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Parenteral micronutrient
supplementation enhances
mammary immune function
and colostrum–milk quality
by modulating cytokine profiles
and oxidative stress in transition
crossbred cows
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Dhawal K. Yadav1, Priyanka M. Kittur1, Bibhudatta S.K. Panda1,
Pooja Devi3, Aarti Kamboj1 and Mohanned Naif Alhussien4*

1Lactation and Immuno-Physiology Laboratory, ICAR-National Dairy Research Institute, Karnal,
Haryana, India, 2National Research Centre, Mithun, Medziphema, Nagaland, India, 3Guru Angad Dev
Veterinary and Animal Sciences University, Ludhiana, Punjab, India, 4Reproductive Biotechnology,
TUM School of Life Sciences, Technical University of Munich, Freising, Germany
Background: The transition period in dairy cattle is marked by oxidative stress

and immune suppression linked to altered micromineral status. This study

evaluated whether parenteral supplementation with trace elements and

vitamins could enhance mammary health and improve the immunonutritional

quality of colostrum and milk.

Methods: Twenty-four multiparous cross-bred cows were blocked by parity and

projected yield, then assigned to control, multivitamin (MV; vitamins A, B-

complex, D₃, E), multi-mineral (MM; Copper (Cu), Manganese (Mn), Selenium

(Se), and Zinc (Zn)), or combined multivitamin andmulti-mineral (MMMV) groups.

Intramuscular injections were administered on days −30, −15, −7, 0, +7, +15, and

+30 relative to calving. Longitudinal sampling was conducted on days 0, 2, 3, 4, 7,

15, and 30 postpartum.

Results: MMMV cows produced colostrum and milk with higher fat and protein

percentages, stable lactose, and greater concentrations of insulin-like growth

factors and immunoglobulins than all other groups (P < 0.05). Mammary health

indicators improved concomitantly: somatic cell counts fell, the neutrophil-to-

macrophage ratio normalised, and phagocytic activity of both cell types

increased. These functional improvements were accompanied by reduced

expression of toll-like and chemokine receptors in milk phagocytes.

Additionally, the cytokine profile shifted toward an anti-inflammatory state

evidenced by lower levels of IL-1b, IL-6, IL-8, IL-17A, and IFN-g, and higher

levels of IL-4 and IL-10. Reduced oxidative stress was indicated by decreased

activities of superoxide dismutase, catalase, and glutathione peroxidase in the

milk whey of the MMMV group. The MM and MV treatments conferred

intermediate benefits, whereas the control group showed the greatest

inflammatory and oxidative stress.
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Conclusions: Repeated parenteral delivery of complementary trace minerals and

vitamins throughout the transition period enhances mammary innate immunity,

attenuates inflammation and oxidative stress, and augments the nutritive and

immunological value of colostrum and milk. This approach offers a practical

intervention to safeguard udder health and optimise passive immune transfer

to calves.
KEYWORDS

periparturient cattle, injectable trace mineral, mammary infection, inflammatory
cytokines, phagocytic cells
GRAPHICAL ABSTRACT
1 Introduction

The transition period in dairy cattle, spanning about three

weeks before and after parturition, involves profound metabolic

and immunological changes that heighten disease susceptibility (1).

Reduced dry matter intake, negative energy balance, hormonal
02
fluctuations, and oxidative stress impair immune competence (2,

3), predisposing cows to intramammary inflammation and affecting

udder health and milk quality. At the same time, the mammary

gland undergoes dynamic secretory changes, with colostrum and

early milk enriched in immunoglobulins, cytokines, antioxidants,

vitamins, minerals, and antimicrobial peptides, which are vital for
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neonatal immunity (4, 5). The composition and function of these

secretions are shaped by maternal physiology and the activity of

mammary-resident immune cells, particularly phagocytes, which

orchestrate local defense and modulate cytokine balance (3, 6).

Therefore, enhancing antioxidant defenses and supporting immune

cell function during this period is critical for protecting mammary

health and ensuring high-quality colostrum and milk, while also

preparing cows to meet the increased nutritional demands of the

transition phase.

To counter reduced feed intake and the simultaneous rise in

antioxidant requirements during the periparturient period,

supplementation with antioxidants, particularly vitamins and trace

elements, is essential (7). Research has shown that low

concentrations of trace elements and vitamins in blood during the

periparturient period can compromise numerous immune functions

and trigger various inflammatory conditions in cattle (8, 9). Essential

vitamins (A, B12, D, and E) and minerals (such as copper, selenium,

and iron) serve as cellular antioxidants and modulators of the immune

system, playing a critical role in the health and productivity of dairy

cows (8, 10). Administering these trace elements and vitamins to

periparturient cows has been shown to significantly reduce the

occurrence of parturition-related diseases, enhance the immune

response, and facilitate a quicker return to homeostasis (9, 11). A

major limitation of oral micronutrient supplementation in dairy cattle

is reduced absorption due to ruminal degradation, microbial

interactions, and the formation of insoluble complexes, all of which

hinder bioavailability (12, 13). Despite recent innovations in oral

micronutrient delivery, such as encapsulation and rumen-bypass

formulations (14, 15), challenges with absorption remain.

