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Background: Colorectal cancer (CRC) is a highly aggressive gastrointestinal
malignancy with significant global health consequences. While mitochondrial
lipid metabolism genes are known to influence CRC progression, their
prognostic relevance remains inadequately explored.

Methods: This study systematically evaluated the expression profiles and
prognostic significance of mitochondrial lipid metabolism-related genes in
CRC patients. A risk model was constructed using data from the TCGA and
GEO databases. Additionally, we examined the tumor microenvironment (TME),
immune cell infiltration, tumor mutation burden, microsatellite instability (MSI),
and drug sensitivity. Key genes associated with core mitochondrial lipid
metabolism were identified and functionally validated through a series of in
vitro cellular experiments.

Results: Mitochondrial lipid metabolism-associated genes were identified,
including ABHD4, ABHD8, HDHD5, PNPLA4, GK5, CPT2, YJEFN3, CRYAB,
HSPA1A, MAPK1, ATG7, HDAC3, and ACAT2. A nomogram integrating the risk
score with key clinical variables (pTNM stage and age) was developed to predict
patient outcomes. Significant variations in immune cell infiltration were observed
between risk groups. Immune microenvironment analysis revealed significant
differences in immune cell infiltration between risk groups, and the risk score was
significantly correlated with the expression of TME-related genes and immune
checkpoint molecules, indicating a markedly immunosuppressive
microenvironment in the high-risk group. Additionally, TIDE analysis showed
that combining the risk score with immune, stromal scores and MSI could more
effectively predict the benefit of immunotherapy. Furthermore, in vitro
experiments demonstrated that knockdown of two key genes, ABHD4 and
YJEFN3, significantly suppressed CRC cell proliferation, migration, and
invasion, supporting their potential oncogenic roles.
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Conclusions: This mitochondrial lipid metabolism-based risk model represents a
promising prognostic biomarker, offering potential guidance for personalized
therapeutic strategies in CRC management.

colorectal cancer, prognostic biomarker, mitochondrial lipid metabolism, tumor
microenvironment, immunotherapy, drug sensitivity

Introduction

Colorectal carcinoma (CRC) ranks as the third most prevalent
malignancy globally, accounting for an estimated 1.9 million new
cases annually (9.6% of total cancer incidence). It stands as the
second most lethal oncologic disease, causing nearly 0.9 million
deaths per year (9.3% of global cancer mortality) (1). Epidemiologic
studies reveal a distinct geographic pattern: while CRC rates are
stabilizing or declining in highly industrialized nations (albeit
maintaining elevated absolute numbers), developing countries are
experiencing rapid increases in both incidence and mortality (2).
The clinical outlook is particularly grim for metastatic CRC cases,
demonstrating dismal 5-year survival statistics under 20% (3).
These concerning epidemiologic data underscore the urgent need
for two critical advancements: (1) identification of more accurate
prognostic indicators, and (2) discovery of novel molecular targets
for therapeutic intervention in colorectal tumorigenesis.

Solid tumors evolve under nutrient-poor conditions,
necessitating metabolic adaptations for survival (4). Clinical
metabolomic data reveal that solid tumors frequently exhibit
marked hypoglycemia. Remarkably, despite glucose deprivation,
tumor tissues maintain relatively stable ATP levels, suggesting that
alternative, glucose-independent energy production pathways may
be activated in cancer cells (5). In particular, during metastatic
progression, circulating tumor cells face severe metabolic stress due
to impaired glucose uptake (6). From a metabolic perspective, fatty
acid metabolism exhibits nutrient-dependent behavior: under
nutrient-replete conditions, cells favor anabolic fatty acid

Abbreviations: COADREAD, Colon and Rectal Cancer; TME, Tumor
microenvironment; CRC, Colon and Rectal Cancer; OS, Overall survival; ICB,
Immune checkpoint blockade; TMB, Tumor mutation burden; GSEA, Gene set
enrichment analyses; DEGs, Differentially expressed genes; K-M, Kaplan-Meier;
C-index, Concordance index; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of
Genes and Genomes; TIICs, Tumor-infiltrating immune cells; IC50 50%
Inhibiting concentration; GDSC, Genomics of Drug Sensitivity in Cancer;
TIDE, Tumor immune dysfunction and exclusion; ECM, Extracellular matrix;
CAF, Carcinoma associated fibroblast; Tregs, Regulatory T cell; MSS,
Microsatellite stability; MSI-L, Microsatellite instability-low; MSI-H,
Microsatellite instability-high; PD-L1, Programmed death-ligand 1; TAMs,
Tumor-associated macrophages; M2, Macrophage type 2; BP, Biological

process; CC, Cellular component; MF, Molecular function.
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synthesis (FAS), whereas nutrient deprivation triggers a shift
toward catabolic fatty acid oxidation (FAO). This metabolic
switch is tightly regulated by the acetyl-CoA carboxylase (ACC)
enzyme family (7). Although recent studies underscore the
importance of FAO in tumor metastasis, the upstream regulatory
networks and precise mechanisms by which FAO contributes to
malignant transformation remain to be fully elucidated. Recent
research has demonstrated that the small-molecule compound CPI-
613 exerts significant regulatory effects on mitochondrial lipid
metabolism, as confirmed by multiple studies (8). A key target of
CPI-613 is acetyl-CoA carboxylase (ACC), a central enzyme in lipid
metabolism. Its inhibition induces metabolic reprogramming in
tumor cells. Notably, in pancreatic cancer models, CPI-613
suppresses lipid metabolism through the activation of the AMPK
signaling pathway, thereby exerting antitumor effects (9).

The tumor microenvironment is a specialized niche where
tumor and host cells interact, and its metabolic characteristics
profoundly influence anti-tumor immune responses and
therapeutic outcomes. Recent studies have shown that tumor cells
can evade immune surveillance by reprogramming the metabolic
profiles of immune cells, while immune cells reciprocally modulate
tumor behavior through metabolic feedback, forming a complex
tumor-immune metabolic network (10). Solid tumors actively
acquire lipid nutrients via specialized uptake mechanisms: tumor
cells induce adjacent adipocytes to release free fatty acids (FFAs)
and cholesterol, which are then internalized through fatty acid
transport proteins (FATPs) (11). Within the TME, persistent
oxidative stress arises from multiple sources: infiltrating
neutrophils generate significant reactive oxygen species (ROS)
during a respiratory burst, while enzymatic reactions mediated by
lipoxygenase (LOX), cyclooxygenase (COX), and other oxidases
further exacerbate oxidative pressure. Collectively, these processes
establish a pronounced lipid peroxidation microenvironment,
leading to the accumulation of cytotoxic oxidized lipid species
such as oxidized low-density lipoprotein (ox-LDL) and
malondialdehyde (MDA) (12). This lipid-rich milieu exerts dual
regulatory effects on tumor immune responses: elevated fatty acid
levels activate the PPAR« signaling pathway in T cells, promoting
FAO and oxidative phosphorylation (OXPHOS), whereas fatty acid
depletion impairs T cell proliferation and antitumor activity (13).
Thus, mitochondrial lipid metabolism is intricately linked to the
immunosuppressive nature of the TME in CRC.
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Lipid-targeting strategies demonstrate superior efficacy in
cancer immunotherapy compared to glucose modulation, as
tumors adapt more readily to glucose-targeted interventions.
Importantly, glucose-targeting agents may inadvertently impair
glucose-dependent antitumor immune cells, while protumor
immune cells predominantly depend on lipid metabolism.
Moreover, tumor cells themselves appear more vulnerable to
disruptions in lipid homeostasis. Existing lipid-lowering drugs
and NSAIDs can be repurposed to address lipid dysregulation
within the tumor microenvironment (14). High-density
lipoprotein (HDL) has been shown to downregulate the secretion
of chemokines, such as CXCL16, via the SR-B1 receptor pathway
(15). Interestingly, a reverse regulatory mechanism has been
observed where certain chemokine family members, particularly
CX3CL1, contribute to maintaining macrophage lipid homeostasis,
although the precise signaling pathways involved remain to be fully
elucidated (16).

