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Myeloid PDLIMZ2 repression as a
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Introduction: The PDZ-LIM domain-containing protein PDLIM2 serves as a
unique tumor suppressor and immune modulator. Its repression in either lung
epithelial or myeloid cells has been shown to promote lung cancer and therapy
resistance. However, whether PDLIM2 plays a broader role in other lung diseases
remains unclear.

Methods: Gene expression data on human samples were exploited to investigate
if PDLIM2 is repressed in the lung of patients with chronic obstructive pulmonary
disease (COPD) or interstitial lung disease (ILD/idiopathic pulmonary fibrosis
(IPF). PDLIM2 conditional knockout (KO) mice and wild type (WT) control mice
were intratracheally instilled with the bacterial endotoxin lipopolysaccharide
(LPS) to induce acute lung injury (ALI), a murine model of human acute
respiratory distress syndrome (ARDS) that can also provide mechanistic insights
into COPD, pulmonary fibrosis (PF) and infectious disease. Kaplan-Meier
estimator was used to determine animal survival rate, and histological analysis
and single-cell RNA sequencing (scRNA-seq) of mouse lung tissues were
performed to systematically define the roles of PDLIM2 at the population and
single-cell level. Ex vivo phagocytosis and neutrophil extracellular trap (NET)
formation assays were also performed to validate the scRNA-seq analysis.
Results: PDLIM2 was repressed in the lungs of COPD and ILD/IPF patients, and
this repression was associated with disease severity. Selective deletion of PDLIM2
in myeloid cells rendered mice more vulnerable to lung injury and mortality by
LPS intratracheal instillation. The increased susceptibility was linked to
exacerbated pro-inflammation signaling and diminished anti-inflammation
signaling in the lung, and particularly, in lung macrophages and neutrophils.
Conclusions: PDLIM2 plays an indispensable role in preventing ALI/ARDS and
death, and its repression is associated with COPD and ILD progression. These
data suggest that PDLIM2 repression, especially in lung myeloid cells, is a
common mechanism driving COPD, ILD/IPF, and lung cancer and increasing
patients’ susceptibility to infection.
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Introduction

COPD and lung cancer are the leading causes of respiratory
mortality and cancer death, respectively (1, 2). On the other hand,
ILD is a term for a large group of lung diseases characterized by
fibrosis and scarring in the lung, with IPF as the most common and
severe form (3-5). While those fatal diseases are fundamentally
different, they are often associated with aberrant lung inflammation
(6-9). Moreover, they all make patients much more susceptible to
lung infection (10-13). Interestingly, both COPD and ILD/IPF are
significant independent risk factors and have long been assumed to
be pre-stage diseases and causative drivers for lung cancer (6, 14-
18). However, the common mechanisms and molecular links for
these malignancies remain largely unknown. As a matter of fact, our
knowledge of either COPD or ILD/IPF is poor, and accordingly, the
treatment options and outcomes for those incurable diseases are
very limited.

In this regard, the immune modulator and tumor suppressor
PDLIM2, which is expressed highest in the lung under normal
conditions, is repressed in more than 90% of all human lung cancer
cases when 50% of the expression level of lung tissues adjacent to
tumors is used as the cut-off (19-30). Human and mouse studies
demonstrate PDLIM2 repression as a causative driver of lung
cancer and therapy resistance (20, 21). For example, lung
epithelial- or myeloid-specific PDLIM2 deletion or global
PDLIM2 deletion in mice promotes lung cancer development,
chemoresistance, and/or causes complete resistance to immune
checkpoint inhibitors (ICIs) (20-22). Remarkably, clinically
feasible nano-delivery of PDLIM2 (nanoPDLIM2) shows a
promising efficacy as a monotherapy, and in combination with
ICIs and chemo drugs, completely eradicates all tumors in most
animals without adding toxicity, in the preclinical model of
refractory lung cancer (21, 31). It is thus both scientifically and
clinically important to investigate the roles of PDLIM2 in COPD,
ILD/IPF, and lung infectious diseases.