Consequently, injectable micronutrients have attracted attention as a

promising alternative, offering more efficient and reliable delivery of

essential nutrients during the transition period (16–19).

While the beneficial effects of oral multivitamin and multimineral

supplementation on production performance and postpartum disease

prevention have been well documented, the role of injectable

antioxidant micronutrients in modulating immune responses in

transition dairy cows remains insufficiently underexplored. In our

previous work, we demonstrated that parenteral micronutrient

supplementation during the transition period enhances systemic

neutrophil function and reduces circulating inflammatory mediators

in dairy cows (20). We hypothesized that supplementation would

reduce mammary oxidative stress and inflammation, thereby

enhancing mammary immunity and improving colostrum and milk

quality. To test this hypothesis, the present study investigated organ-

specific immunomodulatory effects within the mammary gland

microenvironment. Specifically, we assessed the impact of parenteral

vitamin and mineral administration on the functional activity of

mammary-resident phagocytic cells, local inflammatory responses,

and the bioactive composition of mammary secretions. This tissue-

targeted approach aims to elucidate the mechanisms through which

micronutrient supplementation influences mammary immune

function and, consequently, affects the yield and immunological

quality of colostrum and milk. Ultimately, these findings may inform

nutritional strategies to enhance passive immunity transfer and

productivity in periparturient dairy cattle.
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2 Materials and methods

2.1 Ethical permission

The guidelines for animal experiments outlined by the Animal

Ethics Committee of the ICAR-National Dairy Research Institute

(NDRI), Karnal, India, according to article 13 of the CPCSEA rules,

laid down by the Government of India, were followed during all the

experiments. The animal study was reviewed and approved under

order no. 42-IAEC-18-6.
2.2 Location of study and climatological
conditions

The present study was conducted from August to March on 24

healthy peripartum Karan Fries (Holstein Friesian × Tharparkar) cows

at the Livestock Research Centre (LRC), National Dairy Research

Institute (NDRI), Karnal, India (29°43′ N, 77°2′ E; 245–250 m above

mean sea level). The study site is located in the Indo-Gangetic alluvial

plain and falls within a semi-arid zone, characterized by hot summers

with temperatures up to 45 °C and cold winters with temperatures as

low as 4 °C. The region receives about 70 cm of annual rainfall, and the

relative humidity varies between 41% and 85%.
2.3 Animal selection and categorization for
experimentation

Twenty-four healthy Karan Fries crossbred peripartum cows were

randomly selected from the Livestock Research Centre (LRC), ICAR-

NDRI, Karnal, India. The animals were divided into four groups of six

cows each. Selection criteria included parity (3rd to 4th lactation),

average body weight (420–450 kg), and body condition score (3.25–

3.5), to minimize baseline variation among experimental groups. All

selected cows were high-yielding (>10 kg/day) by Indian dairy

standards, making them more susceptible to transition stress and

intramammary infections during early lactation compared to local

breeds. Throughout the experimental period, routine health

monitoring was carried out to ensure that all animals remained free

from physiological, pathological, or infectious disorders. The cows were

housed individually in well-ventilated stalls and managed under

uniform conditions to minimize environmental and handling stress.

Approximately one week prior to the expected calving date, each cow

was moved to a separate calving pen and remained there until 4–5 days

postpartum for close observation and care.

To meet the nutritional requirements of the transition period, all

cows were fed individually with a total mixed ration (TMR),

formulated in accordance with the standard feeding protocols of the

institute for transition cows. Detailed information on the chemical

composition, premix, and feed ingredients is provided in

Supplementary Table 1. The control group received only the basal

TMR diet and was administered intramuscular injections of sterile

normal saline (5 ml). The MM group was administered 5 ml of a

multimineral injection (Zn 40 mg/ml, Mn 10 mg/ml, Cu 15 mg/ml, Se
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5 mg/ml; Stimvet Chelated Multimineral, Wellcon Animal Health,

India); the MV group received 5 ml of a multivitamin injection

(Vitamin A (1000 IU), Vitamin D3 (500 IU), Vitamin E acetate (5

mg), and B-complex vitamins including Niacinamide (10 mg),

Thiamine HCl (10 mg), Pyridoxine HCl (5 mg), Riboflavin (5 mg),

Choline chloride (5 mg), D-Panthenol (1 mg), D-Biotin (10 μg), and

Vitamin B₁₂ (10 μg).; Zenex Ah HIVIT Plus, India); and the MMMV

group received both injections (5 ml each). All injections were

administered intramuscularly into the neck muscles on days −30,

−15, −7, 0 (day of parturition), +7, +15, and +30 relative to calving

(Figure 1). The dosing schedule and repeated injection protocol were

designed in accordance withmanufacturer guidelines and supported by

earlier published studies (16, 18, 21, 22).
2.4 Schedule of sample collection and
processing of the sample

The calving date was estimated using the farm/stock register,

with a margin of one week before or after the anticipated calving

date, as recorded by the Institute’s Livestock Farm. The colostrum
Frontiers in Immunology 04
and milk samples, which represent all four quarters, were obtained

on the day of calving (day 0) and on days 2, 3, 4, 7, 15, and 30 post-

calving. The samples were collected in sterile tubes (200 ml/cow).