Recognizing the crucial role of mitochondrial lipid metabolism
in tumor development, identifying biomarkers related to
mitochondrial lipid metabolism for colorectal cancer (CRC)
prognosis represents a promising research direction. Although
mitochondrial lipid metabolism is essential in cancer, the
underlying biological mechanisms and therapeutic interventions
based on mitochondrial lipid metabolism remain poorly defined.
While numerous studies have developed prognostic models to
predict CRC patient survival (17, 18), few have specifically
focused on models linked to mitochondrial lipid metabolism that
effectively predict prognosis and immunotherapy responsiveness in
colorectal and rectal adenocarcinomas. In our study, we constructed
a risk scoring model based on mitochondrial lipid metabolism, and
further examined the relationship between risk scores and TME
characteristics, including immune cell infiltration, immune
checkpoint expression, and immunotherapy responses, while also
assessing drug sensitivity across 198 compounds. Overall, our
mitochondrial lipid metabolism-based risk model serves as a
robust prognostic biomarker for CRC, offering valuable guidance
for personalized treatment strategies. By linking mitochondrial lipid
metabolism to an immunosuppressive TME, our model enhances
our understanding of CRC pathogenesis and paves the way for
improved therapeutic interventions.

Materials and methods
Data collection

The study analyzed genomic and clinical data from public
repositories including RNA-sequencing profiles and microsatellite
instability status for 620 colorectal adenocarcinoma specimens from
The Cancer Genome Atlas (TCGA), along with matched clinical
metadata from UCSC Xena. Validation of the 13-gene prognostic
signature was conducted using the GEO dataset GSE39582, which
comprises 585 colorectal cancer samples. To identify genes
associated with lipid metabolism (LMRGs), the “Lipid
Metabolism” category from the Molecular Signatures Database
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(MSigDB) was first examined. The candidate list was then refined
by cross-referencing with the MitoCarta 3.0 database and relevant
literature to extract genes with established roles in mitochondrial
lipid metabolism. Expression profiles from colorectal cancer
datasets were further analyzed to validate their biological
relevance. In addition, bioinformatic analyses, including pathway
enrichment, were applied to ensure that the final gene set accurately
represented mitochondrial lipid metabolic processes. Through this
multi-step screening strategy, a robust set of candidate genes was
compiled for subsequent prognostic modeling in colorectal cancer.

Construction and validation of prognostic
mitochondrial lipid metabolism-related risk
score signature

In this study, a comprehensive differential gene expression
analysis was performed using the “limma” R package. Specifically,
a threshold of |log2FC| > 1.3 and FDR < 0.05 was employed to
identify differentially expressed genes. This threshold, adopted
based on commonly applied criteria in previous CRC
transcriptomic studies, was chosen to balance sensitivity and
specificity (19). Comparisons were conducted between tumor and
normal tissues as well as between high- and low-risk groups, and the
results were visualized using volcano plots and Venn diagrams.
Subsequently, we conducted univariate Cox regression to assess
prognostic significance, followed by LASSO regression for feature
selection, ultimately establishing a 13-gene risk signature calculated
as:

Risk score = >(B; x ExpGene;)

In this formula, expgene denotes the expression value of each
gene, i represents the total count of signature genes (n=13), and B;
corresponds to the LASSO-derived regression coefficient for each
gene. Using the median risk score as the cutoff threshold, patients
were stratified into distinct high-risk and low-risk subgroups.
Demographic and clinicopathological parameters (including sex,
age at diagnosis, and TNM staging) were extracted from TCGA
clinical records. Both univariate and multivariate Cox proportional
hazards models were employed to assess the independent
prognostic value of the risk signature, with statistical significance
defined as p<0.05 (two-tailed). The predictive accuracy of this 13-
gene classifier was externally validated in the GSE39582 cohort
through multiple approaches: (1) time-dependent receiver
operating characteristic (ROC) curve analysis, (2) risk
stratification visualization, and (3) calculation of Harrell’s
concordance index (C-index). All gene annotations were verified
against the NCBI database.

Construction and validation of nomogram

The study established a prognostic nomogram by integrating
molecular risk scores with clinical parameters (age, TNM stage)
through univariate and multivariate Cox regression analyses
(P<0.05 significance threshold). The nomogram assigned
weighted points to each predictor, with total scores enabling
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individualized 1-, 3-, and 5-year survival probability estimation.
Model performance was validated using time-dependent ROC
curves (discrimination), bootstrap-corrected calibration plots
(accuracy), and decision curve analysis (clinical utility),
demonstrating robust predictive capability for personalized
outcome assessment.

Gene ontology, Kyoto encyclopedia of
genes and genomes analyses, and gene set
enrichment analyses

Functional enrichment analysis was performed using R software
(version 4.3.3) with the following packages: clusterProfiler for gene
set enrichment, org.Hs.eg.db for gene annotation, enrichplot for
visualization, and ggplot2 for graphical representation. We
specifically examined differentially expressed genes (DEGs)
associated with mitochondrial lipid metabolism and those
distinguishing high- versus low-risk patient groups. Statistically
significant functional terms were identified using a false discovery
rate (FDR) threshold of <0.05 after multiple testing correction.
Curated sets v7.4 collections from the MSigDB were used for GSEA,
performed with GSEA 4.2.1 software. The total transcriptome of
tumor samples was analyzed.

Tumor microenvironment

Stromal scores and immune scores were calculated using the
ESTIMATE algorithm in R (version 4.3.3) “estimate” package. The
TME-related biomarker list was extracted from GSEA (http://
www.gsea-msigdb.org/gsea/index.jsp). RNA-sequencing
expression (level 3) profiles and clinical information for
COADREAD were downloaded from the TCGA dataset (https://
portal.gdc.cancer.gov/). To obtain robust immune score evaluations,
we utilized the immunedeconv R package to implement the
CIBERSORT algorithm.

Prediction of therapeutic sensitivity in
patients with different risk scores

This study systematically evaluated the predictive accuracy of
our risk stratification model for both conventional and novel
therapies by integrating multiple computational approaches.
Using the “oncoPredict” R package (v1.2.0) in R (v4.3.3), we
calculated the normalized half-maximal inhibitory concentrations
(IC50) for 138 FDA-approved chemotherapeutic and targeted
agents, referencing the Genomics of Drug Sensitivity in Cancer
(GDSC) database (v8.2). Concurrently, immunotherapy response
potential was assessed through the Tumor Immune Dysfunction
and Exclusion (TIDE) algorithm, which evaluates immune evasion
mechanisms and predicts checkpoint inhibitor responsiveness. This
comprehensive analysis provides a robust framework for predicting
therapeutic efficacy across diverse treatment modalities.
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Mutation analysis

Somatic mutation data for colorectal adenocarcinoma
(COADREAD) were obtained from cBioPortal (https://
www.cbioportal.org) and analyzed using the “maftools” R package
(v3.5.1) to visualize mutation profiles and calculate tumor
mutational burden (TMB). Microsatellite instability (MSI) status
was retrieved from the TCGA dataset via the Genomic Data
Commons (GDC) portal. All analyses followed standardized
bioinformatics workflows with quality control, allowing
comprehensive assessment of mutation patterns and clinically
relevant MSI features across risk groups.

Cell lines and cell culture

The human colorectal cancer (CRC) cell lines RKO and
HCT116 were obtained from the American Type Culture
Collection (ATCC, USA). Cell line authentication was performed
using short tandem repeat (STR) profiling, and all cell lines were
confirmed to be free of mycoplasma contamination. Cells were
cultured in Dulbecco’s Modified Eagle Medium (DMEM;
Meilunbio, Dalian, China) supplemented with 10% fetal bovine
serum (FBS; Gibco, Grand Island, NY, USA), 100 U/mL penicillin,
and 100 pg/mL streptomycin. Cultures were maintained in a
humidified incubator at 37°C with 5% CO,.

Lentiviral-mediated knockdown of ABHD4
and YJEFN3

To achieve stable knockdown of ABHD4 and YJEFN3,
target shRNA sequences were cloned into the pGreenPuro
(CMYV) vector. The shRNA sequence targeting ABHD4 was
5'-CCGGACTTCAAACGCAAGTTT-3’, and that for YJEFN3
was 5'-AGAGCGGAGCTTAGCTCAAAT-3".
particles were produced and used to transduce RKO and
HCT116 cells. Cells were seeded in 6-well plates and infected
when they reached 60-80% confluence using viral supernatant

Lentiviral

supplemented with 10 pg/mL polybrene (Sigma-Aldrich, USA)
overnight. Following infection, the medium was replaced, and
48 h later, puromycin (10 pg/mL; Sigma-Aldrich, USA) was
added to select for stably transduced cells, resulting in the
establishment of the RKO/shABHD4, HCT116/shABHD4,
RKO/shYJEFN3, and HCT116/shYJEFN3 cell lines.