Materials and methods
Animals and LPS intratracheal instillation

PDLIM2"¥/f°%/ ys0zyme M-Cre*/” (PDLIM2 mKO),
PDLIM2 X/ flox, Lysozyme M-Cre™", and WT mice have been
described before (20-22, 32-34). All mice were under a pure
FVB/NJ background. Mice of 6-8-week-old were intratracheally
instilled with LPS (4 mg/g body weight, Sigma-Aldrich) or
phosphate-buffered saline (PBS), followed by daily body weight
monitoring. When the weight loss of an infected mouse was more
than 20% of the initial body weight, the mouse was humanely
euthanized and counted as dead. Some mice were euthanized for
bronchioalveolar lavage (BAL) collection, lung histological analysis,
and scRNA-seq assay at 48 hours after LPS treatment. All animals
were maintained under a specific pathogen-free condition and used
according to protocols approved by the IACUC of the University of
Pittsburgh and the University of Southern California.
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Lung histological assays

Lung tissues were excised, fixed in formalin, embedded in
paraffin, and cut into 4-5um thick sections. Sections were stained
with H&E or Trichrome, and images were analyzed using Image]J
software (NTH). The histological lung injury was scored according
to the standard scoring system (35, 36), which includes four
parameters: (A) alveolar space neutrophils; (B) interstitial
neutrophils; (C) proteinaceous debris in alveolar space; and (D)
alveolar septal thickening. The total score was calculated as: ((20 x
A) + (14xB) + (7x C) + (2 x D))/86. A total of 20 random high-
power fields (400x total magnification) of each mouse were scored
by the blinded researcher. The final score per mouse was calculated
by averaging the scores of the 20 fields, resulting in an overall score
between zero (no lung injury) and one (severe lung injury). The
collagen score was calculated as previously described to grade lung
fibrosis (37, 38). In brief, a paraffin section of lung, stained by a
trichrome method, was systematically scanned in a microscope
using a 10x objective. Each successive field was individually assessed
for severity of interstitial fibrosis and allotted a score between 0 and
8 using a predetermined scale of severity. After examining the whole
section, the mean score of all the fields was taken as the collagen
score for that section and expressed correct to two decimal places.

BAL

Upon euthanasia, the mice lungs were lavaged with 1 ml PBS
four times. The recovered BAL fluids (about 3.4 ml) were
centrifuged, and pelleted cells were visualized and counted on
Hema 3-stained cytocentrifuge slides (39-42).

scRNA-seq analysis

A lab protocol was developed to combine the 10x Genomics
single-cell 5 kit with customized sample multiplexing. Lungs
freshly dissected from euthanized mice were dissociated into a
single-cell suspension (43, 44). The cell samples of four mice from
each group were pooled together and stained with TotalSeq CD45
antibody conjugated with unique oligo barcodes purchased from
BioLegend. All hashtagged samples were pooled together for Gel
Bead-in-Emulsion (GEM) partitioning and library construction
using 10x genomics single cell 5 kit (CG000330 Rev A). The
resulting gene expression and cell hashing libraries were
sequenced at a respective depth of 250 and 50 million reads with
paired-ends on an Illumina NovaSeq S4 instrument. The 10x
Genomics™ Cell Ranger pipeline was used to demultiplex hashtags
into separate samples, perform alignment and filtering, decode
cellular barcodes, count unique molecular identifiers (UMIs),
normalize counts, and generate feature-barcode matrices. The
derived matrices were further processed in Seurat. Quality control
was firstly pursued to remove cells with low reads (UMIs<=500,
Features<=200) and excess mitochondrial expression (>=12%) and
batch effects, followed by dimensionality reduction, cell clustering,
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cell type classification, cell counting, and gene expression
comparative analysis among cell clusters where differentiated gene
expression was assessed at the population level and the cellular level.
Differentially expressed genes (DEGs) derived above were imported
into Ingenuity Pathway Analysis (IPA) (QIAGEN) for pathway and
functional analysis.

scRNA-seq data in Lung Cancer Atlas (LuCA) were also
analyzed to examine PDLIM2 expression in the lung
macrophages of COPD patients versus normal individuals using
the scANVTI pipeline (45). The RDS file from the core atlas was
downloaded from LuCA and imported into Seurat. Cells of interest
were extracted by assay (10x 3’ v2), cell type (Macrophage), disease
(Normal Control/COPD), and feature (PDLIM2). PDLIM2
expression in macrophages from each patient was calculated as
the average of its cellular expression. Patients with fewer
macrophage cells were skipped. Analysis of PDLIM2 expression
in neutrophils was aborted as not enough cells were characterized in
the original atlas data.

Gene microarray and bulk RNA-seq
analysis

Lung Genomics Research Consortium (LGRC) gene expression
microarray data were analyzed to examine PDLIM2 expression in
the lungs of patients with COPD or ILD. The data had been
normalized using a pairwise cyclic loess approach, and the probes
were collapsed to one probe per gene by selecting the probe with the
highest average signal (46-49).