The milk samples were collected using manual and automated

milking methods. Hand milking was employed throughout the

colostrum phase, while machine milking was used for the rest of

the experiment. All animals remained clinically healthy and did not

show any signs of mastitis during the entire study period.
2.5 Composition, somatic cell count, and
differential leukocyte count of colostrum
and milk

Colostrum and milk composition, i.e., fat, protein, lactose, and

solids not fat (SNF), were estimated by a lactose milk analyzer

(Lactoscan MCCW - V3, Bulgaria) as described by the

manufacturer’s instructions. To estimate the somatic cell count

(SCC), the samples were examined using the Lactoscan somatic cell

counter (Milkotronic Ltd, Stara Zagora, Bulgaria) as described by

Alhussien and Dang (23). The differential leukocyte count (DLC) of
FIGURE 1

Schematic illustration of the experimental design showing the treatment of transition dairy cows, the timing of sample collection, and the
parameters measured.
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colostrum and milk was performed to examine the percentage of

phagocytic cells released in the milk, which includes neutrophils,

macrophages, and the ratio of neutrophils to macrophages. The

DLC was estimated using the method described by Dang et al. (24).
2.6 Isolation and phagocytic activity of
colostrum and milk phagocytes

Neutrophils and macrophages were isolated from colostrum

and milk samples using gradient density centrifugation as described

by Alhussien et al. (3). The functional activity of these cells was

evaluated in vitro by measuring their phagocytic activity (PA) with

the nitro blue tetrazolium (NBT) reduction assay, following the

protocol of Alhussien et al. (3).
2.7 Gene expression analysis of milk
phagocytes

According to themanufacturer’s instructions, total RNA frommilk

phagocytes was extracted and purified using the TRIzol reagent

(Invitrogen, Carlsbad, CA). To remove the genomic contamination,

DNase Set (Qiagen, India Pvt Ltd.) was used as per the manufacturer’s

protocol. RNA integrity was evaluated by agarose gel electrophoresis

(1.8% agarose), and the RNA quality and quantity were verified by

taking the absorption reading at l260/l280 using the Bio Spec-nano

(Serial No A116449; Biotech). For the preparation of cDNA, 1μg of

total RNA was reverse transcribed using the Verso cDNA synthesis kit

(Thermo Scientific, USA) as per the manufacturer’s instructions. The

primers selected from the published literature are provided in the

Supplementary Table 2 (3, 25). The primers were optimized by

gradient PCR for the annealing temperature of each primer for

specific bovine chemokine receptors (CXCR1 and CXCR2),

glucocorticoid receptor (GR-a), toll-like receptors (TLR2, TLR4),

cluster of differentiation (CD25), and the endogenous genes

(GAPDH (glyceraldehyde-3-phosphate dehydrogenase) and b-actin
(beta-actin)). The PCR products were subjected to agarose gel

electrophoresis (1.8%) to visualize the PCR amplified product size at

a specific size. Following the PCR optimization, quantitative real-time

PCR (qPCR) (Roche’s Light cycler 480) was done using the SYBR

Green (Thermo Scientific, USA) according to the manufacturer’s

protocol. Briefly, a total reaction volume of 10 μl was prepared by

combining 1 μl of cDNA, 5 μl of SYBR green (2x) mixes, and 0.5 μl

each of forward and reverse primers. Nuclease-free water was used to

make up the remaining volume. The reaction of qPCR consisted of

initial heating at 50 °C for 2 minutes and 95 °C for 10 minutes, and the

contents were amplified for 40 cycles (95 °C for 30s, 59 °C for all genes

for 30s). The final extension was done at 72 °C for 10minutes. GAPDH

and b-actin were used as reference genes for normalization in the gene

expression analysis, and the mRNA abundance on the day of calving

(day 0) of the control group was taken as a calibrator with which the

relative expression of all groups during different time points was

estimated. The 2-DDCt method was used to assess the relative

quantification of all genes (26).
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2.8 Isolation of colostrum/milk whey

Colostrum and milk samples were centrifuged at 4000 × g for 30

minutes at 4 °C to eliminate the fat layer. To the defatted colostrum/

milk, rennet (0.25 mg/ml; Sigma, Missouri, USA) was added to

induce casein precipitation. The mixture was gently stirred multiple

times and incubated at 37 °C for 30 minutes. Following incubation,

a second centrifugation was carried out at 3000 × g for 10 minutes

to obtain the supernatant (whey), which was subsequently stored in

10 ml tubes at −20 °C for further analysis.
2.9 Quantification of oxidative stress
biomarkers

The concentration of total antioxidant capacity (TAC) in

colostrum and milk whey samples was measured using the

QuantiChrom™ assay kit (BioAssay Systems, Hayward, CA, USA).