Western blotting

Cells were washed with cold PBS and lysed in RIPA buffer
(Kangwei, Beijing, China) supplemented with phosphatase inhibitors
(Roche, Switzerland). Protein concentrations were determined using the
BCA assay (Pierce, USA). Equal amounts of protein (20 ug) were
separated by 10% SDS-PAGE and transferred to 0.22 um PVDF
membranes (Millipore, USA). Membranes were blocked with 5%
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non-fat milk in TBST and incubated overnight at 4°C with primary
antibodies: anti-GAPDH (Proteintech, 0.02 pg/mL), anti-ABHD4
(Thermo Fisher), and anti-YJEFN3 (Atlas Antibodies). After washing,
membranes were incubated with HRP-conjugated secondary antibody
(Thermo Fisher) and developed using ECL substrate. Signals were
detected using the Tanon 5200 system (Tanon, China).

CCK-8 assay

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8; Dojindo, Kumamoto, Japan) according to the
manufacturer’s instructions. Briefly, CRC cells were seeded into
96-well plates at a density of 1,000 cells/well in 200 UL of complete
medium. After incubation with 20 puL of CCK-8 solution for 2 h,
absorbance at 450 nm (OD450) was measured using a microplate
reader (BioTek, VT, USA). All experiments were performed
in triplicate.

Migration and invasion assays

For migration assays, 1 x 10° cells suspended in serum-free
medium were seeded in the upper chamber of 24-well Transwell
inserts (8 um pore size; Corning, MA, USA). Medium containing
10% FBS was added to the lower chamber as a chemoattractant.
After 12 h of incubation, migrated cells on the lower surface of the
membrane were fixed and stained with 0.1% crystal violet for
30 min.

For invasion assays, inserts were pre-coated with diluted
Matrigel (BD Biosciences, San Jose, CA, USA). Cells were seeded
in the same manner, and after 24 h, invaded cells were fixed and
stained similarly. Stained cells were imaged and counted under a
microscope in ten randomly selected fields. The average number of
migrated or invaded cells was calculated.

Wound-healing assay

For wound-healing assays, 4 x 10° cells/well were seeded in 24-
well plates and allowed to form a monolayer. A scratch was made
using a sterile pipette tip, and images were captured at 0 h and 24 h.
The migration rate was analyzed using Image] software (NIH,
USA). Experiments were performed in triplicate.

Statistical analysis

All statistical analyses were performed using R software (version
4.3.3) and GraphPad Prism (version 10.0.1), employing Student’s t-
tests for continuous variables (risk scores, stromal/immune scores,
tumor purity, and TMB), y* tests for categorical variables
(immunotherapy response and clinical factors), Spearman
correlation for association analyses, and the concordance index
(C-index) to evaluate the predictive power of age and risk scores for
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overall survival (OS), along with univariate and multivariate Cox
regression analyses to assess the prognostic significance of
mitochondrial lipid metabolism-related genes and clinical
characteristics, with a two-tailed P-value < 0.05 considered
statistically significant. For GO and KEGG enrichment analyses,
the Benjamini-Hochberg procedure was applied to adjust for
multiple comparisons, and results were reported as FDR-adjusted
p-values. For Gene Set Enrichment Analysis (GSEA), we used
normalized enrichment scores (NES) and FDR g-values to assess
significance, following standard GSEA criteria, with FDR < 0.25
considered statistically significant. For immune cell infiltration
comparisons, FDR correction was also applied when evaluating
differences in immune cell populations between the high- and low-
risk groups. For genome-wide survival screening, p-values from
univariate Cox regression analyses were adjusted using the
Benjamini-Hochberg method to control the false discovery rate
(FDR). For survival analysis of selected candidate genes or model
components, raw p-values were reported without multiple
testing correction.

Results

Identification of DEGs related to
mitochondria lipid metabolism and

functional enrichment analysis in
COADREAD

A comprehensive analysis was conducted to identify differentially
expressed genes (DEGs) associated with mitochondrial lipid metabolism
in colorectal and rectal adenocarcinoma (COADREAD). The overall
study design is illustrated in Supplementary Figure S1. A total of 10,852
DEGs were detected, comprising 5,839 significantly downregulated and
5,013 significantly upregulated genes, which were visualized using
volcano plots to compare tumor and normal samples (Figure 1A).
Mitochondrial lipid metabolism gene set was selected from the MSigDB
database. This gene set was curated through literature mining and
experimental validation and comprises genes involved in mitochondrial
lipid metabolism pathways. These genes are extensively associated with
lipid synthesis (anabolism), degradation (catabolism), and regulation,
and are known to play critical roles in energy homeostasis, membrane
integrity, and cell signaling. To further refine the selection, we identified
220 mitochondrial lipid metabolism-related genes by integrating the
results of Gene Set Enrichment Analysis (GSEA) with the DEG
dataset (Figure 1B).

Gene Ontology (GO) enrichment analysis demonstrated that
these DEGs were primarily involved in biological processes such as
lipid metabolism and small molecule metabolic processes
(Supplementary Figure S2A). In terms of cellular components, the
identified genes were predominantly enriched in the mitochondrial
membrane and mitochondrial envelope (Supplementary Figure
S2B). Functionally, they exhibited catalytic activity and anion
binding (Supplementary Figure S2C).

Furthermore, KEGG pathway analysis highlighted key
pathways associated with these DEGs, including insulin
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FIGURE 1

Differentially expressed genes (DEGs) associated with mitochondrial lipid metabolism and the construction of a prognostic model in the TCGA-
COADREAD cohort (A) A volcano plot illustrating the expression differences between COADREAD tumor and normal tissues, identifying 10,852
genes. (B) A Venn diagram depicting the intersection among DEGs, lipid metabolism-related genes, and mitochondrial genes, resulting in 220 hub
genes. (C) A forest plot evaluating 17 genes related to prognosis, demonstrating their impact on patient outcomes. (D, E) LASSO regression analyses
of the 17 overall survival (OS)-related genes, including cross-validation to determine the optimal tuning parameter (log[A] on the x-axis and partial
likelihood deviance on the y-axis, with red dots indicating deviations + standard error). (F) Expression levels of the 13 prognostically significant core
genes in the TCGA-COADREAD cohort. Significance levels are indicated as ****P < 0.0001.
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resistance, glycerophospholipid metabolism, and fatty acid
metabolism (Supplementary Figure S2D). Notably, both insulin
resistance and glycerophospholipid metabolism have been linked to
colorectal cancer (CRC) progression, potentially facilitating tumor
growth and survival through the PI3K-AKT and mTOR signaling
pathways. Collectively, these findings enhance our understanding of
the molecular mechanisms through which mitochondrial lipid
metabolism-related DEGs influence COADREAD development
and progression.

Construction and validation of a
mitochondrial lipid metabolism-related risk
signature

To develop a mitochondrial lipid metabolism-related risk
signature, we initially identified 17 prognostic candidates for
COADREAD from 220 differentially expressed mitochondrial
lipid metabolism-related genes using univariate Cox regression
analysis (P < 0.05). Assessment of mitochondrial lipid
metabolism-related genes in predicting prognosis of CRC
exhibited by forest plot are shown in Figure 1C. LASSO
regression analysis further refined this list to 13 key genes
(Figures 1D, E). These genes formed the basis of our prognostic
model, detailed in Supplementary Figure S3. The risk score for each
patient was determined using the following formula:

Risk score = (0.3381) x ABHD4 + (7e —04) x ABHDS

+ (—0.0089) x HDHDS5 + (—0.0641)

x PNPLA4 + (-0.2255) x GK5 + (-0.3078)

x CPT2 + (0.315) x YJEFN3 + (0.0476)

x CRYAB + (0.1557) x HSPAIA + (—0.0437)

x MAPKI + (-0.2021) x ATG7 + (- 0.1944)

x HDAC3 + (-0.0454) x ACAT?2.

Analysis of the TCGA-COADREAD dataset confirmed distinct
expression patterns of mitochondrial lipid metabolism-related
genes. Specifically, HDHD5, PNPLA4, MAPKI1, ATG7, and
ACAT?2 were significantly upregulated, whereas ABHD4, ABHDS,
GKS5, CPT2, YJEFN3, CRYAB, HSPA1A, and HDAC3 were notably
downregulated in tumor tissues compared to normal samples
(Figure 1F). These alterations suggest a crucial role for these
genes in shaping the tumor immune microenvironment and
influencing colorectal cancer progression.

