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Objective: To investigate whether patients with ACPA-negative (ACPA-) and
ACPA-positive (ACPA+) rheumatoid arthritis (RA) exhibit distinct immune and
metabolic profiles in blood, using integrative proteomic and metabolomic
analyses. By uncovering subgroup-specific molecular signatures, we aim to
improve the biological understanding of RA heterogeneity and support the
development of more precise diagnostic and stratification strategies.

Methods: We performed high-throughput proteomic and metabolomic profiling
on plasma from a well-characterized cohort comprising 40 patients with ACPA—
RA, 40 patients with ACPA+ RA, and 40 healthy controls. To identify key immune
and metabolic differences, we applied statistical comparisons, pathway
enrichment analyses, and network inference methods. Additionally, an
integrative network-based machine learning framework was used to
distinguish RA subgroups from controls based on plasma molecular profiles.
Results: ACPA- and ACPA+ RA exhibited distinct plasma proteomic and
metabolomic biomolecular signatures. Complement proteins (CFB, CFHR5,
and F9) and the anti-inflammatory cytokine ILIRN were exclusively elevated in
ACPA- RA and remained distinct in a treatment-naive sub-cohort. Metabolomic
analysis revealed subgroup-specific differences in lipid and pyrimidine
metabolism, including contrasting patterns in bilirubin-derived metabolites.
Correlation analyses identified differential associations between molecular
features and clinical inflammatory markers across RA subgroups. An integrative
machine learning framework incorporating multi-omic features achieved high
classification performance in cross-validation (AUC > 0.90), outperforming
models based on single-omic data.
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Conclusion: This study suggests that ACPA status may not fully capture the
biological heterogeneity between ACPA— and ACPA+ RA subgroups, indicating
additional immune and metabolic distinctions that warrant further investigation.
Our findings highlight the potential of multi-omic profiling to enhance RA
diagnostics, refine disease stratification, and inform subgroup-specific disease
management strategies.

biomarker discovery, multi-omic profiling, ACPA-negative and ACPA-positive
rheumatoid arthritis, proteomics, metabolomics, plasma, machine learning

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory
disease that is diagnosed in nearly 5 per 1,000 adults worldwide (1-3).
RA results in joint swelling, pain, deformities, bone erosion, and
cartilage destruction (3-5). A key diagnostic marker for RA is the
presence of anti-citrullinated protein autoantibodies (ACPA) in blood
(6), with high specificity that exceeds 90% (4, 7, 8). However, the
diagnostic sensitivity of ACPA-based tests for classifying RA cases is
modest, ranging between 30-60% (8, 9). Often, RA can be clinically
diagnosed even in the absence of circulating ACPA, a condition
referred to as ACPA-negative RA (or ACPA- RA) (6). Importantly,
as the absence of ACPA poses challenges in the diagnosis of early-stage
RA, a delayed diagnosis can hinder the timely initiation of therapeutic
interventions and increase the risk of joint damage (10, 11).

Traditionally, the primary distinction between ACPA- and ACPA
+ RA has been considered to be this serological difference, with little
attention given to other biological disparities. However, recent evidence
suggests that these two RA subgroups may be fundamentally different
in ways that extend beyond ACPA status alone. Recent studies suggest
that ACPA- and ACPA-positive RA (or ACPA+ RA) represent
distinct disease subgroups that differ in disease progression and
treatment response (12, 13). These clinical disparities have prompted
further investigations into the biomolecular differences between these
subgroups utilizing high-throughput profiling techniques. For example,
a genome-wide association study revealed significant differences in risk
allele frequencies, mainly in the human leukocyte antigen (HLA)
region, between ACPA- and ACPA+ RA (14). Research into the gut
microbiome identified intestinal butyrate-metabolizing bacterial
species associated with the presence of circulating ACPA (15). A
serum autoantigen analysis, performed using liquid chromatography-
tandem mass spectrometry (LC-MS/MS), uncovered subgroup-specific
autoantigens and facilitated the development of classification panels for
distinguishing ACPA- and ACPA+ RA (16). Furthermore, single-cell
RNA sequencing of peripheral blood mononuclear cells (PBMCs) and
synovial tissue revealed immune cell abnormalities unique to each RA
subgroup, suggesting ACPA- RA may rely on different immune
mechanisms and pathways (17). In our previous study, through
multiplex autoantibody profiling of serum from patients with
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ACPA- and ACPA+ RA, we identified distinct IgG autoantibody
repertoires for each subgroup (18).

Despite these landmark findings, no study has yet comprehensively
and simultaneously examined the blood proteomic and metabolomic
landscapes in ACPA- and ACPA+ RA. Proteomics provides a detailed
map of the proteins driving cellular signaling pathways and systemic
events in the circulatory system (19, 20), enabling us to observe
immune responses in RA. Meanwhile, metabolomics explores the
biochemical pathways that sustain cellular function, uncovering
metabolic signatures shaped by intrinsic physiology, dietary factors,
lifestyle, and external stimuli (21). By integrating blood proteomics and
metabolomics, we can gain novel insights into the immune and
metabolic processes specific to ACPA- and ACPA+ RA, as well as
the coordinated mechanisms (e.g., enzymes and their substrates or
products) through which proteins and metabolites influence disease
onset and progression (22).

To address this critical knowledge gap, we performed global
(untargeted) proteomic and metabolomic profiling on 120
individuals, comprising 40 patients with ACPA- RA, 40 patients
with ACPA+ RA, and 40 healthy controls. Using controls as a
reference point, we identified subgroup-specific differences in
circulating immune and metabolic features, including complement
proteins and cytokines. We also observed distinct correlation patterns
between molecular features and clinical inflammation measures,
suggesting potential differences in inflammatory regulation across RA
subgroups. This high-resolution, multi-omic profiling study of
circulating biomolecules not only deepens our understanding of the
biological differences between these RA subgroups, but also introduces
a novel strategy—incorporating machine learning—to inform the
development of next-generation digital blood tests for RA.

Materials and methods

Study population, subject enrollment, and
plasma sample collection

The study population consisted of patients with RA attending
the outpatient practice of the Division of Rheumatology at Mayo
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Clinic in Rochester, MN, USA. Eligibility required patients to be
adults 18 years of age or older with a clinical diagnosis of RA by a
rheumatologist, fulfilling the American College of Rheumatology/
European League Against Rheumatism 2010 revised classification
criteria for RA (4). Patients were excluded if they did not
comprehend English, were unable to provide written informed
consent, or were members of a vulnerable population (e.g.,
incarcerated subjects).

RA was categorized into either ACPA- or ACPA+ RA
subgroups based on the titer of anti-CCP antibodies detected by
the Quanta Lite CCP3 IgG enzyme-linked immunosorbent assay
(INOVA Diagnostics). For subgrouping in this study, we used the
manufacturer-recommended cut-off (negative, < 20.0 IU/mL),
consistent with routine clinical practice at our institution. The
single assay and cut-off were applied uniformly for internal
consistency. Importantly, ACPA status was used for subgroup
stratification within RA, not to establish the RA diagnosis itself.

Subjects in the healthy control group were reported as not
having any overt disease or adverse symptoms at the time of sample
collection. Demographic and clinical data, including the numbers of
tender and swollen joints, patient and evaluator global assessments,
CRP (mg/L), BMI (kg/m?®), smoking history, and results for
rheumatoid factor (RF, IU/mL) and anti-CCP antibodies were
collected from the electronic medical records.

Plasma samples from patients with RA were stored in our
ongoing Mayo Clinic Rheumatology Biobank. This biorepository
was created for long-term storage of diverse biological samples (e.g.,
serum, plasma, stool, white blood cells) from patients for use in
research. In addition, plasma samples from healthy donors
participating in the Mayo Clinic Biobank were used as controls.
All methods and procedures were performed in accordance with the
Mayo Clinic Institutional Review Board guidelines and regulations.
All patients provided written informed consent.

Proteomic profiling

Plasma proteins were measured with SomaLogic’s SomaScan
Assay version 4 (23), which simultaneously targets over 7,000
human proteins including cytokines, growth factors, proteases,
and hormones. This platform relies upon protein-capture
SOMAmer (Slow Offrate Modified Aptamer) reagents.
SOMAmers are based on single-stranded, chemically modified
nucleic acids, and are designed to optimize high affinity, slow off-
rate, and high specificity to target proteins. In brief, the multiplexed,
aptamer-based assay measures the relative binding of target
proteins to aptamers in relative fluorescence units (RFUs). After
protein concentrations were converted into corresponding DNA
aptamer concentrations, abundance levels of proteins were
quantified with a DNA microarray.

Data standardization, comprised of normalization, plate scaling,
and calibration, was performed on the raw assay data to remove
systematic biases after microarray feature aggregation. Global
reference standards were established for procedures with controls
on each plate (i.e., run). Individual, quality control (QC), and
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calibrator samples were normalized and calibrated to the
established global reference standards (details described in
Supplementary Methods). In addition, SOMAmer reagents that
represent control or non-human analytes were removed, resulting
in 7,273 proteins for further analysis. Of note, proteins having the
same name but with multiple barcodes (i.e., SeqID) were considered
as separate features.