The detection range for TAC was between 0.0015 and 1 mmol/L

(DTAC-100). The intra-assay and inter-assay coefficients of variation

were below 8% and 10%, respectively. Additionally, bovine-specific

ELISA kits were employed to assess the enzymatic activities of

superoxide dismutase (SOD; Wuhan Fine Biotech, Wuhan, China),

catalase (CAT; Bioassay Technology Laboratory, Shanghai, China), and

glutathione peroxidase (GPx; Cat. No. E0006Bo). The sensitivity of the

assays for SOD (Cat. No. EB0164), CAT (Cat. No. E0025Bo), and GPx

was 0.469 ng/ml, 0.28 ng/ml, and 0.58 ng/ml, respectively. The

standard curve ranges were 0.781–50 ng/ml for SOD, 0.5–200 ng/ml

for CAT, and 1–300 ng/ml for GPx. Intra-assay and inter-assay

variations were maintained below 8% and 10%, respectively. Optical

density (OD) values were recorded using an ELISA plate reader

(Multiskan Go, Thermo Scientific, Finland).
2.10 Quantification of inflammatory
cytokines

Inflammatory cytokines; interleukin-1 alpha (IL-1a), interleukin-1
beta (IL-1b), interleukin-4 (IL-4), interleukin-6 (IL-6), interleukin-8

(IL-8), interleukin-10 (IL-10), interleukin-17A (IL-17A), interferon-

gamma (IFN-g), and tumor necrosis factor-alpha (TNF-a) in

colostrum and milk whey. were quantified simultaneously using the

MILLIPLEX® Bovine Cytokine/Chemokine Magnetic Bead Panel 1 -

Immunology Multiplex Assay Kit (Cat. # BCYT1-33K, Merck Life

Sciences, Darmstadt, Germany), which utilizes Luminex® xMAP®

technology. Detailed assay characteristics for each cytokine included

in the multiplex panel are provided in Supplementary Table 3.
2.11 Quantification of immunoglobulins
and insulin-like growth factors

Immunoglobulin G (IgG) and Immunoglobulin A (IgA)

concentrations in colostrum and milk whey were quantified using

bovine-specific ELISA kits (Bioassay Technology Laboratory,
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Shanghai, China). The assay sensitivity limits were 1.03 μg/ml for

IgG (Cat. No. E0010Bo) and 0.13 mg/ml for IgA (Cat. No.

E0009Bo). The quantification ranges extended from 2 to 600 μg/

ml for IgG and 0.2 to 70 mg/ml for IgA. Insulin-like growth factor

levels (IGF-I and IGF-II) in colostrum and milk whey were

evaluated by using bovine-specific ELISA kits. The IGF-I kit was

obtained from Bioassay Technology Laboratory (Shanghai, China),

and the IGF-II kit from CUSABIO (Houston, USA). The minimum

detectable limits for IGF-I (Cat. No. E0016Bo) and IGF-II (Cat. No.

CSB-EL011088BO) were 0.53 ng/ml and 7.81 ng/ml, respectively.

The detection ranges were 1–400 ng/ml for IGF-I and 31.25–2000

ng/ml for IGF-II. All ELISA assays demonstrated intra-assay and

inter-assay variability below 8% and 10%, respectively. For all these

parameters, absorbance was measured using an ELISA microplate

reader (Multiskan Go, Thermo Scientific, Finland).
2.12 Statistical analysis

The data was analyzed using the SPSS software system (version 22).

All the data obtained from the study were expressed as mean ± standard

error and were analyzed by two-way ANOVA. Tukey’s multiple

comparison test was used to determine statistical significance, which

was set at P < 0.05. The effect of the treated groups (Gr), days (D) of the

periparturient period, and their interactions (Gr×D) were estimated

using the statistical model shown below

Yijk = m +  Gri +  Dj +  (GrD)ij  +  eijk

Where, Yijk is a dependent variable, m is the overall mean of the

population, Gri is the effect of micronutrient feeding (i = 4), Dj is the

effect due to the measurement days (j = 7), and (GrD)ij is the effect

due to treatment group by measurement days’ interactions, and eijk
is the residual error.
3 Results

3.1 Milk yield and composition

The colostrum and milk yield, as well as the fat and protein

percentages, were highest (P < 0.05) in the MMMV group, followed

by the multi-mineral, multi-vitamin, and control groups

(Figures 2A–D). Fat and protein percentages were highest in

colostrum samples and showed a consistent decline, reaching

their lowest levels by day 30 post-calving. Lactose concentration

increased over time, peaking on day 30 post-calving, while the SNF

percentage declined, reaching its minimum on the same day. The

difference in the percentage of lactose and SNF among the groups

was minimal (Figures 2E, F).
3.2 SCC and DLC

Somatic cell count (SCC) was highest at calving across all

groups. Colostrum SCC values were significantly higher (P <
Frontiers in Immunology 06
0.05) in the control group compared to the treatment groups