The association between risk scores and survival time, survival
status, risk stratification, and gene expression profiles is illustrated in
Figure 2A. Patients were classified into high- and low-risk groups based
on the median risk score. Kaplan-Meier survival analysis indicated a
significantly poorer overall survival (OS) for patients in the high-risk
group (P = 2.27e-09, Figure 2B). The predictive capability of the
prognostic model for 1-, 3-, and 5-year OS was assessed using ROC
curves, yielding AUC values of 0.71, 0.72, and 0.72, respectively
(Figure 2C), demonstrating its effectiveness in prognostic evaluation.
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In addition, we performed direct ROC comparisons between our 13-
gene signature and several previously published metabolism-related
prognostic models in CRC (Figure 2G). Notably, our model achieved
the highest AUC value (0.72), surpassing those based on nucleotide
metabolism (AUC = 0.67), general metabolism-related genes (AUC =
0.70), tryptophan metabolism-associated signatures (AUC = 0.65),
mRNAsi-related metabolic risk scores (AUC = 0.672), and hypoxia-
and lipid metabolism-related genes (AUC = 0.625). These findings
indicate that our signature exhibits superior prognostic discriminatory
power compared with existing models.

To further evaluate the model’s performance, validation was
conducted using the GSE39582 dataset. Consistent with the TCGA-
COADREAD training cohort, higher risk scores were associated
with worse survival outcomes (Supplementary Figures S4A, B). The
expression profiles of 13 genes in the validation dataset are
displayed as heatmaps (Supplementary Figure S4A), and Kaplan-
Meier analysis confirmed significantly poorer survival in high-risk
patients (Supplementary Figure S4B). ROC curve analysis for 1-, 3-,
and 5-year survival yielded AUC values of 0.68, 0.66, and 0.65,
respectively (Supplementary Figure S4C), further validating the
model’s robustness and clinical relevance.

Construction and assessment of a
prognostic model based on mitochondrial
lipid metabolism-related genes

A nomogram was constructed to predict patient prognosis
quantitatively by combining the risk score and essential clinical
variables, supporting clinical decision-making. Both univariate and
multivariate analyses revealed that the risk score, pTNM stage, and age
were significant, marking them as independent prognostic factors
(Figure 2D). The nomogram, which integrates these independent
prognostic factors—risk score, pTNM stage, and age—was developed
to forecast patient outcomes (Figure 2D). The calibration curves
demonstrated a high level of agreement between the predicted and
observed survival probabilities at 1-, 3-, and 5-year intervals
(Figure 2E). Calibration curves were also generated to further
validate the predictive reliability of the nomogram. The nomogram
exhibited strong prognostic accuracy, reflected in a concordance index
of 0.77 (95% CI: 0.72-0.81; p<0.001), confirming its predictive value.

Additionally, we evaluated the potential of risk scores derived
from mitochondrial lipid metabolism-related genes as valuable
biomarkers for patient stratification and prognosis in colorectal
cancer. Our results revealed significant associations between these
risk scores and established clinical stage parameters. Notably,
higher risk scores were closely linked to advanced disease stages
(Stage II-1V vs. I, and Stage IV vs. IL, III; Figure 2F, P < 0.05), further
supporting the utility of the risk score as a prognostic biomarker,
particularly in later-stage colorectal cancer. Moreover, high risk
scores were significantly associated with advanced T staging, lymph
node metastasis (N staging), and distant metastasis (M staging),
indicating that abnormal mitochondrial lipid metabolism may
promote tumor invasion into deeper tissues and metastasis
(Supplementary Figure S5).
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Evaluation of the prognostic model in the training cohort. (A) Distribution plots showing risk scores, survival status (blue indicates deceased, red
indicates alive), and expression of the 13 model genes in the TCGA-COADREAD training set. (B) Kaplan-Meier survival curves comparing overall
survival between high- and low-risk groups. (C) Receiver Operating Characteristic (ROC) curves for predicting 1-, 3-, and 5-year overall survival.
(D) A nomogram integrating risk score with relevant clinical features. (E) Calibration curves demonstrating the concordance between predicted and
actual survival probabilities at 1, 3, and 5 years. (F) Analysis of the association between risk scores and TNM stage in COADREAD patients. (G) Time-
dependent ROC analysis comparing the 3-year overall survival predictive performance of the mitochondrial lipid metabolism signature with
previously published metabolism-related models. Significance levels are indicated as ****P < 0.0001, **P < 0.01, *P < 0.05.

Functional enrichment analysis of DEGs in
high-risk and low-risk groups

Functional enrichment analyses were performed on
differentially expressed genes (DEGs) in both high-risk and low-
risk groups. Gene Ontology (GO) enrichment analysis revealed that
DEGs associated with biological processes were predominantly
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involved in extracellular matrix organization and extracellular
structure organization (Figure 4A). For cellular components,
DEGs were mainly related to cell-substrate adherens junctions,
and collagen-containing extracellular matrix (Figure 3A).
Regarding molecular functions, the DEGs were enriched in cell
adhesion molecule binding and extracellular matrix structural
constituents (Figure 3A).
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KEGG pathway analysis identified the top 10 enriched pathways,

mitochondrial lipid metabolism-related risk scores in the high-risk

including focal adhesion, MAPK signaling, ECM-receptor interactions,
Rapl signaling, human papillomavirus infection, FoxO signaling,
toxoplasmosis, glycosaminoglycan biosynthesis, regulation of lipolysis
in adipocytes, and C-type lectin receptor signaling (Figure 3B).
Additionally, Gene Set Enrichment Analysis (GSEA) highlighted that
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group were strongly associated with extracellular matrix structural
constituent and extracellular matrix organization (Figure 3C).

Both the GO analysis and GSEA emphasized the extracellular
matrix’s pivotal role in tumor biology, with terms such as extracellular
matrix structural constituent and organization being prominent.
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FIGURE 4

Association between risk score and immune microenvironment characteristics. (A) CIBERSORT analysis demonstrating the correlation between the

risk score and various immune cell types. (B) Correlation between the risk score and the expression of signatures for activated CD8+ T cells and M2
macrophages. (C) Analysis of the relationship between the risk score and tumor purity, with distributions shown for each risk group. (D) Correlation

between the risk score and immune score, along with corresponding group distributions. (E) Association between the risk score and the expression
of immune checkpoint molecules. Significance levels: ****P < 0.0001, *P < 0.05

KEGG analysis further revealed key pathways like focal adhesion and
ECM-receptor interactions, both of which are critically involved in the
TME. The interactions between cells and the ECM are fundamental to
TME signaling, affecting cell adhesion, migration, and invasion. Since
the TME is largely composed of extracellular matrix components and
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regulatory signaling molecules, our analyses point to several key
pathways—ECM organization, receptor interactions, and collagen-
related processes—as crucial players within the TME. These findings
support the conclusion that TME-associated pathways are
significantly enriched.
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Correlation between risk score and tumor microenvironment (TME) signatures in COADREAD. (A) Analysis showing the association between stromal
score and risk score, with distributions across low- and high-risk groups. (B) Examination of the relationship between carcinoma-associated
fibroblast (CAF) score and risk score, including group distribution. (C) Correlation analysis of the risk score with extracellular matrix (ECM) and
collagen gene signatures. (D) Correlation of the risk score with matrisome gene expression. (E) Association between the risk score and both
upregulated and downregulated CAF signatures. Significance is indicated as ****P < 0.0001, *P < 0.05.

Mitochondrial lipid metabolism-related risk
score and TME signatures in COADREAD

Based on the functional enrichment of TME-associated
signaling pathways, we examined the relationship between the
risk score and TME-related signatures. As depicted in Figure 5A,
a strong positive correlation was observed between the risk score
and stromal score in COADREAD, with the high-risk group
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showing higher stromal scores than the low-risk group.
Additionally, we identified a significant positive correlation
between the risk score and the cancer-associated fibroblast (CAF)
score (Figure 5B), with the high-risk group exhibiting notably
elevated CAF scores, highlighting the involvement of CAFs in
CRC progression and prognosis.

Moreover, significant positive correlations were found between
the risk score and the expression of various ECM-collagen
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signatures (Figure 5C), as well as matrisome and CAF signatures
(Figures 5D, E). Our results suggest that mitochondrial lipid
metabolism-related risk scores may influence matrix remodeling
by regulating ECM-collagen and matrisome gene expression,
affecting tumor microenvironment formation and function. In
summary, we found a significant positive correlation between
mitochondrial lipid metabolism risk scores and ECM
components, CAF activity, and ECM-related gene expression in
the tumor microenvironment. This indicates that mitochondrial
lipid metabolic abnormalities impact tumor cell metabolism and
indirectly promote tumor cell proliferation, invasion, and
metastasis by regulating ECM and CAF activity in
the microenvironment.

