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Coordinated kinetics of humoral,
T-cell, and cytokine responses to
SARS-COV-2 in West African
healthcare workers: a
multicenter longitudinal study in
university hospitals of Abidjan,
Côte d’Ivoire
Amah Patricia Victorine Goran-Kouacou *,
Oppong Richard Yéboah , Yida Jocelyne Séri ,
Aya Ursule Aniela Assi , Adjoumanvoulé Honoré Adou,
Salimata Moussa, Brou Doris Oura, Koffi N’Guessan,
Kouabla Liliane Siransy and Séry Romuald Dassé

Department of Immunology and Allergology, Faculty of Medicine, Félix Houphouët-Boigny University,
Abidjan, Côte d’Ivoire
Background: Healthcare workers in resource-limited settings are frequently

exposed to SARS-CoV-2, often with incomplete vaccine coverage. Yet, their

adaptive immune responses remain poorly characterized in sub-Saharan Africa.

Methods: We conducted a multicenter study involving 36 healthcare workers

with RT-PCR-confirmed SARS-CoV-2 infection (83.3% vaccinated) and 40

strictly unvaccinated, COVID-19-naïve controls from three university hospitals

in Abidjan. Blood samples were collected on Days 0, 7, 14, 21, and 28. IgM and IgG

were measured by ELFA (Mini VIDAS
®
), neutralizing antibodies with CHORUS

TRIO
®
, lymphocyte subsets by flow cytometry, and Th1/Th2/Th17 cytokines

using bead-based multiplex assays.

Results: Infected participants showed strong antibody production at baseline.

IgG levels were closely linked to neutralizing activity (r = 0.83; p < 0.0001), and

CD4+ T-cell counts correlated with IL-2 (r = 0.71; p < 0.0001). We observed early

activation across Th1 (IFN-g, TNF-a), Th2 (IL-4, IL-10), and Th17 (IL-17A)

pathways. IL-17A levels were higher in asymptomatic individuals (p = 0.031).

Over time, IgM and pro-inflammatory cytokines declined, while IgG remained

stable and regulatory cytokines rose.

Conclusion: This cohort developed a broad immune response involving

antibodies, T cells, and cytokines. The IL-17A pattern seen in asymptomatic

cases may reflect effective mucosal control. These findings contribute essential

data from a region where immune profiling remains limited.
KEYWORDS

SARS-CoV-2, COVID-19, healthcare workers, humoral immunity, T-cell response,
cytokines, neutralizing antibodies, sub-Saharan Africa
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1 Introduction

Since the emergence of SARS-CoV-2, healthcare workers

(HCWs) have remained at high risk of infection, particularly in

resource-limited settings where vaccine coverage is often

incomplete (1, 2). Their repeated exposure makes them a key

population for studying adaptive immune responses. Protective

immunity against SARS-CoV-2 involves both humoral and

cellular arms. Virus-specific antibodies, especially against the

spike protein, contribute to neutralization (3), but their levels

tend to decline over time (4). In parallel, CD4+ and CD8+ T-cell

responses play essential roles in viral clearance and long-term

protection (2, 5, 6). These responses are regulated by a complex

cytokine environment that reflects T-helper polarization, including

Th1 (e.g., IFN-g, TNF-a), Th2 (e.g., IL-4, IL-10), and Th17 (e.g., IL-
17A) pathways (7, 8). IL-17A, in particular, has been implicated in

mucosal defense and may limit viral replication without systemic

inflammation (9, 10). This cytokine pattern is especially relevant in

asymptomatic cases (11, 12). In sub-Saharan Africa, immune

dynamics may be shaped by region-specific factors such as

exposure to diverse pathogens, chronic parasitic infections, or

prior contact with endemic human coronaviruses (7). Yet despite

these unique features, immunological studies in African

populations remain scarce (13). To address this gap, we

investigated post-infectious adaptive immunity in HCWs from

Côte d’Ivoire, a population exposed to high SARS-CoV-2

circulation and heterogeneous vaccine access. We specifically

analyzed the kinetics and coordination of virus-specific

antibodies, lymphocyte subsets, and cytokine profiles, seeking to

identify immune signatures associated with clinical presentation.
2 Materials and methods

2.1 Study design, setting, and participants

This investigation was conducted as part of a multicenter

project on SARS-CoV-2 immune responses among healthcare

workers in Côte d ’Ivoire. The study was observational,

descriptive, and longitudinal, carried out between January 2022

and June 2023 in three tertiary hospitals of Abidjan: the University

Hospitals of Cocody, Treichville, and Angré. These facilities were

selected for their high patient turnover and their diverse range of

healthcare services, providing heterogeneous exposure conditions

for healthcare staff.