(Figure 3A). Throughout the study period, SCC remained

consistently and significantly lower (P < 0.05) in the MMMV

group, followed by the MM, MV, and control groups,

respectively. Differential leukocyte count (DLC) analysis showed a

higher neutrophil percentage and a lower macrophage percentage

in the colostrum of the control group compared to the other groups

(Figures 3B, C). The neutrophil-to-macrophage (N: M) ratio was

highest on the day of calving across all groups and declined as

lactation progressed. The N: M ratio in colostrum was significantly

higher (P < 0.05) in the colostrum of the control group, followed by

MV, MM, and MMMV groups, respectively (Figure 3D).
3.3 Phagocytic activity of neutrophils and
macrophages

The PA of both milk neutrophils and macrophages was lowest

around parturition (day 0) in all groups and gradually increased

throughout the study period, reaching peak levels by day 30

postpartum (Figure 4). For neutrophils, the MMMV group

consistently exhibited the highest PA, with significant differences

(P < 0.05) compared to the control, MM, and MV groups,

particularly evident in the colostrum phase (days 0–3). The MM

and MV groups also showed enhanced PA compared to the control

group, but to a lesser extent than the MMMV group (Figure 4A).

While MM and MV groups showed improved PA of macrophages

relative to controls, the most pronounced and consistent

enhancement (P < 0.05) in PA was observed in the MMMV

group throughout the entire 30-day lactation period (Figure 4B).
3.4 Genes and receptor expression of
neutrophils and macrophages

The mRNA expression of several immune-related genes

(CXCR1, CXCR2, TLR2, TLR4, and CD25) followed a similar

pattern in both milk neutrophils and macrophages across the

lactation period (Figures 5, 6). These markers exhibited the

highest expression around parturition (days 0–4) and gradually

declined toward day 30 post-calving in all groups. At nearly all time

points, the control group maintained significantly higher (P < 0.05)

expression levels of these genes compared to the MM, MV, and

especially the MMMV group, which showed the most pronounced

downregulation throughout lactation. Although the overall trend

was consistent across both cell types, the suppression of pro-

inflammatory gene expression was more evident in neutrophils,

suggesting a stronger response to supplementation in this milk

immune population.

In contrast, GR-a (glucocorticoid receptor alpha) expression

was lowest around calving and increased gradually postpartum in

all the groups. The MMMV group displayed significantly higher (P

< 0.05) GR-a expression than all other groups. The control group

consistently exhibited the lowest GR-a expression across the

study period.
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3.5 Oxidative stress biomarkers in
colostrum and milk

Oxidative stress markers, including total antioxidant capacity

(TAC), SOD, CAT, and GPx, showed distinct temporal trends from

day 0 to day 30 post-calving across all groups (Figure 7). TACwas lowest

at calving in all groups and increased progressively over time. The

MMMV group consistently exhibited the highest TAC values, followed

by MM, MV, and control groups, respectively, with the differences

between groups remaining relatively stable across the study period

(Figure 7A). In contrast, the enzymatic antioxidants (SOD, CAT, and

GPx) declined steadily from day 0 to day 30. Their activities were highest

in the control group and progressively lower in the MV, MM, and

MMMV groups (P < 0.05) (Figures 7B–D). The inverse relationship

between TAC and enzyme activity suggests that cows receiving MMMV

supplementation experienced lower oxidative stress and thus required

less activation of endogenous antioxidant enzymes.
3.6 Pro- and anti-inflammatory cytokines
in colostrum and milk whey

3.6.1 Pro-inflammatory cytokine
All pro-inflammatory cytokines, including IL-1a, IL-1b, IL-6,

IL-8, TNF-a, IFN-g, and IL-17A, were highest on the day of
Frontiers in Immunology 07
calving and declined steadily throughout the 30-day post-calving

period in all groups (Figure 8). The control group consistently

exhibited higher pro-inflammatory cytokine levels, particularly

during the colostrum phase. In contrast, cows supplemented with

MMMV showed significantly reduced levels of IL-1b, IL-6, TNF-

a, and IFN-g across the entire 30-day period (P < 0.05). These

reductions were most prominent at early time points but

persisted through day 30. IL-8 and IL-17A levels showed a

significant group difference only on day 0, with higher

concentrations in the control group. IL-1a, while following a

similar downward trend, did not exhibit consistent differences

between groups across time points.