Metabolomic profiling

Ultra-high-performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS) using Metabolon Inc.’s Discovery
HD4 ™ platform was performed for untargeted metabolomic
profiling. Statistical analyses on untargeted metabolomic data
were performed using scaled imputed data provided by
Metabolon. Briefly, the raw data were normalized to account for
inter-day variation, which is a result of UPLC-MS/MS runs over
multiple days (details described in Supplementary Methods). The
peak intensities were then rescaled to set each metabolite’s median
equal to 1. Missing values were then imputed with the minimum
observed value of the metabolite across all samples, yielding the
scaled imputed data. In addition, metabolites with missing values in
over 20% of the entire samples were removed, resulting in 1,061
metabolites remaining for further analysis.

Identification of phenotype-associated
omic features

Omic features (proteins and metabolites) associated with a
clinical phenotype (study group) were identified using linear
regression analysis coupled with effect size (Cohen’s d)
determination. These analyses were conducted across two pairs of
phenotype comparisons: ACPA- RA vs. controls, and ACPA+ RA
vs. controls. To mitigate potential confounding effects, linear
regression models were adjusted for sex, age, BMI, smoking
history, use of prednisone, use of bDMARDs, and use
of csDMARDs.

The linear regression model for each omic feature is described
in Equation 1, which is:

Y:XTﬂ+s (1)

where Y is the continuous abundance of the omic feature, X is
the vector of predictor variables (including phenotype indicator and
potential confounders), f3 is the vector of coefficients, and € is the
error term. A feature was considered to be associated with the
phenotype (i.e., differentially abundant) if its corresponding
coefficient for the phenotype term was statistically significant (P <
0.01) and if its effect size was above medium (i.e., Cohen’s |d| > 0.5).

For clarification, the use of bDMARDs refers to the prescription
use of any of the following: abatacept, adalimumab, certolizumab,
etanercept, infliximab, rituximab, or tocilizumab. Similarly,
csDMARDs refers to hydroxychloroquine, leflunomide,
methotrexate, or sulfasalazine. Individuals with missing smoking
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history were excluded from models that included smoking as
a covariate.

Functional enrichment of proteins

For a set of proteins, enriched functions defined by Gene
Ontology biological process (GOTERM_BP_FAT) annotations
were identified using DAVID (version 6.8) (24). Enrichment of a
biological process was deemed significant for P-values less than
0.05, determined by a modified one-tailed Fisher’s exact test.

Construction of the phenotype-centric
multi-omic network

The phenotype-centric multi-omic network was constructed
using a three-pronged approach: network inference, network
diffusion, and subnetwork identification. In brief, elastic net
regularization was used to infer a network capturing associations
(i.e., edges) between 8,343 features (i.e., nodes) across all 120 plasma
samples. These features spanned proteomics, metabolomics,
demographic characteristics, and clinical phenotypes (i.e., ACPA-
RA, ACPA+ RA, and controls), integrating data from all samples
across the three study groups. Categorical clinical phenotypes were
represented by one-hot encoding for inclusion in the network.
Subsequently, a random walk with restart (RWR) diffusion
algorithm was applied on the inferred network to prioritize the
selection of features most closely associated with the phenotype. The
resulting subset of selected features of the subnetwork, delineate
those most closely associated with (and thereby most predictive of)
the phenotypes. The following sections provide more details on
the methodology.

Inferring a multi-omic network using
elastic net

Elastic net regularization is a combination of L1 and L2
regularizations, and is effective when p >> #, ie., datasets where
the number of features (p) significantly exceeds the number of
samples () (25). In our approach, each regression treated an omic
feature as the response variable. On the other hand, clinical
variables, such as sex, age, BMI, one-hot-encoded smoking status,
and one-hot-encoded phenotypes, were not used as responses.
Elastic-net regularization identified predictors with non-zero
coefficients; these predictors were considered to be associated with
the response variable.

An undirected graph was then constructed for each feature,
where both response and predictor variables were represented as
nodes, and edges indicated connections between the response
variable and its predictors with non-zero coefficients. Notably, the
clinical phenotype (ACPA- RA, ACPA+ RA, Control) was one-hot
encoded into three binary indicators, yielding three phenotype
nodes. This process was repeated for all features, resulting in
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8,334 individual undirected graphs. Finally, these 8,334 graph
models were merged to formulate a single, all-encompassing
multi-omic network. The elastic net’s loss function used in this
analysis is described in Equation 2, which is:

o p 2 2 b
argmin > (v~ By~ ShB) +4 3 B1+L2E @)
B i=1 j=1 =1

where 7 is the number of samples (1 < i < n; n = 120), p is the
total number of features (1 < j < p; p = 8,341), y is the response
variable, x represents the predictors with the collection of x
excluding y. The hyperparameters A, and A, satisfy A; + A, = 1,
while the ratio between L1 regularization and L2 regularization falls
within 0 < 4;: 4, < 1. The elastic net was implemented using R
package “glmnet” (v4.1.1). Hyperparameters of the elastic net
model were estimated using 10-fold cross-validation, with the
optimal values chosen based on the model’s performance in
cross-validation. Selection of the best model is guided by the
criterion of minimizing the root mean square error.

Network diffusion using random walk with
restart

Random walk with restart (RWR) was used to perform network
diffusion on the previously inferred multi-omic network, aiming to
identify a phenotype-centric multi-omic network. RWR, widely
recognized as a guilt-by-association method, facilitates the
exploration of a network’s topology based on the premise that
functionally similar nodes are often in close proximity to each other
within networks (26). The R package “diftusr”, an implementation
of the Markov random walk, was used to simulate network
diffusion, as described in Equation 3, which is:

pt+l — (1 _ r)A/pt + rPO (3)

where p’ is the vector of initialized nodes, ¢ is a time step, p' is

1 is the vector at the

the vector at the current time step, p
subsequent time step, A’ is a column-normalized version of the
adjacency matrix A, and r is the restart rate. Elements of p’ are
initialized as 1 or 0 to signify the seed node (i.e., sample phenotype)
or all other features, respectively; and normalized to ensure the sum
of the elements in p° equals 1. For calculation simplicity, the
adjacency matrix A only consists of 0 or 1 so that it represents a
graph without weighted edges.

RWR was initialized with the seed vector uniformly distributed
across the three clinical phenotype nodes, treating phenotypes
symmetrically and producing phenotype-proximity scores for all
features. The network diffusion process was conducted using the
default options of the “diffusr” R package, where the restart rate r
(i.e., the probability of the random walker returning to the seed
node in the next step of the walk) is set to 0.5, and the diffusion is
terminated when the L1 norm difference between p' and p'*! falls
below 1.0 x 10™*. Upon completion, the nodes were assigned a
“relevance score” reflecting the probability of the random walker
being present at the corresponding node. These relevance scores
were utilized to rank the network features, with higher scores
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indicating a stronger association with the phenotype. Through this
approach, RWR propagates “importance” throughout the network,
highlighting features closest to the seed nodes. Thus, network
diffusion effectively prioritizes informative features that might
otherwise be masked by less relevant neighbors.

Selection of features associated with
clinical phenotype

Following the RWR-mediated network diffusion, a relevance
score is assigned to each feature reflecting its association with the
phenotype. These scores are then ranked in descending order to
create a hierarchy of feature importance. The top N features (e.g.,
the top 10, top 20, and so on up to all features) are selected from
these ranked scores to construct a phenotype-centric network. (This
network is termed “phenotype-centric” because its construction
starts with the clinical phenotype or study group as the seed nodes,
around which the network is built) The resulting network is a
refined subnetwork, originally derived from the broader multi-omic
network inferred by elastic net. This subnetwork is composed solely
of nodes representing the top N features most strongly associated
with the phenotype. Of note, the nodes within this phenotype-
centric subnetwork are later used as predictors for training a
random forest classifier.

Classification performance of features from
the phenotype-centric multi-omic network

A 5-fold cross-validation scheme was performed to evaluate the
classification performance of multi-omic features from the
aforementioned phenotype-centric network. This evaluation was
conducted on the plasma multi-omic profiles from the three study
groups (ACPA- RA (n = 40), ACPA+ RA (n = 40), and controls (n
= 40)), with the aim of measuring the AUC, accuracy, sensitivity,
specificity, positive predictive value, and negative predictive value
for clinical phenotype classification. Missing values in smoking
history were handled by treating smoking status as a categorical
factor with three levels (Never/Former, Current, Unknown), which
were one-hot encoded into binary variables for inclusion in the
machine learning models.

For each cross-validation fold, the dataset was divided into two
segments: a training set comprising 96 plasma samples (32 from
each group) and a test set with 24 samples (8 from each group). All
steps of the pipeline—including elastic net network inference,
RWR-based feature prioritization, and random forest model
training—were performed exclusively on the training set. The
held-out test set was used only for final evaluation and did not
contribute to feature selection, parameter estimation, or model
fitting. The top N features were selected from this template
network (e.g., the top 10, top 20, and so forth up to all features)
for training a random forest classifier. The classifier was tasked with
predicting the phenotype, e.g., differentiating between ACPA- RA
vs. controls and ACPA+ RA vs. controls on a balanced test set
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comprising 16 samples (8 from each group). Furthermore, the
classifier’s ability to distinguish between RA (combining both RA
subgroups) and controls was tested on a test set of 24 samples (8
ACPA- RA, 8 ACPA+ RA, and 8 controls).