The study population included medical, paramedical, and

administrative personnel aged 18 years or older who provided

written informed consent. Participants were stratified according

to occupational exposure to SARS-CoV-2: low risk (administrative

staff with no direct patient contact), intermediate risk (staff working

with patients of unknown or suspected COVID-19 status), and high

risk (staff with regular contact with confirmed COVID-19 cases,

particularly in emergency and intensive care units).

A total of 275 participants were enrolled, including 36 SARS-

CoV-2 RT-qPCR-positive cases and 40 uninfected controls followed
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longitudinally. All controls were unvaccinated and tested negative

for SARS-CoV-2 by RT-qPCR at inclusion. Although asymptomatic

infections could not be completely excluded, seronegative screening

minimized potential misclassification bias. Although the cohort size

was limited by logistical and financial constraints, stratification and

random selection minimized recruitment bias. The modest number

of confirmed cases was recognized as a potential limitation, possibly

affecting statistical power and representativeness, and was explicitly

considered when interpreting results.
2.2 Sampling and data collection

Baseline sampling (Day 0) consisted of venous blood collection

(5 mL on EDTA and 5 mL on a dry tube) and nasopharyngeal

swabbing. All samples were processed within two hours after

collection. Serum and plasma were aliquoted to avoid repeated

freeze-thaw cycles and stored at -80 °C until analysis.

Longitudinal follow-up was performed at Days 7, 14, 21, and 28

for RT-qPCR-positive participants and matched controls, allowing

parallel evaluation of humoral, cellular, and cytokine dynamics. A

standardized clinical and exposure questionnaire was administered

at inclusion to capture sociodemographic characteristics,

comorbidities, vaccination status, and occupational risk level.
2.3 Laboratory analyses

2.3.1 Viral RNA detection
Nasopharyngeal swabs placed in viral transport medium were

analyzed for SARS-CoV-2 RNA using the KingFisher™ Duo Prime

system (Thermo Fisher Scientific, Waltham, MA, USA) with the

MagMAX™ Viral/Pathogen kit for automated extraction.

Amplification was performed on a CFX96™ Real-Time PCR

Detection System (Bio-Rad, Hercules, CA, USA) targeting the

nucleocapsid (N) and RNA-dependent RNA polymerase (RdRp)

genes. A cycle threshold (Ct) < 35 defined positivity. Each run

included an internal control (cellular RNA), a certified positive

control, and a negative control. Cycle threshold values were used

qualitatively for case definition and not for viral load quantification.
2.3.2 Serological assays (IgM and IgG anti-RBD)
Detection of antibodies directed against the receptor-binding

domain (RBD) of the SARS-CoV-2 Spike protein was performed on

the Mini-VIDAS® analyzer (bioMérieux SA, Marcy-l’Étoile, France;

Serial No. IVD7006414, Ref. 410417) using the VIDAS® SARS-

CoV-2 IgM and VIDAS® SARS-CoV-2 IgG II kits. The assays rely

on enzyme-linked fluorescent assay (ELFA) technology providing

qualitative and semi-quantitative detection of specific antibodies.

IgM and IgG results were first obtained as index values (ratio of

the sample Relative Fluorescence Value [RFV] to that of the

calibrator), with an index ≥ 1.0 considered positive. For

quantitative comparison, index values were converted to Binding

Antibody Units per milliliter (BAU/mL) using the manufacturer-

derived conversion factor 1 index = 20.33 BAU/mL, standardized to
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the 1st WHO International Standard (20/136). Accordingly,

antibody titers ≥ 20 BAU/mL indicated seropositivity, and ≥ 250

BAU/mL represented a strong antibody response.