Ex vivo phagocytosis assays

As described before (50), fresh mouse lung tissues were minced
into small pieces, gently pressed with the syringe plunger top, and
filtered with 40pum cell strainers. Cells passed through the strainer
were seeded in a 24-well ultra-low attachment plate (Corning Inc.,
Corning, NY, USA) with 400ul culture medium containing the
indicated antibody for 20 minutes. The cells were spun down at
1800 rpm for 5 min, and the supernatant was replaced with 400ul
pHrodo Green S. aureus Bioparticles Conjugate (Thermo Fisher
Scientific, Waltham, MA, USA. Img/ml) in Live Cell Imaging
Solution (Thermo Fisher Scientific, Waltham, MA, USA). Two
hours later, the phagocytic abilities of lung alveolar macrophages
(AMs) were determined by flow cytometry (50, 51).

Ex vivo NET formation assays

Bone marrow cells were flushed from the femurs of the
indicated mice and pelleted via centrifugation at 427 x g for 7
minutes at 4 °C. After red blood cell lysis, neutrophils were isolated
at the interface of the Histopaque 1119 and Histopaque 1077 layers
via density gradient centrifugation (52). Isolated neutrophils were
cultured in duplicates in a 6-well plate at a concentration of 10
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million cells per well. One duplicate set was stimulated with 50 ug/
mL LPS overnight, while the other served as untreated control. To
quantify NET formation, 100ul of culture supernatant was aspirated
post-centrifugation and transferred to a 96-well plate. The samples
were stained with PicoGreen (1:10,000 dilution), and fluorescence
was measured on SpectraMAX ID3. The final NET quantification
was determined by subtracting the reads of the untreated controls
from the reads of the LPS-treated wells.

Statistics

Student’s ¢ test (2-tailed, unpaired) was used to assess the
significance of differences between 2 groups. Ordinary 1-way
ANOVA was used to assess the significance of differences among
groups of more than 2. All bars in the figures represent mean +
SEM. P values less than 0.05 and 0.01 were considered statistically
significant and highly statistically significant, respectively.

Results
PDLIM2 repression in human lung diseases

Analysis of LGRC database revealed that PDLIM2 expression
was decreased in the lungs of patients with COPD or ILD/IPF
(Figure 1A, Supplementary Table S1). Of note, PDLIM?2 repression
was associated with the severity of COPD and ILD/IPF (Figures 1B,
C). Analysis of the scRNA-seq data in LuCA further revealed that
PDLIM2 was repressed in the lung macrophages of COPD patients
(Figure 1D). Macrophages are the most abundant immune cells
within the lung and serve as the key sentinels in the lung. They are
also the main culprits of various pathogenic conditions, including
COPD, ILD/IPF, lung cancer, and pulmonary infectious disease (7-
9,22, 32-34, 53, 54). Currently, it remains largely unknown how the
important immune cells are transformed from lung guards into
perpetrators. These data identified PDLIM2 repression as a
common phenotype of COPD and ILD/IPF that may cause
the pathogenic transformation of lung macrophages for
disease progression.

Increased susceptibility to LPS-induced
lung injury and death by myeloid PDLIM2
deletion

To examine the role of lung macrophage intrinsic PDLIM2 in
lung diseases, PDLIM2 mKO mice, in which PDLIM2 is selectively
deleted in lung macrophages and other myeloid cells, were
subjected to LPS model of ALI/ARDS (55). This model can also
provide mechanistic insights into COPD, PF and lung infectious
disease (54-57). In consistent with previous studies (58), LysM-
Cre*’” mice showed no difference in LPS-induced ALI as FVB/N
mice and PDLIM2¥°% mice all of which have normal PDLIM2
expression and are included in the WT control group of the studies
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FIGURE 1

PDLIM2 repression in human COPD and ILD/IPF. (A) Analysis of LGRC database showing PDLIM2 repression in human COPD and ILD/IPF. (B) LGRC
data showing association between PDLIM2 repression and COPD severity. (C) LGRC data showing association between PDLIM2 repression and ILD/
IPF severity. (D) Analysis of the LUCA scRNA-seq data showing PDLIM2 repression in the lung macrophages of COPD patients. Ctrl stands for normal
lung tissues. Sample numbers are listed above the x-axis. Each data point represents one patient. Data represent means + SEM. *P < 0.05; **P < 0.01;