3.6.2 Anti-inflammatory cytokines
The concentrations of IL-4 and IL-10 in milk whey increased

steadily throughout the lactation period in all groups (Figure 9). On

the day of calving (day 0), both cytokines were significantly lower (P

< 0.05) in the control group compared to the supplemented groups,

with the MMMV group showing the highest levels. For IL-4, this

difference was statistically significant only at day 0, with levels

converging among all groups by day 3 and remaining similar

through day 30. In contrast, IL-10 concentrations remained

significantly higher (P < 0.05) in the MMMV group compared to

other groups from day 0 through day 7, indicating a more sustained

anti-inflammatory effect.
FIGURE 2

Colostrum and milk yield and composition in control and treatment groups of crossbred cattle, including colostrum yield (A), milk yield (B), fat (%)
(C), protein (%) (D), lactose (%) (E), and SNF (%) (F). Control: received basal diet only; MM: basal diet + injectable multiminerals; MV: basal diet +
injectable multivitamins; MMMV: basal diet + combination of injectable multiminerals and multivitamins. Mean values with different superscript
symbols indicate significant differences compared to the control group: @ control vs MM, $ control vs MMMV, * control vs MM, MV, and MMMV.
Differences were considered statistically significant at P < 0.05.
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3.7 Immunoglobulins and insulin-like
growth factors

The concentrations of immunoglobulins (IgG and IgA) and

insulin-like growth factors (IGF-1 and IGF-2) in milk whey were

highest on the day of calving and declined progressively throughout

the study period. IgG and IgA (Figures 10A, B) peaked at calving

and showed a sharp decline by day 7. Cows in the MMMV group

exhibited significantly higher (P < 0.05) IgG and IgA concentrations

on days 0 and 3 compared to the control group. By day 15,

immunoglobulin levels had decreased substantially and were

similar across all groups. IGF-1 and IGF-2 (Figures 10C, D)

followed a similar declining trend over time. On days 0 and 3,

IGF-1 concentrations were significantly higher (P < 0.05) in the

MMMV group compared to other groups. The effect of

supplementation was even more pronounced for IGF-2. On days

0 and 3, IGF-2 levels were higher (P < 0.05) in the MMMV group

than in the control, while MM and MV showed intermediate
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concentrations. By day 15, IGF-2 levels in all groups had dropped

to near-baseline and remained low through day 30.
4 Discussion

Recent research underscores the benefits of parenteral

micronutrient administration as an efficient method for delivering

essential nutrients directly to target tissues (11, 27, 28). This

approach can help maintain physiological functions and support

a balanced immune response, significantly impacting health during

the transition period. Our study focused on the effects of parenteral

micronutrient supplementation on mammary gland immune

defense mechanisms and its potential to enhance colostrum and

milk quality.

Micronutrients such as copper, iodine, and B vitamins are

crucial for protein synthesis and metabolic functions. Selenium,

for example, enhances antioxidant mediators and upregulates genes
FIGURE 3

Somatic cell and immune cell composition in milk of control and treatment groups of crossbred cattle, including somatic cell count (SCC; ×10⁵
cells/ml) (A), neutrophil percentage (B), macrophage percentage (C), and neutrophil-to-macrophage ratio (D). Mean values with different superscript
symbols indicate significant differences compared to the control group: @ control vs MM, # control vs MV, $ control vs MMMV, * control vs MM, MV,
and MMMV. Differences were considered statistically significant at P < 0.05.
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FIGURE 4

Phagocytic activity of milk immune cells in control and treatment groups of crossbred cattle, including phagocytic activity of neutrophils (A) and
phagocytic activity of macrophages (B). Mean values with different superscript symbols indicate significant differences compared to the control
group: @ control vs MM, # control vs MV, $ control vs MMMV, * control vs MM, MV, and MMMV. Differences were considered statistically significant
at P < 0.05.
FIGURE 5

Relative mRNA expression of immune-related genes in milk neutrophils of control and treatment groups of cows, including CXCR1 (A), CXCR2 (B),
GR-a (C), TLR2 (D), TLR4 (E), and CD25 (F). Mean values with different superscript symbols indicate significant differences compared to the control
group: @ control vs MM, # control vs MV, $ control vs MMMV, * control vs MM, MV, and MMMV. b-actin and GAPDH were used as endogenous
genes, and the mRNA abundance on the day of calving (day 0) in the control group was used as the calibrator to estimate the relative expression of
all groups across different time points. Differences were considered statistically significant at P < 0.05.
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associated with milk protein synthesis (29). Our results showed a

significant increase in fat and protein percentages in colostrum,

transitional milk, and milk samples, with the highest percentages

observed in cows receiving combined mineral and vitamin

supplementation. This aligns with previous studies, such as those

by Griffiths et al. (30) and Kay et al. (31), which reported increased

fat content in colostrum and milk following supplementation with

trace minerals and vitamins. Lactose synthesis in the mammary

gland is influenced by micronutrients like manganese, a cofactor for

enzymes involved in carbohydrate metabolism (32). Chawla and

Kaur (33) found that supplementation with vitamins E and A

increases milk yield, which our study also confirmed.

Interestingly, our findings show that cows receiving combined

mineral and vitamin supplementation produced colostrum with

significantly higher IGF-1 and IGF-2 levels during the first three

days after calving, an increase that likely promotes greater metabolic

activity and directs nutrients toward early milk production. Prior

studies show that vitamin D3 administration enhances insulin

sensitivity, energy metabolism, and hepatic IGF-1 synthesis,

thereby promoting its transfer to the mammary gland (34, 35). In

addition, micronutrient-driven reductions in mammary

inflammatory cytokines and oxidative stress factors known to

suppress IGF-1 during the transition period (36–38) provide a

mechanistic basis for the elevated IGF levels and greater milk yield

we recorded. Elevated colostral immunoglobulins and insulin-like

growth factors (IGFs) in the MMMV group not only reflect
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improved maternal mammary health but also indicate enhanced

passive immune transfer, which is critical for neonatal resilience.