Results
Study design and participant characteristics

This retrospective, observational cohort study consists of a total
of 120 participants categorized into three study groups: patients
with ACPA-RA (n =40), patients with ACPA+RA (n =40), and
healthy (i.e., non-diseased) controls (n=40). Table I,
Supplementary Table S1, and Supplementary Figure S1 provide
the demographic and clinical characteristics of the study
participants. All three study groups were matched based on
subjects’ age, BMI, race, sex, and smoking history. At the time of
plasma sample collection (Materials and Methods), all RA patients
had established disease with a mean age of 57.9 years (min-max
range: 32-76 years); and the disease activity of patients varied from
remission to high disease activity, with a mean Disease Activity
Score 28 using C-reactive protein (DAS28-CRP) (27, 28) of 3.5
(min-max range: 1.5-7.5). Subsets of patients were on treatment
with methotrexate (MTX, 51% or 41 of 80), prednisone (25% or 20
of 80), tumor necrosis factor inhibitor biologic disease-modifying
anti-rheumatic drugs (TNFi-bDMARDs) (14% or 11 of 80), non-
TNFi-bDMARDs (8% or 6 of 80), or non-MTX conventional
synthetic disease-modifying anti-rheumatic drugs (non-MTX
csDMARD:s) (31% or 25 of 80).

An overview of our study design is presented in Figure 1. We
conducted high-throughput, multi-omic measurements on plasma
samples from all 120 study participants. We utilized the SomaScan
Assay by SomaLogic (Boulder, CO, USA) for proteomic profiling,
and the Discovery HD4™ platform by Metabolon (Durham, NC,
USA) for metabolomic profiling (Materials and Methods). In total,
we analyzed 8,334 biomolecular features, including 7,273 proteins
and 1,061 metabolites, to identify associations with the three study
groups. Our analyses included statistical comparisons, set-based
analyses, and network inference techniques to investigate group-
specific patterns. Additionally, we applied a machine learning
approach that integrated a network-based feature selection
method to develop a computational framework for phenotype
prediction. For consistency, we refer to all proteins discussed in
the results by their corresponding gene symbols.

RA subgroup-specific characteristics

We next assessed group-wise heterogeneity in biomolecular
profiles across ACPA- RA, ACPA+ RA, and controls. In within-
omic visualizations (Figures 2A-B), proteins showed clearer group
differentiation than metabolites, although metabolomic profiles also
exhibited detectable separation. Given the substantial disparity in
feature dimensionality (proteins: 7,273; metabolites: 1,061), we
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TABLE 1 Demographic and clinical characteristics of study participants.

ACPA- RA (n = 40)

ACPA+ RA (n = 40)

Controls (n = 40)

10.3389/fimmu.2025.1667662

P-value

Sex (female/male) 28/12 29/11 28/12 1.0
Age (years)
Mean + SD [Q1, Q3] 59.1 + 10.5 [55.0, 65.0] 56.8 + 10.4 [50.5, 64.3] 59.1 + 10.5 [55.0, 65.0] 0s
Range (min-max) 32.0-76.0 35.0-74.0 32.0-76.0 :
Race (n, %)
White 40 (100%) 40 (100%) 40 (100%) 1.0
Disease duration (years)
M + SD [Q1, Q3 2.6 £2.8[0.1, 3.9 2.8 £26[0.1, 4.5
can  SD [Q1, Q3] [0, 39] (0.1, 45] NA 066
Range (min-max) 0.1-9.5 0.0-9.3
BMI
Mean + SD [Q1, Q3] 30.7 + 8.1 [25.4, 34.0] 27.7 £ 5.6 [25.2, 30.4] 30.2 + 8.3 [23.7, 34.3] 027
Range (min-max) 19.4-58.2 18.0-43.5 18.3-51.6 ’
Smoking history (n)
Current 2 1 4
Never/Former 38 39 32 0.29
Unknown 0 0 4
ESR (mm/hr)
Mean + SD [Q1, Q3] 13.1 + 159 [3.8, 16.3] 13.3 + 12.8 [4.0, 20.5]
Range (min-max) 1.0-73.0 0.0-42.0 N/A 0.68
Unknown 0 2
CRP (mg/L)
Mean + SD [Q1, Q3] 15.3 £ 26.1 [2.9, 10.9] 6.8 +£9.4 (2.9, 4.9]
Range (min-max) 2.9-113.5 2.9-54.0 N/A 0.09
Unknown 0 1
RF (Yes/No) 14/26 28/12 N/A 0.003
DAS28-CRP
Mean + SD [Q1, Q3] 39+ 1.7[24,5.1] 3.1+ 1.4[1.7,4.2]
Range (min-max) 1.5-7.5 1.5-6.4 N/A 0.07
Unknown 4 3
Treatment (n, %)
Methotrexate 19 (48%) 22 (55%) 0.65
Prednisone 12 (30%) 8 (20%) 0.44
TNFi-bDMARDs* 3 (8%) 8 (20%) N/A 0.19
Non-TNFi-bDMARDs? 4 (10%) 2 (5%) 0.68
Non-MTX-csDMARDs* 10 (25%) 15 (38%) 0.33

ACPA- RA, anti-citrullinated protein antibody-negative rheumatoid arthritis; ACPA+ RA, anti-citrullinated protein antibody-positive rheumatoid arthritis; Q1/Q3, lower/upper quartile of the
interquartile range; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; DAS28-CRP, Disease Activity Score 28 using C-reactive protein; N/A, not available;

“adalimumab, certolizumab, and etanercept; l3’abatacept, rituximab, and tocilizumab; )‘hydroxychloroquine, leflunomide, and sulfasalazine. P-values for categorical and continuous variables were

obtained using the Fisher’s exact test and Kruskal-Wallis test, respectively.

refrain from cross-omic claims about relative separation magnitude
and confine interpretation to within-omic differentiation.

Building on these findings, we investigated the associations
(specifically, correlations) between omic features and clinical
characteristics within the ACPA- RA and ACPA+ RA subgroups.
The scatter plots in Figures 2C-H illustrate the correlations of
proteins and metabolites with three clinical parameters: the blood
inflammatory markers erythrocyte sedimentation rate (ESR) and C-
reactive protein (CRP), and DAS28-CRP (a quantitative measure of
disease activity) (Supplementary Tables S2-S7). We observed
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substantially overlapping correlation patterns between proteins
and blood inflammatory markers (ESR and CRP) in both RA
subgroups. More specifically, while certain proteins exhibited
similar correlation strengths across ACPA— RA and ACPA+ RA,
others demonstrated subgroup-specific differences in their
relationship with inflammatory markers (Figures 2C, D).
However, correlations between proteins and DAS28-CRP showed
a notable shift, with patterns differing between the two subgroups
(Figure 2E). In contrast, metabolites in ACPA— RA displayed
unique correlation patterns relative to ACPA+ RA, particularly
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Integrative multi-omic approach to identify RA subgroup-specific biomolecular signatures. This study involves three study groups: Patients with
ACPA- RA (n = 40), patients with ACPA+ RA (n = 40), and healthy (i.e., non-diseased) controls (n = 40). Plasma samples were analyzed using
untargeted proteomics (7,273 proteins) via an aptamer-based technology (SomaLogic, SomaScan Assay v4); and metabolomics (1,061 metabolites)
via LC-MS/MS (Metabolon, Discovery HD4™ platform). Comparative analyses between study groups (ACPA— RA vs. controls and ACPA+ RA vs.
controls) were performed to: (1) identify characteristic blood molecules and their associated biomolecular pathways (e.g., immune responses,
metabolic reaction pathways); (2) explore intra- and inter-omic relationships; and (3) evaluate the potential of blood molecules to distinguish study
groups using machine learning with a network-based feature selection scheme.

with both blood inflammatory markers and DAS28-CRP
(Figures 2F-H). These patterns suggest that the relationships
between molecular features and clinical markers of inflammation
differ between RA subgroups, potentially reflecting subgroup-
specific molecular correlates of disease activity. We elaborate
below on select examples.

In the ACPA- RA subgroup, our analysis found the Matrix
Metallopeptidase 19 (MMP19) protein as having the most positive
correlation with ESR (p = 0.67 and P = 2.24 x 107°) (Figure 2G;
Supplementary Table S2). This robust correlation did not extend to
the ACPA+ RA subgroup, wherein the correlation between MMP19
and ESR was not significant (p = -0.17 and P = 0.30). Interestingly,
MMP19 also correlated positively with CRP (p = 0.49 and P = 1.47
X 10_3) in ACPA- RA, but again, this association was absent in
ACPA+ RA (p = 0.03 and P = 0.87) (Figure 2D; Supplementary
Table S3). While the specific role of MMP19 in RA is yet to be fully
elucidated, it has been previously identified as an autoantigen in the
inflamed synovium of RA patients (29). Our findings may position
MMP19 as a candidate for further investigation into its mechanistic
contributions to the distinct inflammatory profile of ACPA- RA.