***P < 0.001; ****P < 0.0001; ANOVA or Student’s t test.

(Figure 2A). PDLIM2 mKO mice showed markedly decreased
survival after LPS treatment at the dose of 4 mg/kg body weight,
compared to the WT control mice. Consistently, the lung tissues of
PDLIM2 mKO mice showed exacerbated lung injury and much
more severe inflammatory reactions, including inflammatory cell
infiltration, alveolar congestion, alveolar wall thickening,
hemorrhage, and collagen accumulation (Figures 2B-D). These
data suggested that PDLIM2 repression, particularly in lung
macrophages and neutrophils, is a key mechanism driving
pathogenic inflammation and rendering patients much more
vulnerable to infection, lung damage, and mortality.

Imbalanced activation of pro- versus anti-
inflammatory signaling pathways in the
total lung immune cell population of
myeloid PDLIM2 deletion mice by LPS

To systematically define the molecular mechanisms underlying
the super-sensitivity of PDLIM2 mKO mice to LPS, immune cells
enriched from the lung tissues of PDLIM2 mKO and WT mice
treated with LPS or PBS were subjected to scRNA-seq. In line with
no abnormalities of PDLIM2 mKO mice under pathogen-free
conditions, scRNA-seq data showed no significant difference in
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FIGURE 2

Indispensable role of myeloid PDLIM2 in preventing lung injury and death induced by LPS. (A) Kaplan-Meier curve showing increased mortality of
PDLIM2 mKO mice treated with LPS. (B) H&E staining showing worsen lung damage and augmented immune cell lung infiltration in PDLIM2 mKO
mice treated with LPS (n = 3). (C) Trichrome staining showing higher collagen accumulation in the lung of PDLIM2 mKO mice treated with LPS

(n = 6). (D) Hema 3 staining of BAL cells on cytocentrifuge slides showing more immune cells in the lung of PDLIM2 mKO mice treated with LPS
(WT: n =5; mKO: n = 4). Scale bars: 25 pm. Data represent means + SEM. *P < 0.05; **P < 0.01; Student's t test.
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the numbers and composition of immune cells, including
macrophages and neutrophils in the lung of PDLIM2 mKO and
WT mice treated with PBS (Supplementary Figure S1). As expected,
LPS treatment induced dramatic but overall similar changes in both
PDLIM2 mKO and WT mice. The top upstream regulators
activated by LPS are also the same in both mice (Supplementary
Figure S2).

Consistent with the histological studies above, notably, the
scRNA-seq data indicated that LPS treatment led to more
macrophages, neutrophils, T and B cells in the lung of PDLIM2
mKO mice in comparison to WT mice (Supplementary Figure
S1D). In further support of this, the pathways and functions for
leukocyte recruitment were activated by LPS at a higher level in all
pulmonary immune cells of PDLIM2 mKO mice as a whole
population (Figures 3A, B). Furthermore, the inflammatory
signaling pathways were more activated at the total population
level of lung immune cells in the PDLIM2 mKO mice, as evidenced
by the higher activated pathogen-induced cytokine storm signaling,
IL-17 signaling, IL-33 signaling, and HMGBI signaling (Figures 3A,
C). In contrast, activation of the acute phase response (APR)
signaling pathway, which plays a central role in restoring tissue
homeostasis, was activated at lower levels (Figures 3A, D). On the
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other hand, the anti-inflammatory LXR/RXR signaling pathway was
repressed to a greater extent (Figure 3A). Similar patterns were seen
for these signaling pathways in the lung of patients with COPD,
ILD, or ALI/ARDS (Supplementary Figure S3). These data
suggested that PDLIM2 repression, particularly in lung myeloid
cells, disrupts the immune balance toward excessive inflammation
in the lung in response to lung infection.

Overactive NF-kB and pathogenic
activation of lung macrophages in myeloid
PDLIM2 deletion mice by LPS

Logically, the phenotypes in LPS-treated PDLIM2 mKO mice
were originally initiated and mostly attributed to PDLIM2
deficiency in lung macrophages, because they are the first
immune cells that encounter LPS. Thus, the molecular difference
of lung macrophages in LPS-treated PDLIM2 mKO and WT mice
was characterized. In line with the role of PDLIM2 in repressing the
master pro-inflammation transcription factor NF-xB (19-25, 59-
66), scRNA-seq data showed much higher activation of the NF-kB
signaling pathway in the lung macrophages of PDLIM2 mKO mice