2.3.3 Neutralizing antibody assay
Neutralizing antibodies against the S1 subunit of the Spike

protein were quantified using the CHORUS TRIO® semi-

automated immunoanalytical system (Diesse Diagnostica Senese

S.p.A., Siena, Italy; Serial No. 4341, P/N 81200) and the CHORUS

SARS-CoV-2 “Neutralizing” Ab kit. The method is a competitive

enzyme immunoassay in which antibodies in the sample compete

with a labeled tracer for binding to the viral RBD/ACE2 complex.

The degree of inhibition reflects neutralizing activity and is

expressed in BAU/mL relative to the WHO International Standard

(20/136). Results were classified as negative (< 20 BAU/mL),

equivocal (20-49.9 BAU/mL), or positive (≥ 50 BAU/mL). Each

analytical series included a stored master calibration curve, a

certified positive control, and an internal negative control to

ensure traceability and inter-assay reproducibility.

2.3.4 T-cell immunophenotyping
T-lymphocyte subsets were quantified on a BD FACSCanto™ II

flow cytometer (BD Biosciences, San Jose, CA, USA; Serial No.

V3389002039) equipped with 488 nm and 633 nm lasers. Whole

blood (50 μL, EDTA-treated) was stained with monoclonal

antibodies anti-CD3 (UCHT1-FITC, Ref. 555332), anti-CD4

(RPA-T4-APC, Ref. 555349), anti-CD8 (RPA-T8-PE, Ref.

555635), and anti-CD45 (2D1-PerCP-Cy5.5, Ref. 564105). After a

20-min incubation at room temperature, erythrocytes were lysed

with BD FACS™ Lysing Solution and washed in PBS. Acquisition

included ≥ 10,000 lymphocyte-gated events. Data were analyzed

using FACSDiva™ v8.0 software (BD Biosciences). Absolute

lymphocyte subset counts were derived by combining flow

cytometry percentages with total lymphocyte counts obtained

from concomitant full blood counts and expressed as cells/μL.

2.3.5 Cytokine profiling
Cytokines were quantified in serum using the BD™ CBAHuman

Th1/Th2/Th17 Cytokine Kit (Ref. 560484, BD Biosciences). The

assay allows multiplex quantification of IL-2, IL-4, IL-6, IL-10,

TNF-a, IFN-g, and IL-17A by flow cytometry. Serum samples were

centrifuged at 3,500 rpm for 5 min, heat-inactivated at 56 °C for 30

min, and diluted 1:4 before analysis. Fifty microliters of cytokine-

capture beads were incubated with standards or samples and PE-

labeled detection reagent for 3 h in the dark. Data were acquired on

the BD FACSCanto™ II and analyzed using FCAP Array™ v3.0

software. Detection ranges (manufacturer data, 2022) were IL-2 (2-

5,000 pg/mL), IL-4 (2-5,000), IL-6 (2.5-5,000), IL-10 (2.7-2,000),

TNF-a (3.7-2,000), IFN-g (3-5,000), and IL-17A (2-5,000 pg/mL).
2.4 Variables and data management

Variables included demographic characteristics, comorbidities,

vaccination status, and occupational exposure level. Biological
Frontiers in Immunology 03
parameters included IgM and IgG anti-RBD, neutralizing

antibodies, lymphocyte subsets, and cytokine concentrations. Data

were double-entered into Microsoft Excel 2016, cross-checked for

inconsistencies, and exported to SPSS v26.0 for analysis. All records

were pseudonymized, and quality control ensured internal validity

before database locking.
2.5 Statistical analysis

Data were analyzed using SPSS v26.0 (IBM Corp., Armonk, NY,

USA). Quantitative variables were expressed as mean ± standard

deviation (SD) or median (interquartile range, IQR), depending on

distribution. Categorical variables were expressed as frequencies

and percentages. Correlations between antibody titers (IgG, NAbs)

and cytokine levels (IL-2, IFN-g, TNF-a) were assessed using

Spearman’s rank correlation coefficient (r). Group comparisons

were performed using the Mann-Whitney U test for continuous

variables and the Chi-square or Fisher’s exact test for categorical

variables. Statistical significance was set at p < 0.05.
2.6 Ethical considerations

The study protocol was approved by the National Ethics

Committee for Life Sciences and Health (CNESVS) of Côte

d’Ivoire (Ref. 007-22/MSHP/CMU/CNESVS-km). All participants

provided written informed consent prior to enrollment, and all

procedures complied with the Declaration of Helsinki (2013) and

national regulations on biomedical research ethics.
3 Results

3.1 Baseline characteristics of participants

Participant demographics and occupational data are

summarized in Table 1. Cases and controls were comparable in

median age (39.0 vs. 37.0 years), female proportion (63.9% vs.

