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Background: Colorectal cancer (CRC) is a highly aggressive gastrointestinal

malignancy with significant global health consequences. While mitochondrial

lipid metabolism genes are known to influence CRC progression, their

prognostic relevance remains inadequately explored.

Methods: This study systematically evaluated the expression profiles and

prognostic significance of mitochondrial lipid metabolism-related genes in

CRC patients. A risk model was constructed using data from the TCGA and

GEO databases. Additionally, we examined the tumor microenvironment (TME),

immune cell infiltration, tumor mutation burden, microsatellite instability (MSI),

and drug sensitivity. Key genes associated with core mitochondrial lipid

metabolism were identified and functionally validated through a series of in

vitro cellular experiments.

Results: Mitochondrial lipid metabolism-associated genes were identified,

including ABHD4, ABHD8, HDHD5, PNPLA4, GK5, CPT2, YJEFN3, CRYAB,

HSPA1A, MAPK1, ATG7, HDAC3, and ACAT2. A nomogram integrating the risk

score with key clinical variables (pTNM stage and age) was developed to predict

patient outcomes. Significant variations in immune cell infiltration were observed

between risk groups. Immune microenvironment analysis revealed significant

differences in immune cell infiltration between risk groups, and the risk score was

significantly correlated with the expression of TME-related genes and immune

checkpoint molecules, indicating a markedly immunosuppressive

microenvironment in the high-risk group. Additionally, TIDE analysis showed

that combining the risk score with immune, stromal scores and MSI could more

effectively predict the benefit of immunotherapy. Furthermore, in vitro

experiments demonstrated that knockdown of two key genes, ABHD4 and

YJEFN3, significantly suppressed CRC cell proliferation, migration, and

invasion, supporting their potential oncogenic roles.
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Conclusions: This mitochondrial lipid metabolism-based risk model represents a

promising prognostic biomarker, offering potential guidance for personalized

therapeutic strategies in CRC management.
KEYWORDS

colorectal cancer, prognostic biomarker, mitochondrial lipid metabolism, tumor
microenvironment, immunotherapy, drug sensitivity
Introduction

Colorectal carcinoma (CRC) ranks as the third most prevalent

malignancy globally, accounting for an estimated 1.9 million new

cases annually (9.6% of total cancer incidence). It stands as the

second most lethal oncologic disease, causing nearly 0.9 million

deaths per year (9.3% of global cancer mortality) (1). Epidemiologic

studies reveal a distinct geographic pattern: while CRC rates are

stabilizing or declining in highly industrialized nations (albeit

maintaining elevated absolute numbers), developing countries are

experiencing rapid increases in both incidence and mortality (2).

The clinical outlook is particularly grim for metastatic CRC cases,

demonstrating dismal 5-year survival statistics under 20% (3).

These concerning epidemiologic data underscore the urgent need

for two critical advancements: (1) identification of more accurate

prognostic indicators, and (2) discovery of novel molecular targets

for therapeutic intervention in colorectal tumorigenesis.

Solid tumors evolve under nutrient-poor conditions,

necessitating metabolic adaptations for survival (4). Clinical

metabolomic data reveal that solid tumors frequently exhibit

marked hypoglycemia. Remarkably, despite glucose deprivation,

tumor tissues maintain relatively stable ATP levels, suggesting that

alternative, glucose-independent energy production pathways may

be activated in cancer cells (5). In particular, during metastatic

progression, circulating tumor cells face severe metabolic stress due

to impaired glucose uptake (6). From a metabolic perspective, fatty

acid metabolism exhibits nutrient-dependent behavior: under

nutrient-replete conditions, cells favor anabolic fatty acid
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synthesis (FAS), whereas nutrient deprivation triggers a shift

toward catabolic fatty acid oxidation (FAO). This metabolic

switch is tightly regulated by the acetyl-CoA carboxylase (ACC)

enzyme family (7). Although recent studies underscore the

importance of FAO in tumor metastasis, the upstream regulatory

networks and precise mechanisms by which FAO contributes to

malignant transformation remain to be fully elucidated. Recent

research has demonstrated that the small-molecule compound CPI-

613 exerts significant regulatory effects on mitochondrial lipid

metabolism, as confirmed by multiple studies (8). A key target of

CPI-613 is acetyl-CoA carboxylase (ACC), a central enzyme in lipid

metabolism. Its inhibition induces metabolic reprogramming in

tumor cells. Notably, in pancreatic cancer models, CPI-613

suppresses lipid metabolism through the activation of the AMPK

signaling pathway, thereby exerting antitumor effects (9).

The tumor microenvironment is a specialized niche where

tumor and host cells interact, and its metabolic characteristics

profoundly influence anti-tumor immune responses and

therapeutic outcomes. Recent studies have shown that tumor cells

can evade immune surveillance by reprogramming the metabolic

profiles of immune cells, while immune cells reciprocally modulate

tumor behavior through metabolic feedback, forming a complex

tumor-immune metabolic network (10). Solid tumors actively

acquire lipid nutrients via specialized uptake mechanisms: tumor

cells induce adjacent adipocytes to release free fatty acids (FFAs)

and cholesterol, which are then internalized through fatty acid

transport proteins (FATPs) (11). Within the TME, persistent

oxidative stress arises from multiple sources: infiltrating

neutrophils generate significant reactive oxygen species (ROS)

during a respiratory burst, while enzymatic reactions mediated by

lipoxygenase (LOX), cyclooxygenase (COX), and other oxidases

further exacerbate oxidative pressure. Collectively, these processes

establish a pronounced lipid peroxidation microenvironment,

leading to the accumulation of cytotoxic oxidized lipid species

such as oxidized low-density lipoprotein (ox-LDL) and

malondialdehyde (MDA) (12). This lipid-rich milieu exerts dual

regulatory effects on tumor immune responses: elevated fatty acid

levels activate the PPARa signaling pathway in T cells, promoting

FAO and oxidative phosphorylation (OXPHOS), whereas fatty acid

depletion impairs T cell proliferation and antitumor activity (13).

Thus, mitochondrial lipid metabolism is intricately linked to the

immunosuppressive nature of the TME in CRC.
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Lipid-targeting strategies demonstrate superior efficacy in

cancer immunotherapy compared to glucose modulation, as

tumors adapt more readily to glucose-targeted interventions.

Importantly, glucose-targeting agents may inadvertently impair

glucose-dependent antitumor immune cells, while protumor

immune cells predominantly depend on lipid metabolism.

Moreover, tumor cells themselves appear more vulnerable to

disruptions in lipid homeostasis. Existing lipid-lowering drugs

and NSAIDs can be repurposed to address lipid dysregulation

within the tumor microenvironment (14). High-density

lipoprotein (HDL) has been shown to downregulate the secretion

of chemokines, such as CXCL16, via the SR-B1 receptor pathway

(15). Interestingly, a reverse regulatory mechanism has been

observed where certain chemokine family members, particularly

CX3CL1, contribute to maintaining macrophage lipid homeostasis,

although the precise signaling pathways involved remain to be fully

elucidated (16).

Recognizing the crucial role of mitochondrial lipid metabolism

in tumor development, identifying biomarkers related to

mitochondrial lipid metabolism for colorectal cancer (CRC)

prognosis represents a promising research direction. Although

mitochondrial lipid metabolism is essential in cancer, the

underlying biological mechanisms and therapeutic interventions

based on mitochondrial lipid metabolism remain poorly defined.

While numerous studies have developed prognostic models to

predict CRC patient survival (17, 18), few have specifically

focused on models linked to mitochondrial lipid metabolism that

effectively predict prognosis and immunotherapy responsiveness in

colorectal and rectal adenocarcinomas. In our study, we constructed

a risk scoring model based on mitochondrial lipid metabolism, and

further examined the relationship between risk scores and TME

characteristics, including immune cell infiltration, immune

checkpoint expression, and immunotherapy responses, while also

assessing drug sensitivity across 198 compounds. Overall, our

mitochondrial lipid metabolism-based risk model serves as a

robust prognostic biomarker for CRC, offering valuable guidance

for personalized treatment strategies. By linking mitochondrial lipid

metabolism to an immunosuppressive TME, our model enhances

our understanding of CRC pathogenesis and paves the way for

improved therapeutic interventions.
Materials and methods

Data collection

The study analyzed genomic and clinical data from public

repositories including RNA-sequencing profiles and microsatellite

instability status for 620 colorectal adenocarcinoma specimens from

The Cancer Genome Atlas (TCGA), along with matched clinical

metadata from UCSC Xena. Validation of the 13-gene prognostic

signature was conducted using the GEO dataset GSE39582, which

comprises 585 colorectal cancer samples. To identify genes

associated with lipid metabolism (LMRGs), the “Lipid

Metabolism” category from the Molecular Signatures Database
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(MSigDB) was first examined. The candidate list was then refined

by cross-referencing with the MitoCarta 3.0 database and relevant

literature to extract genes with established roles in mitochondrial

lipid metabolism. Expression profiles from colorectal cancer

datasets were further analyzed to validate their biological

relevance. In addition, bioinformatic analyses, including pathway

enrichment, were applied to ensure that the final gene set accurately

represented mitochondrial lipid metabolic processes. Through this

multi-step screening strategy, a robust set of candidate genes was

compiled for subsequent prognostic modeling in colorectal cancer.
Construction and validation of prognostic
mitochondrial lipid metabolism-related risk
score signature

In this study, a comprehensive differential gene expression

analysis was performed using the “limma” R package. Specifically,

a threshold of |log2FC| > 1.3 and FDR < 0.05 was employed to

identify differentially expressed genes. This threshold, adopted

based on commonly applied criteria in previous CRC

transcriptomic studies, was chosen to balance sensitivity and

specificity (19). Comparisons were conducted between tumor and

normal tissues as well as between high- and low-risk groups, and the

results were visualized using volcano plots and Venn diagrams.

Subsequently, we conducted univariate Cox regression to assess

prognostic significance, followed by LASSO regression for feature

selection, ultimately establishing a 13-gene risk signature calculated

as:

Risk score  =  o(bi �  ExpGenei)

In this formula, expgene denotes the expression value of each

gene, i represents the total count of signature genes (n=13), and bi
corresponds to the LASSO-derived regression coefficient for each

gene. Using the median risk score as the cutoff threshold, patients

were stratified into distinct high-risk and low-risk subgroups.

Demographic and clinicopathological parameters (including sex,

age at diagnosis, and TNM staging) were extracted from TCGA

clinical records. Both univariate and multivariate Cox proportional

hazards models were employed to assess the independent

prognostic value of the risk signature, with statistical significance

defined as p<0.05 (two-tailed). The predictive accuracy of this 13-

gene classifier was externally validated in the GSE39582 cohort

through multiple approaches: (1) time-dependent receiver

operating characteristic (ROC) curve analysis, (2) risk

stratification visualization, and (3) calculation of Harrell’s

concordance index (C-index). All gene annotations were verified

against the NCBI database.

Construction and validation of nomogram
The study established a prognostic nomogram by integrating

molecular risk scores with clinical parameters (age, TNM stage)

through univariate and multivariate Cox regression analyses

(P<0.05 significance threshold). The nomogram assigned

weighted points to each predictor, with total scores enabling
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individualized 1-, 3-, and 5-year survival probability estimation.

