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Integrative multi-omic profiling
in blood reveals distinct
immune and metabolic
signatures between ACPA-
negative and ACPA-positive
rheumatoid arthritis
Benjamin Hur1,2, Vinod K. Gupta1,2, Minsik Oh3, Hu Zeng4,5,
Cynthia S. Crowson4,6, Kenneth J. Warrington4,
Elena Myasoedova4,7, Vanessa L. Kronzer4, John M. Davis III4†

and Jaeyun Sung1,2,4*†

1Division of Computational Biology, Department of Quantitative Health Sciences, Mayo Clinic,
Rochester, MN, United States, 2Microbiomics Program, Center for Individualized Medicine, Mayo
Clinic, Rochester, MN, United States, 3School of Software Convergence, Myongji University,
Seoul, Republic of Korea, 4Division of Rheumatology, Department of Internal Medicine, Mayo Clinic,
Rochester, MN, United States, 5Department of Immunology, Mayo Clinic, Rochester, MN, United
States, 6Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo
Clinic, Rochester, MN, United States, 7Division of Epidemiology, Department of Quantitative Health
Sciences, Mayo Clinic, Rochester, MN, United States
Objective: To investigate whether patients with ACPA-negative (ACPA–) and

ACPA-positive (ACPA+) rheumatoid arthritis (RA) exhibit distinct immune and

metabolic profiles in blood, using integrative proteomic and metabolomic

analyses. By uncovering subgroup-specific molecular signatures, we aim to

improve the biological understanding of RA heterogeneity and support the

development of more precise diagnostic and stratification strategies.

Methods:We performed high-throughput proteomic and metabolomic profiling

on plasma from a well-characterized cohort comprising 40 patients with ACPA–

RA, 40 patients with ACPA+ RA, and 40 healthy controls. To identify key immune

and metabolic differences, we applied statistical comparisons, pathway

enrichment analyses, and network inference methods. Additionally, an

integrative network-based machine learning framework was used to

distinguish RA subgroups from controls based on plasma molecular profiles.

Results: ACPA– and ACPA+ RA exhibited distinct plasma proteomic and

metabolomic biomolecular signatures. Complement proteins (CFB, CFHR5,

and F9) and the anti-inflammatory cytokine IL1RN were exclusively elevated in

ACPA– RA and remained distinct in a treatment-naïve sub-cohort. Metabolomic

analysis revealed subgroup-specific differences in lipid and pyrimidine

metabolism, including contrasting patterns in bilirubin-derived metabolites.

Correlation analyses identified differential associations between molecular

features and clinical inflammatory markers across RA subgroups. An integrative

machine learning framework incorporating multi-omic features achieved high

classification performance in cross-validation (AUC ≥ 0.90), outperforming

models based on single-omic data.
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Conclusion: This study suggests that ACPA status may not fully capture the

biological heterogeneity between ACPA– and ACPA+ RA subgroups, indicating

additional immune and metabolic distinctions that warrant further investigation.

Our findings highlight the potential of multi-omic profiling to enhance RA

diagnostics, refine disease stratification, and inform subgroup-specific disease

management strategies.
KEYWORDS

biomarker discovery, multi-omic profiling, ACPA-negative and ACPA-positive
rheumatoid arthritis, proteomics, metabolomics, plasma, machine learning
Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory

disease that is diagnosed in nearly 5 per 1,000 adults worldwide (1–3).

RA results in joint swelling, pain, deformities, bone erosion, and

cartilage destruction (3–5). A key diagnostic marker for RA is the

presence of anti-citrullinated protein autoantibodies (ACPA) in blood

(6), with high specificity that exceeds 90% (4, 7, 8). However, the

diagnostic sensitivity of ACPA-based tests for classifying RA cases is

modest, ranging between 30–60% (8, 9). Often, RA can be clinically

diagnosed even in the absence of circulating ACPA, a condition

referred to as ACPA-negative RA (or ACPA– RA) (6). Importantly,

as the absence of ACPA poses challenges in the diagnosis of early-stage

RA, a delayed diagnosis can hinder the timely initiation of therapeutic

interventions and increase the risk of joint damage (10, 11).

Traditionally, the primary distinction between ACPA– and ACPA

+ RA has been considered to be this serological difference, with little

attention given to other biological disparities. However, recent evidence

suggests that these two RA subgroups may be fundamentally different

in ways that extend beyond ACPA status alone. Recent studies suggest

that ACPA– and ACPA-positive RA (or ACPA+ RA) represent

distinct disease subgroups that differ in disease progression and

treatment response (12, 13). These clinical disparities have prompted

further investigations into the biomolecular differences between these

subgroups utilizing high-throughput profiling techniques. For example,

a genome-wide association study revealed significant differences in risk

allele frequencies, mainly in the human leukocyte antigen (HLA)