67.5%), and median BMI (24.7 vs. 25.9 kg/m²). In contrast, hospital

affiliation and occupational exposure level differed, with a higher

proportion of high-risk exposure among cases (36.1% vs. 12.5%).

All controls were unvaccinated, while 83.3% of cases had received at

least one dose of a SARS-CoV-2 vaccine.
3.2 Immune profiles at inclusion: cases vs.
controls

At Day 0, cases had significantly higher levels of IgM, IgG, and

neutralizing antibodies than controls (36.4 vs. 4.3 BAU/mL, 556.3

vs. 272.2 BAU/mL, and 1469.6 vs. 921.8 BAU/mL, respectively; p <

0.0001 for IgM and IgG, p = 0.0017 for NAbs; Table 2). CD4+ and

total CD3+ T cell counts were also higher in cases (2368.4 vs. 1560.8

cells/μL and 3525.4 vs. 2949.0 cells/μL; p = 0.0054 and p = 0.0463),

with no significant difference for CD8+ (p = 0.2418). Cytokine
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concentrations of IL-10, IFN-g, TNF-a, IL-2, IL-4, and IL-17A were

significantly higher in cases (p < 0.01 for all), while IL-6 showed no

significant difference (14.9 vs. 18.8 pg/mL; p = 0.1988; Table 2).
3.3 Comparison by symptom status at
inclusion

Among infected individuals, most immune markers showed no

significant differences between symptomatic and asymptomatic

subgroups. No statistical differences were observed for IgM, IgG,

NAbs, CD4+, CD8+, IL-2, IL-4, IL-6, IL-10, IFN-g, or TNF-a. Only
IL-17A was significantly higher in asymptomatic individuals (13.8

vs. 12.9 pg/mL; p = 0.0311; Table 3).
3.4 Immune correlations at inclusion in
cases

A strong positive correlation was observed between IgG and

neutralizing antibodies (r = 0.83; p < 0.0001). Other significant
Frontiers in Immunology 04
correlations included CD4+ with IL-2 (r = 0.71; p < 0.0001), CD4+

with IL-10 (r = 0.46; p = 0.005), and CD4+ with TNF-a (r = 0.41;

p = 0.013). IL-6 also correlated with both IL-10 and TNF-a, and a

strong correlation was noted between IL-2 and IL-4 (r = 0.62; p <

0.0001; Table 4).
3.5 Longitudinal evolution of immune
markers in cases

IgM levels declined steadily from 36.4 to 2.3 BAU/mL between Day

0 and Day 28. IgG levels increased from 556.3 to 615.6 BAU/mL.

Neutralizing antibodies decreased betweenDay 0 (1469.6 BAU/mL) and

Day 14 (1172.6 BAU/mL), rose slightly at Day 21 (1250.2 BAU/mL),

then dropped again at Day 28 (1186.1 BAU/mL; Figure 1). Total CD3+

T cells increased from 4868.5 to 6262.5 cells/mL. CD4+ T cells rose

nonlinearly from 2395.9 to 3560.1 cells/mL between Day 0 and Day 14,

dipped to 3011.3 at Day 21, and rose again to 3380.1 at Day 28. CD8+ T

cells remained relatively stable between 999.9 and 1225.1 cells/mL
(Figure 2). Pro-inflammatory cytokines such as IL-6 and TNF-a
declined over time (IL-6: 14.9 to 9.6 pg/mL; TNF-a: 2.9 to 1.4 pg/