Injectable maternal micronutrient supplementation has been shown

to increase colostral immunoglobulin content and positively

modulate neonatal oxidative status (39).

SCC is a reliable milk quality measure, influenced by factors like

milk production, season, and mammary inflammation (23, 40). Our

research found SCC highest at calving, with the control group showing

higher colostrum SCC than the treated groups. Zinc supplementation

reduces mastitis by promoting skin health and integrity, supporting

keratin lining formation in the teat canal, which acts as a barrier against

bacterial entry (41). Organic forms of zinc, copper, and selenium

decrease SCC in early lactation (42). Vitamins A and E are crucial for

udder health, reducing SCC by mitigating oxidative stress and

maintaining mammary epithelial cell integrity. Trace minerals and

vitamins act as powerful modulators of immune signaling and

antioxidant defense, as demonstrated by their ability to reduce

somatic cell counts, attenuate inflammatory markers, and restore

redox balance in dairy cattle during the periparturient phase. Recent

studies have further confirmed these benefits, highlighting the role of

injectable micronutrient supplementation in enhancing immune

function and oxidative status in dairy cattle (11, 18, 39). Collectively,

our data indicate that this comprehensive nutritional strategy optimizes

the interplay among mineral homeostasis, vitamin metabolism, and

growth-factor signaling, culminating in improved colostrum quality

and subsequent milk production.
FIGURE 6

Relative mRNA expression of immune-related genes in milk macrophages of control and treatment groups of cows, including CXCR1 (A), CXCR2 (B),
GR-a (C), TLR2 (D), TLR4 (E), and CD25 (F). Mean values with different superscript symbols indicate significant differences compared to the control
group: @ control vs MM, $ control vs MMMV, * control vs MM, MV, and MMMV. b-actin and GAPDH were used as endogenous genes, and the mRNA
abundance on the day of calving (day 0) in the control group was used as the calibrator to estimate the relative expression of all groups across
different time points. Differences were considered statistically significant at P < 0.05.
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Milk is rich in immune cells, including phagocytic cells

(neutrophils and macrophages), essential for maintaining udder

health by combating infections and ensuring tissue homeostasis

(43). Macrophages serve as the predominant sentinels in the normal

mammary gland, acting as the first line of immune surveillance

against invading mastitis-causing pathogens. Upon pathogen

detection, activated macrophages release chemoattractants that

facilitate neutrophil migration from blood to infected tissue,

establishing a coordinated inflammatory response (20, 44).

Micronutrients play a vital role in supporting the function of

these immune cells and reducing oxidative stress, which is crucial

during the periparturient period when cows are more vulnerable to

diseases due to physiological stress (29, 45). The enhanced

phagocytic and oxidative burst activities observed in our study

reflect the essential roles of selenium, copper, and zinc as cofactors

for key enzymes involved in neutrophil and macrophage

bactericidal functions (18).

In the present study, the phagocytic activity of both milk

neutrophils and macrophages peaked around parturition and was

significantly enhanced in the combined supplemented group,
Frontiers in Immunology 11
followed by the multiminerals, multivitamins, and control groups.

This increase in phagocytic function was paralleled by higher milk

immunoglobulin concentrations, elevated total antioxidant

capacity, and reduced levels of endogenous antioxidant enzymes

such as superoxide dismutase and catalase, indicating diminished

oxidative burden in the MMMV group. These findings suggest that

parenteral micronutrient supplementation during the transition

period supports mammary immune competency and reduces

oxidative stress, thereby promoting better colostrum quality and

mammary tissue integrity. The observed positive correlation

between phagocytic cell activity and immunoglobulin secretion

aligns with earlier studies demonstrating that improved immune

cell function supports immunoglobulin transfer into milk (20, 46).

Consistent with previous work, trace element supplementation,

particularly zinc, copper, and manganese, has been shown to

enhance neutrophil oxidative burst and macrophage-mediated

antigen presentation, while also improving milk immunological

and biochemical properties (7, 45, 47). Notably, control cows in our

study exhibited a higher proportion of neutrophils and a lower

percentage of macrophages in milk, a pattern typically associated
FIGURE 7

Milk whey concentration of oxidative stress biomarkers in control and treatment groups of cows, including total antioxidant capacity (TAC, mmol/L)
(A), superoxide dismutase (SOD, ng/ml) (B), catalase (CAT, ng/ml) (C), and glutathione peroxidase (GPX, ng/ml) (D). Mean values with different
superscript symbols indicate significant differences compared to the control group: @ control vs MM, $ control vs MMMV, * control vs MM, MV, and
MMMV. Differences were considered statistically significant at P < 0.05.
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with higher inflammatory or stress stimulus (23). Moreover, we

observed that mRNA expression profiles of milk-derived

macrophages and neutrophils from control cows revealed

increased transcription of TLRs, glucocorticoid and pro-

inflammatory chemokine receptors, suggesting that in the absence

of adequate antioxidant support, mammary tissues experience

greater immune activation and cellular stress. The balanced
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immune response in the combined supplemented group likely

reduces mammary tissue damage and may help prevent

subclinical mammary inflammation, particularly during the high-

risk periparturient window.