region, between ACPA– and ACPA+ RA (14). Research into the gut

microbiome identified intestinal butyrate-metabolizing bacterial

species associated with the presence of circulating ACPA (15). A

serum autoantigen analysis, performed using liquid chromatography-

tandemmass spectrometry (LC-MS/MS), uncovered subgroup-specific

autoantigens and facilitated the development of classification panels for

distinguishing ACPA– and ACPA+ RA (16). Furthermore, single-cell

RNA sequencing of peripheral blood mononuclear cells (PBMCs) and

synovial tissue revealed immune cell abnormalities unique to each RA

subgroup, suggesting ACPA– RA may rely on different immune

mechanisms and pathways (17). In our previous study, through

multiplex autoantibody profiling of serum from patients with
02
ACPA– and ACPA+ RA, we identified distinct IgG autoantibody

repertoires for each subgroup (18).

Despite these landmark findings, no study has yet comprehensively

and simultaneously examined the blood proteomic and metabolomic

landscapes in ACPA– and ACPA+ RA. Proteomics provides a detailed

map of the proteins driving cellular signaling pathways and systemic

events in the circulatory system (19, 20), enabling us to observe

immune responses in RA. Meanwhile, metabolomics explores the

biochemical pathways that sustain cellular function, uncovering

metabolic signatures shaped by intrinsic physiology, dietary factors,

lifestyle, and external stimuli (21). By integrating blood proteomics and

metabolomics, we can gain novel insights into the immune and

metabolic processes specific to ACPA– and ACPA+ RA, as well as

the coordinated mechanisms (e.g., enzymes and their substrates or

products) through which proteins and metabolites influence disease

onset and progression (22).

To address this critical knowledge gap, we performed global

(untargeted) proteomic and metabolomic profiling on 120

individuals, comprising 40 patients with ACPA– RA, 40 patients

with ACPA+ RA, and 40 healthy controls. Using controls as a

reference point, we identified subgroup-specific differences in

circulating immune and metabolic features, including complement

proteins and cytokines. We also observed distinct correlation patterns

between molecular features and clinical inflammation measures,

suggesting potential differences in inflammatory regulation across RA

subgroups. This high-resolution, multi-omic profiling study of

circulating biomolecules not only deepens our understanding of the

biological differences between these RA subgroups, but also introduces

a novel strategy—incorporating machine learning—to inform the

development of next-generation digital blood tests for RA.
Materials and methods

Study population, subject enrollment, and
plasma sample collection

The study population consisted of patients with RA attending

the outpatient practice of the Division of Rheumatology at Mayo
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Clinic in Rochester, MN, USA. Eligibility required patients to be

adults 18 years of age or older with a clinical diagnosis of RA by a

rheumatologist, fulfilling the American College of Rheumatology/

European League Against Rheumatism 2010 revised classification

criteria for RA (4). Patients were excluded if they did not

comprehend English, were unable to provide written informed

consent, or were members of a vulnerable population (e.g.,

incarcerated subjects).

RA was categorized into either ACPA– or ACPA+ RA

subgroups based on the titer of anti-CCP antibodies detected by

the Quanta Lite CCP3 IgG enzyme-linked immunosorbent assay

(INOVA Diagnostics). For subgrouping in this study, we used the

manufacturer-recommended cut-off (negative, < 20.0 IU/mL),

consistent with routine clinical practice at our institution. The

single assay and cut-off were applied uniformly for internal

consistency. Importantly, ACPA status was used for subgroup

stratification within RA, not to establish the RA diagnosis itself.

Subjects in the healthy control group were reported as not

having any overt disease or adverse symptoms at the time of sample

collection. Demographic and clinical data, including the numbers of

tender and swollen joints, patient and evaluator global assessments,

CRP (mg/L), BMI (kg/m2), smoking history, and results for

rheumatoid factor (RF, IU/mL) and anti-CCP antibodies were

collected from the electronic medical records.

Plasma samples from patients with RA were stored in our

ongoing Mayo Clinic Rheumatology Biobank. This biorepository

was created for long-term storage of diverse biological samples (e.g.,

serum, plasma, stool, white blood cells) from patients for use in

research. In addition, plasma samples from healthy donors

participating in the Mayo Clinic Biobank were used as controls.

All methods and procedures were performed in accordance with the

Mayo Clinic Institutional Review Board guidelines and regulations.

All patients provided written informed consent.
Proteomic profiling

Plasma proteins were measured with SomaLogic’s SomaScan

Assay version 4 (23), which simultaneously targets over 7,000

human proteins including cytokines, growth factors, proteases,

and hormones. This platform relies upon protein-capture

SOMAmer (Slow Offrate Modified Aptamer) reagents.

SOMAmers are based on single-stranded, chemically modified

nucleic acids, and are designed to optimize high affinity, slow off-

rate, and high specificity to target proteins. In brief, the multiplexed,

aptamer-based assay measures the relative binding of target

proteins to aptamers in relative fluorescence units (RFUs). After

protein concentrations were converted into corresponding DNA

aptamer concentrations, abundance levels of proteins were

quantified with a DNA microarray.