Within the ACPA- RA subgroup, our analysis revealed five
metabolites (1-palmitoyl-2-stearoyl-GPC (16:0/18:0), 5-
(galactosylhydroxy)-lysine, N-stearoyl-sphingosine (d18:1/18:0),
4-hydroxyphenylpyruvate, and quinolinate) that had significant
positive correlations with ESR, each with a Spearman’s p
exceeding 0.4 and a corresponding P-value below 0.05 (Figure 2F;
Supplementary Table S5). Strikingly, within the ACPA+ RA
subgroup, these metabolites either exhibited negative correlations
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(p <0and P <0.05) or showed no significant correlation (P = 0.05).
In contrast, within the ACPA- RA subgroup, we identified fourteen
metabolites, including biliverdin, bilirubin (Z,Z), and a bilirubin
degradation product (C;7H,oN,0Os), that demonstrated significant
negative correlations (p < -0.4 and P < 0.05) with ESR (Figure 2F;
Supplementary Table S5). In the ACPA+ RA subgroup, however,
these correlations were either positive (p > 0 and P < 0.05) or non-
significant (P 2 0.05).

Previous studies in RA have reported negative correlations
between bilirubin-derived metabolites and disease activity in RA
(30-32). Considering these reports, we investigated the correlation
between these metabolites and clinical characteristics in our dataset
to identify potential differences between the ACPA- and ACPA+
RA subgroups. Our analysis confirmed that two bilirubin-derived
metabolites (bilirubin degradation product [C;6H;3N,0s5] and
bilirubin [E,Z or Z,E]) exhibited negative correlations with
DAS28-CRP (p < -0.4 and P < 0.05) in both the ACPA- and
ACPA+ RA subgroups (Figure 2H; Supplementary Table S7).
However, we identified disparate correlations between bilirubin-
derived metabolites and the acute phase inflammatory markers
(ESR and CRP) in ACPA- and ACPA+ RA. For instance, in the
ACPA- RA subgroup, biliverdin and bilirubin (Z,Z) were both
negatively correlated with ESR (biliverdin: p = -0.52 and P = 5.11 x
10 bilirubin (Z,Z): p = -0.48 and P = 1.73 x 10°) and CRP
(biliverdin: p = -0.45 and P = 3.28 x 1073; bilirubin (Z2,2): p=-0.43
and P = 5.19 x 107) (Figures 2F-G; Supplementary Tables S5, S6).
Conversely, within the ACPA+ RA subgroup, neither biliverdin nor
bilirubin (Z,Z) showed significant correlations with ESR and CRP.
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FIGURE 2

Comparative plasma omics analysis highlights RA subgroup-specific correlations with clinical markers. (A, B) Ternary plots showing the distribution
of omic feature abundances (mean values) among ACPA- RA, ACPA+ RA, and controls. Each point within the triangle represents a specific protein
(A) or metabolite (B), with coordinates corresponding to the proportional mean abundances of the feature across the three groups. For example,
features clustered near a specific corner are relatively more abundant in that group. (C—E) Spearman correlation (p) analysis between proteins and
ESR, CRP, and DAS28-CRP, respectively. (F-H) Spearman correlation (p) analysis between metabolites and ESR, CRP, and DAS28-CRP, respectively.
The x-axis shows Spearman'’s p values in the ACPA- RA group, and the y-axis shows Spearman'’s p values in the ACPA+ RA group. The orange

trendline indicates the relationship between Spearman’s p values for ACPA-

RA (x-axis) and ACPA+ RA (y-axis). Each point represents the correlation

of a specific protein or metabolite with the respective clinical characteristic. ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; DAS28-

CRP, disease activity score 28 using CRP.

Plasma proteomic profiling in ACPA- RA
and ACPA+ RA

The identification of distinct correlations in clinical
characteristics and biomolecular features between ACPA- and
ACPA+ RA motivated us to further investigate the differences in
the abundance of individual plasma proteins between study groups.
For this, we conducted a differential abundance analysis, selecting
proteins with significant group-level differences (P < 0.01 for the
regression coefficient and Cohen’s |d| > 0.5) while controlling for
potential confounding factors (i.e., sex, age, BMI, smoking history,
use of prednisone, use of bDMARDs, and use of csDMARDs)
(Materials and Methods). This analysis was structured into two
pair-wise group comparisons: ACPA- RA vs. controls, and ACPA+
RA vs. controls. Among 7,273 proteins, we identified 24 proteins
with higher abundance, and 49 with lower abundance, in ACPA-
RA compared to controls; and ACPA+ RA showed fifteen proteins
with higher abundance, and three with lower abundance, than
controls (Figures 3A-B; Supplementary Tables S8, S9).

Importantly, seven proteins were commonly elevated in both
ACPA- and ACPA+ RA relative to controls, including immune-
related proteins such as C5, CFI, CXCL13, PGAM1, and PGAM2.
These overlapping proteins may reflect shared systemic
inflammatory processes across RA subgroups. Additionally, three
proteins (CLIC3, COL15A1, and NAMPT) were found to be
consistently lower in both RA subgroups compared to controls,

Frontiers in Immunology

08

suggesting potentially common pathways of downregulation or
depletion associated with RA pathophysiology.

Proteins that were more abundant in each of the two RA
subgroups compared to controls (24 proteins in ACPA- RA and
fifteen proteins in ACPA+ RA) were both (or commonly) enriched in
inflammation-related Gene Ontology (GO) terms, such as “Immune
response” (GO:0006955), “Complement activation” (GO:0006956),
and “Adaptive immune response” (G0:0002250) (Supplementary
Tables S10, S11). Notably, “Acute-phase response” (GO:0006953)
was only enriched in proteins more abundant in ACPA- RA,
whereas “Innate immune response” (GO:0045087) and “Pyridine-
containing compound catabolic process” (GO:0072526) were only
enriched in proteins more abundant in ACPA+ RA.

To further characterize subgroup-specific immune signatures, we
examined differences in cytokines and complement proteins using
curated lists from ImmPort (33) and the KEGG pathway
“Complement and coagulation cascades” (hsa04610). A total of five
complement proteins (A2M, CFB, CFD, CFHR5, and F9) and two
cytokines (ILIRN and TNFRSF17) were differentially abundant
specifically in ACPA- RA, whereas only one complement protein
(C9) was differentially abundant specifically in ACPA+ RA
(Figure 3D). In addition, to assess the robustness of these findings
and account for treatment-related confounding, we repeated the
analysis in a sub-cohort of treatment-naive individuals (ACPA- RA,
n = 14; ACPA+ RA, n = 12) using the same thresholds. In this subset,
CFB, CFD, CFHRS5, and IL1IRN remained specific to ACPA- RA, and

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1667662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1667662

Hur et al.
A
49 proteins more 24 proteins more 3 proteins more 15 proteins more
abundant in Controls abundant in ACPA- RA abundant in Controls abundant in ACPA+ RA
6- 64 ;
PGAM1 *— NAMPT
PPIC >
NAMPT
L ® . CLcs SMTN © PGAM2
L]
COL15A1 ot ‘
& 4 // iy \ = H ‘ P oxeLs
B RGMB® '//CFD CFB\. ../STATG B ALDH7A1
[L? IGFBP6_® e Cxort i ——HP n.? CLIC3 | el
% s ol ~ |coLisAt ‘ ® qo—CFI
=4 (XY oo o 3 ‘\
T ool 7/)7. > 03 | T 5l PGAM2
P P<0.01 P<0.01 ERMN
CXCL13 THSD7A C5
01 : 01 :
T T T T T T T T T T
-1.0 -0.5 00 05 10 -1.0 -05 0.0 05 1.0
Effect size (Cohen's d) Effect size (Cohen's d)
C
e.g., C5, CFl, CXCL13, PGAM1, PGAM2
More abundant in ACPA—- RA More abundant in ACPA+ RA
compared to Controls compared to Controls
e.g., CFB, CFHR5, CXorf38, F9, e.g., BCAP29, C9, MSRB1, THSD7A
IL1RN, STAT3
More abundant in Controls More abundant in Controls
compared to ACPA- RA compared to ACPA+ RA
e.g., CD93, CDH5, CFD, CFL2,
S100A10, TNFRSF17
CLIC3, COL15A1, NAMPT
D
Complement proteins Cytokines
Cohen’s d
: 1.0
ACPA-RA : Higher in
vs. Controls . . © . ‘ . ‘ ‘ . ‘ ‘ . ‘ 0.5 RA
; 0.0
H Higher in
ACPA+RA . ) ; : -05
vs. Controls | © . ‘ 0 ¢ . ‘ ‘ : Conirgis
; -1.0
T T T T T T T T T T T T T
3 % ¢ 8 % § % & T g £ 3 ¢Z
< - = w o I - o ) = o
= L) X r z T P
o & 3 @
3
*P<0.01 and Cohen’s Idl >0.5 | () Psoo0s (D0005<P=001 0001 <P<005
FIGURE 3

Differential protein abundances reveal contrasting characteristics between ACPA—- RA and ACPA+ RA. (A, B) Two different pair-wise group
comparisons (ACPA— RA vs. controls and ACPA+ RA vs. controls) were conducted to identify differentially abundant proteins. Among the 7,273
measured proteins, those that pass a statistical significance (P-value) threshold (i.e., corresponding regression coefficient of P < 0.01 in a model
adjusted for potential confounders) and an effect size threshold (i.e., Cohen'’s |d| > 0.5) were considered significantly associated with the
corresponding RA subgroup. Age, sex, BMI, smoking history, use of prednisone, use of bDMARDs, and use of csDMARDs were considered as
potential confounders. (C) Venn diagram illustrating the overlap and uniqueness of differentially abundant proteins found in the pair-wise group
comparisons. (D) Bubble plot showing complement proteins and cytokines associated with at least one RA subgroup. The size of the bubble
represents statistical significance (P-value), while the color of the bubble indicates effect size (Cohen's d). Asterisks (*) indicate proteins meeting the
study-wide significance threshold (P < 0.01 and Cohen’s |d| > 0.5). C9 (1) and C9 (2) represent the same complement protein measured by different
SOMAmer reagents included in the SomaScan platform.
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C9 remained specific to ACPA+ RA, providing further insight into the
RA subgroup-specific nature of these immune-related alterations
(Supplementary Tables S12, S13).