Model performance was validated using time-dependent ROC

curves (discrimination), bootstrap-corrected calibration plots

(accuracy), and decision curve analysis (clinical utility),

demonstrating robust predictive capability for personalized

outcome assessment.
Gene ontology, Kyoto encyclopedia of
genes and genomes analyses, and gene set
enrichment analyses

Functional enrichment analysis was performed using R software

(version 4.3.3) with the following packages: clusterProfiler for gene

set enrichment, org.Hs.eg.db for gene annotation, enrichplot for

visualization, and ggplot2 for graphical representation. We

specifically examined differentially expressed genes (DEGs)

associated with mitochondrial lipid metabolism and those

distinguishing high- versus low-risk patient groups. Statistically

significant functional terms were identified using a false discovery

rate (FDR) threshold of <0.05 after multiple testing correction.

Curated sets v7.4 collections from the MSigDB were used for GSEA,

performed with GSEA 4.2.1 software. The total transcriptome of

tumor samples was analyzed.
Tumor microenvironment

Stromal scores and immune scores were calculated using the

ESTIMATE algorithm in R (version 4.3.3) “estimate” package. The

TME-related biomarker list was extracted from GSEA (http://

www.gsea-msigdb.org/gsea/index.jsp). RNA-sequencing

expression (level 3) profiles and clinical information for

COADREAD were downloaded from the TCGA dataset (https://

portal.gdc.cancer.gov/). To obtain robust immune score evaluations,

we utilized the immunedeconv R package to implement the

CIBERSORT algorithm.
Prediction of therapeutic sensitivity in
patients with different risk scores

This study systematically evaluated the predictive accuracy of

our risk stratification model for both conventional and novel

therapies by integrating multiple computational approaches.

Using the “oncoPredict” R package (v1.2.0) in R (v4.3.3), we

calculated the normalized half-maximal inhibitory concentrations

(IC50) for 138 FDA-approved chemotherapeutic and targeted

agents, referencing the Genomics of Drug Sensitivity in Cancer

(GDSC) database (v8.2). Concurrently, immunotherapy response

potential was assessed through the Tumor Immune Dysfunction

and Exclusion (TIDE) algorithm, which evaluates immune evasion

mechanisms and predicts checkpoint inhibitor responsiveness. This

comprehensive analysis provides a robust framework for predicting

therapeutic efficacy across diverse treatment modalities.
Frontiers in Immunology 04
Mutation analysis

Somatic mutation data for colorectal adenocarcinoma

(COADREAD) were obtained from cBioPortal (https://

www.cbioportal.org) and analyzed using the “maftools” R package

(v3.5.1) to visualize mutation profiles and calculate tumor

mutational burden (TMB). Microsatellite instability (MSI) status

was retrieved from the TCGA dataset via the Genomic Data

Commons (GDC) portal. All analyses followed standardized

bioinformatics workflows with quality control, allowing

comprehensive assessment of mutation patterns and clinically

relevant MSI features across risk groups.
Cell lines and cell culture

The human colorectal cancer (CRC) cell lines RKO and

HCT116 were obtained from the American Type Culture

Collection (ATCC, USA). Cell line authentication was performed

using short tandem repeat (STR) profiling, and all cell lines were

confirmed to be free of mycoplasma contamination. Cells were

cultured in Dulbecco’s Modified Eagle Medium (DMEM;

Meilunbio, Dalian, China) supplemented with 10% fetal bovine

serum (FBS; Gibco, Grand Island, NY, USA), 100 U/mL penicillin,

and 100 μg/mL streptomycin. Cultures were maintained in a

humidified incubator at 37°C with 5% CO2.
Lentiviral-mediated knockdown of ABHD4
and YJEFN3

To achieve stable knockdown of ABHD4 and YJEFN3,

target shRNA sequences were cloned into the pGreenPuro

(CMV) vector. The shRNA sequence targeting ABHD4 was

5′-CCGGACTTCAAACGCAAGTTT-3′, and that for YJEFN3

was 5 ′-AGAGCGGAGCTTAGCTCAAAT-3 ′ . Lentiviral

particles were produced and used to transduce RKO and

HCT116 cells. Cells were seeded in 6-well plates and infected

when they reached 60–80% confluence using viral supernatant

supplemented with 10 mg/mL polybrene (Sigma-Aldrich, USA)

overnight. Following infection, the medium was replaced, and

48 h later, puromycin (10 mg/mL; Sigma-Aldrich, USA) was

added to select for stably transduced cells, resulting in the

establishment of the RKO/shABHD4, HCT116/shABHD4,

RKO/shYJEFN3, and HCT116/shYJEFN3 cell lines.
Western blotting

Cells were washed with cold PBS and lysed in RIPA buffer

(Kangwei, Beijing, China) supplemented with phosphatase inhibitors

(Roche, Switzerland). Protein concentrations were determined using the

BCA assay (Pierce, USA). Equal amounts of protein (20 mg) were

separated by 10% SDS-PAGE and transferred to 0.22 mm PVDF

membranes (Millipore, USA). Membranes were blocked with 5%
frontiersin.org
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non-fat milk in TBST and incubated overnight at 4°C with primary

antibodies: anti-GAPDH (Proteintech, 0.02 μg/mL), anti-ABHD4

(Thermo Fisher), and anti-YJEFN3 (Atlas Antibodies). After washing,

membranes were incubated with HRP-conjugated secondary antibody

(Thermo Fisher) and developed using ECL substrate. Signals were

detected using the Tanon 5200 system (Tanon, China).
CCK-8 assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8; Dojindo, Kumamoto, Japan) according to the

manufacturer’s instructions. Briefly, CRC cells were seeded into

96-well plates at a density of 1,000 cells/well in 200 mL of complete

medium. After incubation with 20 mL of CCK-8 solution for 2 h,

absorbance at 450 nm (OD450) was measured using a microplate

reader (BioTek, VT, USA). All experiments were performed

in triplicate.
Migration and invasion assays

For migration assays, 1 × 105 cells suspended in serum-free

medium were seeded in the upper chamber of 24-well Transwell

inserts (8 mm pore size; Corning, MA, USA). Medium containing

10% FBS was added to the lower chamber as a chemoattractant.

After 12 h of incubation, migrated cells on the lower surface of the

membrane were fixed and stained with 0.1% crystal violet for

30 min.

For invasion assays, inserts were pre-coated with diluted

Matrigel (BD Biosciences, San Jose, CA, USA). Cells were seeded

in the same manner, and after 24 h, invaded cells were fixed and

stained similarly. Stained cells were imaged and counted under a

microscope in ten randomly selected fields. The average number of

migrated or invaded cells was calculated.
Wound-healing assay

For wound-healing assays, 4 × 105 cells/well were seeded in 24-

well plates and allowed to form a monolayer. A scratch was made

using a sterile pipette tip, and images were captured at 0 h and 24 h.

The migration rate was analyzed using ImageJ software (NIH,

USA). Experiments were performed in triplicate.
Statistical analysis

All statistical analyses were performed using R software (version

4.3.3) and GraphPad Prism (version 10.0.1), employing Student’s t-

tests for continuous variables (risk scores, stromal/immune scores,

tumor purity, and TMB), c² tests for categorical variables

(immunotherapy response and clinical factors), Spearman

correlation for association analyses, and the concordance index

(C-index) to evaluate the predictive power of age and risk scores for
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overall survival (OS), along with univariate and multivariate Cox

regression analyses to assess the prognostic significance of

mitochondrial lipid metabolism-related genes and clinical

characteristics, with a two-tailed P-value < 0.05 considered

statistically significant. For GO and KEGG enrichment analyses,

the Benjamini-Hochberg procedure was applied to adjust for

multiple comparisons, and results were reported as FDR-adjusted

p-values. For Gene Set Enrichment Analysis (GSEA), we used

normalized enrichment scores (NES) and FDR q-values to assess

significance, following standard GSEA criteria, with FDR < 0.25

considered statistically significant. For immune cell infiltration

comparisons, FDR correction was also applied when evaluating

differences in immune cell populations between the high- and low-

risk groups. For genome-wide survival screening, p-values from

univariate Cox regression analyses were adjusted using the

Benjamini-Hochberg method to control the false discovery rate

(FDR). For survival analysis of selected candidate genes or model

components, raw p-values were reported without multiple

testing correction.
Results

Identification of DEGs related to
mitochondria lipid metabolism and
functional enrichment analysis in
COADREAD

A comprehensive analysis was conducted to identify differentially

expressed genes (DEGs) associated withmitochondrial lipidmetabolism

in colorectal and rectal adenocarcinoma (COADREAD). The overall

study design is illustrated in Supplementary Figure S1. A total of 10,852

DEGs were detected, comprising 5,839 significantly downregulated and

5,013 significantly upregulated genes, which were visualized using

volcano plots to compare tumor and normal samples (Figure 1A).

Mitochondrial lipid metabolism gene set was selected from the MSigDB

database. This gene set was curated through literature mining and

experimental validation and comprises genes involved in mitochondrial

lipid metabolism pathways. These genes are extensively associated with

lipid synthesis (anabolism), degradation (catabolism), and regulation,

and are known to play critical roles in energy homeostasis, membrane

integrity, and cell signaling. To further refine the selection, we identified

220 mitochondrial lipid metabolism-related genes by integrating the

results of Gene Set Enrichment Analysis (GSEA) with the DEG

dataset (Figure 1B).

Gene Ontology (GO) enrichment analysis demonstrated that

these DEGs were primarily involved in biological processes such as

lipid metabolism and small molecule metabolic processes

(Supplementary Figure S2A). In terms of cellular components, the

identified genes were predominantly enriched in the mitochondrial

membrane and mitochondrial envelope (Supplementary Figure

S2B). Functionally, they exhibited catalytic activity and anion

binding (Supplementary Figure S2C).