Data standardization, comprised of normalization, plate scaling,

and calibration, was performed on the raw assay data to remove

systematic biases after microarray feature aggregation. Global

reference standards were established for procedures with controls

on each plate (i.e., run). Individual, quality control (QC), and
Frontiers in Immunology 03
calibrator samples were normalized and calibrated to the

established global reference standards (details described in

Supplementary Methods). In addition, SOMAmer reagents that

represent control or non-human analytes were removed, resulting

in 7,273 proteins for further analysis. Of note, proteins having the

same name but with multiple barcodes (i.e., SeqID) were considered

as separate features.
Metabolomic profiling

Ultra-high-performance liquid chromatography-tandem mass

spectrometry (UPLC-MS/MS) using Metabolon Inc.’s Discovery

HD4™ platform was performed for untargeted metabolomic

profiling. Statistical analyses on untargeted metabolomic data

were performed using scaled imputed data provided by

Metabolon. Briefly, the raw data were normalized to account for

inter-day variation, which is a result of UPLC-MS/MS runs over

multiple days (details described in Supplementary Methods). The

peak intensities were then rescaled to set each metabolite’s median

equal to 1. Missing values were then imputed with the minimum

observed value of the metabolite across all samples, yielding the

scaled imputed data. In addition, metabolites with missing values in

over 20% of the entire samples were removed, resulting in 1,061

metabolites remaining for further analysis.
Identification of phenotype-associated
omic features

Omic features (proteins and metabolites) associated with a

clinical phenotype (study group) were identified using linear

regression analysis coupled with effect size (Cohen’s d)

determination. These analyses were conducted across two pairs of

phenotype comparisons: ACPA– RA vs. controls, and ACPA+ RA

vs. controls. To mitigate potential confounding effects, linear

regression models were adjusted for sex, age, BMI, smoking

history, use of prednisone, use of bDMARDs, and use

of csDMARDs.

The linear regression model for each omic feature is described

in Equation 1, which is:

Y = XTb + e (1)

where Y is the continuous abundance of the omic feature, X is

the vector of predictor variables (including phenotype indicator and

potential confounders), b is the vector of coefficients, and e is the

error term. A feature was considered to be associated with the

phenotype (i.e., differentially abundant) if its corresponding

coefficient for the phenotype term was statistically significant (P <

0.01) and if its effect size was above medium (i.e., Cohen’s |d| > 0.5).

For clarification, the use of bDMARDs refers to the prescription

use of any of the following: abatacept, adalimumab, certolizumab,

etanercept, infliximab, rituximab, or tocilizumab. Similarly,

csDMARDs refers to hydroxychloroquine, leflunomide,

methotrexate, or sulfasalazine. Individuals with missing smoking
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history were excluded from models that included smoking as

a covariate.
Functional enrichment of proteins

For a set of proteins, enriched functions defined by Gene

Ontology biological process (GOTERM_BP_FAT) annotations

were identified using DAVID (version 6.8) (24). Enrichment of a

biological process was deemed significant for P-values less than

0.05, determined by a modified one-tailed Fisher’s exact test.
Construction of the phenotype-centric
multi-omic network

The phenotype-centric multi-omic network was constructed

using a three-pronged approach: network inference, network

diffusion, and subnetwork identification. In brief, elastic net

regularization was used to infer a network capturing associations

(i.e., edges) between 8,343 features (i.e., nodes) across all 120 plasma

samples. These features spanned proteomics, metabolomics,

demographic characteristics, and clinical phenotypes (i.e., ACPA–

RA, ACPA+ RA, and controls), integrating data from all samples

across the three study groups. Categorical clinical phenotypes were

represented by one-hot encoding for inclusion in the network.

Subsequently, a random walk with restart (RWR) diffusion

algorithm was applied on the inferred network to prioritize the

selection of features most closely associated with the phenotype. The

resulting subset of selected features of the subnetwork, delineate

those most closely associated with (and thereby most predictive of)

the phenotypes. The following sections provide more details on

the methodology.
Inferring a multi-omic network using
elastic net

Elastic net regularization is a combination of L1 and L2

regularizations, and is effective when p >> n, i.e., datasets where

the number of features (p) significantly exceeds the number of

samples (n) (25). In our approach, each regression treated an omic

feature as the response variable. On the other hand, clinical

variables, such as sex, age, BMI, one-hot-encoded smoking status,

and one-hot-encoded phenotypes, were not used as responses.

Elastic-net regularization identified predictors with non-zero

coefficients; these predictors were considered to be associated with

the response variable.