Plasma metabolomic profiling in ACPA- RA
and ACPA+ RA

We next investigated plasma metabolites to uncover subgroup-
specific metabolic traits. For this, we conducted a differential abundance
analysis on 1,061 metabolites, using thresholds of P < 0.01 for the
regression coefficient and Cohen’s |d| > 0.5 while adjusting for potential
confounders (Materials and Methods). We found that in ACPA- RA,
five metabolites were significantly more abundant, and 19 were less
abundant, than in controls (Figure 4A; Supplementary Tables S14, S15).
In ACPA+ RA, there were two metabolites with higher abundance, and
four with lower abundance, relative to controls (Figure 4B).

Notably, two chlorinated hydroxybenzoic acids (3,5-dichloro-2,6-
dihydroxybenzoic acid and 3-bromo-5-chloro-2,6-dihydroxybenzoic
acid) were commonly elevated in both RA subgroups compared to
controls. In contrast, three metabolites (caprate (10:0), laurate (12:0),
and octadecanedioate (C18-DC)) were elevated only in ACPA- RA,
suggesting subgroup-specific metabolic differences (Figure 4C). To
assess the influence of treatment, we repeated the analysis in a sub-
cohort of treatment-naive individuals (ACPA- RA, n = 14; ACPA+
RA, n = 12), applying the same statistical thresholds. In this subset,
caprate (10:0) remained specifically elevated in ACPA- RA, while both
chlorinated benzoic acid derivatives continued to be elevated in both
RA subgroups compared to controls (Supplementary Tables S16, S17).

To investigate metabolic pathway-level alterations between study
groups, we performed enrichment analysis using a one-tailed Fisher’s
exact test on differentially abundant metabolites. Due to the limited
number of metabolites meeting our primary significance criteria (P <
0.01 and Cohen’s
(P < 0.05 and Cohen’s |d| > 0.5) to ensure sufficient coverage for
pathway-level analysis. Under this threshold, we found that in ACPA-
RA, twelve metabolites were more abundant and 33 were less abundant

d| > 0.5), we applied a relaxed significance threshold

than in controls; in ACPA+ RA, seven and seventeen metabolites were
more and less abundant than in controls, respectively. For this expanded
set of differential features, we observed significant enrichment of
pathways related to lipid metabolism (carnitine, sphingosine, and
medium-chain fatty acid metabolic pathways) in ACPA- RA; and
those related to pyrimidine and endocannabinoid metabolism in ACPA
+ RA (Figure 4D). Conversely, metabolites that were reduced in
abundance in both ACPA- and ACPA+ RA compared to controls
were significantly enriched in arginine and proline metabolic pathways,
suggesting shared alterations in urea cycle-linked metabolism.

Multi-omic network inference to elucidate
phenotype-associated biomolecular
features

We next addressed the integration of proteomic and metabolomic
data to uncover cross-omic relationships, which is a task complicated
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by the complex nature of multi-omic interactions. For this, we applied
elastic net penalized regression to infer intra- and inter-omic
relationships while incorporating clinical phenotypes (ACPA- RA,
ACPA+ RA, and controls) and demographic data (see Materials and
Methods for details). This analysis produced an extensive multi-omic
network comprising 8,341 nodes and 250,092 edges. (Here, nodes
represent proteins, metabolites, and demographic characteristics, while
edges denote associations between them.) To identify phenotype-
relevant features (i.e., those associated with ACPA status in RA), we
utilized a network diffusion technique (i.e., random walk with restart)
that navigates the network’s topological structure to identify features
most closely linked to the phenotype node (Materials and Methods).
This approach refined the network to a focused subnetwork of 50
biomolecular features most strongly connected to the clinical
phenotype (Figure 5A). To maintain neutrality and out-of-sample
generalizability, we inferred the phenotype-centric network solely from
observed data, deliberately excluding external biological priors. This
unbiased, data-driven approach is designed to identify parsimonious,
low-redundancy cross-omic feature sets that retain high predictive
performance and remain amenable to independent validation.

The expression patterns of the prioritized features highlighted
subtle, yet discernible, differences among the three phenotypic
groups (Figure 5B). Interestingly, the classifier features showed
only moderate concordance with the univariate signals from our
prior statistical analysis; several proteins/metabolites that were not
differentially abundant hits received high multivariate importance,
consistent with complementary, non-redundant information
captured by the integrative model. As is well recognized in multi-
omics analyses, classifier and univariate results need not coincide
perfectly: a feature can be highly predictive through multivariate
dependence (e.g., acting as a network “connector” or reducing
redundancy) even if it is not among the strongest by univariate
significance, whereas a univariately significant marker may become
redundant once correlated markers are modeled jointly.

Classification of RA phenotypes using
network-based biomolecular features

While we applied a covariate-adjusted linear regression strategy
for differential testing (interpretability), we also developed a
predictive classification pipeline comprising elastic-net network
inference (sparse cross-omic associations), phenotype-seeded
random walk with restart (feature prioritization), and random
forest classification (nonlinear prediction) (Materials and
Methods). In other words, we extended the network inference
approach into a classification framework, leveraging prioritized
network features to build predictive models of RA phenotypes.
For this, we implemented a classification framework using a 5-fold
cross-validation scheme. In each fold’s training dataset, a multi-
omic network was first inferred using elastic net penalized
regression while integrating phenotypic and demographic data.
Subsequently, the random walk with restart algorithm was
applied to identify a subset of features most closely associated
with the phenotypes. These prioritized features were then used as
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FIGURE 4

Metabolomic profiles and pathway enrichment analyses reveal differences between ACPA- RA and ACPA+ RA. (A, B) Pair-wise group comparisons
(ACPA- RA vs. controls and ACPA+ RA vs. controls) were conducted to identify differentially abundant metabolites. Among the 1,061 metabolites
analyzed, those demonstrating a significant regression coefficient (P < 0.01 in a model adjusted for potential confounders) and an effect size of
Cohen’s |d| > 0.5 were considered to be differentially abundant. Age, sex, BMI, smoking history, use of prednisone, use of bDMARDs, and use of
csDMARDs were considered as potential confounders. (C) Venn diagram showing the overlap of metabolites associated with each subgroup.

(D) Metabolic pathway analysis (using Metabolon's super-pathway and sub-pathway annotations) revealed distinct pathways enriched in metabolites
that were found to be associated with the ACPA- RA and ACPA+ RA subgroups. Statistical enrichment was determined using a modified one-tailed

Fisher's exact test (P < 0.05).

inputs to a random forest classifier to predict group membership in

the test dataset within cross-validation (Materials and Methods).

Our network-based machine learning strategy differentiated
ACPA- RA patients from controls with an area under the
receiver operating characteristic curve (AUC) of 0.92; ACPA+ RA
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patients from controls with an AUC of 0.93; and RA patients
(combining ACPA- and ACPA+ RA) from controls with an AUC
of 0.93 (Table 2). To provide more granular insight, we report in
Supplementary Table S18 the full set of performance metrics (AUC,
accuracy, Fl-score, Matthews correlation coefficient), along with
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nodes signify non-zero regression coefficients. All edges in the undirected graph have equal weight. The clinical phenotype (ACPA— RA, ACPA+ RA,
Control) was one-hot encoded into three binary indicators, yielding three phenotype nodes in the network (green nodes located in the middle).
Omic features closely linked to a clinical phenotype were calculated using a random walk with restart (RWR) approach (see Materials and Methods
for a details). Briefly, the phenotype was used as the starting seed for RWR with a 50% chance of being the restart location of the random walker
(restart probability r = 0.5). For visual clarity, a focused subnetwork comprising the top 50 biomolecules with the closest associations to the
phenotype node (based on the network topology) is presented. (B) Heatmap showing Z-scores of the mean abundance of a network feature in each
study group (n = 40 samples per group). Features that were previously identified as differentially abundant in RA subgroups compared to controls

are marked with an asterisk (*).

misclassification counts (TN, FP, FN, TP), across different
subnetwork cutoffs. Notably, our phenotype classification strategy
using both multi-omic datasets generally outperformed models
trained on single-omic datasets, displaying the value of
integrating proteomic and metabolomic data. In addition, across
all nine classification tasks (three pair-wise phenotype comparisons
x three data modalities), the network-guided approach achieved the
highest AUC in most cases and consistently delivered the best
classification accuracy (Supplementary Table S19). Relative to
models trained without feature selection, accuracy improved by
up to 28 percentage points; compared with standard univariate
filters (e.g., ANOVA F-test, mutual information), the network
approach matched or exceeded AUC in most settings and
produced markedly higher accuracy. These findings indicate that
random-walk-prioritized features capture complementary cross-
omic structure and provide a robust foundation for classification.
In summary, compared to the diagnostic sensitivity of standardized
serological ACPA tests (30-60%), our integrative multi-omic
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approach could demonstrate a substantial improvement in
distinguishing RA patients from controls, particularly in ACPA-
RA where clinical diagnosis remains challenging.