mL), while regulatory cytokines IL-10, IL-2, and IL-4 showed modest

increases from Day 7 to Day 28 (Figure 3).
4 Discussion

4.1 Humoral and neutralizing response

The observed humoral response is characterized by the production

of specific IgG antibodies alongside neutralizing antibodies capable of

preventing viral entry. In line with current knowledge, we observed a

significant increase in antiviral IgG and detectable neutralizing activity

from the second week post-infection (2, 14, 15). Neutralizing titers rose

in parallel with IgG levels, peaking around week 4 (2, 14). This

synchrony suggests that specific IgG directly contributes to viral

neutralization, consistent with their documented role in viral

clearance by blocking virus-cell binding (3, 4). We also demonstrated

a positive correlation between IgG concentrations and neutralizing

capacity, highlighting the importance of antibody quality in antiviral

protection (4). This IgG-neutralizing antibody link has also been

reported elsewhere, with both parameters rising in tandem about

three weeks post-infection (14). Altogether, these findings confirm

that high levels of specific IgG are closely associated with strong

neutralizing activity, indicative of a robust and potentially protective

humoral response. This includes some unvaccinated controls with IgG

and neutralizing titers above threshold, likely due to undetected

exposure or endemic coronavirus cross-reactivity.
4.2 Dominant CD4+ T Cell response and
role of IL-2

The cellular arm of the adaptive immune response in our study

is dominated by CD4+ T lymphocytes, with a more modest
TABLE 1 Characteristics of participants.

Variable Category
Cases
(n = 36)

Controls
(n = 40)

Sex Female 23 (63.9%) 27 (67.5%)

Male 13 (36.1%) 13 (32.5%)

Age (years) Mean ± SD 40.7 ± 12.8 37.6 ± 9.1

Median 39.0 37.0

BMI (kg/m²) Mean ± SD 26.0 ± 4.3 25.8 ± 3.8

Median 24.7 25.9

Professional category Physician 10 (27.8%) 11 (27.5%)

Registered nurse 11 (30.6%) 6 (15.0%)

Nursing assistant 6 (16.7%) 5 (12.5%)

Lab technician 2 (5.6%) 5 (12.5%)

Administrative staff 4 (11.1%) 9 (22.5%)

Other 3 (8.3%) 4 (10.0%)

Affiliated teaching
hospital

Cocody 18 (50.0%) 32 (80.0%)

Angré 11 (30.6%) 3 (7.5%)

Treichville 7 (19.4%) 5 (12.5%)

Occupational
exposure level

Low 6 (16.7%) 10 (25.0%)

Intermediate 17 (47.2%) 25 (62.5%)

High 13 (36.1%) 5 (12.5%)

COVID-19
vaccination status

Vaccinated 30 (83.3%) 0 (0.0%)

Not vaccinated 6 (16.7%) 40 (100.0%)

Number of doses Mean ± SD 1.5 ± 0.8 –

Median 2 –
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contribution from CD8+ T cells. CD4+ T cells were notable for their

high IL-2 production, a cytokine essential for lymphocyte

expansion and immune coordination. IL-2, mainly secreted by

activated CD4+ helper T cells, plays a central role in promoting T

and B cell proliferation and supporting NK cell activation (16). This

T helper cytokine thus facilitates the coordinated rise of multi-

compartment immunity. The observed strong correlation between

activated CD4+ T cell frequency and IL-2 levels suggests a primarily

Th1-type cellular response, focused on assisting other immune

compartments. This Th1/IL-2-driven profile is frequently

associated with effective immunity: in COVID-19, convalescent
Frontiers in Immunology 05
patients with favorable outcomes exhibit polyfunctional CD4+ T

cells secreting IL-2, IFN-g, and TNF-a (5, 11, 12), whereas severe

cases often show loss of this functionality (17). Therefore, the

predominance of IL-2-producing CD4+ T cells in our cohort may

reflect a robust immune profile capable of supporting antibody

production (via B cell help) and orchestrating the activation of other

immune effectors.
4.3 Mixed cytokine profile (Th1/Th2/Th17)

Circulating cytokine measurements revealed a heterogeneous

immune profile combining Th1, Th2, and Th17 features. In

addition to canonical Th1 cytokines indicative of antiviral cellular

responses (e.g., IFN-g, IL-2, TNF-a), we simultaneously detected

Th2-type cytokines (e.g., IL-4, IL-10) associated with humoral

immunity and anti-inflammatory regulation, as well as the Th17

cytokine IL-17A. This combination suggests a non-polarized,

multipronged T helper response. In SARS-CoV-2 infection, the

virus has been reported to induce both proinflammatory Th1 and
TABLE 4 Correlations between immune markers in positive cases at day 0.