Furthermore, KEGG pathway analysis highlighted key

pathways associated with these DEGs, including insulin
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FIGURE 1

Differentially expressed genes (DEGs) associated with mitochondrial lipid metabolism and the construction of a prognostic model in the TCGA-
COADREAD cohort (A) A volcano plot illustrating the expression differences between COADREAD tumor and normal tissues, identifying 10,852
genes. (B) A Venn diagram depicting the intersection among DEGs, lipid metabolism-related genes, and mitochondrial genes, resulting in 220 hub
genes. (C) A forest plot evaluating 17 genes related to prognosis, demonstrating their impact on patient outcomes. (D, E) LASSO regression analyses
of the 17 overall survival (OS)-related genes, including cross-validation to determine the optimal tuning parameter (log[l] on the x-axis and partial
likelihood deviance on the y-axis, with red dots indicating deviations ± standard error). (F) Expression levels of the 13 prognostically significant core
genes in the TCGA-COADREAD cohort. Significance levels are indicated as ****P < 0.0001.
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resistance, glycerophospholipid metabolism, and fatty acid

metabolism (Supplementary Figure S2D). Notably, both insulin

resistance and glycerophospholipid metabolism have been linked to

colorectal cancer (CRC) progression, potentially facilitating tumor

growth and survival through the PI3K-AKT and mTOR signaling

pathways. Collectively, these findings enhance our understanding of

the molecular mechanisms through which mitochondrial lipid

metabolism-related DEGs influence COADREAD development

and progression.
Construction and validation of a
mitochondrial lipid metabolism-related risk
signature

To develop a mitochondrial lipid metabolism-related risk

signature, we initially identified 17 prognostic candidates for

COADREAD from 220 differentially expressed mitochondrial

lipid metabolism-related genes using univariate Cox regression

analysis (P < 0.05). Assessment of mitochondrial lipid

metabolism-related genes in predicting prognosis of CRC

exhibited by forest plot are shown in Figure 1C. LASSO

regression analysis further refined this list to 13 key genes

(Figures 1D, E). These genes formed the basis of our prognostic

model, detailed in Supplementary Figure S3. The risk score for each

patient was determined using the following formula:

Risk score  =  (0:3381) �  ABHD4  +  (7e − 04) �  ABHD8 

+  ( − 0:0089) �  HDHD5  +  ( − 0:0641) 

�  PNPLA4  +  ( − 0:2255) �  GK5  +  ( − 0:3078) 

�  CPT2  +  (0:315) �  YJEFN3  +  (0:0476) 

�  CRYAB  +  (0:1557) �  HSPA1A  +  ( − 0:0437) 

�  MAPK1  +  ( − 0:2021) �  ATG7  +  ( − 0:1944) 

�  HDAC3  +  ( − 0:0454) �  ACAT2:

Analysis of the TCGA-COADREAD dataset confirmed distinct

expression patterns of mitochondrial lipid metabolism-related

genes. Specifically, HDHD5, PNPLA4, MAPK1, ATG7, and

ACAT2 were significantly upregulated, whereas ABHD4, ABHD8,

GK5, CPT2, YJEFN3, CRYAB, HSPA1A, and HDAC3 were notably

downregulated in tumor tissues compared to normal samples

(Figure 1F). These alterations suggest a crucial role for these

genes in shaping the tumor immune microenvironment and

influencing colorectal cancer progression.

The association between risk scores and survival time, survival

status, risk stratification, and gene expression profiles is illustrated in

Figure 2A. Patients were classified into high- and low-risk groups based

on the median risk score. Kaplan-Meier survival analysis indicated a

significantly poorer overall survival (OS) for patients in the high-risk

group (P = 2.27e-09, Figure 2B). The predictive capability of the

prognostic model for 1-, 3-, and 5-year OS was assessed using ROC

curves, yielding AUC values of 0.71, 0.72, and 0.72, respectively

(Figure 2C), demonstrating its effectiveness in prognostic evaluation.
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In addition, we performed direct ROC comparisons between our 13-

gene signature and several previously published metabolism-related

prognostic models in CRC (Figure 2G). Notably, our model achieved

the highest AUC value (0.72), surpassing those based on nucleotide

metabolism (AUC = 0.67), general metabolism-related genes (AUC =

0.70), tryptophan metabolism–associated signatures (AUC = 0.65),

mRNAsi-related metabolic risk scores (AUC = 0.672), and hypoxia-

and lipid metabolism–related genes (AUC = 0.625). These findings

indicate that our signature exhibits superior prognostic discriminatory

power compared with existing models.

To further evaluate the model’s performance, validation was

conducted using the GSE39582 dataset. Consistent with the TCGA-

COADREAD training cohort, higher risk scores were associated

with worse survival outcomes (Supplementary Figures S4A, B). The

expression profiles of 13 genes in the validation dataset are

displayed as heatmaps (Supplementary Figure S4A), and Kaplan-

Meier analysis confirmed significantly poorer survival in high-risk

patients (Supplementary Figure S4B). ROC curve analysis for 1-, 3-,

and 5-year survival yielded AUC values of 0.68, 0.66, and 0.65,

respectively (Supplementary Figure S4C), further validating the

model’s robustness and clinical relevance.
Construction and assessment of a
prognostic model based on mitochondrial
lipid metabolism-related genes

A nomogram was constructed to predict patient prognosis

quantitatively by combining the risk score and essential clinical

variables, supporting clinical decision-making. Both univariate and

multivariate analyses revealed that the risk score, pTNM stage, and age

were significant, marking them as independent prognostic factors

(Figure 2D). The nomogram, which integrates these independent

prognostic factors—risk score, pTNM stage, and age—was developed

to forecast patient outcomes (Figure 2D). The calibration curves

demonstrated a high level of agreement between the predicted and

observed survival probabilities at 1-, 3-, and 5-year intervals

(Figure 2E). Calibration curves were also generated to further

validate the predictive reliability of the nomogram. The nomogram

exhibited strong prognostic accuracy, reflected in a concordance index

of 0.77 (95% CI: 0.72-0.81; p<0.001), confirming its predictive value.

Additionally, we evaluated the potential of risk scores derived

from mitochondrial lipid metabolism-related genes as valuable

biomarkers for patient stratification and prognosis in colorectal

cancer. Our results revealed significant associations between these

risk scores and established clinical stage parameters. Notably,

higher risk scores were closely linked to advanced disease stages

(Stage II-IV vs. I, and Stage IV vs. II, III; Figure 2F, P < 0.05), further

supporting the utility of the risk score as a prognostic biomarker,

particularly in later-stage colorectal cancer. Moreover, high risk

scores were significantly associated with advanced T staging, lymph

node metastasis (N staging), and distant metastasis (M staging),

indicating that abnormal mitochondrial lipid metabolism may

promote tumor invasion into deeper tissues and metastasis

(Supplementary Figure S5).
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Functional enrichment analysis of DEGs in
high-risk and low-risk groups

Functional enrichment analyses were performed on

differentially expressed genes (DEGs) in both high-risk and low-

risk groups. Gene Ontology (GO) enrichment analysis revealed that

DEGs associated with biological processes were predominantly
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involved in extracellular matrix organization and extracellular

structure organization (Figure 4A). For cellular components,

DEGs were mainly related to cell-substrate adherens junctions,

and collagen-containing extracellular matrix (Figure 3A).

Regarding molecular functions, the DEGs were enriched in cell

adhesion molecule binding and extracellular matrix structural

constituents (Figure 3A).
FIGURE 2

Evaluation of the prognostic model in the training cohort. (A) Distribution plots showing risk scores, survival status (blue indicates deceased, red
indicates alive), and expression of the 13 model genes in the TCGA-COADREAD training set. (B) Kaplan-Meier survival curves comparing overall
survival between high- and low-risk groups. (C) Receiver Operating Characteristic (ROC) curves for predicting 1-, 3-, and 5-year overall survival.
(D) A nomogram integrating risk score with relevant clinical features. (E) Calibration curves demonstrating the concordance between predicted and
actual survival probabilities at 1, 3, and 5 years. (F) Analysis of the association between risk scores and TNM stage in COADREAD patients. (G) Time-
dependent ROC analysis comparing the 3-year overall survival predictive performance of the mitochondrial lipid metabolism signature with
previously published metabolism-related models. Significance levels are indicated as ****P < 0.0001, **P < 0.01, *P < 0.05.
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KEGG pathway analysis identified the top 10 enriched pathways,

including focal adhesion, MAPK signaling, ECM-receptor interactions,

Rap1 signaling, human papillomavirus infection, FoxO signaling,

toxoplasmosis, glycosaminoglycan biosynthesis, regulation of lipolysis

in adipocytes, and C-type lectin receptor signaling (Figure 3B).

Additionally, Gene Set Enrichment Analysis (GSEA) highlighted that
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mitochondrial lipid metabolism-related risk scores in the high-risk

group were strongly associated with extracellular matrix structural

constituent and extracellular matrix organization (Figure 3C).

Both the GO analysis and GSEA emphasized the extracellular

matrix’s pivotal role in tumor biology, with terms such as extracellular

matrix structural constituent and organization being prominent.
FIGURE 3

Pathway enrichment analysis in high- and low-risk groups. (A) A bubble plot presenting the top 10 significant Gene Ontology (GO) terms, color-
coded by biological process (BP), cellular component (CC), and molecular function (MF), with associated genes listed. (B) A bubble plot depicting the
top 10 significant KEGG pathways, with color distinctions representing each pathway and the related gene lists provided. (C) Gene Set Enrichment
Analysis (GSEA) identifying distinct gene sets enriched in the high-risk group.
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KEGG analysis further revealed key pathways like focal adhesion and

ECM-receptor interactions, both of which are critically involved in the

TME. The interactions between cells and the ECM are fundamental to

TME signaling, affecting cell adhesion, migration, and invasion. Since

the TME is largely composed of extracellular matrix components and
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regulatory signaling molecules, our analyses point to several key

pathways—ECM organization, receptor interactions, and collagen-

related processes—as crucial players within the TME. These findings

support the conclusion that TME-associated pathways are

significantly enriched.
FIGURE 4

Association between risk score and immune microenvironment characteristics. (A) CIBERSORT analysis demonstrating the correlation between the
risk score and various immune cell types. (B) Correlation between the risk score and the expression of signatures for activated CD8+ T cells and M2
macrophages. (C) Analysis of the relationship between the risk score and tumor purity, with distributions shown for each risk group. (D) Correlation
between the risk score and immune score, along with corresponding group distributions. (E) Association between the risk score and the expression
of immune checkpoint molecules. Significance levels: ****P < 0.0001, *P < 0.05
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Mitochondrial lipid metabolism-related risk
score and TME signatures in COADREAD

Based on the functional enrichment of TME-associated

signaling pathways, we examined the relationship between the

risk score and TME-related signatures. As depicted in Figure 5A,

a strong positive correlation was observed between the risk score

and stromal score in COADREAD, with the high-risk group
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showing higher stromal scores than the low-risk group.

Additionally, we identified a significant positive correlation

between the risk score and the cancer-associated fibroblast (CAF)

score (Figure 5B), with the high-risk group exhibiting notably

elevated CAF scores, highlighting the involvement of CAFs in

CRC progression and prognosis.

Moreover, significant positive correlations were found between

the risk score and the expression of various ECM-collagen
FIGURE 5

Correlation between risk score and tumor microenvironment (TME) signatures in COADREAD. (A) Analysis showing the association between stromal
score and risk score, with distributions across low- and high-risk groups. (B) Examination of the relationship between carcinoma-associated
fibroblast (CAF) score and risk score, including group distribution. (C) Correlation analysis of the risk score with extracellular matrix (ECM) and
collagen gene signatures. (D) Correlation of the risk score with matrisome gene expression. (E) Association between the risk score and both
upregulated and downregulated CAF signatures. Significance is indicated as ****P < 0.0001, *P < 0.05.
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signatures (Figure 5C), as well as matrisome and CAF signatures

(Figures 5D, E). Our results suggest that mitochondrial lipid

metabolism-related risk scores may influence matrix remodeling

by regulating ECM-collagen and matrisome gene expression,

affecting tumor microenvironment formation and function. In

summary, we found a significant positive correlation between

mitochondrial l ipid metabolism risk scores and ECM

components, CAF activity, and ECM-related gene expression in

the tumor microenvironment. This indicates that mitochondrial

lipid metabolic abnormalities impact tumor cell metabolism and

indirectly promote tumor cell proliferation, invasion, and

metas tas i s by regu lat ing ECM and CAF act iv i ty in

the microenvironment.
Mitochondrial lipid metabolism-associated
risk score reveals the characteristics and
heterogeneity of the immunosuppressive
microenvironment in high-risk patients

The tumor immune microenvironment (TIME) plays a critical

role in determining therapeutic efficacy and prognosis in malignant

tumors. Understanding the relationship between risk scores and

immune cell infiltration in COADREAD is essential for improving

treatment strategies. we applied the CIBERSORT algorithm to

estimate immune cell proportions. The results revealed distinct

correlations between risk score and various immune cell subtypes.