An undirected graph was then constructed for each feature,

where both response and predictor variables were represented as

nodes, and edges indicated connections between the response

variable and its predictors with non-zero coefficients. Notably, the

clinical phenotype (ACPA– RA, ACPA+ RA, Control) was one-hot

encoded into three binary indicators, yielding three phenotype

nodes. This process was repeated for all features, resulting in
Frontiers in Immunology 04
8,334 individual undirected graphs. Finally, these 8,334 graph

models were merged to formulate a single, all-encompassing

multi-omic network. The elastic net’s loss function used in this

analysis is described in Equation 2, which is:

a rgmin
b

 o
n

i=1
yi − b0 −op

j=1bjxij
� �2

+l1o
p

j=1
j bj j+l2o

p

j=1
b2
j (2)

where n is the number of samples (1 ≤ i ≤ n; n = 120), p is the

total number of features (1 ≤ j ≤ p; p = 8,341), y is the response

variable, x represents the predictors with the collection of x

excluding y. The hyperparameters l1 and l2 satisfy l1 + l2 = 1,

while the ratio between L1 regularization and L2 regularization falls

within 0 < l1: l2 < 1. The elastic net was implemented using R

package “glmnet” (v4.1.1). Hyperparameters of the elastic net

model were estimated using 10-fold cross-validation, with the

optimal values chosen based on the model’s performance in

cross-validation. Selection of the best model is guided by the

criterion of minimizing the root mean square error.
Network diffusion using random walk with
restart

Random walk with restart (RWR) was used to perform network

diffusion on the previously inferred multi-omic network, aiming to

identify a phenotype-centric multi-omic network. RWR, widely

recognized as a guilt-by-association method, facilitates the

exploration of a network’s topology based on the premise that

functionally similar nodes are often in close proximity to each other

within networks (26). The R package “diffusr”, an implementation

of the Markov random walk, was used to simulate network

diffusion, as described in Equation 3, which is:

pt+1 = (1 − r)A0pt + rp0 (3)

where p0 is the vector of initialized nodes, t is a time step, pt is

the vector at the current time step, pt+1 is the vector at the

subsequent time step, A′ is a column-normalized version of the

adjacency matrix A, and r is the restart rate. Elements of p0 are

initialized as 1 or 0 to signify the seed node (i.e., sample phenotype)

or all other features, respectively; and normalized to ensure the sum

of the elements in p0 equals 1. For calculation simplicity, the

adjacency matrix A only consists of 0 or 1 so that it represents a

graph without weighted edges.

RWR was initialized with the seed vector uniformly distributed

across the three clinical phenotype nodes, treating phenotypes

symmetrically and producing phenotype-proximity scores for all

features. The network diffusion process was conducted using the

default options of the “diffusr” R package, where the restart rate r

(i.e., the probability of the random walker returning to the seed

node in the next step of the walk) is set to 0.5, and the diffusion is

terminated when the L1 norm difference between pt and pt+1 falls

below 1.0 × 10−4. Upon completion, the nodes were assigned a

“relevance score” reflecting the probability of the random walker

being present at the corresponding node. These relevance scores

were utilized to rank the network features, with higher scores
frontiersin.org
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indicating a stronger association with the phenotype. Through this

approach, RWR propagates “importance” throughout the network,

highlighting features closest to the seed nodes. Thus, network

diffusion effectively prioritizes informative features that might

otherwise be masked by less relevant neighbors.
Selection of features associated with
clinical phenotype

Following the RWR-mediated network diffusion, a relevance

score is assigned to each feature reflecting its association with the

phenotype. These scores are then ranked in descending order to

create a hierarchy of feature importance. The top N features (e.g.,

the top 10, top 20, and so on up to all features) are selected from

these ranked scores to construct a phenotype-centric network. (This

network is termed “phenotype-centric” because its construction

starts with the clinical phenotype or study group as the seed nodes,

around which the network is built.) The resulting network is a

refined subnetwork, originally derived from the broader multi-omic

network inferred by elastic net. This subnetwork is composed solely

of nodes representing the top N features most strongly associated

with the phenotype. Of note, the nodes within this phenotype-

centric subnetwork are later used as predictors for training a

random forest classifier.
Classification performance of features from
the phenotype-centric multi-omic network

A 5-fold cross-validation scheme was performed to evaluate the

classification performance of multi-omic features from the

aforementioned phenotype-centric network. This evaluation was

conducted on the plasma multi-omic profiles from the three study

groups (ACPA– RA (n = 40), ACPA+ RA (n = 40), and controls (n

= 40)), with the aim of measuring the AUC, accuracy, sensitivity,

specificity, positive predictive value, and negative predictive value

for clinical phenotype classification. Missing values in smoking

history were handled by treating smoking status as a categorical

factor with three levels (Never/Former, Current, Unknown), which

were one-hot encoded into binary variables for inclusion in the

machine learning models.