C D
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Over-activated pro-inflammatory signaling pathways in total lung immune cell population of LPS-treated myeloid PDLIM2 deletion mice. (A) Pathway
and function analysis showing higher activated pro-inflammatory signaling pathways but less activated or more repressed anti-inflammatory signaling
pathways in whole immune cells in the lung of LPS-treated PDLIM2 mKO mice. (B) Gene expression heatmap of component genes in lung immune
cells showing increased leukocyte recruitment activation in the lung of LPS-treated PDLIM2 mKO mice. (C) Gene expression heatmap of component
genes in lung immune cells showing increased pathogen-induced cytokine storm signaling in the lung of LPS-treated PDLIM2 mKO mice. (D) Gene
expression heatmap of component genes in lung immune cells showing decreased acute phase response signaling in the lung of LPS-treated

PDLIM2 mKO mice.
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treated with LPS (Figure 4A). The proinflammatory macrophage
classical activation signaling pathway was also more activated in the
lung macrophages of LPS-treated PDLIM2 mKO mice (Figures 4A,
B). However, the phagosome formation and inducible nitric oxide
synthetase (iNOS) signaling pathways, which are critical for the
most important innate immune function of macrophages to directly
kill and clear pathogens, were less activated (Figures 4A, C).
Consistently, AMs from LPS-treated PDLIM2 mKO mice showed
a reduced phagocytotic ability ex vivo (Figure 4D).

Many other inflammation pathways were also found to be more
activated in the lung macrophages of the LPS-treated PDLIM2
mKO mice, such as IL-17 signaling, LPS/IL-1 mediated inhibition of
RXR function, S100 family signaling, and immunogenic cell death
signaling (Figure 4A). In sharp contrast, several signaling pathways
known to counter and repress inflammation and/or facilitate the
innate immunity and wound repairing of macrophages, i.e., PI3K/
AKT, LXR/RXR, PPAR, and GADD45 signaling, were either less
activated or more repressed. These data suggested that PDLIM2
repression leads to NF-kB over-activation induced by LPS,
eventually resulting in aberrant activation of lung macrophages
for pathogenic inflammation and fatal lung injury.

10.3389/fimmu.2025.1669117

Exaggerated NF-xB activity and divergent
activation of lung neutrophils in myeloid
PDLIM2 deletion mice by LPS

Following lung macrophage activation by pulmonary infection,
neutrophils are the first to be recruited into the lung and become
predominant. Like macrophages, neutrophils are major lung
sentinels that could also be pathogenic drivers. Consistent with
their PDLIM2 deficiency, neutrophils in the lung of LPS-treated
PDLIM2 mKO mice, like lung macrophages, had much higher
activation of the NF-xB signaling pathway in comparison to WT
mice (Figure 5A). Several common pro-inflammatory signaling
pathways, including toll-like receptor, LPS/IL-1 mediated
inhibition of RXR function, and pyroptosis signaling pathways,
were more activated in the neutrophils of the PDLIM2 mKO mice
(Figures 5A, B). Activation of the triggering receptor expressed on
myeloid cells 1 (TREM1) signaling pathway was also much higher
(Figures 5A, C). TREMI is predominantly expressed on
neutrophils, and its activation leads to proinflammatory immune
responses (67). However, the neutrophil extracellular trap (NET)
signaling pathway was dramatically lower (Figures 5A, D). NET is
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Pathogenic activation of signaling pathways in the lung macrophages of LPS-treated myeloid PDLIM2 deletion mice. (A) Pathway and function
analysis of lung macrophages showing hyper-activated pro-inflammatory signaling pathways but less activated or more repressed signaling
pathways involved in anti-inflammation or macrophage innate immunity function in LPS-treated PDLIM2 mKO mice. (B) Gene expression heatmap
of component genes showing increased macrophage classical activation signaling pathway in the lung macrophages of LPS-treated PDLIM2 mKO
mice. (C) Gene expression heatmap of component genes showing lower phagosome formation ability of the lung macrophages in LPS-treated
PDLIM2 mKO mice. (D) Ex vivo phagocytosis assays showing defective ability of AMs from LPS-treated PDLIM2™X mice in phagocytizing pHrodo
green S. aureus bioparticles (BP) (n = 3). Data represent means + SEM. *P < 0.05; **P < 0.01; Student's t test.
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FIGURE 5