As shown in Figure 4A, regulatory T cells (Tregs) were

significantly positively correlated with the risk score (r = 0.188, P

< 0.05), suggesting the presence of a potentially immunosuppressive

microenvironment in high-risk patients. Similarly, M0

macrophages (r = 0.199, P < 0.05) exhibited a strong positive

correlation, indicating a prevalence of undifferentiated

macrophages that may differentiate into either pro-inflammatory

(M1) or immunosuppressive (M2) subtypes.

Furthermore, naïve B cells (r = 0.031), memory B cells (r =

0.078), CD8+ T cells (r = 0.086), and naïve CD4+ T cells (r = 0.104)

showed weak positive correlations with the risk score. Notably,

activated mast cells (r = 0.046) and activated NK cells (r = 0.050)

also demonstrated weak positive correlations.

Several immune cell subtypes were negatively correlated with

the risk score. Resting memory CD4+ T cells (r = -0.192, P < 0.05)

and activated memory CD4+ T cells (r = -0.215, P < 0.05) exhibited

strong negative correlations, suggesting that a reduced population

of memory T cells may contribute to immune dysfunction in high-

risk patients. Additionally, plasma B cells (r = -0.121), resting mast

cells (r = -0.131), and gamma delta T cells (r = -0.076) were

negatively associated with the risk score. Other immune cells with

negative correlations included resting NK cells (r = -0.060), resting

dendritic cells (r = -0.092), activated dendritic cells (r = -0.103),

eosinophils (r = -0.029), and neutrophils (r = -0.068), indicating

potential suppression of innate immune responses in high-

risk patients.

Furthermore, the risk score exhibited a negative correlation

with activated CD8+ T cell signatures (Figure 4B), indicating a
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weakened anti-tumor immune response in high-risk individuals.

Conversely, a positive correlation was observed between the risk

score and activated M2 macrophage signatures (Figure 4B),

highlighting the presence of an immunosuppressive environment

in these patients.

The immune cell characteristics between the low-risk and high-

risk groups (Supplementary Figure S6), are highly consistent with

the re su l t s above . High- r i sk pa t i en t s exh ib i t ed an

immunosuppressive tumor microenvironment, with significant

positive correlations of regulatory T cells and M0 macrophages

with the risk score, suggesting enhanced immune evasion. Weak

positive correlations were also observed for certain B cells, CD8+ T

cells, and activated mast and NK cells. In contrast, memory CD4+ T

cells, plasma B cells, dendritic cells, and other immune subtypes

showed negative correlations, indicating a weakened immune

response in high-risk patients. These findings suggest distinct

immune landscapes that may influence immunotherapy outcomes.

To further evaluate the tumor immune microenvironment, we

applied the ESTIMATE algorithm. A robust positive association

was observed between the risk score and the immune score and

high-risk group demonstrated an elevated immune score,

suggesting partial immune infiltration (Figure 4D). Additionally,

they showed a significantly higher stromal score (Figure 5A) and

reduced tumor purity (Figure 4C). A strong positive correlation was

identified between the risk score and both matrisome and cancer-

associated fibroblast (CAF) signatures, while an inverse correlation

was noted with activated CD8+ T cell signatures. These findings

indicate that an enriched extracellular matrix and fibroblast-

dominant microenvironment may suppress CD8+ T cell

activation, fostering immune evasion in high-risk COADREAD

patients. The close relationship between risk score, immune

infiltration, and stromal components underscores the potential of

targeting the immunosuppressive microenvironment as a

therapeutic avenue, necessitating further research.
Mitochondrial lipid metabolism-related risk
score was associated immune checkpoint
inhibitors and immunotherapy responses in
COADREAD

Considering the potential of immune checkpoint inhibitors

(ICIs) as a treatment for cancer, we examined the relationship

between immune checkpoints and risk stratification. Our findings

revealed that 36 immune checkpoints were significantly altered in

the high-risk group (Figure 4E). Notably, the risk score showed a

negative correlation (r > -0.1) with IL1A, IL1B, HMGB1, and

IL12A, which are key mediators of inflammation and immune

activation. This suggests a potential suppression of pro-

inflammatory signaling pathways, leading to reduced antigen

presentation and impaired CD8+ T cell activation in high-

risk patients.

In contrast, the risk score was positively correlated (r > 0.1) with

multiple immune checkpoints associated with both immune

activation and suppression (Figure 4E). Upregulation of CD40,
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CD28, CD27, and TNFRSF4 suggests enhanced T cell co-

stimulation; however, the simultaneous increase in inhibitory

receptors such as PDCD1 (PD-1), CTLA4, LAG3, and TIGIT

indicates a state of T cell exhaustion, which may contribute to

immune evasion. Additionally, positive correlations with TGFB1

and ADORA2A highlight a highly immunosuppressive tumor

microenvironment that could further inhibit effective anti-

tumor responses.

The risk score was positively correlated (r > 0.1) with VEGFA,

VEGFB, and ICAM1, suggesting enhanced angiogenesis that may

restrict immune infiltration and promote tumor progression.

Although PRF1 and CX3CL1 showed some cytotoxic potential,

the overall immune landscape in high-risk patients is

immunosuppressive. These results indicate that targeting immune

checkpoints, angiogenesis, and immunosuppressive pathways (e.g.,

TGF-b, adenosine signaling) may improve anti-tumor immunity in

high-risk patients.

To validate these findings, we utilized the TIDE algorithm to

predict immunotherapy responses in both low- and high-risk

patient groups. The high-risk group exhibited a significantly

lower response rate to immunotherapy (35%) compared to the

low-risk group (53.2%) (Figure 6A). Additionally, the high-risk

group had a significantly elevated TIDE score, which positively

correlated with the risk score (Figure 6B). Given that a higher TIDE

score is indicative of immune evasion and resistance to immune

checkpoint inhibitors (ICIs), these results suggest that patients in

the low-risk group, characterized by lower TIDE scores, are more

likely to benefit from ICIs and achieve better survival outcomes

following immunotherapy.

We further investigated whether combining the risk score with

immune infiltration status improves the predictive accuracy of

immunotherapy response. Immunotherapy response rates were

similar between the high-immune (43.7%) and low-immune

(44.1%) groups (Figure 6C). Within the low-immune subgroup,

response rates in the low-risk (48.7%) and high-risk (42.5%)

subgroups were comparable, indicating combined risk score and

immune score was not better than immune score alone in patients

with low immune infiltration. However, in the high-immune

subgroup, the low-risk + high-immune group exhibited a

significantly higher response rate (58.6%) compared to the overall

high-immune group (43.5%), whereas the high-risk + high-immune

group had a notably lower response rate (28.5%) (Figure 6D). These

findings suggest that integrating the risk score with immune scores

refines the prediction of immunotherapy response, particularly in

COADREAD patients with high immune infiltration.

Similarly, we observed that the immunotherapy response rate

was significantly higher in the low-stromal subgroup (62.1%) than

in the high-stromal subgroup (25.1%) (Figure 6E). Within the low-

stromal subgroup, the low-risk group had a slightly higher response

rate (62.4%) than the high-risk group (59.6%), though the difference

was not significant. However, in the high-stromal subgroup, the

low-risk group demonstrated a significantly higher response rate

(41.1%) compared to the high-risk group (16.6%) (Figure 6F),

reinforcing the predictive value of integrating stromal scores with

risk scores. Such a combination has the potential to enhance the
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predictive accuracy of immunotherapy responses, particularly in

patients characterized by a stroma-rich tumor microenvironment.

Additionally, microsatellite instability-high (MSI-H) patients

exhibited a markedly higher immunotherapy response rate (57.1%)

compared to microsatellite stable (MSS, 25.1%) and MSI-low (MSI-

L, 45.3%) subgroups (Figure 6G). Within each MSI category, low-

risk patients consistently showed higher response rates than their

high-risk counterparts, particularly in the MSI-H subgroup (62.6%

vs. 47.3%) (Figure 6H). Collectively, these findings highlight that

combining the risk score with immune scores, stromal scores, and

MSI status may enhance the predictive accuracy of immunotherapy

response in COADREAD patients, providing a potential framework

for stratifying patients to optimize immunotherapy strategies.

Collectively, these findings underscore that the integration of

risk scores with immune scores, stromal scores, and MSI status

significantly may enhance the predictive accuracy for

immunotherapy responses in COADREAD patients. This multi-

dimensional approach provides a robust framework for patient

stratification, ultimately aiding in the optimization of

immunotherapy strategies.
Mutation status of CRC patients in
high−risk and low−risk groups

Accumulated mutations play a significant role in cancer

development. Recent advances in genome sequencing have

deepened our understanding of the somatic mutations that drive

cancer, allowing us to pinpoint key oncogenes and unravel

mutational processes. In our study, we characterized the mutation

landscape of COADREAD by stratifying patients into high-risk and

low-risk groups based on their risk scores. Notably, the most

frequently mutated genes in both groups were APC, TP53, TTN,

KRAS, MUC16, SYNE1, RYR2, FAT4, PIK3CA, and OBSCN

(Figure 7A). However, a comparison of tumor mutational burden

(TMB) between the two groups revealed no significant differences

(Figure 7B), suggesting that TMB alone may not be a sufficient

marker for risk stratification in COADREAD.

Recognizing the limitations of relying solely on TMB, we

expanded our analysis to include microsatellite instability (MSI),

an important biomarker for predicting immunotherapy response in

colorectal cancer. Our data indicated that MSI levels were

significantly lower in the high-risk group compared to the low-

risk group, and there was a robust negative correlation between the

risk score and the MSI expression signature (Figures 7C, D).

Although a higher MSI status (MSI-H) is generally associated

with improved overall survival (OS), the observed differences did

not reach statistical significance (Figure 7E). Importantly, across the

MSI-H, MSI-L, and MSS subgroups, patients in the low-risk group

consistently exhibited better OS than those in the high-risk group

(Figures 7F–H).