For each cross-validation fold, the dataset was divided into two

segments: a training set comprising 96 plasma samples (32 from

each group) and a test set with 24 samples (8 from each group). All

steps of the pipeline—including elastic net network inference,

RWR-based feature prioritization, and random forest model

training—were performed exclusively on the training set. The

held-out test set was used only for final evaluation and did not

contribute to feature selection, parameter estimation, or model

fitting. The top N features were selected from this template

network (e.g., the top 10, top 20, and so forth up to all features)

for training a random forest classifier. The classifier was tasked with

predicting the phenotype, e.g., differentiating between ACPA– RA

vs. controls and ACPA+ RA vs. controls on a balanced test set
Frontiers in Immunology 05
comprising 16 samples (8 from each group). Furthermore, the

classifier’s ability to distinguish between RA (combining both RA

subgroups) and controls was tested on a test set of 24 samples (8

ACPA– RA, 8 ACPA+ RA, and 8 controls).
Results

Study design and participant characteristics

This retrospective, observational cohort study consists of a total

of 120 participants categorized into three study groups: patients

with ACPA– RA (n = 40), patients with ACPA+ RA (n = 40), and

healthy (i.e. , non-diseased) controls (n = 40). Table 1,

Supplementary Table S1, and Supplementary Figure S1 provide

the demographic and clinical characteristics of the study

participants. All three study groups were matched based on

subjects’ age, BMI, race, sex, and smoking history. At the time of

plasma sample collection (Materials and Methods), all RA patients

had established disease with a mean age of 57.9 years (min–max

range: 32–76 years); and the disease activity of patients varied from

remission to high disease activity, with a mean Disease Activity

Score 28 using C-reactive protein (DAS28-CRP) (27, 28) of 3.5

(min–max range: 1.5–7.5). Subsets of patients were on treatment

with methotrexate (MTX, 51% or 41 of 80), prednisone (25% or 20

of 80), tumor necrosis factor inhibitor biologic disease-modifying

anti-rheumatic drugs (TNFi-bDMARDs) (14% or 11 of 80), non-

TNFi-bDMARDs (8% or 6 of 80), or non-MTX conventional

synthetic disease-modifying anti-rheumatic drugs (non-MTX

csDMARDs) (31% or 25 of 80).

An overview of our study design is presented in Figure 1. We

conducted high-throughput, multi-omic measurements on plasma

samples from all 120 study participants. We utilized the SomaScan

Assay by SomaLogic (Boulder, CO, USA) for proteomic profiling,

and the Discovery HD4™ platform by Metabolon (Durham, NC,

USA) for metabolomic profiling (Materials and Methods). In total,

we analyzed 8,334 biomolecular features, including 7,273 proteins

and 1,061 metabolites, to identify associations with the three study

groups. Our analyses included statistical comparisons, set-based

analyses, and network inference techniques to investigate group-

specific patterns. Additionally, we applied a machine learning

approach that integrated a network-based feature selection

method to develop a computational framework for phenotype

prediction. For consistency, we refer to all proteins discussed in

the results by their corresponding gene symbols.
RA subgroup-specific characteristics

We next assessed group-wise heterogeneity in biomolecular

profiles across ACPA– RA, ACPA+ RA, and controls. In within-

omic visualizations (Figures 2A–B), proteins showed clearer group

differentiation than metabolites, although metabolomic profiles also

exhibited detectable separation. Given the substantial disparity in

feature dimensionality (proteins: 7,273; metabolites: 1,061), we
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refrain from cross-omic claims about relative separation magnitude

and confine interpretation to within-omic differentiation.

Building on these findings, we investigated the associations

(specifically, correlations) between omic features and clinical

characteristics within the ACPA– RA and ACPA+ RA subgroups.

The scatter plots in Figures 2C–H illustrate the correlations of

proteins and metabolites with three clinical parameters: the blood

inflammatory markers erythrocyte sedimentation rate (ESR) and C-

reactive protein (CRP), and DAS28-CRP (a quantitative measure of

disease activity) (Supplementary Tables S2-S7). We observed
Frontiers in Immunology 06
substantially overlapping correlation patterns between proteins

and blood inflammatory markers (ESR and CRP) in both RA

subgroups. More specifically, while certain proteins exhibited

similar correlation strengths across ACPA− RA and ACPA+ RA,

others demonstrated subgroup-specific differences in their

relationship with inflammatory markers (Figures 2C, D).

However, correlations between proteins and DAS28-CRP showed

a notable shift, with patterns differing between the two subgroups

(Figure 2E). In contrast, metabolites in ACPA− RA displayed

unique correlation patterns relative to ACPA+ RA, particularly
TABLE 1 Demographic and clinical characteristics of study participants.

