 modulates key enzymes

involved in lipid metabolism, thereby contributing to tumor cell

proliferation and oxidative stress resistance. This study reveals

novel metabolic features of BLCA and identifies PRDX1 as a

viable target for intervention.
Frontiers in Immunology 02
2 Methods

2.1 Data collection

From the GEO repository, we obtained seven single-cell RNA

sequencing datasets (GSE129845, GSE130001, GSE135337,

GSE146137, GSE190888, GSE192575, and GSE211388), which

included 34 total samples consisting of 30 tumors and 4 normal

tissue controls (16). Clinical information and bulk RNA sequencing

data were acquired from both TCGA and GEO databases

(GSE13507, GSE32984). To incorporate spatial gene expression

information, we also utilized a spatial transcriptomics dataset

(GSE171351). Proteomic profiles from urine samples were

collected from five individuals with BLCA alongside five healthy

participants, following methods described in previous work (17).

Detailed information about all the datasets used in this study was

provided in Supplementary Table S1. We assembled a collection of

323 fatty acid metabolism-related genes by integrating information

from multiple sources: KEGG, REACTOME, MSigDB v5.2

Hallmark gene sets, and existing publications (18) (see

Supplementary Table S2). Additionally, protein expression of the

related genes was examined through the Human Protein Atlas

(HPA) (https://www.proteinatlas.org/) database. The flow chart

illustrating the operational procedure in this study (Figure 1).
2.2 Data analysis

Raw scRNA-seq data were processed into Seurat objects and

integrated as previously described (19). Quality control retained

high-quality cells based on the following thresholds: (1) 200–5,000

genes detected per cell; (2) ≤15% mitochondrial gene content; and

(3) >3% erythrocyte gene expression. After normalization, a total of

115,628 qualified cells were included for downstream analysis.

Batch effects were corrected using Harmony integration. The data

underwent log-normalization followed by scaling through linear

regression methods. Using the “FindVariableFeatures” function, we

selected the 3,000 most variable genes. Principal component

analysis (PCA) was employed for dimensionality reduction, with

subsequent graph-based clustering executed through the

“FindClusters” algorithm. UMAP was utilized for visualization,

while canonical marker gene expression guided the annotation of

distinct cell populations. For bulk RNA-seq data, raw counts were

log2-transformed and normalized using the DESeq2 pipeline or

limma-voom.
2.3 High-dimensional weighted correlation
network analysis

Leveraging the hdWGCNA algorithm for high-dimensional

weighted gene co-expression network analysis, we constructed

cell-type-specific networks within high resistance activity state at

single-cell resolution (20). Scale-free topology networks were

implemented using a soft threshold power of 12, maintaining
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>0.85 model fit index. The Construct Network function identified

robust gene modules, with eigengene connectivity (kME)

quantifying module-associated expression profiles (21). Key

disease-relevant modules were subsequently screened via UCell

scoring (22). Shared candidate genes derived from hdWGCNA

underwent differential expression validation, following

standardized protocols documented in the official pipeline

(https://smorabit.github.io/hdWGCNA/).
2.4 FAM score in scRNA

To assess FAM activity within single-cell RNA sequencing

datasets, we employed five distinct computational approaches:

AUCell, UCell, singscore, ssGSEA, and AddModuleScore (23, 24).

Based on IQR range methods, we stratified malignant cells into

three distinct FAM phenotypic categories: low FAM activity state

(LFS), dynamic transition FAM activity state (DTFS), and high

FAM activity state (HFS). The FindMarkers function enabled

identification of genes showing differential expression in

association with increased FAM activity.
2.5 Infer the malignant epithelial cells

The inferCNV algorithm was utilized to detect malignant

epithelial cells through chromosomal copy number variation (CNV)

assessment. By computing the average squared magnitude of CNV

across all chromosomes, we generated a malignancy score that

captured the extent of clonally expanded CNV alterations (25). Cell
Frontiers in Immunology 03
malignancy status was determined through bimodal distribution

analysis of CNV scores relative to normal reference profiles,

enabling statistically robust epithelial malignancy classification.
2.6 Cellular trajectory reconstruction
analysis using gene counts and expression
analysis