Discussion

Our integrative multi-omic analysis in plasma revealed that
ACPA- RA and ACPA+ RA differ across multiple data modalities,
suggesting that these subgroups may have distinct disease biology
rather than varying along a single RA spectrum. While prior studies
have largely focused on the absence or presence of ACPA as the
defining feature of these subgroups, our findings suggest that
ACPA- and ACPA+ RA differ at multiple molecular levels. These
results not only challenge the conventional view that ACPA- RA is
simply a seronegative variant of ACPA+ RA, but also highlight the
potential for multi-omic profiling to refine RA classification and
improve diagnostic and therapeutic strategies.
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TABLE 2 RA classification performance in 5-fold cross-validation.

AUCP (mean
+ SD)

ACPA- RA vs. controls

Classification

task®

+ SD) + SD)

Multi-omic 0.92 +0.08 91.3% + 7.1%
Proteomic 0.91 +0.08 87.5% * 8.8%
Metabolomic 0.90 £ 0.12 88.8% + 12.0%

Accuracy (mean = Sensitivity (mean = Specificity (mean

92.5% + 6.8%
90.0% =+ 10.5%
90.0% + 10.5%

10.3389/fimmu.2025.1667662

NPV? (mean
+ SD)

PPVY (mean

+ SD) + SD)

90.0% + 16.3%
85.0% + 10.5%
87.5% + 15.3%

92.0% + 12.1%
86.0% *+ 9.2%
88.6% + 13.6%

93.1% + 6.4%
89.8% + 9.8%
89.6% + 11.7%

ACPA+ RA vs. controls

Multi-omic 0.93 + 0.06 88.8% + 5.2% 85.0% + 10.5% 92.5% + 11.2% 93.3% + 9.9% 86.9% + 8.2%

Proteomic 0.85 + 0.09 81.3% + 12.5% 72.5% + 22.4% 90.0% + 16.3% 90.0% + 14.1% 78.7% + 14.6%

Metabolomic 0.85 + 0.12 82.5% + 8.1% 80.0% + 11.2% 85.0% + 20.5% 87.9% + 16.7% 82.3% + 10.6%
RA vs. controls

Multi-omic 0.93 + 0.04 87.5% + 5.1% 96.3% + 5.6% 70.0% + 16.8% 87.0% + 6.3% 92.2% + 10.8%

Proteomic 0.83 + 0.08 81.7% + 6.3% 97.5% + 3.4% 50.0% + 17.7% 79.9% + 6.0% 91.7% + 11.8%

Metabolomic 0.87 +0.13 82.5% + 6.8% 96.3% + 5.6% 55.0% + 30.1% 82.4% + 10.2% 93.1% + 10.1%

“Three types of classifiers were trained for each classification task: “Multi-omic” used all omic features for network inference, feature selection, and classifier training, while “Proteomic” and

“Metabolomic” used solely protein and metabolite components, respectively. The classifier was tested using various cut-offs of subnetwork sizes (i.e., total number of nodes or features) and
performance metrics were reported based on the optimal (i.e., highest AUC) subnetwork size. The number of study participants in the ACPA- RA, ACPA+ RA, controls, and total RA (ACPA-
RA and ACPA+ RA combined) are 40, 40, 40, and 80, respectively. DAUC, area under the receiver operating characteristic curve. YPPV, positive predictive value. éSNPV, negative predictive value.

Instances where the denominator in the NPV formulas would be zero are excluded from the calculation. Supplementary Table S18 provides the complete set of performance metrics across

different subnetwork cutoffs.

ACPA- RA exhibited differentially abundant proteins in
immune-related pathways, including acute-phase and
complement components—differences that persisted in treatment-
naive individuals. Notably, three complement proteins (CFB, CFD,
and CFHR5) were differentially abundant exclusively in ACPA-
RA, and these differences persisted in the treatment-naive sub-
cohort. Previous studies have reported that CFB gene expression in
synovial tissue correlates with RA disease activity (34), suggesting a
possible role for complement activation in local joint inflammation.
While our results pertain to protein levels in plasma rather than
gene expression in synovial tissue, the elevated CFB levels do align
with previously reported transcriptional patterns. While CFB and
CFD are both involved in the alternative complement pathway,
functional evidence is currently more robust for CFD. In particular,
studies using the collagen antibody-induced arthritis (CATA)
murine model have shown that CFD is required for disease
induction, as CFD™~ C57BL/6 mice did not develop arthritis (35).
Although the animal model does not fully recapitulate human RA,
these observations highlight a potential role for alternative pathway
components (such as CFD) in shaping inflammatory responses.
Our findings raise the possibility that complement activation may
be differentially regulated in ACPA- RA, but further mechanistic
studies will be needed to establish its relevance to human disease.

In addition to complement components, anti-inflammatory
cytokine Interleukin 1 receptor antagonist (ILIRN) was also
elevated specifically in ACPA- RA, including in treatment-naive
individuals. While IL1 is a known therapeutic target in RA (36),
upregulation of ILIRN in ACPA- RA may reflect a compensatory
response to inflammation rather than a deficiency in ILI inhibition.
This raises the possibility that IL1 targeted therapies may have
differing relevance across RA subgroups, though further studies are
needed to explore this hypothesis.

We acknowledge a few limitations of this study. First, while we
utilized cross-validation to assess the performance of our random
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forest classification models, the ideal scenario would involve testing
the classifiers on an independent validation cohort for a more
stringent evaluation of our model’s generalizability. Second, the
composition of our three study groups (40 persons per cohort) is
not a full representation of the broad RA and healthy population, as
the majority of our recruited participants were of White race mostly
from the Midwest region of the United States. This limits the
generalizability of our findings. Future studies with ethnically and
geographically diverse cohorts will be necessary for more robust
insights regarding ACPA- RA. Third, ACPA- RA itself is a
heterogeneous entity that may encompass RF-positive, erosive, or
genetically distinct subgroups. Such heterogeneity may obscure
biologically meaningful differences between groups, thereby
limiting the interpretability of observed molecular patterns.
Future multi-omic studies would benefit from stratified designs
that account for clinical, serologic, and genetic variation within
ACPA- RA to more precisely delineate subgroup-specific
signatures. Fourth, heterogeneity in disease activity within the
ACPA- and ACPA+ RA subgroups warrants careful
interpretation of our results. Our within-subgroup sensitivity
analyses indicate that while disease-activity heterogeneity
contributes some noise, it is unlikely to be the primary driver of
the subgroup-vs.-control differences. Since the independence of
ACPA status and disease activity remains uncertain, future
studies with more balanced or stratified disease activity
distributions will be important to disentangle autoantibody status
from disease-activity effects. Fifth, we lose most of the significant
“hits” in our statistical analyses after Benjamini-Hochberg multiple
hypothesis correction. This could be attributed to multiple factors
including a lack of strong differences in biomolecular features
between study groups, and the very large number of tests
resulting from the high dimensionality of our screening
platforms. To mitigate the risk of false discoveries, we carefully
designed our cohort selection and applied multiple measures to
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address possible confounders, such as adjusting for demographic
factors and medication effects in our statistical analyses and
considering effect size (Cohen’s d) as an additional criterion.
Sixth, treatment heterogeneity represents a potential confounding
factor. Although we adjusted for medication use (bDMARDs,
c¢sDMARDs, and prednisone) in our linear regression models, the
composition of treatments differed between ACPA- and ACPA+
RA groups. This raises the possibility that some observed
biomolecular differences may reflect treatment effects rather than
underlying biology. Seventh, although we utilized current state-of-
the-art platforms, they capture only a portion of the vast and
complex biomolecular landscape in blood. Consequently, this
could result in missing important associations with proteins and/
or metabolites that could not be profiled. Future advancements in
profiling technologies could help mitigate this concern. Eighth,
although our machine learning strategy showed high accuracy in
distinguishing ACPA- RA patients from controls, it did not account
for environmental and lifestyle factors. Not incorporating these
factors could potentially hamper how accurately our network
inference strategy identifies disease-relevant connections.
Therefore, a future study incorporating additional data (e.g., diet,
exposome) may enhance the classification performance of our
approach. Ninth, while our statistical analyses accounted for BMI,
we lacked patient data on metabolic syndrome comorbidities, such
as type 2 diabetes and dyslipidemia. The extent to which potential
metabolic comorbidities might have impacted our findings remains
a topic of future study. Finally, we did not include disease controls
such as other inflammatory arthritides. The current analysis
focused only on ACPA- RA and ACPA+ RA, raising questions
about the specificity of our findings to RA and whether they are
applicable to other autoimmune diseases. Future research
incorporating disease controls is recommended to validate and
extend our findings.