Mitochondrial lipid metabolism-associated
risk score reveals the characteristics and
heterogeneity of the immunosuppressive
microenvironment in high-risk patients

The tumor immune microenvironment (TIME) plays a critical
role in determining therapeutic efficacy and prognosis in malignant
tumors. Understanding the relationship between risk scores and
immune cell infiltration in COADREAD is essential for improving
treatment strategies. we applied the CIBERSORT algorithm to
estimate immune cell proportions. The results revealed distinct
correlations between risk score and various immune cell subtypes.

As shown in Figure 4A, regulatory T cells (Tregs) were
significantly positively correlated with the risk score (r = 0.188, P
<0.05), suggesting the presence of a potentially immunosuppressive
microenvironment in high-risk patients. Similarly, MO0
macrophages (r = 0.199, P < 0.05) exhibited a strong positive
correlation, indicating a prevalence of undifferentiated
macrophages that may differentiate into either pro-inflammatory
(M1) or immunosuppressive (M2) subtypes.

Furthermore, naive B cells (r = 0.031), memory B cells (r =
0.078), CD8+ T cells (r = 0.086), and naive CD4+ T cells (r = 0.104)
showed weak positive correlations with the risk score. Notably,
activated mast cells (r = 0.046) and activated NK cells (r = 0.050)
also demonstrated weak positive correlations.

Several immune cell subtypes were negatively correlated with
the risk score. Resting memory CD4+ T cells (r = -0.192, P < 0.05)
and activated memory CD4+ T cells (r = -0.215, P < 0.05) exhibited
strong negative correlations, suggesting that a reduced population
of memory T cells may contribute to immune dysfunction in high-
risk patients. Additionally, plasma B cells (r = -0.121), resting mast
-0.131), and gamma delta T cells (r = -0.076) were
negatively associated with the risk score. Other immune cells with

cells (r
negative correlations included resting NK cells (r = -0.060), resting
dendritic cells (r = -0.092), activated dendritic cells (r = -0.103),
eosinophils (r = -0.029), and neutrophils (r = -0.068), indicating
potential suppression of innate immune responses in high-
risk patients.

Furthermore, the risk score exhibited a negative correlation
with activated CD8+ T cell signatures (Figure 4B), indicating a
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weakened anti-tumor immune response in high-risk individuals.
Conversely, a positive correlation was observed between the risk
score and activated M2 macrophage signatures (Figure 4B),
highlighting the presence of an immunosuppressive environment
in these patients.

The immune cell characteristics between the low-risk and high-
risk groups (Supplementary Figure S6), are highly consistent with
the results above. High-risk patients exhibited an
immunosuppressive tumor microenvironment, with significant
positive correlations of regulatory T cells and MO macrophages
with the risk score, suggesting enhanced immune evasion. Weak
positive correlations were also observed for certain B cells, CD8+ T
cells, and activated mast and NK cells. In contrast, memory CD4+ T
cells, plasma B cells, dendritic cells, and other immune subtypes
showed negative correlations, indicating a weakened immune
response in high-risk patients. These findings suggest distinct
immune landscapes that may influence immunotherapy outcomes.

To further evaluate the tumor immune microenvironment, we
applied the ESTIMATE algorithm. A robust positive association
was observed between the risk score and the immune score and
high-risk group demonstrated an elevated immune score,
suggesting partial immune infiltration (Figure 4D). Additionally,
they showed a significantly higher stromal score (Figure 5A) and
reduced tumor purity (Figure 4C). A strong positive correlation was
identified between the risk score and both matrisome and cancer-
associated fibroblast (CAF) signatures, while an inverse correlation
was noted with activated CD8+ T cell signatures. These findings
indicate that an enriched extracellular matrix and fibroblast-
dominant microenvironment may suppress CD8+ T cell
activation, fostering immune evasion in high-risk COADREAD
patients. The close relationship between risk score, immune
infiltration, and stromal components underscores the potential of
targeting the immunosuppressive microenvironment as a
therapeutic avenue, necessitating further research.

Mitochondrial lipid metabolism-related risk
score was associated immune checkpoint
inhibitors and immunotherapy responses in
COADREAD

Considering the potential of immune checkpoint inhibitors
(ICIs) as a treatment for cancer, we examined the relationship
between immune checkpoints and risk stratification. Our findings
revealed that 36 immune checkpoints were significantly altered in
the high-risk group (Figure 4E). Notably, the risk score showed a
negative correlation (r > -0.1) with IL1A, IL1B, HMGBI, and
IL12A, which are key mediators of inflammation and immune
activation. This suggests a potential suppression of pro-
inflammatory signaling pathways, leading to reduced antigen
presentation and impaired CD8+ T cell activation in high-
risk patients.

In contrast, the risk score was positively correlated (r > 0.1) with
multiple immune checkpoints associated with both immune
activation and suppression (Figure 4E). Upregulation of CD40,
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CD28, CD27, and TNFRSF4 suggests enhanced T cell co-
stimulation; however, the simultaneous increase in inhibitory
receptors such as PDCD1 (PD-1), CTLA4, LAG3, and TIGIT
indicates a state of T cell exhaustion, which may contribute to
immune evasion. Additionally, positive correlations with TGFB1
and ADORA2A highlight a highly immunosuppressive tumor
microenvironment that could further inhibit effective anti-
tumor responses.

The risk score was positively correlated (r > 0.1) with VEGFA,
VEGEFB, and ICAM1, suggesting enhanced angiogenesis that may
restrict immune infiltration and promote tumor progression.
Although PRF1 and CX3CL1 showed some cytotoxic potential,
the overall immune landscape in high-risk patients is
immunosuppressive. These results indicate that targeting immune
checkpoints, angiogenesis, and immunosuppressive pathways (e.g.,
TGF-B, adenosine signaling) may improve anti-tumor immunity in
high-risk patients.

To validate these findings, we utilized the TIDE algorithm to
predict immunotherapy responses in both low- and high-risk
patient groups. The high-risk group exhibited a significantly
lower response rate to immunotherapy (35%) compared to the
low-risk group (53.2%) (Figure 6A). Additionally, the high-risk
group had a significantly elevated TIDE score, which positively
correlated with the risk score (Figure 6B). Given that a higher TIDE
score is indicative of immune evasion and resistance to immune
checkpoint inhibitors (ICIs), these results suggest that patients in
the low-risk group, characterized by lower TIDE scores, are more
likely to benefit from ICIs and achieve better survival outcomes
following immunotherapy.

We further investigated whether combining the risk score with
immune infiltration status improves the predictive accuracy of
immunotherapy response. Immunotherapy response rates were
similar between the high-immune (43.7%) and low-immune
(44.1%) groups (Figure 6C). Within the low-immune subgroup,
response rates in the low-risk (48.7%) and high-risk (42.5%)
subgroups were comparable, indicating combined risk score and
immune score was not better than immune score alone in patients
with low immune infiltration. However, in the high-immune
subgroup, the low-risk + high-immune group exhibited a
significantly higher response rate (58.6%) compared to the overall
high-immune group (43.5%), whereas the high-risk + high-immune
group had a notably lower response rate (28.5%) (Figure 6D). These
findings suggest that integrating the risk score with immune scores
refines the prediction of immunotherapy response, particularly in
COADREAD patients with high immune infiltration.

Similarly, we observed that the immunotherapy response rate
was significantly higher in the low-stromal subgroup (62.1%) than
in the high-stromal subgroup (25.1%) (Figure 6E). Within the low-
stromal subgroup, the low-risk group had a slightly higher response
rate (62.4%) than the high-risk group (59.6%), though the difference
was not significant. However, in the high-stromal subgroup, the
low-risk group demonstrated a significantly higher response rate
(41.1%) compared to the high-risk group (16.6%) (Figure 6F),
reinforcing the predictive value of integrating stromal scores with
risk scores. Such a combination has the potential to enhance the
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predictive accuracy of immunotherapy responses, particularly in
patients characterized by a stroma-rich tumor microenvironment.

Additionally, microsatellite instability-high (MSI-H) patients
exhibited a markedly higher immunotherapy response rate (57.1%)
compared to microsatellite stable (MSS, 25.1%) and MSI-low (MSI-
L, 45.3%) subgroups (Figure 6G). Within each MSI category, low-
risk patients consistently showed higher response rates than their
high-risk counterparts, particularly in the MSI-H subgroup (62.6%
vs. 47.3%) (Figure 6H). Collectively, these findings highlight that
combining the risk score with immune scores, stromal scores, and
MSI status may enhance the predictive accuracy of immunotherapy
response in COADREAD patients, providing a potential framework
for stratifying patients to optimize immunotherapy strategies.