Cellular differentiation trajectories were inferred using

CytoTRACE (26), a computational framework that quantifies

developmental potential from single-cell transcriptomes. This

algorithm employs an entropy-based metric calculated from two key

features: (1) the number of expressed genes per cell, and (2) the

distribution of highly variable genes associated with undifferentiated

states. Malignant epithelial cells identified through prior CNV analysis

were subjected to CytoTRACE scoring, with lower scores indicating

advanced differentiation status and higher scores signifying primitive

stem-like states.
2.7 Cell communication

Cell-cell communication dynamics were analyzed using

CellChat (v1.6.0) with integrated ligand-receptor co-expression

profiling (27). The standard pipeline employed CellChatDB-

human containing 2,021 curated interactions. Cell-type-specific

signaling networks were resolved through differential expression

analysis of ligands/receptors across defined subpopulations,

quantifying interaction probability alterations (28).
FIGURE 1

Work flow of the study.
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2.8 Screening of feature genes

To identify the most informative feature genes, we first applied

six feature selection algorithms—Random Forest (RF), LASSO

regression, Decision Tree (DT), Adaptive Best Subset Selection

(ABESS), and Gradient Boosting Machine (GBM)—each of which

offers distinct strengths for high-dimensional data analysis (29).

The selected features were then used to build predictive models.

Specifically, we evaluated eight classification algorithms, including

k-nearest neighbor (KNN), linear discriminant analysis (LDA),

logistic regression (LR), Naïve Bayes (NB), random forest

(Ranger), recursive partitioning and regression trees (RPART),

support vector machine (SVM), and extreme gradient boosting

(XGBoost), and compared their performance to select the optimal

model. To further interpret the contribution of selected features, we

applied SHAP (SHapley Additive exPlanations) analysis. SHAP

values provide a unified framework derived from game theory to

quantify the impact of each gene on model predictions. In this

context, positive SHAP values indicate that a gene promotes

classification into the high-risk group, whereas negative values

suggest association with the low-risk group. For biological

validation, we examined the enrichment of the identified core

genes across cell types using scRNA-seq data, and further

confirmed their expression differences in TCGA-BLCA and bulk

RNA-seq datasets with the Wilcoxon rank-sum test. Finally, the

predictive performance of the model was assessed using the area

under the receiver operating characteristic (ROC) curve.
2.9 Cell culture and transfection

BLCA cell lines (T24, UMUC-3, J82, and 5637) along with the

normal urethral epithelial cell line SV-HUC-1 were obtained from

the Gansu Province Clinical Research Center for Urinary System

Diseases. SV-HUC-1 cells were grown in Ham’s F12K medium,

while all malignant cell lines were cultivated in RPMI-1640

(Shanghai Yuanpei Biotechnology). Both culture media were

supplemented with 10% fetal bovine serum (FBS) from PAN

Biotech and 1% penicillin-streptomycin at 100 U/mL-100 mg/mL

concentration from Solarbio. Cells were incubated under standard

conditions maintaining 37 °C temperature, 5% CO2 atmosphere,

and appropriate humidity levels. The small interfering RNAs

(siRNAs) directed against PRDX1 were procured from Tsingke

Biological, and the transfection reagent was sourced from Shanghai

GenePharma Biotechnology. The efficacy of the knockdown was

validated using Quantitative RT−PCR (qRT−PCR) analysis at 36

hours post-transfection. Moreover, concurrent phenotypic

experiments were conducted using the same procedure.
2.10 Quantitative RT−PCR

Total RNA extraction from four BLCA cell lines (UMUC-3, J82,

T24, and 253J) was performed using TRIzol reagent (Invitrogen,
Frontiers in Immunology 04
USA), followed by spectrophotometric quantification of RNA

concentrations. One microgram of extracted RNA underwent

reverse transcription to cDNA using the AJ reverse transcription

kit. qRT-PCR analysis was performed using a BIO-RAD CFX-96

system, with gene expression levels determined through the 2-DDCt
method and normalized against b-actin. Data are presented as mean

± SD. Primer sequences are detailed in Supplementary Table S3.
2.11 Western blotting

Total protein was extracted using RIPA buffer (P0013B,

Beyotime, China) supplemented with protease inhibitors. Protein

concentrations were determined by the bicinchoninic acid (BCA)

assay. Samples were separated by SDS-PAGE and transferred onto

PVDF membranes. Membranes were blocked with 6% non-fat dry

milk before incubation with primary antibodies overnight at 4 °C.