ACPA– RA (n = 40) ACPA+ RA (n = 40) Controls (n = 40) P-value

Sex (female/male) 28/12 29/11 28/12 1.0

Age (years)

Mean ± SD [Q1, Q3]
Range (min–max)

59.1 ± 10.5 [55.0, 65.0]
32.0–76.0

56.8 ± 10.4 [50.5, 64.3]
35.0–74.0

59.1 ± 10.5 [55.0, 65.0]
32.0–76.0

0.45

Race (n, %)

White 40 (100%) 40 (100%) 40 (100%) 1.0

Disease duration (years)

Mean ± SD [Q1, Q3]
Range (min–max)

2.6 ± 2.8 [0.1, 3.9]
0.1–9.5

2.8 ± 2.6 [0.1, 4.5]
0.0–9.3

N/A 0.66

BMI

Mean ± SD [Q1, Q3]
Range (min–max)

30.7 ± 8.1 [25.4, 34.0]
19.4–58.2

27.7 ± 5.6 [25.2, 30.4]
18.0–43.5

30.2 ± 8.3 [23.7, 34.3]
18.3–51.6

0.27

Smoking history (n)

Current
Never/Former
Unknown

2
38
0

1
39
0

4
32
4

0.29

ESR (mm/hr)

Mean ± SD [Q1, Q3]
Range (min–max)
Unknown

13.1 ± 15.9 [3.8, 16.3]
1.0–73.0
0

13.3 ± 12.8 [4.0, 20.5]
0.0–42.0
2

N/A 0.68

CRP (mg/L)

Mean ± SD [Q1, Q3]
Range (min–max)
Unknown

15.3 ± 26.1 [2.9, 10.9]
2.9–113.5
0

6.8 ± 9.4 [2.9, 4.9]
2.9–54.0
1

N/A 0.09

RF (Yes/No) 14/26 28/12 N/A 0.003

DAS28-CRP

Mean ± SD [Q1, Q3]
Range (min–max)
Unknown

3.9 ± 1.7 [2.4, 5.1]
1.5–7.5
4

3.1 ± 1.4 [1.7, 4.2]
1.5–6.4
3

N/A 0.07

Treatment (n, %)

Methotrexate
Prednisone
TNFi-bDMARDsa

Non-TNFi-bDMARDsb

Non-MTX-csDMARDsl

19 (48%)
12 (30%)
3 (8%)
4 (10%)
10 (25%)

22 (55%)
8 (20%)
8 (20%)
2 (5%)
15 (38%)

N/A

0.65
0.44
0.19
0.68
0.33
ACPA– RA, anti-citrullinated protein antibody-negative rheumatoid arthritis; ACPA+ RA, anti-citrullinated protein antibody-positive rheumatoid arthritis; Q1/Q3, lower/upper quartile of the
interquartile range; ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; RF, rheumatoid factor; DAS28-CRP, Disease Activity Score 28 using C-reactive protein; N/A, not available;
aadalimumab, certolizumab, and etanercept; babatacept, rituximab, and tocilizumab; lhydroxychloroquine, leflunomide, and sulfasalazine. P-values for categorical and continuous variables were
obtained using the Fisher’s exact test and Kruskal–Wallis test, respectively.
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with both blood inflammatory markers and DAS28-CRP

(Figures 2F–H). These patterns suggest that the relationships

between molecular features and clinical markers of inflammation

differ between RA subgroups, potentially reflecting subgroup-

specific molecular correlates of disease activity. We elaborate

below on select examples.

In the ACPA– RA subgroup, our analysis found the Matrix

Metallopeptidase 19 (MMP19) protein as having the most positive

correlation with ESR (r = 0.67 and P = 2.24 × 10–6) (Figure 2C;

Supplementary Table S2). This robust correlation did not extend to

the ACPA+ RA subgroup, wherein the correlation between MMP19

and ESR was not significant (r = –0.17 and P = 0.30). Interestingly,

MMP19 also correlated positively with CRP (r = 0.49 and P = 1.47

× 10–3) in ACPA– RA, but again, this association was absent in

ACPA+ RA (r = 0.03 and P = 0.87) (Figure 2D; Supplementary

Table S3). While the specific role of MMP19 in RA is yet to be fully

elucidated, it has been previously identified as an autoantigen in the

inflamed synovium of RA patients (29). Our findings may position

MMP19 as a candidate for further investigation into its mechanistic

contributions to the distinct inflammatory profile of ACPA– RA.

Within the ACPA– RA subgroup, our analysis revealed five

metabolites (1-palmitoyl-2-stearoyl-GPC (16:0/18:0), 5-

(galactosylhydroxy)-lysine, N-stearoyl-sphingosine (d18:1/18:0),

4-hydroxyphenylpyruvate, and quinolinate) that had significant

positive correlations with ESR, each with a Spearman’s r
exceeding 0.4 and a corresponding P-value below 0.05 (Figure 2F;

Supplementary Table S5). Strikingly, within the ACPA+ RA

subgroup, these metabolites either exhibited negative correlations
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(r < 0 and P < 0.05) or showed no significant correlation (P ≥ 0.05).

In contrast, within the ACPA– RA subgroup, we identified fourteen

metabolites, including biliverdin, bilirubin (Z,Z), and a bilirubin

degradation product (C17H20N2O5), that demonstrated significant

negative correlations (r < –0.4 and P < 0.05) with ESR (Figure 2F;

Supplementary Table S5). In the ACPA+ RA subgroup, however,

these correlations were either positive (r > 0 and P < 0.05) or non-

significant (P ≥ 0.05).