Collectively, these findings underscore that the integration of
risk scores with immune scores, stromal scores, and MSI status
significantly may enhance the predictive accuracy for
immunotherapy responses in COADREAD patients. This multi-
dimensional approach provides a robust framework for patient
stratification, ultimately aiding in the optimization of
immunotherapy strategies.

Mutation status of CRC patients in
high-risk and low-risk groups

Accumulated mutations play a significant role in cancer
development. Recent advances in genome sequencing have
deepened our understanding of the somatic mutations that drive
cancer, allowing us to pinpoint key oncogenes and unravel
mutational processes. In our study, we characterized the mutation
landscape of COADREAD by stratifying patients into high-risk and
low-risk groups based on their risk scores. Notably, the most
frequently mutated genes in both groups were APC, TP53, TTN,
KRAS, MUCI16, SYNEI, RYR2, FAT4, PIK3CA, and OBSCN
(Figure 7A). However, a comparison of tumor mutational burden
(TMB) between the two groups revealed no significant differences
(Figure 7B), suggesting that TMB alone may not be a sufficient
marker for risk stratification in COADREAD.

Recognizing the limitations of relying solely on TMB, we
expanded our analysis to include microsatellite instability (MSI),
an important biomarker for predicting immunotherapy response in
colorectal cancer. Our data indicated that MSI levels were
significantly lower in the high-risk group compared to the low-
risk group, and there was a robust negative correlation between the
risk score and the MSI expression signature (Figures 7C, D).
Although a higher MSI status (MSI-H) is generally associated
with improved overall survival (OS), the observed differences did
not reach statistical significance (Figure 7E). Importantly, across the
MSI-H, MSI-L, and MSS subgroups, patients in the low-risk group
consistently exhibited better OS than those in the high-risk group
(Figures 7F-H).

Overall, these findings underscore the importance of integrating
multiple biomarkers—specifically risk scores with MSI status—to
enhance prognostic accuracy for COADREAD patients. This
multifaceted approach provides a more robust strategy for patient
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FIGURE 6

Risk score as a biomarker for predicting immunotherapy benefits in COADREAD. (A) Comparison of immunotherapy response proportions between
low- and high-risk groups in the TCGA-COADREAD dataset. (B) TIDE scores for low- versus high-risk groups, including their correlation with the risk
score. (C) TIDE-predicted immunotherapy response rates in groups stratified by low and high immune scores. (D) TIDE-predicted response rates for
four groups defined by combined risk and immune scores. (E) TIDE-predicted response rates for groups stratified by low and high stromal scores.

(F) TIDE-predicted response rates for four groups based on combined risk and stromal scores. (G) TIDE-predicted response rates in MSS, MSI-L, and
MSI-H groups. (H) TIDE-predicted response rates in six groups, defined by combined risk score and microsatellite status (MSS: microsatellite stable;

MSI-L: microsatellite instability-low; MSI-H: microsatellite instability-high). Significance: ns (not significant); ****P < 0.0001,***P < 0.001, **P < 0.01,
*P < 0.05.
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Risk score predicts drug sensitivity in colorectal cancer. A comparison of normalized IC50 values for the top 10 drugs between high- and low-risk

groups, with significant differences observed (P < 0.01).

stratification, thereby facilitating personalized treatment decisions
and potentially improving clinical outcomes.

Risk score predicts therapeutic benefits in
COADREAD

To explore the potential of the mitochondrial lipid metabolism
genes-related risk score as a predictive indicator for chemotherapy
response, we assessed the half maximal inhibitory concentration
(IC50) values for 198 drugs in patients from the TCGA cohort. By
estimating these IC50 values, we aimed to determine whether the
risk score could effectively differentiate drug sensitivity between
high-risk and low-risk patient groups.

Figure 9 shows the top 10 drugs with the most pronounced
sensitivity differences between the high- and low-risk groups. These
differences were statistically evaluated using both p-values and FDR-
corrected q-values, all of which met the significance criteria (p < 0.05, q
< 0.05; Supplementary Table S1), confirming the robustness and
reliability of the observed drug sensitivity variations. Our analysis
suggests that patients in the high-risk group may have increased
sensitivity to specific chemotherapeutic agents. Notably, drugs such
as Nutlin-3a(-)_1047, IGFIR_3801_1738, and BMS-754807_2171
demonstrated lower IC50 values in high-risk patients, suggesting that
these individuals may respond more favorably to these treatments.
These drugs target key pathways involved in cell cycle regulation and
growth factor signaling, which may be more pronounced in tumors
with altered mitochondrial lipid metabolism.

Conversely, the low-risk group appeared to be more responsive
to other compounds, including Dihydrorotenone_1827, BI-
2536_1086, and AZD5991_1720, as evidenced by their lower IC50
values in this subgroup. This differential sensitivity suggests that
distinct molecular mechanisms might be driving tumor behavior in
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the low-risk cohort, and that these patients could benefit from
tailored therapeutic strategies targeting these specific pathways.
Overall, our findings underscore the potential utility of the
mitochondrial lipid metabolism genes-related risk score as a
prognostic biomarker that not only stratifies patients based on
clinical outcomes but also guides the selection of chemotherapeutic
agents. By integrating the risk score with drug sensitivity data,
personalized treatment strategies could be developed, potentially
leading to improved clinical outcomes for COADREAD patients.

Development of another prognostic
nomogram integrating ABHD4, YJEFN3,
and clinical parameters in CRC

To facilitate individualized prognostic assessment and guide
clinical decision-making in colorectal cancer (CRC), we constructed
a predictive nomogram by incorporating both prognostic model
gene and clinical variables. Univariate and multivariate Cox
regression analyses identified ABHD4, YJEFN3, pTNM stage, and
age as statistically significant, suggesting their roles as independent
prognostic indicators (Supplementary Figures S7A, B).

Based on these findings, we developed a nomogram model
combining the expression levels of ABHD4 and YJEFN3 with key
clinical characteristics, including pTNM stage and patient age, to
estimate overall survival probabilities (Supplementary Figure S5C).
The predictive performance of the nomogram was evaluated using
time-dependent receiver operating characteristic (ROC) curves,
which yielded area under the curve (AUC) values of 0.76, 0.79,
and 0.80 for 1-, 3-, and 5-year overall survival (OS), respectively
(Supplementary Figure S8B), indicating good discriminatory ability.

Furthermore, calibration plots showed excellent agreement
between predicted and observed survival outcomes at each time
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point (1-, 3-, and 5-year), demonstrating the reliability of the model
(Supplementary Figure S5E). The concordance index (C-index) of the
nomogram reached 0.743 (95% CI: 0.696-0.791; p = 5.63 x 10&™*),
further confirming its robust prognostic utility in CRC.

To further elucidate the functional relevance of ABHD4 and
YJEFN3 as independent prognostic biomarkers, we explored their
expression patterns in different cellular compartments of the
colorectal cancer tumor microenvironment using the TISCH2
single-cell transcriptomic database.

Interestingly, ABHD4 showed higher expression in stromal cell
populations, including fibroblasts and endothelial cells, compared
to both tumor and immune cells (Supplementary Figure S9). This
suggests that ABHD4 may exert its tumor-promoting effects
through modulating the stromal components of the TME, such as
extracellular matrix remodeling or angiogenesis, rather than direct
oncogenic activity in tumor cells. Such stromal expression may still
correlate with poor prognosis due to its influence on tumor
invasion, immune evasion, or therapy resistance.

In contrast, YJEFN3 expression was predominantly enriched in
malignant epithelial (tumor) cells, whereas its expression was
markedly lower in immune cells (Supplementary Figure S10).
This tumor cell-specific overexpression supports its role as a
tumor-intrinsic factor potentially contributing to cancer cell
survival and aggressiveness, consistent with its identification as a
high-risk prognostic gene.

These distinct expression landscapes highlight that ABHD4 and
YJEFN3 may contribute to CRC progression through different
cellular mechanisms within the TME, emphasizing the
importance of considering cell-type specificity in biomarker
interpretation and therapeutic targeting.