Protein bands were identified utilizing the Odyssey imaging system

in conjunction with the appropriate secondary antibody (926-

32211, Li-Cor, USA) for visualization. This work utilized the

following antibodies: b-actin (Cat No. 66009-1-Ig, Proteintech)

and PRDX1 (Cat No. 66820-1-Ig, Proteintech).
2.12 Cell counting kit-8

The Cell Counting Kit-8 (CCK8) was utilized to evaluate the

proliferation of T24 and UMUC-3 cells. In accordance with the

guidelines, cells (2 × 10³/well) were inoculated in 100 μL of media

using 96-well plates, with three replicate plates established for

various time points. CCK-8 reagent (AbMole BioScience) was

applied at 10 μL per well at intervals of 0 to 96 hours. After a 2-

hour incubation, absorbance was measured at 450 nm using a

BioTek plate reader.
2.13 Colony formation assay

For clonogenic tests, 6-well plates were inoculated with 1 × 10³

cells per well in 2 mL of medium. Following an 8–10 days

cultivation at 37°C with 5% CO2, colonies were fixed with 4%

PFA (Biosharp #BL539A), stained with 0.1% crystal violet (Solarbio

#G1063), and subsequently photographed and quantified.
2.14 Wound-healing assay

Transfected cells (6×105) attained confluence 48 hours after

transfection. Monolayers were scraped with sterile 200 mL tips,

rinsed with PBS, and subsequently treated with in serum-free

media. Migration was evaluated by photographing wounds at 0

and 24 hours using inverted microscopy, with closure rates

measured using ImageJ. Transwell migration assay BLCA cells

(1×105 in 200 mL of serum-free media) were inoculated into
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LABSELECT chambers (8 mm holes; #14342). The lower chambers

had 600 mL of RPMI-1640 enriched with 20% FBS as a

chemoattractant. After 24–48 hours of incubation at 37 °C with

5% CO2, the transmigrated cells were subjected to methanol fixation

(4%), crystal violet staining (0.1%; Solarbio #G1063), and

subsequent microscopic counting.
2.15 Nile red staining and ROS assays

Lipid accumulation in PRDX1-silenced cells was visualized

using Nile Red fluorescent staining (Solarbio, China). Cells were

rinsed with PBS, fixed in 4% paraformaldehyde, and treated with

500 mL of Nile Red reagent for 15 minutes under light-protected

conditions. To measure intracellular reactive oxygen species (ROS),

BC cells cultured in six-well plates were exposed to 25 mM DCFH-

DA probe (HY-D0940, MedChemExpress) and maintained in

darkness for 30 minutes. Both lipid and ROS fluorescence signals

were documented through confocal microscopy imaging.
2.16 Statistical analysis

R software (version 4.3.3) along with GraphPad Prism (version

9.0) were utilized for conducting statistical evaluations. Based on

distribution patterns, continuous variables underwent analysis

through either Student’s t-test or Wilcoxon rank-sum test. For

categorical data, c² test or Fisher’s exact test was applied as

appropriate based on anticipated frequencies. Kaplan-Meier

methodology was employed to analyze survival data, with log-

rank test comparing groups, supplemented by Cox proportional

hazards regression for multivariate analysis. Each experiment was

replicated three times, with results presented as mean values

accompanied by standard deviation (SD). A p-value below 0.05

indicated statistical significance. The following notation indicates

significance thresholds: n.s. denotes non-significant results; *p ≤

0.05; **p ≤ 0.01; ***p ≤ 0.001; ****p ≤ 0.0001.
3 Results

3.1 Single-cell data integration

Batch effect adjustment was conducted to combine seven single-

cell datasets containing 34 specimens (4 control tissues and 30

tumor tissues) (Supplementary Figure S1A-C). Classical BLCA

markers were employed to identify cellular subtypes, which

included Macrophages, Monocytes, Dendritic Cells (DCs),

Endothelial Cells, B Cells, CD4 T Cells, CD8 T Cells, Epithelial

Cells, myofibroblast Cancer-Associated Fibroblasts (mCAFs), and

inflammatory Cancer-Associated Fibroblasts (iCAFs) (Figure 2A).

Marker gene bubble plots were generated to verify annotation

precision (Figure 2B). Five distinct computational methods

(AUCell, UCell, singscore, ssGSEA, and AddModuleScore)
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revealed markedly increased FAM activity within epithelial

regions across all approaches (Figure 2C; Supplementary Figure

S2A-C). Spatial transcriptomics profiling further revealed

pronounced FAM signature enrichment within tumor core

regions of BLCA specimens (Figure 2D). Given substantial

heterogeneity among epithelial cells, we employed inferCNV to

delineate malignant clones. This analysis identified five distinct

CNV clusters, with Cluster 1 exhibiting the highest malignancy

score (Figures 2E, F; Supplementary Figure S2D). Subsequent

UMAP-based reannotation epithelial cells (Figure 2G), which

demonstrated higher composite FAM activity than normal

epithelial controls (Figure 2H; Supplementary Figure S1E, F).
3.2 Dissecting FAM in malignant BLCA cells