Overall, these findings underscore the importance of integrating

multiple biomarkers—specifically risk scores with MSI status—to

enhance prognostic accuracy for COADREAD patients. This

multifaceted approach provides a more robust strategy for patient
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FIGURE 6

Risk score as a biomarker for predicting immunotherapy benefits in COADREAD. (A) Comparison of immunotherapy response proportions between
low- and high-risk groups in the TCGA-COADREAD dataset. (B) TIDE scores for low- versus high-risk groups, including their correlation with the risk
score. (C) TIDE-predicted immunotherapy response rates in groups stratified by low and high immune scores. (D) TIDE-predicted response rates for
four groups defined by combined risk and immune scores. (E) TIDE-predicted response rates for groups stratified by low and high stromal scores.
(F) TIDE-predicted response rates for four groups based on combined risk and stromal scores. (G) TIDE-predicted response rates in MSS, MSI-L, and
MSI-H groups. (H) TIDE-predicted response rates in six groups, defined by combined risk score and microsatellite status (MSS: microsatellite stable;
MSI-L: microsatellite instability-low; MSI-H: microsatellite instability-high). Significance: ns (not significant); ****P < 0.0001,***P < 0.001, **P < 0.01,
*P < 0.05.
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FIGURE 7

Mutation landscape in high- and low-risk COADREAD groups. (A) Mutation frequency for the top 15 genes in high- and low-risk groups. (B) Distribution of
TMB scores in low- versus high-risk groups. (C) Correlation analysis between the risk score and the MSI gene expression signature. (D) Distribution of the
MSI expression signature between risk groups. (E) Kaplan–Meier survival curves for patients classified as MSS, MSI-L, and MSI-H in the TCGA-COADREAD
cohort. (F) Kaplan–Meier survival curves for patients in the MSI-H subgroup stratified by risk score. (G) Kaplan–Meier survival curves for the MSI-L
subgroup based on risk score. (H) Kaplan–Meier survival curves for the MSS subgroup according to risk score. Significance: ns (not significant);
****P < 0.0001..
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FIGURE 8

Knockdown of ABHD4 and YJEFN3 suppresses proliferation and migration of CRC cells in vitro. (A) Western blot analysis showing the expression
levels of ABHD4 and YJEFN3 across six colorectal cancer (CRC) cell lines. (B) Confirmation of ABHD4 and YJEFN3 knockdown efficiency by Western
blotting in stably transfected RKO and HCT116 cells. (C) Cell proliferation assessed using the CCK-8 assay. Statistical significance was evaluated
using two-way ANOVA. (D, E) Representative images (D) and quantitative analysis (E) of colony formation assays demonstrating reduced clonogenic
ability upon ABHD4 and YJEFN3 knockdown. (F, G) Representative images (F) and quantification (G) of wound healing assays showing impaired
migratory capacity following ABHD4 and YJEFN3 silencing. (H, I) Representative images (H) and quantitative analysis (I) of Transwell migration assays
further confirming reduced cell motility after ABHD4 and YJEFN3 knockdown. Data are presented as mean ± SD from at least three independent
experiments. Significance:*P < 0.05, ***P < 0.001,****P < 0.0001.
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stratification, thereby facilitating personalized treatment decisions

and potentially improving clinical outcomes.
Risk score predicts therapeutic benefits in
COADREAD

To explore the potential of the mitochondrial lipid metabolism

genes-related risk score as a predictive indicator for chemotherapy

response, we assessed the half maximal inhibitory concentration

(IC50) values for 198 drugs in patients from the TCGA cohort. By

estimating these IC50 values, we aimed to determine whether the

risk score could effectively differentiate drug sensitivity between

high-risk and low-risk patient groups.

Figure 9 shows the top 10 drugs with the most pronounced

sensitivity differences between the high- and low-risk groups. These

differences were statistically evaluated using both p-values and FDR-

corrected q-values, all of which met the significance criteria (p < 0.05, q

< 0.05; Supplementary Table S1), confirming the robustness and

reliability of the observed drug sensitivity variations. Our analysis

suggests that patients in the high-risk group may have increased

sensitivity to specific chemotherapeutic agents. Notably, drugs such

as Nutlin-3a(-)_1047, IGF1R_3801_1738, and BMS-754807_2171

demonstrated lower IC50 values in high-risk patients, suggesting that

these individuals may respond more favorably to these treatments.

These drugs target key pathways involved in cell cycle regulation and

growth factor signaling, which may be more pronounced in tumors

with altered mitochondrial lipid metabolism.

Conversely, the low-risk group appeared to be more responsive

to other compounds, including Dihydrorotenone_1827, BI-

2536_1086, and AZD5991_1720, as evidenced by their lower IC50

values in this subgroup. This differential sensitivity suggests that

distinct molecular mechanisms might be driving tumor behavior in
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the low-risk cohort, and that these patients could benefit from

tailored therapeutic strategies targeting these specific pathways.

Overall, our findings underscore the potential utility of the

mitochondrial lipid metabolism genes-related risk score as a

prognostic biomarker that not only stratifies patients based on

clinical outcomes but also guides the selection of chemotherapeutic

agents. By integrating the risk score with drug sensitivity data,

personalized treatment strategies could be developed, potentially

leading to improved clinical outcomes for COADREAD patients.
Development of another prognostic
nomogram integrating ABHD4, YJEFN3,
and clinical parameters in CRC

To facilitate individualized prognostic assessment and guide

clinical decision-making in colorectal cancer (CRC), we constructed

a predictive nomogram by incorporating both prognostic model

gene and clinical variables. Univariate and multivariate Cox

regression analyses identified ABHD4, YJEFN3, pTNM stage, and

age as statistically significant, suggesting their roles as independent

prognostic indicators (Supplementary Figures S7A, B).

Based on these findings, we developed a nomogram model

combining the expression levels of ABHD4 and YJEFN3 with key

clinical characteristics, including pTNM stage and patient age, to

estimate overall survival probabilities (Supplementary Figure S5C).

The predictive performance of the nomogram was evaluated using

time-dependent receiver operating characteristic (ROC) curves,

which yielded area under the curve (AUC) values of 0.76, 0.79,

and 0.80 for 1-, 3-, and 5-year overall survival (OS), respectively

(Supplementary Figure S8B), indicating good discriminatory ability.

Furthermore, calibration plots showed excellent agreement

between predicted and observed survival outcomes at each time
FIGURE 9

Risk score predicts drug sensitivity in colorectal cancer. A comparison of normalized IC50 values for the top 10 drugs between high- and low-risk
groups, with significant differences observed (P < 0.01).
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point (1-, 3-, and 5-year), demonstrating the reliability of the model

(Supplementary Figure S5E). The concordance index (C-index) of the

nomogram reached 0.743 (95% CI: 0.696–0.791; p = 5.63 × 10&-24),

further confirming its robust prognostic utility in CRC.

To further elucidate the functional relevance of ABHD4 and

YJEFN3 as independent prognostic biomarkers, we explored their

expression patterns in different cellular compartments of the

colorectal cancer tumor microenvironment using the TISCH2

single-cell transcriptomic database.

Interestingly, ABHD4 showed higher expression in stromal cell

populations, including fibroblasts and endothelial cells, compared

to both tumor and immune cells (Supplementary Figure S9). This

suggests that ABHD4 may exert its tumor-promoting effects

through modulating the stromal components of the TME, such as

extracellular matrix remodeling or angiogenesis, rather than direct

oncogenic activity in tumor cells. Such stromal expression may still

correlate with poor prognosis due to its influence on tumor

invasion, immune evasion, or therapy resistance.

In contrast, YJEFN3 expression was predominantly enriched in

malignant epithelial (tumor) cells, whereas its expression was

markedly lower in immune cells (Supplementary Figure S10).

This tumor cell-specific overexpression supports its role as a

tumor-intrinsic factor potentially contributing to cancer cell

survival and aggressiveness, consistent with its identification as a

high-risk prognostic gene.

These distinct expression landscapes highlight that ABHD4 and

YJEFN3 may contribute to CRC progression through different

cellular mechanisms within the TME, emphasizing the

importance of considering cell-type specificity in biomarker

interpretation and therapeutic targeting.
Functional characterization of ABHD4 and
YJEFN3 in CRC cell proliferation and
migration in vitro

To deepen our understanding of the clinical and biological

implications of the prognostic model, ABHD4 and YJEFN3 were

selected from the 13-gene signature for further experimental

validation. This selection was guided by three key criteria: (1)

both genes exhibited among the highest positive coefficients and

hazard ratios in multivariate Cox regression analysis, underscoring

their strong prognostic relevance; (2) they demonstrated statistically

significant associations in both univariate and multivariate Cox

models, supporting their roles as independent prognostic factors;

and (3) their functional roles in colorectal cancer remain largely

unexplored, presenting a valuable opportunity to uncover novel

mechanisms driving CRC progression. To this end, we first

examined the endogenous expression levels of ABHD4 and

YJEFN3 in a panel of six CRC cell lines using Western blotting

(Figure 8A). The results revealed detectable expression in multiple

cell lines, providing a foundation for subsequent functional assays.

To evaluate the functional significance of these genes, we

constructed stable knockdown models using lentivirus-mediated

short hairpin RNAs targeting ABHD4 and YJEFN3 in RKO and
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HCT116 cell lines, respectively (RKO/shABHD4, HCT116/

shABHD4; RKO/shYJEFN3, HCT116/shYJEFN3) (Figure 8B).

Successful knockdown was confirmed at the protein level via

Western blot analysis.

Functional assays demonstrated that silencing of ABHD4 or

YJEFN3 markedly suppressed CRC cell viability, as assessed by

CCK-8 and colony formation assays (Figures 8C–E). Moreover,

transwell and wound healing assays revealed that the knockdown of

either gene significantly impaired the migratory and invasive

capabilities of CRC cells (Figures 8F–I), suggesting that both

ABHD4 and YJEFN3 are positively associated with tumor

cell aggressiveness.

Collectively, these findings indicate that ABHD4 and YJEFN3

may function as oncogenic regulators in CRC, and their inhibition

could serve as a potential therapeutic strategy to limit

CRC progression.
Discussion

Colorectal cancer (CRC) ranks as one of the most common and

deadly cancers globally, being the third most diagnosed and the

second leading cause of cancer death (20). Prognosis in CRC is

heavily dependent on the stage at diagnosis, with an overall 5-year

survival rate of approximately 65% (21). Metabolic reprogramming,

especially in lipid metabolism, is a hallmark of malignancy that

critically shapes the TME and influences cancer progression as well

as treatment outcomes (22). In recent decades, immunotherapy has

revolutionized the management of advanced cancers, and

alterations in lipid metabolism have emerged as important

modulators of the immune landscape and responsiveness to such

therapies (23). However, few studies have explored the prognostic

value of mitochondrial lipid metabolism-related genes in CRC,

particularly in the context of developing predictive models. This

study aims to address this gap by identifying mitochondrial lipid

metabolism-related genes that may serve as prognostic biomarkers,

thereby supporting early intervention and personalized treatment

strategies for high-risk CRC patients.

Currently, many biomarkers were applied for prognostic

prediction of CRC, such as ACAT2,ATG7, MAPK1, but most of

them are studied for a single biomarker (24–26). Increasing

evidences indicated that prognostic model constructed by multi-

genes as a prognostic index was more comprehensive and effective

than single gene in kinds of malignancies. For instance, Zheng H

et al. constructed a prognostic signature for colorectal cancer (CRC)

that was specifically based on cancer-associated fibroblast (CAF)

markers (27). Zhang et al. constructed a neurotransmitter receptor-

related gene signature as potential prognostic and therapeutic

biomarkers in colorectal cancer (28). As the dysfunction of

mitochondrial lipid metabolism have been associated with cancer,

we constructed a CRC prognostic model based on mitochondrial

lipid metabolism-related genes that could be used to predict the

prognosis and efficacy of immunotherapy in patients with CRC.