Correlated
markers

Spearman’s r coefficient P-value

IgG ↔ NAbs 0.83 < 0.0001

CD4 ↔ IL-2 0.71 < 0.0001

CD4 ↔ IL-10 0.46 0.005

CD4 ↔ TNF-a 0.41 0.013

IL-6 ↔ TNF-a 0.68 < 0.0001

IL-6 ↔ IL-10 0.57 < 0.0001

IL-2 ↔ IL-4 0.62 < 0.0001
fro
TABLE 2 Comparison of immune markers at day 0 between cases and controls.

Marker Cases (median [IQR]) Controls (median [IQR]) P-value

IgM (BAU/mL) 36.4 [22.8-79.3] 4.3 [2.3-6.8] < 0.0001

IgG (BAU/mL) 556.3 [458.7-662.3] 272.2 [213.2-326.1] < 0.0001

NAbs (BAU/mL) 1469.6 [788.8-1547.2] 921.8 [388.4-1401.1] 0.0017

CD3 (cells/μL) 3525.4 [3146.3-4143.5] 2949.0 [2493.2-3745.6] 0.0463

CD4 (cells/μL) 2368.4 [2007.2-2502.6] 1560.8 [1192.1-1935.7] 0.0054

CD8 (cells/μL) 1060.8 [1004.6-1642.9] 1315.2 [1025.0-1638.0] 0.2418

IL-6 (pg/mL) 14.9 [13.7-17.7] 18.8 [10.7–21.3] 0.1988

IL-10 (pg/mL) 4.4 [3.7-5.0] 1.5 [1.4-1.6] < 0.0001

IFN-g (pg/mL) 0.4 [0.2-1.3] 0.3 [0.2-0.3] 0.0023

TNF-a (pg/mL) 2.9 [1.6-5.8] 1.2 [0.5-1.8] < 0.0001

IL-2 (pg/mL) 2.5 [2.1-2.6] 0.2 [0.1-0.4] < 0.0001

IL-4 (pg/mL) 2.1 [1.1-3.2] 0.1 [0.0-0.1] < 0.0001

IL-17A (pg/mL) 13.5 [12.6-14.2] 4.7 [2.3-5.8] < 0.0001
TABLE 3 Comparison of immune and cytokine markers at day 0
between symptomatic and asymptomatic cases.

Marker
Symptomatic
(median [IQR])

Asymptomatic
(median [IQR])

P-value

IgM 33.2 [21.9-73.4] 56.0 [22.8-87.0] 0.3258

IgG 551.4 [451.2-655.3] 586.8 [520.2-684.8] 0.5362

NAbs 1469.6 [505.3-1508.8] 1531.3 [1312.3-1700.3] 0.1344

CD3 3440.6 [1910.4-3959.7] 3901.7 [3432.9-4482.7] 0.0733

CD4 2395.9 [841.5-2877.6] 2329.5 [2301.7-2441.3] 0.9874

CD8 1065.2 [1003.0-1081.7] 1056.4 [1006.1-2181.1] 0.3834

IL-2 2.5 [1.1-2.9] 2.4 [2.4-2.5] 0.9873

IL-4 1.7 [0.95-3.10] 2.3 [1.8-3.3] 0.3028

IL-6 15.1 [13.5-16.7] 14.9 [14.2-18.0] 0.5262

IL-10 4.8 [3.9-5.1] 4.3 [3.7-4.8] 0.0817

IFN-g 0.38 [0.38-2.07] 0.38 [0.17-0.54] 0.1456

TNF-a 3.0 [1.8-5.8] 2.9 [1.7-5.8] 0.7634

IL-17A 12.9 [12.5-13.7] 13.8 [13.3-14.9] 0.0311
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Th17 responses that may contribute to immunopathogenesis, while