The UMAP revealed heterogeneous FAM activity patterns

within tumors, particularly evident in malignant epithelial

populations (Figure 3A). Based on quartile distributions of FAM

scores, we stratified cells into three distinct categories: LFS, DTFS,

and HFS populations (Figures 3B, C). The differentiation status of

cancer cells was further investigated using the Monocle2 algorithm

through CytoTRACE analysis. The results demonstrated that LHS

cancer cells exhibited a lower degree of differentiation and possessed

a higher potential for differentiation (Figures 3D, E). We

subsequently correlated the FAM score with the CytoTRACE

score, as illustrated in Figures 3F, G. The yellow regions indicate

cells that exhibit high FAM and CytoTRACE scores, which largely

demonstrate a consistent overlap. We then conducted an analysis of

the CytoTRACE scores across the three groups (Figure 3H).

Additionally, our findings revealed a significant correlation

between CytoTRACE and FAM scores (Figures 3I). Figure 3J

illustrates the expression profiles of cell-specific marker genes in

relation to CytoTRACE.
3.3 Functional profiling of FAM in scRNA-
seq data

To investigate intercellular communication patterns, we applied

CellChat to the scRNA-seq data and analyzed interactions between

LFS, DTFS, HFS, and other cell populations. This analysis quantified

both interaction frequency and signaling strength across cell types

(Figures 4A, B). HFS cells demonstrated notably higher signaling

activity, indicating superior intercellular communication capacity

(Figure 4C). Further pathway enrichment analysis identified key

signaling routes that were upregulated in HFS cells, including the

Androgen and JAK-STAT pathways (Figure 4D). To refine the

comparison between HFS and LFS cells, we assessed ligand–receptor

pair expression. HFS cells showed a marked increase in potential

communication events with neighboring cell types, as reflected by a

greater number of ligand–receptor pairs (Figures 4E–G). Consistently,

heatmap visualization revealed elevated interaction probabilities in the

HFS subgroup (Figure 4H).
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FIGURE 2

Elevated FAM activity in malignant epithelial cells of BLCA. (A) UMAP plot displaying the cellular landscape of BLCA. (B) Representative marker genes
used to annotate each cell type. (C) Bubble plot showing FAM gene set enrichment scores across cell types, calculated using AUCell, UCell,
singscore, ssGSEA, AddModuleScore, and Scoring. (D) H&E staining and corresponding heatmaps illustrating the spatial distribution of FAM activity.
(E) Malignant cells identified through K-means clustering based on inferred CNV profiles. (F) CNV score differences among six clusters. (G) Refined
cell annotation confirming the identity of malignant cell populations. (H) Bubble plot indicating higher FAM enrichment scores in malignant cells,
consistently observed across multiple scoring algorithms.
Frontiers in Immunology frontiersin.org06
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3.4 Revealing HFS-specific co-expression
modules using hdWGCNA

The hdWGCNA framework was employed to detect gene co-

expression networks among malignant cells exhibiting high FAM

scores. We established a scale-free topology using a soft-thresholding

parameter set at 12, which led to the discovery offive separatemodules

(Figures 5A, B). The cellular distribution within each module was

visualized through UMAP projection (Figure 5C). A heatmap further

displayed the relationships between different modules (Figures 5D, E).

Analysis via bubble plots demonstrated pronounced correlations of

the blue, green, and yellow modules with cells displaying elevated

FAM activity (Figures 5F). Subsequently, we extracted genes from

these three key modules (blue, green, and yellow) using a module

membership threshold (kME) exceeding 0.3, which generated 300
Frontiers in Immunology 07
genes for downstream investigation (Supplementary Table S4).

Comparing gene expression profiles of HFS versus LFS populations

identified 1205 genes with increased expression linked to elevated

FAM activity (Supplementary Table S5). cross-referencing these

module-associated genes with the DEGs identified earlier produced

197 potential candidates involved in FAM enhancement within BLCA

(Figure 5M; Supplementary Table S6).
3.5 Machine learning–based identification
of OFGs