In our research, we identified mitochondrial lipid metabolism-

related genes by analyzing data from the MSigDB and TCGA
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databases. Through univariate Cox and LASSO regression analyses,

we narrowed down to 13 pivotal genes. Among these, genes with

positive coefficients (ABHD4, ABHD8, YJEFN3, CRYAB, and

HSPA1A) were found to be risk factors, suggesting that their

increased expression is associated with worse prognoses in

colorectal cancer patients. Conversely, genes with negative

coefficients (HDHD5, PNPLA4, GK5, CPT2, MAPK1, ATG7,

HDAC3, and ACAT2) were identified as protective factors, with

higher expression correlating with improved survival outcomes.

Several of these genes are already known to play significant roles in

CRC progression, reinforcing their potential as biomarkers.

To validate our predictive model, we conducted both internal

and external evaluations. The internal validation, using ROC

analysis, revealed strong sensitivity and specificity (AUC = 0.72).

Kaplan-Meier survival analysis indicated that high-risk patients had

significantly worse survival outcomes. External validation with

GEO datasets confirmed these findings, showing that low-risk

patients had better overall survival. These results underscore the

reliability of mitochondrial lipid metabolism-related genes as

prognostic markers in CRC. In our study, head-to-head ROC

analyses further highlighted the robustness of our 13-gene

signature in prognostic prediction for CRC (Figure 2G).

Specifically, our model yielded the highest AUC value (0.72),

exceeding those of previously reported metabolism-related

models, including signatures based on nucleotide metabolism,

general metabolic genes, tryptophan metabolism, mRNAsi-related

metabolic risk scores, and hypoxia- or lipid metabolism–associated

genes (29–33). This superior performance suggests that our

signature may capture critical metabolic alterations that are more

closely linked to CRC progression and patient outcomes. Therefore,

it provides a more reliable tool for prognostic stratification and

potentially facilitates personalized therapeutic decision-making

compared with existing metabolic models.

Further examination of the differentially expressed genes

(DEGs) between the high- and low-risk groups highlighted

significant enrichment in pathways related to extracellular matrix

(ECM) organization, particularly those involving extracellular

matrix structural constituents. This finding is consistent with

previous studies that have established ECM accumulation as a

characteristic feature of aggressive tumor behavior, often linked to

poor prognosis in various types of cancer (34–36). The tumor

microenvironment, shaped by its complex interactions with

immune cells and stromal components such as fibroblasts, plays a

critical role in the advancement of colorectal cancer (37, 38). In the

TME, fibroblasts are transformed into cancer-associated fibroblasts

(CAFs), which are abundant in both primary and metastatic tumors.

CAFs are known for their remarkable adaptability and resilience,

significantly influencing cancer progression through interactions

with other TME components (39, 40). The matrisome,

encompassing genes that encode core ECM proteins and structural

elements, is essential for understanding cancer biology (41). For

instance, Chao Huang developed a novel prognostic matrisome-

related gene signature for head and neck squamous cell carcinoma

(42). Consistent with these findings, our analysis identified a strong

positive correlation between the risk score and the expression of
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CAF, ECM, and matrisome-related genes. Furthermore, we observed

a positive correlation between the risk score and stromal score, along

with a negative correlation with tumor purity, indicating that

stromal cell infiltration is increased in the TME of high-risk

colorectal cancer patients. These results reinforce previous studies

that have highlighted the prognostic importance of stromal

components in colorectal cancer progression.

Immune cells play a crucial role in the tumormicroenvironment,

significantly influencing both tumor progression and therapeutic

responses. Recent research has demonstrated that different TME

phenotypes are associated with varying immunotherapeutic

outcomes and clinical prognoses (43–45). One of the key benefits

of immunotherapy is its ability to stimulate memory CD8+ T cells,

which offer long-term protection against tumor metastasis and

recurrence (46–48). Emerging studies suggest that these TME

phenotypes are also linked to differences in survival rates and

immune therapy responses (49, 50). Given the central role of

immune cells in the TME and their impact on treatment

effectiveness, we investigated the differences in immune cell

composition between the high- and low-risk groups.

In this study, we employed the CIBERSORT algorithm, a

deconvolution-based method that estimates the relative

abundance of immune cell subsets from gene expression data, to

characterize the immune landscape across different risk groups. Our

findings revealed distinct immune cell distribution patterns between

high- and low-risk samples, suggesting potential immunological

mechanisms underlying tumor progression.

In high-risk CRC samples, M0 macrophages and Treg cells were

significantly enriched, indicating an immunosuppressive TME that

may facilitate tumor progression. Positive correlations with naive

CD4+ T cells, memory B cells, CD8+ T cells, and activated NK cells

suggest immune dysfunction or exhaustion despite their typical

antitumor roles. Activated mast cell enrichment may further shape

the local immune milieu.

In contrast, low-risk samples showed higher levels of resting and

activated memory CD4+ T cells, plasma cells, and dendritic cells,

reflecting enhanced immune memory and antigen presentation.

Overall, high-risk tumors appear linked to immunosuppression,

while low-risk tumors exhibit stronger immune activation. These

findings highlight complex immune regulation in CRC and suggest

implications for optimizing immunotherapy.

Monoclonal antibodies targeting immune checkpoint molecules

have marked a significant advancement in cancer treatment (51).

TIDE scoring is a crucial predictor of immunotherapy response,

with higher TIDE scores correlating with lower response rates. In

our study, an increase in the risk score was associated with a

significant decline in immunotherapy response, with the low-risk

group exhibiting a response rate of 53.2% compared to only 35% in

the high-risk group, thereby underscoring the predictive value of

the risk score.

When patients were stratified by immune score, overall

response rates did not significantly difference between high and

low immune score groups (Figure 6C; low risk, 43.5% vs. high risk,

44.1%). Within the low immune score subgroup, the differences in

response between high- and low-risk patients were not statistically
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significant (low risk, 48.7% vs. high risk, 42.5%). However, in the

high immune score subgroup, the low-risk group achieved a

markedly higher response rate (58.6%) than the high-risk group

(28.5%), suggesting that although a high immune score generally

predicts favorable outcomes, its benefit is substantially diminished

in patients with a high risk score.

Similarly, stromal score analysis demonstrated that patients in

the low-stromal group had a significantly higher response rate

(62%) compared to those in the high-stromal group (25%),

indicating that a low-stromal environment is more conducive to

immunotherapy. Further subgroup analysis revealed that within the

low-stromal group, low-risk patients had a response rate of 62.4%

versus 59.6% in high-risk patients, whereas in the high-stromal

group, the response rates were 41% and 16% for low- and high-risk

patients, respectively. These data imply that risk and stromal scores

exert a synergistic effect on immunotherapy response.

A growing body of clinical evidence indicates that while anti-

PD-1 and anti-PD-L1 therapies yield favorable outcomes in

dMMR/MSI-H cancers, they are less effective in cold pMMR/MSS

colorectal cancer. This association is likely due to MSI’s role in

generating neoantigens that enhance antitumor immune responses,

thereby serving as a robust predictor for PD-L1 therapy efficacy

(52, 53). Our MSI subgroup analysis further revealed marked

differences in immunotherapy response between MSI-H and

MSS/MSI-L groups. Notably, risk stratification within each MSI

category consistently showed that patients with lower risk scores

had higher response rates compared to their high-risk counterparts:

51.3% versus 40.2% in the MSS subgroup, 62.6% versus 47.3% in the

MSI-L subgroup, and 34.8% versus 19.7% in the MSI-H subgroup.

These findings suggest that, regardless of MSI status, patients

classified as low risk derive greater benefit from immunotherapy,

whereas those with high risk scores demonstrate considerably

reduced responses.

Our analysis of the mutation landscape in COADREAD shows

that tumor mutational burden (TMB) alone does not effectively

stratify patients, as no significant differences were observed in TMB

or its association with the risk score. While TMB is prognostic in

other cancers, it appears insufficient as an independent marker in

CRC. By contrast, integrating the risk score with microsatellite

instability (MSI) improved prognostic accuracy. Patients in the low-

risk group consistently showed better survival across MSI

subgroups, and the negative correlation between risk score and

MSI further highlights their complementary value. These findings

suggest that combining MSI status with the risk model offers a more

robust prognostic framework and may help refine personalized

treatment strategies in CRC.

Our findings suggest that the risk score may guide drug

selection for COADREAD patients by revealing distinct

sensitivity patterns between risk groups. High-risk patients

showed greater sensitivity to agents targeting cell cycle and

growth factor pathways (e.g., Nutlin-3a, IGF1R inhibitors, BMS-

754807), while low-risk patients were more responsive to drugs

affecting mitochondrial function, PLK1 inhibition, and apoptosis
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(e.g., Dihydrorotenone, BI-2536, AZD5991). These results highlight

potential therapeutic vulnerabilities that could inform risk-adapted

treatment strategies.

In this study, we constructed a prognostic nomogram

incorporating ABHD4, YJEFN3, and key clinical parameters to

improve individualized survival prediction in colorectal cancer

(CRC). Both genes, along with pTNM stage and age, were

identified as independent prognostic factors through univariate

and multivariate Cox analyses. The nomogram showed good

predictive accuracy, with AUC values above 0.75 for 1-, 3-, and 5-

year overall survival and a C-index of 0.743, supporting its

clinical utility.

Recent studies have highlighted the regulatory role of ABHD4

in lipid metabolism, particularly through its catalytic activity in

converting NAPE and lyso-NAPE into GP-NAE, intermediates in

the biosynthesis of bioactive N-acyl ethanolamines (NAEs) (54).

Given the importance of lipid reprogramming in cancer, ABHD4

may promote CRC progression through lipid signaling modulation.

Single-cell analysis showed its expression is enriched in stromal cells

(fibroblasts, endothelial cells), implicating a role in remodeling the

tumor microenvironment. Functional assays confirmed that

ABHD4 knockdown inhibited CRC cell proliferation, migration,

and invasion. Together, these findings indicate that ABHD4 may

act as a tumor-promoting factor in CRC via both cell-intrinsic and

stromal mechanisms, warranting further investigation as a

prognostic or therapeutic target.

YJEFN3 (YjeF N-terminal domain-containing protein 3) has

been identified as a tumor-associated antigen in prostate

adenocarcinoma (PRAD), where its overexpression and mutations

are linked to poor prognosis and altered immune cell infiltration (55).

Its strong association with antigen-presenting cells suggests a

potential role in modulating the tumor immune microenvironment

(55). Although its role in CRC remains unclear, the immunogenicity

and prognostic relevance observed in PRAD indicate that YJEFN3

may similarly contribute to CRC progression and immune regulation.

In our study, YJEFN3 was identified as a potential oncogenic

driver in CRC. Knockdown experiments showed that silencing

YJEFN3 suppressed cell proliferation, colony formation, migration,

and invasion, confirming its role in sustaining malignant phenotypes.

Single-cell analysis revealed predominant expression in tumor

epithelial cells, supporting a tumor-intrinsic function. Together

with its classification as a high-risk gene in Cox regression, these

findings suggest that YJEFN3 contributes to CRC progression and

may serve as a prognostic biomarker and therapeutic target.