Aberrant activation of signaling pathways in the lung neutrophils of LPS-treated myeloid PDLIM2 deletion mice. (A) Pathway and function analysis

of lung neutrophils showing superior activated pro-inflammatory signaling pathways but less activated signaling pathways involved in neutrophil
innate immunity function in LPS-treated PDLIM2 mKO mice. (B) Gene expression heatmap of component genes showing elevated activation of the
pyroptosis signaling pathway in the lung neutrophils of LPS-treated PDLIM2 mKO mice. (C) Gene expression heatmap of component genes showing
elevated TREM1 signaling activation in the lung neutrophils of LPS-treated PDLIM2 mKO mice. (D) Gene expression heatmap of component genes
showing less activated NET signaling in the lung neutrophils in LPS-treated PDLIM2 mKO mice. (E) Ex vivo NET assays showing defective NET ability
of LPS-treated neutrophils deficient in PDLIM2 (n = 3). Data represent means + SEM. *P < 0.05; Student’s t test.

an important mechanism that neutrophils use to immobilize and
kill pathogens (68). In support of this, PDLIM2-deficient
neutrophils treated with LPS exhibited a reduced NET formation
ability ex vivo in comparison with WT neutrophils with the same
LPS treatment (Figure 5E). These data suggested that PDLIM2
repression in neutrophils dampens their host-protective functions
against lung infection and unleashes their pro-inflammatory
activity to cause excessive inflammation and lethal lung injury.

Discussion

The studies above provide the first evidence linking PDLIM?2 to
ALI/ARDS, COPD, ILD/IPF, and lung infection and infectious
disease. As a matter of fact, they are the first investigation on the
role of PDLIM?2 in the lung diseases other than lung cancer. They
have identified PDLIM2 repression as a common phenomenon of
human COPD, ILD/IPF, and lung cancer. Using the LPS mouse
model, they have further shown that repression of PDLIM2 in
myeloid cells, especially in lung macrophages, is a causal
mechanism underlying infection-induced ALI/ARDS and death.

Frontiers in Immunology

PDLIM2 protects against lung infection by limiting
inflammation from damage while simultaneously promoting
pathogen killing (Supplementary Figure S4). PDLIM2 repression
in lung macrophages and neutrophils results in uncontrolled
activation of NF-kB in these crucial immune cells, thereby
unleashing their pro-inflammatory activity and dampening their
host-protective functions against lung infection. The pathogenic
activation of lung macrophages and neutrophils causes excessive
inflammation in the lung and subsequently lung damage and
animal death.

It seems that myeloid PDLIM2 repression is dispensable for or
only plays an insufficient role in the initiation or even the early
stages of COPD and ILD/IPF, since PDLIM2 mKO mice are healthy
and show no phenotypes under pathogen-free conditions, including
no COPD and ILD/IPF development. Nevertheless, PDLIM2
expression is largely intact in the lung of COPD and ILD/IPF
patients at the early disease stages. Except for rendering patients
vulnerable to lung infections, however, the aberrant inflammation
caused by PDLIM2 repression may also contribute to COPD, ILD/
IPF lung disease progression, as suggested by the association of
PDLIM2 repression with the severity of COPD, ILD/IPF in humans
and the excessive lung inflammation and damage caused by myeloid
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PDLIM2 deficiency in mice treated with LPS, which in COPD, ILD/
IPF may also cause disease progression.

Recent studies indicate that PDLIM2 repression in the lung
macrophages of mice with lung cancer is attributed to the
transcription repressor BACHI1 activated by reactive oxygen
species (ROS) (22). Given the high ROS levels in the lung of
patients with COPD and ILD/IPF (69), it is highly plausible that
PDLIM2 repression in COPD and ILD/IPF is also mediated by
ROS-activated BACH1. Interestingly, ROS inhibitors can restore
PDLIM2 expression in lung macrophages and prevents lung cancer
in vivo (22). Furthermore, delivery of exogenous PDLIM2 by
clinically feasible nanoparticles shows high therapeutic efficacy in
the mouse model of refractory lung cancer (21). Thus, therapeutic
strategies for targeting PDLIM2 should be further explored for the
prevention and treatment of COPD, ILD/ILD, ALI/ARDS, and
infectious disease.
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SUPPLEMENTARY FIGURE 1

Experimental design and outline on multiplexed scRNA-seq data analysis. (A)
Overall experimental design. (B) Demultiplexing of hashtagged samples. (C)
Cell population profiling of immune cells in the lung of PDLIM2 mKO and WT
mice treated with LPS or PBS. (D) Cell population profiling showing increased
immune cells in the lung of LPS-treated PDLIM2 mKO mice.
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