To identify the optimal feature genes (OFGs), multiple machine

learning algorithms were applied for screening. Random Forest

analysis identified a total of 166 candidate genes (Figure 6A), while
FIGURE 3

Identification and characterization of FAM-associated malignant cell subsets. (A) UMAP visualization showing the heterogeneity of FAM activity
among malignant cells. (B, C) Malignant cells were stratified into three groups-LFS, DTFS, and HFS-based on FAM activity scores. (D) The CytoTRACE
characteristics and FAM-related phenotypes of BLCA cells. (E) Boxplots showing differentiating ordering identically ordered by CytoTRACE.
(F–G) The correlation was revealed when the FAM score was combined with the CytoTRACE score. (H) Comparison of CytoTRACE Scores Among
LHS, LDTS and LLS. (I) Pearson correlation test for CytoTRACE and FAM scores (J) The expression Profiles of Cell-Specific Marker Genes Linked to
CytoTRACE Analysis. ***P < 0.001.
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LASSO regression yielded 65 genes (Figure 6B). ABESS further

selected 20 genes (Figure 6C). Additionally, 20 genes were identified

using DT and GBM methods (Figures 6D, E; Supplementary Table

S7). By intersecting the gene sets obtained from these five

algorithms, 14 hub genes were consistently shared across

methods: TUBA1B, YIF1A, AKR7A2, NQO1, PRDX1, PPT1,

ANAPC11, P4HB, CCT5, TMEM141, SLC44A1, MRPL36, APLP2

(Supplementary Table S8).
Frontiers in Immunology 08
3.6 Single-cell resolution analysis of
identified OFGs

The HFS subgroup in the single-cell dataset was randomly

divided into training and testing cohorts. Diagnostic performance

of the identified OFGs remained robust in both sets, with all genes

showing AUC values above 0.7 (Figures 7A, B). In the previously

defined HFS, DTFS, and LFS groups, OFGs were significantly
FIGURE 4

Functional characterization of HFS, DTFS, and LFS malignant cells based on scRNA-seq–derived cell–cell communication analysis. (A, B) CellChat
analysis depicting interaction frequency and strength between malignant subgroups (HFS, DTFS, LFS) and other cell types. (C) Overview of
intercellular communication patterns across various cell populations. (D) Heatmap showing differential enrichment of signaling pathways among
HFS, DTFS, and LFS cells. (E, F) Bar plots illustrating the number of predicted interactions between HFS or LFS malignant cells and surrounding cell
types. (G) Visualization of communication networks linking malignant subgroups with other cell populations. (H) Heatmap displaying the inferred
probability of incoming and outgoing signaling events for each subgroup.
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enriched in HFS cells, exhibiting a marked upward trend in

expression levels (Figure 7C). Overall, these genes were

predominantly expressed in malignant cells, which also showed

the highest average expression (Figure 7D).

We performed 10 repetitions of fivefold cross-validation on the

training set to assess the robustness of each model. Most models

exhibited robustness in their predictions. Among these models,

RPART performed poorly, while naïve Bayes demonstrated a

balanced precision and sensitivity, showing an AUC of 0.992

(Supplementary Figure S3A-C). Therefore, the naïve Bayes

algorithm was adopted in the final machine-learning model,

SHAP analysis ranked the OFGs by their contribution to the

predictive model, identifying PRDX1 as a key potential driver

(Figure 7E). Notably, PRDX1 expression was consistently elevated
Frontiers in Immunology 09
across both the broader epithelial cell population (Figure 7F) and

the malignant epithelial subset (Figure 7G).
3.7 Trajectory inference and signaling
features of PRDX1+ malignant cells

To investigate the functional role of PRDX1, malignant cells

from BLCA samples were stratified based on PRDX1 expression

into PRDX1+ and PRDX1- subsets. CytoTRACE analysis indicated

that PRDX1+ cells exhibited significantly enhanced stemness

features compared to their PRDX1- counterparts (Figure 8A;

Supplementary Figure S4). Pseudotime trajectory analysis revealed

that PRDX1+ high malignant cells preferentially occupy a late-stage
FIGURE 5

Identification of key gene modules associated with HFS malignant cells via hdWGCNA. (A) Plot of scale-free topology fit index and mean
connectivity across a range of soft-thresholding powers. (B) Hierarchical clustering dendrogram showing gene module classification; five distinct
modules were identified using the hdWGCNA framework. (C) UMAP visualization displaying the distribution of module feature scores across
malignant cells. (D) Top hub genes identified within each module based on intramodular connectivity. (E) Heatmap illustrating correlation patterns
among the five modules. (F) Bubble plot summarizing module scores for the five identified gene modules. (G) The volcanic map of the DEGs.
(H) Venn diagram showing the overlap between module-derived genes and DEGs, identifying shared candidates for further analysis.
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transcriptional state along Component 1, whereas PRDX1-low/

negative cells map to earlier pseudotime positions, indicating that

PRDX1 expression marks a progressive, more advanced malignant

phenotype (Figure 8B). We comprehensively evaluated the

intercellular communication profiles of PRDX1+ and PRDX1-

malignant cells (Figures 8C–E). PRDX1+ cells exhibited markedly

increased numbers of ligand–receptor interactions and stronger
Frontiers in Immunology 10
signaling intensity with surrounding cell types, indicating globally