Although our in vivo experiments provided preliminary support

for the prognostic relevance of the identified genes, the validation

was not comprehensive. In particular, detailed histological and

molecular assessments (e.g., H&E staining, Ki-67) were not

conducted, which restricts the extent to which the in vivo findings

can substantiate the functional roles of the risk model genes. To

address these shortcomings, future studies will establish orthotopic

CRC xenograft models to better recapitulate the native tumor

microenvironment, increase the animal sample size, and
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incorporate systematic evaluations, including histopathological

analysis, molecular assays, and metastatic indicators. Such

comprehensive validation will provide deeper insights into the

biological mechanisms underlying the prognostic signature and

further enhance its translational significance.

The translational significance of our study lies in the

establishment of a prognostic model based on multiple

mitochondrial lipid metabolism–related genes, which may provide

improved prognostic value compared to traditional single-gene

approaches. This model has the potential to stratify patients with

COADREAD into high- and low-risk groups and may serve as a

useful tool to complement existing diagnostic and prognostic

methods. Its predictive relevance was further supported by

associations with chemotherapy sensitivity, immunotherapy

response, and immune cell infiltration, suggesting possible

applications in guiding more personalized treatment strategies. In

addition, silencing ABHD4 and YJEFN3 suppressed CRC cell

proliferation and motility, validating their role in tumor

progression and suggesting their potential as therapeutic targets

with clinical relevance. While these findings underscore the

potential biological and clinical relevance of our work, further in

vivo and clinical validation will be necessary before translation into

routine practice.
Conclusions

Our findings present a novel risk score model based on genes

associated with mitochondrial lipid metabolism. This score is closely

linked to the tumor microenvironment and immune cell infiltration

in COADREAD patients.When combined with stromal and immune

scores, or MSS/MSI status, the model more accurately predicts

immunotherapy response than any single metric alone. Regarding

drug sensitivity, high-risk patients showed greater responsiveness to

Nutlin-3a (-), IGF1R inhibitor (IGF1R_3801_1738), and BMS-

754807, whereas low-risk patients were more responsive to

Dihydrorotenone, BI-2536, and AZD5991. Overall, our

mitochondrial lipid metabolism-related risk model may serve as a

robust prognostic biomarker to facilitate personalized treatment

strategies in COADREAD.
Data availability statement

The datasets presented in this study can be found in online

repositories. The names of the repository/repositories and accession

number(s) can be found in the article/Supplementary Material.
Ethics statement

Ethical approval was not required for the studies on animals in

accordance with the local legislation and institutional requirements

because only commercially available established cell lines were used.
Frontiers in Immunology 21
Author contributions

HW: Conceptualization, Funding acquisition, Methodology,

Writing – original draft, Writing – review & editing. KZ: Formal

analysis, Methodology, Validation, Writing – review & editing. YW:

Investigation, Project administration, Resources, Writing – review &

editing. MC: Software, Visualization, Writing – review & editing. MZ:

Funding acquisition, Resources, Supervision, Writing – review

& editing.
Funding

The author(s) declare financial support was received for the

research and/or publication of this article. This study was supported

by the Huamei Research Fund (Grants Nos. 2022HMZD02,

2024HMZD08), the General Project of Zhejiang Provincial

Medical and Health Science and Technology Plan (2023KY281),

the Key Discipline of Endocrinology and Metabolism at Ningbo

No.2 Hospital (Grant No. 2023-Y01), and the Postdoctoral

Research Start-up Fund of Ningbo No.2 Hospital (Grant

No. 2025026).
Acknowledgments

We extend our appreciation to the TCGA and GEO databases

for providing their platforms and to the individuals who uploaded

their meaningful datasets as contributors.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this

article has been generated by Frontiers with the support of artificial

intelligence and reasonable efforts have been made to ensure

accuracy, including review by the authors wherever possible.

If you identify any issues, please contact us.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1669678
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1669678
organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Frontiers in Immunology 22
Supplementary material
The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1669678/full#supplementary-material
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for
36 cancers in 185 countries. CA Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

2. Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F, et al.
Global patterns and trends in colorectal cancer incidence and mortality. Gut. (2017)
66:683–91. doi: 10.1136/gutjnl-2015-310912

3. Biller LH, Schrag D. Diagnosis and treatment of metastatic colorectal cancer: A
review. Jama. (2021) 325:669–85. doi: 10.1001/jama.2021.0106

4. Aktipis CA, Boddy AM, Gatenby RA, Brown JS, Maley CC. Life history trade-offs
in cancer evolution. Nat Rev Cancer. (2013) 13:883–92. doi: 10.1038/nrc3606

5. Hirayama A, Kami K, Sugimoto M, Sugawara M, Toki N, Onozuka H, et al.
Quantitative metabolome profiling of colon and stomach cancer microenvironment by
capillary electrophoresis time-of-flight mass spectrometry. Cancer Res. (2009) 69:4918–
25. doi: 10.1158/0008-5472.CAN-08-4806

6. Schafer ZT, Grassian AR, Song L, Jiang Z, Gerhart-Hines Z, Irie HY, et al.
Antioxidant and oncogene rescue of metabolic defects caused by loss of matrix
attachment. Nature. (2009) 461:109–13. doi: 10.1038/nature08268

7. Foster DW. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J
Clin Invest. (2012) 122:1958–9. doi: 10.1172/JCI63967

8. Philip PA, Sahai V, Bahary N, Mahipal A, Kasi A, Rocha Lima CMS, et al.
Devimistat (CPI-613) with modified fluorouarcil, oxaliplatin, irinotecan, and
leucovorin (FFX) versus FFX for patients with metastatic adenocarcinoma of the
pancreas: the phase III AVENGER 500 study. J Clin Oncol. (2024) 42:3692–701.
doi: 10.1200/JCO.23.02659

9. Gao L, Xu Z, Huang Z, Tang Y, Yang D, Huang J, et al. CPI-613 rewires lipid
metabolism to enhance pancreatic cancer apoptosis via the AMPK-ACC signaling. J
Exp Clin Cancer Res. (2020) 39:73. doi: 10.1186/s13046-020-01579-x

10. Scheid AD, Beadnell TC, Welch DR. Roles of mitochondria in the hallmarks of
metastasis. Br J Cancer. (2021) 124:124–35. doi: 10.1038/s41416-020-01125-8

11. Panaroni C, Fulzele K, Mori T, Siu KT, Onyewadume C, Maebius A, et al. Multiple
myeloma cells induce lipolysis in adipocytes and uptake fatty acids through fatty acid
transporter proteins. Blood. (2022) 139:876–88. doi: 10.1182/blood.2021013832

12. Raman P, Dewitt DL, Nair MG. Lipid peroxidation and cyclooxygenase enzyme
inhibitory activities of acidic aqueous extracts of some dietary supplements. Phytother
Res. (2008) 22:204–12. doi: 10.1002/ptr.2287

13. Wu D, Hu L, Han M, Deng Y, Zhang Y, Ren G, et al. PD-1 signaling facilitates
activation of lymphoid tissue inducer cells by restraining fatty acid oxidation. Nat
Metab. (2022) 4:867–82. doi: 10.1038/s42255-022-00595-9

14. Ogino S, Nowak JA, Hamada T, Phipps AI, Peters U, Milner DA, et al.
Integrative analysis of exogenous, endogenous, tumour and immune factors for
precision medicine. Gut. (2018) 67:1168–80. doi: 10.1136/gutjnl-2017-315537

15. Bursill CA, Castro ML, Beattie DT, Nakhla S, van der Vorst E, Heather AK, et al.
High-density lipoproteins suppress chemokines and chemokine receptors in vitro and in
vivo. Arterioscler Thromb Vasc Biol. (2010) 30:1773–8. doi: 10.1161/ATVBAHA.110.211342

16. Dey P, Kimmelman AC, DePinho RA. Metabolic codependencies in the tumor
microenvironment. Cancer Discov. (2021) 11:1067–81. doi: 10.1158/2159-8290.CD-20-1211

17. Huang H, Li T, Meng Z, Zhang X, Jiang S, Suo M, et al. A risk model for
prognosis and treatment response prediction in colon adenocarcinoma based on genes
associated with the characteristics of the epithelial-mesenchymal transition. Int J Mol
Sci. (2023) 24:13206. doi: 10.3390/ijms241713206

18. Hu J, He Y, Liao K, Yang Q, Xu Y, Cao G, et al. Identification of inflammatory factor-
related genes associated with the prognosis and immune cell infiltration in colorectal cancer
patients. Genes Dis. (2023) 10:2109–24. doi: 10.1016/j.gendis.2022.07.015

19. Pan B, Yue Y, DingW, Sun L, Xu M,Wang S, et al. A novel prognostic signatures
based on metastasis- and immune-related gene pairs for colorectal cancer. Front
Immunol. (2023) 14:1161382. doi: 10.3389/fimmu.2023.1161382

20. Xia C, Dong X, Li H, Cao M, Sun D, He S, et al. Cancer statistics in China and
United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). (2022)
135:584–90. doi: 10.1097/CM9.0000000000002108

21. Wang R, Lian J, Wang X, Pang X, Xu B, Tang S, et al. Survival rate of colorectal
cancer in China: A systematic review and meta-analysis. Front Oncol. (2023)
13:1033154. doi: 10.3389/fonc.2023.1033154
22. Jin HR, Wang J, Wang ZJ, Xi MJ, Xia BH, Deng K, et al. Lipid metabolic
reprogramming in tumor microenvironment: from mechanisms to therapeutics. J
Hematol Oncol. (2023) 16:103. doi: 10.1186/s13045-023-01498-2

23. Liu Y, Zhao Y, Song H, Li Y, Liu Z, Ye Z, et al. Metabolic reprogramming in
tumor immune microenvironment: Impact on immune cell function and therapeutic
implications. Cancer Lett. (2024) 597:217076. doi: 10.1016/j.canlet.2024.217076

24. Huang L, Dou G, Lu J, Chen Z, Wang J. Has_circ_0071803 promotes colorectal
cancer progression by regulating miR-330-5p/MAPK signaling pathway. Histol
Histopathol. (2023) 38:1443–51. doi: 10.14670/HH-18-598

25. Wu Z, Zhang W, Chen L, Wang T, Wang X, Shi H, et al. CDK12 inhibition
upregulates ATG7 triggering autophagy via AKT/FOXO3 pathway and enhances anti-
PD-1 efficacy in colorectal cancer. Pharmacol Res. (2024) 201:107097. doi: 10.1016/
j.phrs.2024.107097

26. Weng M, Zhang H, HouW, Sun Z, Zhong J, Miao C, et al. ACAT2 promotes cell
proliferation and associates with Malignant progression in colorectal cancer. Onco
Targets Ther. (2020) 13:3477–88. doi: 10.2147/OTT.S238973

27. Zheng H, Liu H, Ge Y, Wang X. Integrated single-cell and bulk RNA sequencing
analysis identifies a cancer associated fibroblast-related signature for predicting
prognosis and therapeutic responses in colorectal cancer. Cancer Cell Int. (2021)
21:552. doi: 10.1186/s12935-021-02252-9