Previous studies in RA have reported negative correlations

between bilirubin-derived metabolites and disease activity in RA

(30–32). Considering these reports, we investigated the correlation

between these metabolites and clinical characteristics in our dataset

to identify potential differences between the ACPA– and ACPA+

RA subgroups. Our analysis confirmed that two bilirubin-derived

metabolites (bilirubin degradation product [C16H18N2O5] and

bilirubin [E,Z or Z,E]) exhibited negative correlations with

DAS28-CRP (r < –0.4 and P < 0.05) in both the ACPA– and

ACPA+ RA subgroups (Figure 2H; Supplementary Table S7).

However, we identified disparate correlations between bilirubin-

derived metabolites and the acute phase inflammatory markers

(ESR and CRP) in ACPA– and ACPA+ RA. For instance, in the

ACPA– RA subgroup, biliverdin and bilirubin (Z,Z) were both

negatively correlated with ESR (biliverdin: r = –0.52 and P = 5.11 ×

10–4; bilirubin (Z,Z): r = –0.48 and P = 1.73 × 10–3) and CRP

(biliverdin: r = –0.45 and P = 3.28 × 10–3; bilirubin (Z,Z): r = –0.43

and P = 5.19 × 10–3) (Figures 2F–G; Supplementary Tables S5, S6).

Conversely, within the ACPA+ RA subgroup, neither biliverdin nor

bilirubin (Z,Z) showed significant correlations with ESR and CRP.
FIGURE 1

Integrative multi-omic approach to identify RA subgroup-specific biomolecular signatures. This study involves three study groups: Patients with
ACPA− RA (n = 40), patients with ACPA+ RA (n = 40), and healthy (i.e., non-diseased) controls (n = 40). Plasma samples were analyzed using
untargeted proteomics (7,273 proteins) via an aptamer-based technology (SomaLogic, SomaScan Assay v4); and metabolomics (1,061 metabolites)

via LC-MS/MS (Metabolon, Discovery HD4™ platform). Comparative analyses between study groups (ACPA− RA vs. controls and ACPA+ RA vs.
controls) were performed to: (1) identify characteristic blood molecules and their associated biomolecular pathways (e.g., immune responses,
metabolic reaction pathways); (2) explore intra- and inter-omic relationships; and (3) evaluate the potential of blood molecules to distinguish study
groups using machine learning with a network-based feature selection scheme.
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Plasma proteomic profiling in ACPA– RA
and ACPA+ RA

The identification of distinct correlations in clinical

characteristics and biomolecular features between ACPA– and

ACPA+ RA motivated us to further investigate the differences in

the abundance of individual plasma proteins between study groups.

For this, we conducted a differential abundance analysis, selecting

proteins with significant group-level differences (P < 0.01 for the

regression coefficient and Cohen’s |d| > 0.5) while controlling for

potential confounding factors (i.e., sex, age, BMI, smoking history,

use of prednisone, use of bDMARDs, and use of csDMARDs)

(Materials and Methods). This analysis was structured into two

pair-wise group comparisons: ACPA– RA vs. controls, and ACPA+

RA vs. controls. Among 7,273 proteins, we identified 24 proteins

with higher abundance, and 49 with lower abundance, in ACPA–

RA compared to controls; and ACPA+ RA showed fifteen proteins

with higher abundance, and three with lower abundance, than

controls (Figures 3A–B; Supplementary Tables S8, S9).

Importantly, seven proteins were commonly elevated in both

ACPA– and ACPA+ RA relative to controls, including immune-

related proteins such as C5, CFI, CXCL13, PGAM1, and PGAM2.

These overlapping proteins may reflect shared systemic

inflammatory processes across RA subgroups. Additionally, three

proteins (CLIC3, COL15A1, and NAMPT) were found to be

consistently lower in both RA subgroups compared to controls,
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suggesting potentially common pathways of downregulation or

depletion associated with RA pathophysiology.

Proteins that were more abundant in each of the two RA

subgroups compared to controls (24 proteins in ACPA– RA and

fifteen proteins in ACPA+ RA) were both (or commonly) enriched in

inflammation-related Gene Ontology (GO) terms, such as “Immune

response” (GO:0006955), “Complement activation” (GO:0006956),

and “Adaptive immune response” (GO:0002250) (Supplementary

Tables S10, S11). Notably, “Acute-phase response” (GO:0006953)

was only enriched in proteins more abundant in ACPA– RA,

whereas “Innate immune response” (GO:0045087) and “Pyridine-

containing compound catabolic process” (GO:0072526) were only

enriched in proteins more abundant in ACPA+ RA.