enhanced communication capacity (Figures 8F–G). Intercellular

communication analysis revealed that the MDK–NCL axis serves as

a major route through which PRDX1+ malignant cells interact with

diverse cell subtypes (Figure 8H). Moreover, PRDX1+ cells

demonstrated elevated communication probabilities, as shown in

the heatmap. GALECTIN, PTN, and ANGPTL pathways were
FIGURE 6

The identification of hub ORGs is performed using machine learning techniques, (A)RF algorithm (B) the LASSO regression algorithm. (C) Adaptive
BEst Subset Selection (ABESS) algorithm. (D) Decision Tree (DT) algorithm. (E) Gradient Boosting Machine (GBM) algorithm. (F) Venn diagrams of five
algorithms.
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significantly more active in PRDX1+ than in PRDX1- cells. For

incoming signals, TWEAK expression was predominantly enriched

in PRDX1+ cells (Figure 8I).
3.8 Clinical relevance of PRDX1 in BLCA

Previous proteomic profiling of urine samples from five

individuals with BLCA and five healthy participants demonstrated

substantial elevation of PRDX1 levels among cancer patients
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(Figure 9A), suggesting its value as a non-invasive diagnostic

indicator for initial screening. The TCGA dataset provided

additional confirmation, showing considerably higher PRDX1 levels

in cancerous tissues relative to neighboring normal samples, which

held true for matched tissue pairs (Figures 9B, C). Prognostic

assessment revealed that reduced PRDX1 levels correlated with

improved patient survival (Figure 9D). Additionally, ROC curve

evaluation yielded strong diagnostic capability with an AUC value

of 0.804 (Figure 9E). In bulk RNA-seq datasets, PRDX1 expression

was notably elevated in muscle-invasive BLCA (Figure 9F) and
FIGURE 7

(A) ROC-AUC performance of top candidate biomarkers in the training cohort. (B) ROC-AUC performance of top candidate biomarkers in the
testing cohort (C, D) The bubble chart shows the expression of all characteristic genes in HFAM and malignant cells. (E) SHAP summary plot showing
feature importance across the predictive model. points shifted to the left indicate negative impact (protective effect), while points shifted to the right
indicate positive impact (risk-enhancing effect) on model prediction. (F, G) UMAP analysis revealed that PRDX1 was highly expressed in epithelial
cells and malignant tumor cells.
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FIGURE 8

Trajectory analysis and cellular communication in PRDX1+ malignant cells. (A) The distribution of PRDX1 in malignant cells was visualized by a UMAP
plot. (B) CytoTRACE analysis of PRDX1+ malignant cells. (C) Raincloud plot of CytoTRACE scores in PRDX1+ malignant cells and PRDX1 malignant
cells. (D, E) Bar plots showed the number of interactions between PRDX1+ malignant cells and other cell types. (F) The correlation between
differential outgoing contacts and the degree of incoming interactions in PRDX1+ malignant cells and PRDX1- malignant cells. (G, H) Quantity and
intensity of cellular communications between PRDX1+ malignant cells and other cell types. (I) PRDX1+ malignant cells interacting with various cell
ligand-receptor bubble diagrams. (J) A heat map summarizing the outgoing and incoming signal pathways of PRDX1+ malignant cells and other cell
types.
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showed a strong association with disease progression (Figure 9G), as

well as with advanced tumor grade and stage (Figures 9H, I).

Immunohistochemistry results obtained from the Human Protein

Atlas (HPA) database further illustrated the spatial expression patterns

of PRDX1 in tissue samples, corroborating its upregulation in tumor

tissues (Figures 9J, K).
3.9 In vitro verification

To clarify the role of PRDX1 in BLCA, its expression was

assessed across cell lines. Both RT-PCR andWestern blot confirmed

elevated PRDX1 levels in BLCA cells (T24, UMUC-3, J82, 253J)

relative to normal SV-HUC-1 cells (Figures 10A-C). Effective

knockdown in UMUC-3 and T24 was validated by qRT-PCR

(Figure 10D). Functional assays demonstrated that PRDX1

silencing reduced proliferation (CCK-8, Figure 10E), colony

formation (Figure 10F), and significantly impaired migratory and

invasive capacities (wound healing and Transwell, Figures 10G, H).

Our results indicated that knockout of PRDX1 resulted in a

substantial increase in ROS levels (Supplementary Figure S5A) in
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addition, Nile Red staining results demonstrated a substantial

reduction in intracellular lipid droplets following PRDX1

knockdown (Supplementary Figure S5B).
4 Discussion

Cancer cells characteristically undergo metabolic rewiring,

which allows tumors to survive and flourish in challenging

environments (30). Growing research indicates that disrupted

FAM serves as a key factor driving BLCA progression,

complementing recognized changes in glucose utilization and

amino acid processing, including glutamine addiction (31).