compensatory Th2 signaling may help mitigate excessive

inflammation (18–21). The detection of IL-10 alongside IL-6 and

TNF-a is consistent with previous reports highlighting the dual pro-

and anti-inflammatory cytokine environment in moderate and severe

COVID-19 (18) and reflects the regulatory role of IL-10 family

cytokines in maintaining immune homeostasis (19). Our findings

are consistent with such concurrent activation of multiple cytokine

pathways. A mixed Th1/Th2/Th17 profile likely reflects the immune

system’s effort to engage diverse arms of adaptive immunity to

control infection while avoiding uncontrolled inflammation.
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4.4 Specific role of IL-17A in asymptomatic
individuals

A key finding of our study is the distinctive role of IL-17A in

asymptomatic individuals. While IL-17A has been implicated in

severe COVID-19 cases by fueling inflammation and cytokine

storms (22, 23), our data suggest a different contribution in

asymptomatic subjects. These individuals showed moderate but

significant IL-17A production in the absence of clinical symptoms,

implying a protective rather than pathogenic function. Recent

studies have shown that some IL-17 family cytokines, such as
FIGURE 1

Median evolution of SARS-CoV-2–specific antibodies in positive cases (Day 0 to Day 28). Kinetics of SARS-CoV-2-specific antibody responses in
COVID-19 patients. Levels of anti-SARS-CoV-2 IgM, IgG, and neutralizing antibodies were measured on days 0, 7, 14, 21, and 28 post-infection. IgM,
IgG, and neutralizing antibody titers are expressed in Binding Antibody Units per milliliter (BAU/mL). Data are presented as medians with interquartile
ranges (IQR); error bars represent the IQR.
FIGURE 2

Median evolution of CD4+ and CD8+ T lymphocytes in COVID-19 cases from Day 0 to Day 28. Longitudinal evolution of T lymphocyte
subpopulations in COVID-19 patients. Total T lymphocytes and CD4+/CD8+ subsets were quantified on days 0, 7, 14, 21, and 28 by flow cytometry.
Cell counts are expressed in cells/µL. Data are presented as medians with interquartile ranges (IQR); error bars represent the IQR.
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epithelial-derived IL-17C, can locally boost barrier defenses and

induce IL-17A expression to enhance innate immunity while

limiting symptoms (24). Moreover, IL-17A, though identified as a

marker of severe disease, is also induced during mild infections and

remains elevated for up to 4 weeks post-infection (20, 24). It is

therefore plausible that in asymptomatic individuals, a moderate

and controlled Th17 response, marked by IL-17A, contributes to

effective viral clearance (via neutrophil recruitment and mucosal

barrier reinforcement) without causing tissue damage. This

mechanistic interpretation aligns with the notion of infection

tolerance seen in asymptomatic cases: these individuals may

achieve viral control through efficient antiviral immunity while

avoiding harmful inflammatory escalation (21, 24).
4.5 Immune kinetics over 28 days

Dynamic analysis of immune responses over 28 days revealed a

well-coordinated sequence of phases. In the early days post-infection,

innate immunity predominates, characterized by increased levels of

inflammatory cytokines (e.g., IL-6 and TNF-a) in response to initial

viral replication (1, 8). This acute phase is followed, from the second

week onward, by the onset of specific adaptive immunity. Our data

show that IgM and then IgG antibodies emerge during this period,

with neutralizing activity becoming clearly detectable by 10–14 days

post-infection (2, 14). Neutralizing titers, initially low in the first

week, subsequently rise rapidly in parallel with specific IgG and

typically peak around week 4 (2, 14, 15). Simultaneously, T cell

responses emerge early: antigen-specific T cells can be detected by the
Frontiers in Immunology 07
end of the first week, with peak expansion occurring 1 to 2 weeks after

infection (6, 25, 26). In our cohort, IL-2 and IFN-g production by

CD4+ T cells indicated strong cellular activation by the third week,

suggesting that these cells reached maximal functionality at this stage.