Functional characterization of ABHD4 and
YJEFN3 in CRC cell proliferation and
migration in vitro

To deepen our understanding of the clinical and biological
implications of the prognostic model, ABHD4 and YJEFN3 were
selected from the 13-gene signature for further experimental
validation. This selection was guided by three key criteria: (1)
both genes exhibited among the highest positive coefficients and
hazard ratios in multivariate Cox regression analysis, underscoring
their strong prognostic relevance; (2) they demonstrated statistically
significant associations in both univariate and multivariate Cox
models, supporting their roles as independent prognostic factors;
and (3) their functional roles in colorectal cancer remain largely
unexplored, presenting a valuable opportunity to uncover novel
mechanisms driving CRC progression. To this end, we first
examined the endogenous expression levels of ABHD4 and
YJEEN3 in a panel of six CRC cell lines using Western blotting
(Figure 8A). The results revealed detectable expression in multiple
cell lines, providing a foundation for subsequent functional assays.

To evaluate the functional significance of these genes, we
constructed stable knockdown models using lentivirus-mediated
short hairpin RNAs targeting ABHD4 and YJEFN3 in RKO and
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HCT116 cell lines, respectively (RKO/shABHD4, HCT116/
shABHD4; RKO/shYJEFN3, HCT116/shYJEEN3) (Figure 8B).
Successful knockdown was confirmed at the protein level via
Western blot analysis.

Functional assays demonstrated that silencing of ABHD4 or
YJEEN3 markedly suppressed CRC cell viability, as assessed by
CCK-8 and colony formation assays (Figures 8C-E). Moreover,
transwell and wound healing assays revealed that the knockdown of
either gene significantly impaired the migratory and invasive
capabilities of CRC cells (Figures 8F-I), suggesting that both
ABHD4 and YJEFN3 are positively associated with tumor
cell aggressiveness.

Collectively, these findings indicate that ABHD4 and YJEFN3
may function as oncogenic regulators in CRC, and their inhibition
could serve as a potential therapeutic strategy to limit
CRC progression.

Discussion

Colorectal cancer (CRC) ranks as one of the most common and
deadly cancers globally, being the third most diagnosed and the
second leading cause of cancer death (20). Prognosis in CRC is
heavily dependent on the stage at diagnosis, with an overall 5-year
survival rate of approximately 65% (21). Metabolic reprogramming,
especially in lipid metabolism, is a hallmark of malignancy that
critically shapes the TME and influences cancer progression as well
as treatment outcomes (22). In recent decades, immunotherapy has
revolutionized the management of advanced cancers, and
alterations in lipid metabolism have emerged as important
modulators of the immune landscape and responsiveness to such
therapies (23). However, few studies have explored the prognostic
value of mitochondrial lipid metabolism-related genes in CRC,
particularly in the context of developing predictive models. This
study aims to address this gap by identifying mitochondrial lipid
metabolism-related genes that may serve as prognostic biomarkers,
thereby supporting early intervention and personalized treatment
strategies for high-risk CRC patients.

Currently, many biomarkers were applied for prognostic
prediction of CRC, such as ACAT2,ATG7, MAPKI, but most of
them are studied for a single biomarker (24-26). Increasing
evidences indicated that prognostic model constructed by multi-
genes as a prognostic index was more comprehensive and effective
than single gene in kinds of malignancies. For instance, Zheng H
et al. constructed a prognostic signature for colorectal cancer (CRC)
that was specifically based on cancer-associated fibroblast (CAF)
markers (27). Zhang et al. constructed a neurotransmitter receptor-
related gene signature as potential prognostic and therapeutic
biomarkers in colorectal cancer (28). As the dysfunction of
mitochondrial lipid metabolism have been associated with cancer,
we constructed a CRC prognostic model based on mitochondrial
lipid metabolism-related genes that could be used to predict the
prognosis and efficacy of immunotherapy in patients with CRC.

In our research, we identified mitochondrial lipid metabolism-
related genes by analyzing data from the MSigDB and TCGA
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databases. Through univariate Cox and LASSO regression analyses,
we narrowed down to 13 pivotal genes. Among these, genes with
positive coefficients (ABHD4, ABHDS8, YJEFN3, CRYAB, and
HSPA1A) were found to be risk factors, suggesting that their
increased expression is associated with worse prognoses in
colorectal cancer patients. Conversely, genes with negative
coefficients (HDHD5, PNPLA4, GK5, CPT2, MAPK1, ATG7,
HDACS3, and ACAT2) were identified as protective factors, with
higher expression correlating with improved survival outcomes.
Several of these genes are already known to play significant roles in
CRC progression, reinforcing their potential as biomarkers.

To validate our predictive model, we conducted both internal
and external evaluations. The internal validation, using ROC
analysis, revealed strong sensitivity and specificity (AUC = 0.72).
Kaplan-Meier survival analysis indicated that high-risk patients had
significantly worse survival outcomes. External validation with
GEO datasets confirmed these findings, showing that low-risk
patients had better overall survival. These results underscore the
reliability of mitochondrial lipid metabolism-related genes as
prognostic markers in CRC. In our study, head-to-head ROC
analyses further highlighted the robustness of our 13-gene
signature in prognostic prediction for CRC (Figure 2G).
Specifically, our model yielded the highest AUC value (0.72),
exceeding those of previously reported metabolism-related
models, including signatures based on nucleotide metabolism,
general metabolic genes, tryptophan metabolism, mRNAsi-related
metabolic risk scores, and hypoxia- or lipid metabolism-associated
genes (29-33). This superior performance suggests that our
signature may capture critical metabolic alterations that are more
closely linked to CRC progression and patient outcomes. Therefore,
it provides a more reliable tool for prognostic stratification and
potentially facilitates personalized therapeutic decision-making
compared with existing metabolic models.

Further examination of the differentially expressed genes
(DEGs) between the high- and low-risk groups highlighted
significant enrichment in pathways related to extracellular matrix
(ECM) organization, particularly those involving extracellular
matrix structural constituents. This finding is consistent with
previous studies that have established ECM accumulation as a
characteristic feature of aggressive tumor behavior, often linked to
poor prognosis in various types of cancer (34-36). The tumor
microenvironment, shaped by its complex interactions with
immune cells and stromal components such as fibroblasts, plays a
critical role in the advancement of colorectal cancer (37, 38). In the
TME, fibroblasts are transformed into cancer-associated fibroblasts
(CAFs), which are abundant in both primary and metastatic tumors.
CAFs are known for their remarkable adaptability and resilience,
significantly influencing cancer progression through interactions
with other TME components (39, 40). The matrisome,
encompassing genes that encode core ECM proteins and structural
elements, is essential for understanding cancer biology (41). For
instance, Chao Huang developed a novel prognostic matrisome-
related gene signature for head and neck squamous cell carcinoma
(42). Consistent with these findings, our analysis identified a strong
positive correlation between the risk score and the expression of
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CAF, ECM, and matrisome-related genes. Furthermore, we observed
a positive correlation between the risk score and stromal score, along
with a negative correlation with tumor purity, indicating that
stromal cell infiltration is increased in the TME of high-risk
colorectal cancer patients. These results reinforce previous studies
that have highlighted the prognostic importance of stromal
components in colorectal cancer progression.

Immune cells play a crucial role in the tumor microenvironment,
significantly influencing both tumor progression and therapeutic
responses. Recent research has demonstrated that different TME
phenotypes are associated with varying immunotherapeutic
outcomes and clinical prognoses (43-45). One of the key benefits
of immunotherapy is its ability to stimulate memory CD8+ T cells,
which offer long-term protection against tumor metastasis and
recurrence (46-48). Emerging studies suggest that these TME
phenotypes are also linked to differences in survival rates and
immune therapy responses (49, 50). Given the central role of
immune cells in the TME and their impact on treatment
effectiveness, we investigated the differences in immune cell
composition between the high- and low-risk groups.

In this study, we employed the CIBERSORT algorithm, a
deconvolution-based method that estimates the relative
abundance of immune cell subsets from gene expression data, to
characterize the immune landscape across different risk groups. Our
findings revealed distinct immune cell distribution patterns between
high- and low-risk samples, suggesting potential immunological
mechanisms underlying tumor progression.

In high-risk CRC samples, MO macrophages and Treg cells were
significantly enriched, indicating an immunosuppressive TME that
may facilitate tumor progression. Positive correlations with naive
CD4+ T cells, memory B cells, CD8+ T cells, and activated NK cells
suggest immune dysfunction or exhaustion despite their typical
antitumor roles. Activated mast cell enrichment may further shape
the local immune milieu.

In contrast, low-risk samples showed higher levels of resting and
activated memory CD4+ T cells, plasma cells, and dendritic cells,
reflecting enhanced immune memory and antigen presentation.
Overall, high-risk tumors appear linked to immunosuppression,
while low-risk tumors exhibit stronger immune activation. These
findings highlight complex immune regulation in CRC and suggest
implications for optimizing immunotherapy.