Although FAM deregulation occurs across various cancer types—

such as breast, prostate, lung, and kidney tumors—the regulatory

mechanisms and functional relevance within BLCA are still

inadequately characterized (32).

Consistent with prior reports, we confirmed that PRDX1 is

upregulated and associated with poor prognosis in BLCA. The

unique contribution of our study lies in contextualizing PRDX1

within fatty acid metabolism heterogeneity, revealing its close
FIGURE 9

Differences in PRDX1 expression levels in BLCA and their correlation with clinical pathological features. (A) PRDX1 expression levels in urine
proteomics; (B) PRDX1 expression levels in urine proteomics from 5 BLCA patients and 5 normal individuals; (C) Paired comparison of PRDX1
expression levels between 403 BLCA and 19 normal tissues; (D) Relationship between PRDX1 expression levels and overall survival of BC patients;
(E) ROC curve assessing the sensitivity and specificity of PRDX1 as a predictive marker for BLCA. (F) PRDX1 expression in muscle-invasive vs. non–
muscle-invasive bladder cancer samples in the GSE13507. (G) PRDX1 expression in bladder cancer patients with and without disease progression in
GSE13507. (H) PRDX1 expression across tumor grades in the GSE32894 dataset. (I) PRDX1 expression across pathological stages in the GSE32894.
(J) Immunohistochemical staining of PRDX1 in adjacent non-cancerous tissues; (K) Immunohistochemical staining of PRDX1 in BLCA tissues.
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association with lipid metabolic pathways in addition to its well-

known antioxidant activity. This dual connection suggests a BLCA–

specific role for PRDX1, expanding our understanding of its

oncogenic functions.
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We utilized scRNA-seq technology to profile FAM heterogeneity

throughout bladder tumors. Applying five distinct scoring approaches

to an assembled FAM gene panel revealed substantially increased

FAM activity within epithelial cells, particularly those with malignant
FIGURE 10

In vitro experiments of PRDX1. (A) qRT-PCR analysis showing the relative expression levels of PRDX1 in five cell lines (SV, UMUC-3, J82, T24, and
5637). (B, C) Western blot analysis demonstrating the expression of PRDX1 protein in these cell lines. (D) Determination of PRDX1 knockdown
efficiency in T24 and UMUC-3 cells by qRT- PCR. (E) CCK-8 proliferation assay. (F) Colony formation experiment. (G) Wound-healing assay.
(H) Trans-well migration assay. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001
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characteristics. Metabolic diversity was additionally validated through

spatial transcriptomic analysis. Notably, FAM activity showed

variation both between different cell populations and among

malignant epithelial subsets. Activity scores enabled stratification of

malignant cells into three categories: LFS, DTFS, and HFS

populations. Our functional investigations revealed that HFS cells

exhibited enhanced cell-cell communication capabilities and increased

stemness characteristics.

We investigated the underlying molecular mechanisms by

combining differentially expressed genes distinguishing HFS from

LFS populations with central genes determined through hdWGCNA

analysis, creating a preliminary FAM-related gene panel. Various

machine learning techniques subsequently refined this panel to

pinpoint critical markers associated with tumor heterogeneity and

patient outcomes. Through this strategy, we discovered 14 OFGs

linked to elevated FAM activity. By incorporating urine proteomic

profiles, PRDX1 was identified as a pivotal biomarker, demonstrating

robust predictive capacity, increased tumor expression, and

correlation with unfavorable outcomes.