28. Huang A, et al. Novel hypoxia- and lactate metabolism-related molecular
subtyping and prognostic signature for colorectal cancer. J Transl Med. (2024)
22:587. doi: 10.1186/s12967-024-05391-5

29. Weng M, et al. mRNAsi-related metabolic risk score model identifies poor
prognosis, immunoevasive contexture, and low chemotherapy response in colorectal
cancer patients through machine learning. Front Immunol. (2022) 13:950782.
doi: 10.3389/fimmu.2022.950782

30. Miao Y, et al. Prognostic implications of metabolism-associated gene signatures
in colorectal cancer. PeerJ. (2020) 8:e9847. doi: 10.7717/peerj.9847

31. Hu Y, et al. Integrated single cell and bulk RNA sequencing analyses reveal the
impact of tryptophan metabolism on prognosis and immunotherapy in colon cancer.
Sci Rep. (2025) 15:12496. doi: 10.1038/s41598-025-85893-4

32. Huang S, et al. Hypoxia and lipid metabolism related genes drive proliferation
migration and immune infiltration mechanisms in colorectal cancer subtyping. Sci Rep.
(2025) 15:2394. doi: 10.1038/s41598-025-85809-2

33. Sun YL, et al. A prognostic model based on six metabolism-related genes in
colorectal cancer. BioMed Res Int 2020. (2020) p:5974350. doi: 10.1155/2020/5974350

34. Huang J, et al. Extracellular matrix and its therapeutic potential for cancer treatment.
Signal Transduct Target Ther. (2021) 6:153. doi: 10.1038/s41392-021-00544-0

35. Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer.
(2016) 16:582–98. doi: 10.1038/nrc.2016.73

36. Cirri P, Chiarugi P. Cancer-associated-fibroblasts and tumour cells: a diabolic
liaison driving cancer progression. Cancer Metastasis Rev. (2012) 31:195–208.
doi: 10.1007/s10555-011-9340-x

37. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited
to the tumor microenvironment. Cancer Cell. (2012) 21:309–22. doi: 10.1016/
j.ccr.2012.02.022

38. Labani-Motlagh A, Ashja-Mahdavi M, Loskog A. The tumor microenvironment:
A milieu hindering and obstructing antitumor immune responses. Front Immunol.
(2020) 11:940. doi: 10.3389/fimmu.2020.00940

39. Gok Yavuz B, et al. The effects of cancer-associated fibroblasts obtained from
atypical ductal hyperplasia on anti-tumor immune responses. Breast J. (2018) 24:1099–
101. doi: 10.1111/tbj.13139

40. Chen Y, McAndrews KM, Kalluri R. Clinical and therapeutic relevance of
cancer-associated fibroblasts. Nat Rev Clin Oncol. (2021) 18:792–804. doi: 10.1038/
s41571-021-00546-5

41. Naba A, et al. The matrisome: in silico definition and in vivo characterization by
proteomics of normal and tumor extracellular matrices. Mol Cell Proteomics. (2012)
11:014647. doi: 10.1074/mcp.M111.014647

42. Huang C, et al. Novel prognostic matrisome-related gene signature of head and
neck squamous cell carcinoma. Front Cell Dev Biol. (2022) 10:884590. doi: 10.3389/
fcell.2022.884590
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1669678/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1669678/full#supplementary-material
https://doi.org/10.3322/caac.21834
https://doi.org/10.1136/gutjnl-2015-310912
https://doi.org/10.1001/jama.2021.0106
https://doi.org/10.1038/nrc3606
https://doi.org/10.1158/0008-5472.CAN-08-4806
https://doi.org/10.1038/nature08268
https://doi.org/10.1172/JCI63967
https://doi.org/10.1200/JCO.23.02659
https://doi.org/10.1186/s13046-020-01579-x
https://doi.org/10.1038/s41416-020-01125-8
https://doi.org/10.1182/blood.2021013832
https://doi.org/10.1002/ptr.2287
https://doi.org/10.1038/s42255-022-00595-9
https://doi.org/10.1136/gutjnl-2017-315537
https://doi.org/10.1161/ATVBAHA.110.211342
https://doi.org/10.1158/2159-8290.CD-20-1211
https://doi.org/10.3390/ijms241713206
https://doi.org/10.1016/j.gendis.2022.07.015
https://doi.org/10.3389/fimmu.2023.1161382
https://doi.org/10.1097/CM9.0000000000002108
https://doi.org/10.3389/fonc.2023.1033154
https://doi.org/10.1186/s13045-023-01498-2
https://doi.org/10.1016/j.canlet.2024.217076
https://doi.org/10.14670/HH-18-598
https://doi.org/10.1016/j.phrs.2024.107097
https://doi.org/10.1016/j.phrs.2024.107097
https://doi.org/10.2147/OTT.S238973
https://doi.org/10.1186/s12935-021-02252-9
https://doi.org/10.1186/s12967-024-05391-5
https://doi.org/10.3389/fimmu.2022.950782
https://doi.org/10.7717/peerj.9847
https://doi.org/10.1038/s41598-025-85893-4
https://doi.org/10.1038/s41598-025-85809-2
https://doi.org/10.1155/2020/5974350
https://doi.org/10.1038/s41392-021-00544-0
https://doi.org/10.1038/nrc.2016.73
https://doi.org/10.1007/s10555-011-9340-x
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.3389/fimmu.2020.00940
https://doi.org/10.1111/tbj.13139
https://doi.org/10.1038/s41571-021-00546-5
https://doi.org/10.1038/s41571-021-00546-5
https://doi.org/10.1074/mcp.M111.014647
https://doi.org/10.3389/fcell.2022.884590
https://doi.org/10.3389/fcell.2022.884590
https://doi.org/10.3389/fimmu.2025.1669678
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1669678
43. Wu T, Dai Y. Tumor microenvironment and therapeutic response. Cancer Lett.
(2017) 387:61–8. doi: 10.1016/j.canlet.2016.01.043

44. Zhang Y, et al. Targeting and exploitation of tumor-associated neutrophils to
enhance immunotherapy and drug delivery for cancer treatment. Cancer Biol Med.
(2020) 17:32–43. doi: 10.20892/j.issn.2095-3941.2019.0372

45. Lu Q, et al. Nanoparticles in tumor microenvironment remodeling and cancer
immunotherapy. J Hematol Oncol. (2024) 17:16. doi: 10.1186/s13045-024-01535-8

46. Locy H, et al. Immunomodulation of the tumor microenvironment: turn foe into
friend. Front Immunol. (2018) 9:2909. doi: 10.3389/fimmu.2018.02909

47. O’Donnell JS, Teng MWL, Smyth MJ. Cancer immunoediting and resistance to T cell-
based immunotherapy.Nat Rev Clin Oncol. (2019) 16:151–67. doi: 10.1038/s41571-018-0142-8

48. Gubin MM, Vesely MD. Cancer immunoediting in the era of immuno-oncology.
Clin Cancer Res. (2022) 28:3917–28. doi: 10.1158/1078-0432.CCR-21-1804

49. Xiang X, et al. Targeting tumor-associated macrophages to synergize tumor
immunotherapy. Signal Transduct Target Ther. (2021) 6:75. doi: 10.1038/s41392-021-
00484-9
Frontiers in Immunology 23
50. Hiam-Galvez KJ, Allen BM, Spitzer MH. Systemic immunity in cancer. Nat Rev
Cancer. (2021) 21:345–59. doi: 10.1038/s41568-021-00347-z

51. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy.
Nat Rev Cancer. (2012) 12:252–64. doi: 10.1038/nrc3239

52. Darvin P, et al. Immune checkpoint inhibitors: recent progress and potential
biomarkers. Exp Mol Med. (2018) 50:1–11. doi: 10.1038/s12276-018-0191-1

53. Overman MJ, et al. Nivolumab in patients with metastatic DNA mismatch
repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an
open-label, multicentre, phase 2 study. Lancet Oncol. (2017) 18:1182–91. doi: 10.1016/
S1470-2045(17)30422-9

54. Seramur ME, et al. ABHD4 regulates adipocyte differentiation in vitro but does
not affect adipose tissue lipid metabolism in mice. J Lipid Res. (2023) 64:100405.
doi: 10.1016/j.jlr.2023.100405

55. Zheng X, et al. Tumor-antigens and immune landscapes identification for
prostate adenocarcinoma mRNA vaccine. Mol Cancer. (2021) 20:160. doi: 10.1186/
s12943-021-01452-1
frontiersin.org

https://doi.org/10.1016/j.canlet.2016.01.043
https://doi.org/10.20892/j.issn.2095-3941.2019.0372
https://doi.org/10.1186/s13045-024-01535-8
https://doi.org/10.3389/fimmu.2018.02909
https://doi.org/10.1038/s41571-018-0142-8
https://doi.org/10.1158/1078-0432.CCR-21-1804
https://doi.org/10.1038/s41392-021-00484-9
https://doi.org/10.1038/s41392-021-00484-9
https://doi.org/10.1038/s41568-021-00347-z
https://doi.org/10.1038/nrc3239
https://doi.org/10.1038/s12276-018-0191-1
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1016/S1470-2045(17)30422-9
https://doi.org/10.1016/j.jlr.2023.100405
https://doi.org/10.1186/s12943-021-01452-1
https://doi.org/10.1186/s12943-021-01452-1
https://doi.org/10.3389/fimmu.2025.1669678
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	A mitochondrial lipid metabolism–related gene signature predicts prognosis and immune landscape in colorectal cancer
	Introduction
	Materials and methods
	Data collection
	Construction and validation of prognostic mitochondrial lipid metabolism-related risk score signature
	Construction and validation of nomogram

	Gene ontology, Kyoto encyclopedia of genes and genomes analyses, and gene set enrichment analyses
	Tumor microenvironment
	Prediction of therapeutic sensitivity in patients with different risk scores
	Mutation analysis
	Cell lines and cell culture
	Lentiviral-mediated knockdown of ABHD4 and YJEFN3
	Western blotting
	CCK-8 assay
	Migration and invasion assays
	Wound-healing assay
	Statistical analysis

	Results
	Identification of DEGs related to mitochondria lipid metabolism and functional enrichment analysis in COADREAD
	Construction and validation of a mitochondrial lipid metabolism-related risk signature
	Construction and assessment of a prognostic model based on mitochondrial lipid metabolism-related genes
	Functional enrichment analysis of DEGs in high-risk and low-risk groups
	Mitochondrial lipid metabolism-related risk score and TME signatures in COADREAD
	Mitochondrial lipid metabolism-associated risk score reveals the characteristics and heterogeneity of the immunosuppressive microenvironment in high-risk patients
	Mitochondrial lipid metabolism-related risk score was associated immune checkpoint inhibitors and immunotherapy responses in COADREAD
	Mutation status of CRC patients in high&minus;risk and low&minus;risk groups
	Risk score predicts therapeutic benefits in COADREAD
	Development of another prognostic nomogram integrating ABHD4, YJEFN3, and clinical parameters in CRC
	Functional characterization of ABHD4 and YJEFN3 in CRC cell proliferation and migration in vitro

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References