Monoclonal antibodies targeting immune checkpoint molecules
have marked a significant advancement in cancer treatment (51).
TIDE scoring is a crucial predictor of immunotherapy response,
with higher TIDE scores correlating with lower response rates. In
our study, an increase in the risk score was associated with a
significant decline in immunotherapy response, with the low-risk
group exhibiting a response rate of 53.2% compared to only 35% in
the high-risk group, thereby underscoring the predictive value of
the risk score.

When patients were stratified by immune score, overall
response rates did not significantly difference between high and
low immune score groups (Figure 6C; low risk, 43.5% vs. high risk,
44.1%). Within the low immune score subgroup, the differences in
response between high- and low-risk patients were not statistically
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significant (low risk, 48.7% vs. high risk, 42.5%). However, in the
high immune score subgroup, the low-risk group achieved a
markedly higher response rate (58.6%) than the high-risk group
(28.5%), suggesting that although a high immune score generally
predicts favorable outcomes, its benefit is substantially diminished
in patients with a high risk score.

Similarly, stromal score analysis demonstrated that patients in
the low-stromal group had a significantly higher response rate
(62%) compared to those in the high-stromal group (25%),
indicating that a low-stromal environment is more conducive to
immunotherapy. Further subgroup analysis revealed that within the
low-stromal group, low-risk patients had a response rate of 62.4%
versus 59.6% in high-risk patients, whereas in the high-stromal
group, the response rates were 41% and 16% for low- and high-risk
patients, respectively. These data imply that risk and stromal scores
exert a synergistic effect on immunotherapy response.

A growing body of clinical evidence indicates that while anti-
PD-1 and anti-PD-L1 therapies yield favorable outcomes in
dMMR/MSI-H cancers, they are less effective in cold pMMR/MSS
colorectal cancer. This association is likely due to MSI’s role in
generating neoantigens that enhance antitumor immune responses,
thereby serving as a robust predictor for PD-L1 therapy efficacy
(52, 53). Our MSI subgroup analysis further revealed marked
differences in immunotherapy response between MSI-H and
MSS/MSI-L groups. Notably, risk stratification within each MSI
category consistently showed that patients with lower risk scores
had higher response rates compared to their high-risk counterparts:
51.3% versus 40.2% in the MSS subgroup, 62.6% versus 47.3% in the
MSI-L subgroup, and 34.8% versus 19.7% in the MSI-H subgroup.
These findings suggest that, regardless of MSI status, patients
classified as low risk derive greater benefit from immunotherapy,
whereas those with high risk scores demonstrate considerably
reduced responses.

Our analysis of the mutation landscape in COADREAD shows
that tumor mutational burden (TMB) alone does not effectively
stratify patients, as no significant differences were observed in TMB
or its association with the risk score. While TMB is prognostic in
other cancers, it appears insufficient as an independent marker in
CRC. By contrast, integrating the risk score with microsatellite
instability (MSI) improved prognostic accuracy. Patients in the low-
risk group consistently showed better survival across MSI
subgroups, and the negative correlation between risk score and
MSTI further highlights their complementary value. These findings
suggest that combining MSI status with the risk model ofters a more
robust prognostic framework and may help refine personalized
treatment strategies in CRC.

Our findings suggest that the risk score may guide drug
selection for COADREAD patients by revealing distinct
sensitivity patterns between risk groups. High-risk patients
showed greater sensitivity to agents targeting cell cycle and
growth factor pathways (e.g., Nutlin-3a, IGFIR inhibitors, BMS-
754807), while low-risk patients were more responsive to drugs
affecting mitochondrial function, PLK1 inhibition, and apoptosis
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(e.g., Dihydrorotenone, BI-2536, AZD5991). These results highlight
potential therapeutic vulnerabilities that could inform risk-adapted
treatment strategies.

In this study, we constructed a prognostic nomogram
incorporating ABHD4, YJEFN3, and key clinical parameters to
improve individualized survival prediction in colorectal cancer
(CRC). Both genes, along with pTNM stage and age, were
identified as independent prognostic factors through univariate
and multivariate Cox analyses. The nomogram showed good
predictive accuracy, with AUC values above 0.75 for 1-, 3-, and 5-
year overall survival and a C-index of 0.743, supporting its
clinical utility.

Recent studies have highlighted the regulatory role of ABHD4
in lipid metabolism, particularly through its catalytic activity in
converting NAPE and lyso-NAPE into GP-NAE, intermediates in
the biosynthesis of bioactive N-acyl ethanolamines (NAEs) (54).
Given the importance of lipid reprogramming in cancer, ABHD4
may promote CRC progression through lipid signaling modulation.
Single-cell analysis showed its expression is enriched in stromal cells
(fibroblasts, endothelial cells), implicating a role in remodeling the
tumor microenvironment. Functional assays confirmed that
ABHD4 knockdown inhibited CRC cell proliferation, migration,
and invasion. Together, these findings indicate that ABHD4 may
act as a tumor-promoting factor in CRC via both cell-intrinsic and
stromal mechanisms, warranting further investigation as a
prognostic or therapeutic target.

YJEFN3 (YjeF N-terminal domain-containing protein 3) has
been identified as a tumor-associated antigen in prostate
adenocarcinoma (PRAD), where its overexpression and mutations
are linked to poor prognosis and altered immune cell infiltration (55).
Its strong association with antigen-presenting cells suggests a
potential role in modulating the tumor immune microenvironment
(55). Although its role in CRC remains unclear, the immunogenicity
and prognostic relevance observed in PRAD indicate that YJEFN3
may similarly contribute to CRC progression and immune regulation.

In our study, YJEFN3 was identified as a potential oncogenic
driver in CRC. Knockdown experiments showed that silencing
YJEFN3 suppressed cell proliferation, colony formation, migration,
and invasion, confirming its role in sustaining malignant phenotypes.
Single-cell analysis revealed predominant expression in tumor
epithelial cells, supporting a tumor-intrinsic function. Together
with its classification as a high-risk gene in Cox regression, these
findings suggest that YJEFN3 contributes to CRC progression and
may serve as a prognostic biomarker and therapeutic target.

Although our in vivo experiments provided preliminary support
for the prognostic relevance of the identified genes, the validation
was not comprehensive. In particular, detailed histological and
molecular assessments (e.g., H&E staining, Ki-67) were not
conducted, which restricts the extent to which the in vivo findings
can substantiate the functional roles of the risk model genes. To
address these shortcomings, future studies will establish orthotopic
CRC xenograft models to better recapitulate the native tumor
microenvironment, increase the animal sample size, and
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incorporate systematic evaluations, including histopathological
analysis, molecular assays, and metastatic indicators. Such
comprehensive validation will provide deeper insights into the
biological mechanisms underlying the prognostic signature and
further enhance its translational significance.

The translational significance of our study lies in the
establishment of a prognostic model based on multiple
mitochondrial lipid metabolism-related genes, which may provide
improved prognostic value compared to traditional single-gene
approaches. This model has the potential to stratify patients with
COADREAD into high- and low-risk groups and may serve as a
useful tool to complement existing diagnostic and prognostic
methods. Its predictive relevance was further supported by
associations with chemotherapy sensitivity, immunotherapy
response, and immune cell infiltration, suggesting possible
applications in guiding more personalized treatment strategies. In
addition, silencing ABHD4 and YJEFN3 suppressed CRC cell
proliferation and motility, validating their role in tumor
progression and suggesting their potential as therapeutic targets
with clinical relevance. While these findings underscore the
potential biological and clinical relevance of our work, further in
vivo and clinical validation will be necessary before translation into
routine practice.

Conclusions

Our findings present a novel risk score model based on genes
associated with mitochondrial lipid metabolism. This score is closely
linked to the tumor microenvironment and immune cell infiltration
in COADREAD patients. When combined with stromal and immune
scores, or MSS/MSI status, the model more accurately predicts
immunotherapy response than any single metric alone. Regarding
drug sensitivity, high-risk patients showed greater responsiveness to
Nutlin-3a (-), IGFIR inhibitor (IGF1R_3801_1738), and BMS-
754807, whereas low-risk patients were more responsive to
Dihydrorotenone, BI-2536, and AZD5991. Overall, our
mitochondrial lipid metabolism-related risk model may serve as a
robust prognostic biomarker to facilitate personalized treatment
strategies in COADREAD.
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