PRDX1 belongs to the peroxiredoxin protein family and

participates in maintaining cellular redox balance while shielding

cells against oxidative injury (33). Nevertheless, within tumors, such

protective antioxidant activity might counterintuitively promote

cancer cell persistence through ROS neutralization, thus enabling

continued growth and apoptotic evasion (34). We observed markedly

increased PRDX1 levels in both BLCA tissues and cultured cell lines,

where elevated expression linked to worse patient outcomes and more

aggressive clinical characteristics, including higher tumor grades and

stages. In addition to its diagnostic and prognostic value, PRDX1+

malignant cells were found to exhibit enhanced stemness, increased

intercellular communication, and enrichment of key oncogenic

pathways, suggesting a potential role in maintaining aggressive

tumor phenotypes. Previous studies in other cancers, including

breast and lung cancer, have implicated PRDX1 in promoting

epithelial–mesenchymal transition (EMT), immune evasion, and

chemotherapy resistance (35). As a key antioxidant enzyme, PRDX1

is sensitive to overoxidation at its catalytic cysteine in response to

various stress stimuli. In the nucleus, oligomeric PRDX1 interacts with

transcription factors such as p53, c-Myc, NF-kB, and AR, thereby

modulating gene expression involved in cell survival and death (36,

37). In the cytoplasm, PRDX1 exhibits anti-apoptotic activity by

regulating ROS-dependent signaling pathways through effectors

including ASK1, p66Shc, GSTpi/JNK, and c-Abl (38). Through

these mechanisms, PRDX1 functions as a multifaceted regulator of

cell growth, apoptosis, and differentiation. Increasing evidence

indicates that PRDX1 and its redox-associated pathways contribute

to tumor progression and metastasis in multiple cancers, including

breast, lung, and esophageal malignancies (35). Recent studies have

demonstrated that the antioxidant protein PRDX1 plays a pivotal role

in sustaining lipophagic flux in macrophages. Loss of PRDX1 results

in elevated oxidative stress, impaired autophagic processing,

intracellular cholesterol accumulation, and decreased levels of free

cholesterol. These disruptions lead to the suppression of the nuclear

receptor NR1H3 activity, ultimately impairing cholesterol efflux and
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accelerating the development of atherosclerotic lesions (39). Although

this mechanism has been primarily described in macrophages, it

suggests a broader regulatory role for PRDX1 in lipid metabolism

and cholesterol homeostasis, which may be relevant in the context of

tumor-associated metabolic reprogramming.

In our urinary proteomics analysis, PRDX1 was found to be

significantly upregulated in the urine of BLCA patients compared to

healthy controls, suggesting its potential utility as a non-invasive

diagnostic biomarker. This finding aligns with the growing interest

in urine-based markers for BLCA, given the limitations and

invasiveness of repeated cystoscopy in routine surveillance.

Previous studies support our observation, Qun et al. identified

PRDX1 is positively correlated with the recurrence and

progression of BLCA in patients (40). Tabaei et al. compared

protein profiles from NMIBC and MIBC tissue samples using

two–dimensional electrophoresis followed by LC–MS/MS

identification. This approach highlighted several potential non–

invasive diagnostic and prognostic biomarkers, with PRDX1

showing a pronounced up–regulation in NMIBC (41). Whether

similar mechanisms operate in BLCA warrants further

investigation. Together, our results highlight PRDX1 as both a

marker of malignancy and a potential therapeutic target in BLCA.

Recent studies have further revealed that PRDX1 not only

functions as an antioxidant enzyme but also plays a critical role

in regulating ferroptosis and lipid ROS metabolism. For instance,

PRDX1 suppresses ferroptotic cell death by scavenging lipid

peroxides, thereby promoting tumor cell survival under oxidative

stress. In addition, PRDX1 has been implicated in modulating the

tumor immune microenvironment, facilitating immune escape

through redox-dependent pathways. These findings provide new

mechanistic insight into our observation of PRDX1 upregulation in

BLCA and suggest that targeting PRDX1 may represent a promising

therapeutic strategy by sensitizing tumor cells to ferroptosis and

restoring anti-tumor immunity.

Our analyses showed a consistent and robust correlation

between PRDX1 expression and FAM activity, suggesting that

PRDX1 may be involved in metabolic heterogeneity in BLCA.

However, whether PRDX1 directly regulates FAM pathways in

BLCA cells remains to be determined. The current evidence

supports an association, but causality cannot be inferred. It is

possible that PRDX1 upregulation represents part of a broader

metabolic and oxidative stress adaptation program rather than a

direct driver of lipid metabolism. Future mechanistic studies, such

as lipidomics profiling in PRDX1 knockdown cells or CRISPR-

based perturbation combined with metabolic flux assays, will be

needed to clarify this relationship.

This study has several limitations. First, our functional

validation was limited to in vitro assays, and in vivo studies such

as xenograft models will be required to confirm the role of PRDX1

in tumor progression and therapeutic targeting. Second, the clinical

validation relied on retrospective datasets; independent, prospective

cohorts are needed to establish the robustness of PRDX1 as a

biomarker. These limitations highlight the need for further

experimental and translational studies to strengthen our findings.
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5 Conclusion

This study provides the first single-cell–level characterization of

FAM heterogeneity in BLCA and redefines a FAM-related gene

signature. Integrating bulk RNA-seq and machine learning, we

identified key FAM-associated genes, with PRDX1 validated as a

central biomarker. These findings offer a foundation for

personalized metabolic-targeted therapies in BLCA.
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