Finally, some cytokines such as IL-17A followed a later trajectory,

with levels already elevated during the acute phase continuing to rise

and remaining high through day 28 (24). This sequential pattern is

consistent with longitudinal studies of COVID-19 describing a shift

from early innate to robust adaptive immunity peaking between

weeks 3 and 5 (2, 6, 25). In sum, our findings highlight an immune

trajectory in which early innate responses prepare the ground,

followed by humoral and cellular adaptive immunity reaching

maximal strength by the end of the first month.
4.6 Cross-compartment correlations

Cross-analysis of immune compartments revealed significant

correlations, underscoring coordinated orchestration of the anti-

infective response. A strong correlation was observed between

specific IgG levels and neutralizing activity: individuals with the

highest IgG titers also showed the strongest neutralization capacity

(4). This IgG-neutralizing antibody link confirms that humoral

response quality (affinity and quantity of antibodies) largely

determines neutralization efficacy. We also found a positive

association between CD4+ T cell response magnitude and IL-2

production, consistent with the central role of helper T cells in IL-2

secretion to support cellular immunity (5, 16). In other words,

stronger CD4+ T responses correspond to higher IL-2 availability,
FIGURE 3

Kinetics of pro- and anti-inflammatory cytokines in COVID-19 cases from Day 0 to Day 28. Time course of plasma cytokine concentrations in SARS-
CoV-2-infected patients. Plasma levels of IL-6, TNF-a, IFN-g, IL-10, IL-2, IL-4, and IL-17A were measured at five time points during follow-up.
Cytokine concentrations are expressed in pg/mL. Data are presented as medians with interquartile ranges (IQR); error bars represent the IQR.
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potentially amplifying effector lymphocyte expansion and antibody-

secreting plasma cell generation. Furthermore, IL-6 and TNF-a
levels were highly correlated, reflecting synchronous innate

immune activation. These two mediators are often co-elevated in

acute viral infections and act synergistically in inflammatory

syndromes (1, 8). The observed IL-6-TNF correlation likely

reflects shared upstream activation (e.g., via monocyte/

macrophage pathways), a pattern frequently associated with more

severe COVID-19 forms (27). Overall, these cross-compartment

correlations emphasize that humoral, cellular, and cytokine

responses do not operate in isolation but rather interact

dynamically. Effective T cell responses facilitate antibody

maturation (via CD4+ B cell help and IL-2 production), while

innate inflammation modulates the context in which adaptive

immunity unfolds. This multi-compartment coordination is key

to a balanced and protective immune response.
4.7 Study limitations

This study has several limitations. First, the sample size was

limited, which may reduce statistical power and the generalizability

of findings. Second, the 28-day follow-up precluded assessment of

longer-term immune durability, such as antibody titers beyond the

first month or memory T cell persistence. Third, our analysis

focused on selected immune compartments (IgG antibodies,

CD4+ T cells, circulating cytokines) and did not assess potentially

relevant actors such as cytotoxic CD8+ T cells, local innate

immunity at infection sites, or mucosal IgA responses. These

unmeasured elements could provide additional insights and merit

future investigation. Finally, as an observational study centered on

paucisymptomatic and asymptomatic cases, the reported

correlations do not imply causality and may not be extrapolated

to severe disease. Despite these limitations, our findings offer an

integrated overview of the anti–SARS-CoV-2 immune response and

pave the way for further investigations into mechanisms

underpinning symptom-free infection and efficient viral resolution.
5 Conclusion

The immune responses observed in SARS-CoV-2-infected

healthcare workers revealed a well-coordinated activation across

humoral, cellular, and cytokine compartments. Sustained IgG and

neutralizing antibody production, coupled with CD4+ T-cell

expansion and cytokine modulation, reflected an adaptive

response capable of controlling viral replication while minimizing

inflammation. The immune profile of asymptomatic individuals

suggests that effective viral clearance may occur through balanced,

non-inflammatory mechanisms, possibly involving mucosal or

Th17-mediated pathways. The detection of IgG and neutralizing

antibodies in some uninfected controls likely reflects prior

asymptomatic exposure or cross-reactive immunity. These

findings provide valuable insights for improving immune
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surveillance and epidemic preparedness in African populations,

while the limited cohort size underscores the need for larger

longitudinal studies to confirm these observations.
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