Despite these limitations, our study showcases the transformative
potential of multi-omic analyses in understanding subgroup-specific
features in RA. By identifying distinct blood protein and metabolite
patterns, we provide a strong foundation for future research to
validate these findings and explore the biomolecular pathways
driving these differences. As a discovery-phase study, our findings
highlight the need for translational follow-up, including validation in
independent cohorts and assessment of key biomolecules using
targeted assay platforms such as ELISA. These efforts could
determine whether the identified molecules—particularly those
elevated in ACPA- RA—may serve as practical, blood-based
biomarkers to supplement existing serologic tests for RA diagnosis.
In addition, as we move toward the era of classifying patients based
on their biomolecular features (37), we encourage researchers
worldwide to build upon our findings using the publicly accessible,
de-identified multi-omic datasets we have made available. Through
collaborative efforts, we aim to deepen the understanding of
seronegative RA, enabling the development of targeted treatment
strategies and improving patient outcomes by addressing the unique
mechanisms underlying this disease subgroup.

Finally, to bridge our research findings to routine rheumatology
practice—and to complement existing ACPA/RF serology with a
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minimally invasive, plasma-based digital readout—we outline a
pragmatic path to implementation. Specifically, to facilitate
clinical translation of the proposed classification approach into a
clinically applicable tool for individualized patient assessment, we
envision (i) locking down a minimal targeted panel with a fixed
decision rule or algorithm; (ii) conducting CLIA-concordant
analytical validation; and (iii) performing prospective external
validation with pre-specified thresholds, calibration, and decision-
curve analyses to demonstrate incremental utility beyond ACPA/RF
assays. Initial deployment as a laboratory-developed test with EHR-
integrated reporting would enable case-level interpretability and
ongoing performance monitoring. This staged pathway would
prioritize reproducibility, scalability, and real-world impact.

Data availability statement

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and accession
number(s) can be found below: https://github.com/hurben/RA_
ACPA_multiomics, N/A.

Ethics statement

The studies involving humans were approved by Mayo Clinic
Institutional Review Board (#21-002409 and #22-001198). The
studies were conducted in accordance with the local legislation
and institutional requirements. The participants provided their
written informed consent to participate in this study.

Author contributions

BH: Writing - original draft, Formal Analysis, Investigation, Data
curation, Writing - review & editing, Methodology, Software.
VG: Writing - review & editing. MO: Writing - review & editing.
HZ: Writing - review & editing. CC: Writing - review & editing.
KW: Writing - review & editing. EM: Writing - review &
editing. VK: Writing - review & editing. JD: Formal Analysis,
Project administration, Funding acquisition, Conceptualization,
Investigation, Writing - review & editing. JS: Formal Analysis,
Writing — original draft, Methodology, Project administration, Data
curation, Investigation, Validation, Conceptualization, Funding
acquisition, Writing - review & editing, Supervision.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. This work was supported
in part by the Mayo Clinic Center for Individualized Medicine (to
JS), Mayo Clinic Career Development Award for Rheumatoid
Arthritis Research (to JS), and Mark E. and Mary A. Davis
Initiative in Rheumatoid Arthritis Research (to JD and JS).

frontiersin.org


https://github.com/hurben/RA_ACPA_multiomics
https://github.com/hurben/RA_ACPA_multiomics
https://doi.org/10.3389/fimmu.2025.1667662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hur et al.

Acknowledgments

First and foremost, we thank our dear patients who volunteered
for this study. We also thank Jennifer Sletten and Jon Harrington
for their assistance with sample handling and shipment. We thank
the Mayo Clinic Center for Individualized Medicine for generously
providing Mayo Clinic Biobank materials for this study.

Conflict of interest

JD has a research grant from Pfizer, and licensing agreements
with Rheumasense and Remission Medical. JS and BH have a
licensing agreement with Rheumasense. JS, JD and BH have a
non-provisional U.S. patent application no. 19/320,153 titled,
“Biomarker for Seronegative Rheumatoid Arthritis”.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Generative Al statement

The author(s) declare that Generative AI was used in the
creation of this manuscript. During the preparation of this work,

References

1. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: A
review. JAMA. (2018) 320:1360-72. doi: 10.1001/jama.2018.13103

2. Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis:
pathological mechanisms and modern pharmacologic therapies. Bone Res. (2018)
6:15. doi: 10.1038/s41413-018-0016-9

3. Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, et al.
Rheumatoid arthritis. Nat Rev Dis Primers. (2018) 4:18002. doi: 10.1038/nrdp.2018.1

4. Aletaha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham CO 3rd, et al.
2010 rheumatoid arthritis classification criteria: an American College of
Rheumatology/European League Against Rheumatism collaborative initiative. Ann
Rheum Dis. (2010) 69:1580-8. doi: 10.1136/ard.2010.138461

5. Firestein GS. Evolving concepts of rheumatoid arthritis. Nature. (2003) 423:356-
61. doi: 10.1038/nature01661

6. Li K, Wang M, Zhao L, Liu Y, Zhang X. ACPA-negative rheumatoid arthritis:
From immune mechanisms to clinical translation. EBioMedicine. (2022) 83:104233.
doi: 10.1016/j.ebiom.2022.104233

7. Aggarwal R, Liao K, Nair R, Ringold S, Costenbader KH. Anti-citrullinated
peptide antibody assays and their role in the diagnosis of rheumatoid arthritis. Arthritis
Rheum. (2009) 61:1472-83. doi: 10.1002/art.24827

8. Sieghart D, Platzer A, Studenic P, Alasti F, Grundhuber M, Swiniarski S, et al.
Determination of autoantibody isotypes increases the sensitivity of serodiagnostics in
rheumatoid arthritis. Front Immunol. (2018) 9:876. doi: 10.3389/fimmu.2018.00876

9. Pruijn GJ, Wiik A, van Venrooij WJ. The use of citrullinated peptides and proteins for
the diagnosis of rheumatoid arthritis. Arthritis Res Ther. (2010) 12:203. doi: 10.1186/ar2903

10. Combe B, Landewe R, Daien CI, Hua C, Aletaha D, Alvaro-Gracia JM, et al. 2016
update of the EULAR recommendations for the management of early arthritis. Ann
Rheum Dis. (2017) 76:948-59. doi: 10.1136/annrheumdis-2016-210602

11. Weyand CM, Goronzy JJ. The immunology of rheumatoid arthritis. Nat
Immunol. (2021) 22:10-8. doi: 10.1038/s41590-020-00816-x

12. Seegobin SD, Ma MHY, Dahanayake C, Cope AP, Scott DL, Lewis CM, et al.
ACPA-positive and ACPA-negative rheumatoid arthritis differ in their requirements

Frontiers in Immunology

15

10.3389/fimmu.2025.1667662

the author Benjamin Hur utilized ChatGPT (GPT-40, OpenAl)
during the final editing stages to improve word choice and
readability. After using this tool, the authors reviewed and edited
the content as needed and take full responsibility for the content of
the publication.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1667662/
full#supplementary-material

for combination DMARDs and corticosteroids: secondary analysis of a randomized
controlled trial. Arthritis Res Ther. (2014) 16:R13. doi: 10.1186/ar4439

13. Boer AC, Boonen A, van der Helm van Mil AHM. Is anti-citrullinated protein
antibody-positive rheumatoid arthritis still a more severe disease than anti-citrullinated
protein antibody-negative rheumatoid arthritis? A longitudinal cohort study in
rheumatoid arthritis patients diagnosed from 2000 onwar. Arthritis Care Res
(Hoboken). (2018) 70:987-96. doi: 10.1002/acr.23497

14. Padyukov L, Seielstad M, Ong RTH, Ding B, Ronnelid ], Seddighzadeh M, et al.
A genome-wide association study suggests contrasting associations in ACPA-positive
versus ACPA-negative rheumatoid arthritis. Ann Rheum Dis. (2011) 70:259-65.
doi: 10.1136/ard.2009.126821

15. He J, Chu Y, Li J, Meng Q, Liu Y, Jin J, et al. Intestinal butyrate-metabolizing
species contribute to autoantibody production and bone erosion in rheumatoid
arthritis. Sci Adv. (2022) 8:eabm1511. doi: 10.1126/sciadv.abm1511

16. Han P, Hou C, Zheng X, Cao L, Shi X, Zhang X, et al. Serum antigenome
profiling reveals diagnostic models for rheumatoid arthritis. Front Immunol. (2022)
13:884462. doi: 10.3389/fimmu.2022.884462