Inflammatory cytokines are central to the regulation of

mammary gland health, especially during the transition period

when cows are more susceptible to infection and metabolic stress.
FIGURE 8

Milk whey concentration of pro-inflammatory cytokines (pg/mL) in control and treatment groups of cows, including IL-1a (A), IL-1b (B), IL-6 (C), IL-8
(D), IL-17A (E), IFN-g (F), and TNF-a (G). Mean values with different superscript symbols indicate significant differences compared to the control
group: @ control vs MM, # control vs MV, $ control vs MMMV, * control vs MM, MV, and MMMV. Differences were considered statistically significant
at P < 0.05.
FIGURE 9

Milk whey concentration of anti-inflammatory cytokines (pg/ml), including IL-4 (A), and IL-10 (B). Mean values with different superscript symbols
indicate significant differences compared to the control group: @ control vs MM, $ control vs MMMV. Differences were considered statistically
significant at P < 0.05.
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The balance between pro- and anti-inflammatory cytokines is

essential for orchestrating immune responses, tissue remodeling,

and defense against pathogens (48). Interestingly, our current

findings on cytokine modulation in milk mirror the systemic effects

we previously reported (20), indicating that repeated micronutrient

injections during the transition period also alter inflammatory

profiles within the mammary gland. Specifically, we observed a

marked reduction in pro-inflammatory cytokines (IL-1b, IL-6, IL-8,
IL-17A, TNF-a, and IFN-g) alongside an enhancement in anti-

inflammatory cytokines (IL-4, IL-10) in milk, indicating that the

immunomodulatory effects of vitamins and trace minerals extend

beyond systemic immunity to local mammary tissue. This

modulation may contribute to improved udder health, reduced risk

of mastitis, and better postpartum recovery. Several studies have

demonstrated that injectable micronutrient supplementation can

mitigate tissue-level inflammation and enhance immunity in cattle,

supporting our current findings. Zhang et al. (49) reported that

vitamin D3, through its interaction with vitamin D receptors

expressed on immune cells, downregulates pro-inflammatory

cytokine production while enhancing macrophage antibacterial
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activity. For instance, Bittar et al. (50) found that injectable trace

minerals, when combined with vaccination, significantly reduced

respiratory tissue inflammation and improved immune markers in

dairy calves following viral challenge. Pate and Cardoso (51)

administered trace minerals, including selenium, copper, zinc, and

manganese, via injection and observed decreased hepatic expression

of inflammatory markers during aflatoxin challenge, attributing the

effects to enhanced antioxidant enzyme activity and reduced

oxidative damage in liver tissues. Khan et al. (11) reviewed that

injectable interventions, including vitamins (A, D, E) and trace

minerals, play a role in dampening NF-kB-mediated pro-

inflammatory signaling and strengthening antioxidant defenses.

Furthermore, Hong et al. (52) demonstrated that injectable trace

mineral supplementation in feedlot cattle reduced pulmonary and

systemic inflammation following Mannheimia hemolytica infection,

likely through modulation of leukocyte function and cytokine

responses. Collectively, these findings underscore the capacity of

injectable micronutrients to exert localized anti-inflammatory

effects in addition to systemic benefits, primarily through

immunomodulatory and antioxidative mechanisms.
FIGURE 10

Milk whey concentration of immunoglobulins and growth factors in control and treatment groups of cows, including IgG (µg/ml) (A), IgA (µg/ml) (B),
IGF-1 (ng/ml) (C), and IGF-2 (ng/ml) (D). Mean values with different superscript symbols indicate significant differences compared to the control
group: @ control vs MM, # control vs MV, $ control vs MMMV, * control vs MM, MV, and MMMV. Differences were considered statistically significant
at P < 0.05.
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5 Conclusions

This study demonstrates that parenteral supplementation with a

combination of trace minerals and vitamins during the transition period

significantly enhances mammary gland immune function, antioxidant

capacity, and colostrum and milk quality in dairy cows. The improved

nutrient profile, notably the increased levels of IGF, immunoglobulins,

and milk components (fat, protein), was accompanied by reduced SCC

and decreased concentration of pro-inflammatory cytokines. These

changes reflect enhanced phagocytic activity of milk leukocytes and a

more balanced immune response within the mammary gland. Notably,

the synergistic effects of trace minerals and vitamins support both local

and systemic immunity, reduce oxidative stress, and promote tissue

integrity during a physiologically vulnerable period. These findings

underscore the value of targeted injectable micronutrient strategies to

optimize udder health, milk productivity, and postpartum recovery in

dairy herds.
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