17. Wu X, Liu Y, Jin S, Wang M, Jiao Y, Yang B, et al. Single-cell sequencing of

immune cells from anticitrullinated peptide antibody positive and negative rheumatoid
arthritis. Nat Commun. (2021) 12:4977. doi: 10.1038/s41467-021-25246-7

18. Cunningham KY, Hur B, Gupta VK, Arment CA, Wright KA, Mason TG, et al.
Patients with ACPA-positive and ACPA-negative rheumatoid arthritis show different
serological autoantibody repertoires and autoantibody associations with disease
activity. Sci Rep. (2023) 13:5360. doi: 10.1038/s41598-023-32428-4

19. Rieckmann JC, Geiger R, Hornburg D, Wolf T, Kveler K, Jarrossay D, et al. Social
network architecture of human immune cells unveiled by quantitative proteomics. Nat
Immunol. (2017) 18:583-93. doi: 10.1038/ni.3693

20. Al-Amrani S, Al-Jabri Z, Al-Zaabi A, Alshekaili J, Al-Khabori M. Proteomics:
Concepts and applications in human medicine. World ] Biol Chem. (2021) 12:57-69.
doi: 10.4331/wjbc.v12.i5.57

21. Clish CB. Metabolomics: an emerging but powerful tool for precision medicine.
Cold Spring Harb Mol Case Stud. (2015) 1:a000588. doi: 10.1101/mcs.a000588

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1667662/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1667662/full#supplementary-material
https://doi.org/10.1001/jama.2018.13103
https://doi.org/10.1038/s41413-018-0016-9
https://doi.org/10.1038/nrdp.2018.1
https://doi.org/10.1136/ard.2010.138461
https://doi.org/10.1038/nature01661
https://doi.org/10.1016/j.ebiom.2022.104233
https://doi.org/10.1002/art.24827
https://doi.org/10.3389/fimmu.2018.00876
https://doi.org/10.1186/ar2903
https://doi.org/10.1136/annrheumdis-2016-210602
https://doi.org/10.1038/s41590-020-00816-x
https://doi.org/10.1186/ar4439
https://doi.org/10.1002/acr.23497
https://doi.org/10.1136/ard.2009.126821
https://doi.org/10.1126/sciadv.abm1511
https://doi.org/10.3389/fimmu.2022.884462
https://doi.org/10.1038/s41467-021-25246-7
https://doi.org/10.1038/s41598-023-32428-4
https://doi.org/10.1038/ni.3693
https://doi.org/10.4331/wjbc.v12.i5.57
https://doi.org/10.1101/mcs.a000588
https://doi.org/10.3389/fimmu.2025.1667662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Hur et al.

22. Yugi K, Kubota H, Hatano A, Kuroda S. Trans-omics: How to reconstruct
biochemical networks across multiple “omic” layers. Trends Biotechnol. (2016) 34:276—
90. doi: 10.1016/j.tibtech.2015.12.013

23. Candia J, Daya GN, Tanaka T, Ferrucci L, Walker KA. Assessment of variability
in the plasma 7k SomaScan proteomics assay. Sci Rep. (2022) 12:17147. doi: 10.1038/
541598-022-22116-0

24. Jiao X, Sherman BT, Huang DW, Stephens R, Baseler MW, Lane HC, et al.
DAVID-WS: a stateful web service to facilitate gene/protein list analysis.
Bioinformatics. (2012) 28:1805-6. doi: 10.1093/bioinformatics/bts251

25. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat
Soc Ser B Stat Methodol. (2005) 67:301-20. doi: 10.1111/.1467-9868.2005.00503.x

26. Valdeolivas A, Tichit L, Navarro C, Perrin S, Odelin G, Levy N, et al. Random
walk with restart on multiplex and heterogeneous biological networks. Bioinformatics.
(2019) 35:497-505. doi: 10.1093/bioinformatics/bty637

27. Prevoo MLL, Van'T Hof MA, Kuper HH, Van Leeuwen MA, Van De Putte LBA,
Van Riel PLCM. Modified disease activity scores that include twenty-eight-joint counts
development and validation in a prospective longitudinal study of patients with
rheumatoid arthritis. Arthritis Rheum. (1995) 38:44-8. doi: 10.1002/art.1780380107

28. Inoue E, Yamanaka H, Hara M, Tomatsu T, Kamatani N. Comparison of Disease
Activity Score (DAS)28- erythrocyte sedimentation rate and DAS28- C-reactive protein
threshold values. Ann Rheum Dis. (2007) 66:407-9. doi: 10.1136/ard.2006.054205

29. Sedlacek R, Mauch S, Kolb B, Schitzlein C, Eibel H, Peter H-H, et al. Matrix
metalloproteinase MMP-19 (RASI-1) is expressed on the surface of activated peripheral
blood mononuclear cells and is detected as an autoantigen in rheumatoid arthritis.
Immunobiology. (1998) 198:408-23. doi: 10.1016/S0171-2985(98)80049-1

Frontiers in Immunology

16

10.3389/fimmu.2025.1667662

30. Hur B, Gupta VK, Huang H, Wright KA, Warrington KJ, Taneja V, et al. Plasma
metabolomic profiling in patients with rheumatoid arthritis identifies biochemical
features predictive of quantitative disease activity. Arthritis Res Ther. (2021) 23:164.
doi: 10.1186/s13075-021-02537-4

31. Peng Y-F, Wang J-L, Pan G-G. The correlation of serum bilirubin levels with
disease activity in patients with rheumatoid arthritis. Clin Chim Acta. (2017) 469:187-
90. doi: 10.1016/j.cca.2017.04.006

32. Juping D, Yuan Y, Shiyong C, Jun L, Xiuxiu Z, Haijian Y, et al. Serum bilirubin
and the risk of rheumatoid arthritis. J Clin Lab Anal. (2017) 31:¢22118. doi: 10.1002/
jcla22118

33. Bhattacharya S, Dunn P, Thomas CG, Smith B, Schaefer H, Chen J, et al.
ImmPort, toward repurposing of open access immunological assay data for
translational and clinical research. Sci Data. (2018) 5:180015. doi: 10.1038/sdata.2018.15

34. Banda NK, Deane KD, Bemis EA, Strickland C, Seifert J, Jordan K, et al. Analysis
of complement gene expression, clinical associations, and biodistribution of
complement proteins in the synovium of early rheumatoid arthritis patients reveals
unique pathophysiologic features. J Immunol. (2022) 208:2482-96. doi: 10.4049/
jimmunol.2101170

35. Holers VM, Banda NK. Complement in the initiation and evolution of
rheumatoid arthritis. Front Immunol. (2018) 9:1057. doi: 10.3389/fimmu.2018.01057

36. Gabay C. IL-1 inhibitors: novel agents in the treatment of rheumatoid arthritis.
Expert Opin Investig Drugs. (2000) 9:113-27. doi: 10.1517/13543784.9.1.113

37. SungJ, Wang Y, Chandrasekaran S, Witten DM, Price ND. Molecular signatures
from omics data: from chaos to consensus. Biotechnol J. (2012) 7:946-57. doi: 10.1002/
biot.201100305

frontiersin.org


https://doi.org/10.1016/j.tibtech.2015.12.013
https://doi.org/10.1038/s41598-022-22116-0
https://doi.org/10.1038/s41598-022-22116-0
https://doi.org/10.1093/bioinformatics/bts251
https://doi.org/10.1111/j.1467-9868.2005.00503.x
https://doi.org/10.1093/bioinformatics/bty637
https://doi.org/10.1002/art.1780380107
https://doi.org/10.1136/ard.2006.054205
https://doi.org/10.1016/S0171-2985(98)80049-1
https://doi.org/10.1186/s13075-021-02537-4
https://doi.org/10.1016/j.cca.2017.04.006
https://doi.org/10.1002/jcla.22118
https://doi.org/10.1002/jcla.22118
https://doi.org/10.1038/sdata.2018.15
https://doi.org/10.4049/jimmunol.2101170
https://doi.org/10.4049/jimmunol.2101170
https://doi.org/10.3389/fimmu.2018.01057
https://doi.org/10.1517/13543784.9.1.113
https://doi.org/10.1002/biot.201100305
https://doi.org/10.1002/biot.201100305
https://doi.org/10.3389/fimmu.2025.1667662
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Integrative multi-omic profiling in blood reveals distinct immune and metabolic signatures between ACPA-negative and ACPA-positive rheumatoid arthritis
	Introduction
	Materials and methods
	Study population, subject enrollment, and plasma sample collection
	Proteomic profiling
	Metabolomic profiling
	Identification of phenotype-associated omic features
	Functional enrichment of proteins
	Construction of the phenotype-centric multi-omic network
	Inferring a multi-omic network using elastic net
	Network diffusion using random walk with restart
	Selection of features associated with clinical phenotype
	Classification performance of features from the phenotype-centric multi-omic network

	Results
	Study design and participant characteristics
	RA subgroup-specific characteristics
	Plasma proteomic profiling in ACPA– RA and ACPA+ RA
	Plasma metabolomic profiling in ACPA– RA and ACPA+ RA
	Multi-omic network inference to elucidate phenotype-associated biomolecular features
	Classification of RA phenotypes using network-based biomolecular features

	Discussion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