To further characterize subgroup-specific immune signatures, we

examined differences in cytokines and complement proteins using

curated lists from ImmPort (33) and the KEGG pathway

“Complement and coagulation cascades” (hsa04610). A total of five

complement proteins (A2M, CFB, CFD, CFHR5, and F9) and two

cytokines (IL1RN and TNFRSF17) were differentially abundant

specifically in ACPA– RA, whereas only one complement protein

(C9) was differentially abundant specifically in ACPA+ RA

(Figure 3D). In addition, to assess the robustness of these findings

and account for treatment-related confounding, we repeated the

analysis in a sub-cohort of treatment-naïve individuals (ACPA– RA,

n = 14; ACPA+ RA, n = 12) using the same thresholds. In this subset,

CFB, CFD, CFHR5, and IL1RN remained specific to ACPA– RA, and
FIGURE 2

Comparative plasma omics analysis highlights RA subgroup-specific correlations with clinical markers. (A, B) Ternary plots showing the distribution
of omic feature abundances (mean values) among ACPA– RA, ACPA+ RA, and controls. Each point within the triangle represents a specific protein
(A) or metabolite (B), with coordinates corresponding to the proportional mean abundances of the feature across the three groups. For example,
features clustered near a specific corner are relatively more abundant in that group. (C–E) Spearman correlation (r) analysis between proteins and
ESR, CRP, and DAS28-CRP, respectively. (F–H) Spearman correlation (r) analysis between metabolites and ESR, CRP, and DAS28-CRP, respectively.
The x-axis shows Spearman’s r values in the ACPA− RA group, and the y-axis shows Spearman’s r values in the ACPA+ RA group. The orange
trendline indicates the relationship between Spearman’s r values for ACPA– RA (x-axis) and ACPA+ RA (y-axis). Each point represents the correlation
of a specific protein or metabolite with the respective clinical characteristic. ESR, erythrocyte sedimentation rate; CRP, C-reactive protein; DAS28-
CRP, disease activity score 28 using CRP.
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FIGURE 3

Differential protein abundances reveal contrasting characteristics between ACPA– RA and ACPA+ RA. (A, B) Two different pair-wise group
comparisons (ACPA– RA vs. controls and ACPA+ RA vs. controls) were conducted to identify differentially abundant proteins. Among the 7,273
measured proteins, those that pass a statistical significance (P-value) threshold (i.e., corresponding regression coefficient of P < 0.01 in a model
adjusted for potential confounders) and an effect size threshold (i.e., Cohen’s |d| > 0.5) were considered significantly associated with the
corresponding RA subgroup. Age, sex, BMI, smoking history, use of prednisone, use of bDMARDs, and use of csDMARDs were considered as
potential confounders. (C) Venn diagram illustrating the overlap and uniqueness of differentially abundant proteins found in the pair-wise group
comparisons. (D) Bubble plot showing complement proteins and cytokines associated with at least one RA subgroup. The size of the bubble
represents statistical significance (P-value), while the color of the bubble indicates effect size (Cohen’s d). Asterisks (*) indicate proteins meeting the
study-wide significance threshold (P < 0.01 and Cohen’s |d| > 0.5). C9 (1) and C9 (2) represent the same complement protein measured by different
SOMAmer reagents included in the SomaScan platform.
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C9 remained specific to ACPA+ RA, providing further insight into the

RA subgroup-specific nature of these immune-related alterations

(Supplementary Tables S12, S13).
Plasma metabolomic profiling in ACPA– RA
and ACPA+ RA

We next investigated plasma metabolites to uncover subgroup-

specific metabolic traits. For this, we conducted a differential abundance

analysis on 1,061 metabolites, using thresholds of P < 0.01 for the

regression coefficient and Cohen’s |d| > 0.5 while adjusting for potential

confounders (Materials and Methods). We found that in ACPA– RA,

five metabolites were significantly more abundant, and 19 were less

abundant, than in controls (Figure 4A; Supplementary Tables S14, S15).

In ACPA+ RA, there were two metabolites with higher abundance, and

four with lower abundance, relative to controls (Figure 4B).

Notably, two chlorinated hydroxybenzoic acids (3,5-dichloro-2,6-

dihydroxybenzoic acid and 3-bromo-5-chloro-2,6-dihydroxybenzoic

acid) were commonly elevated in both RA subgroups compared to

controls. In contrast, three metabolites (caprate (10:0), laurate (12:0),

and octadecanedioate (C18-DC)) were elevated only in ACPA– RA,

suggesting subgroup-specific metabolic differences (Figure 4C). To

assess the influence of treatment, we repeated the analysis in a sub-

cohort of treatment-naïve individuals (ACPA– RA, n = 14; ACPA+

RA, n = 12), applying the same statistical thresholds. In this subset,

caprate (10:0) remained specifically elevated in ACPA– RA, while both

chlorinated benzoic acid derivatives continued to be elevated in both

RA subgroups compared to controls (Supplementary Tables S16, S17).

To investigate metabolic pathway-level alterations between study

groups, we performed enrichment analysis using a one-tailed Fisher’s

exact test on differentially abundant metabolites. Due to the limited

number of metabolites meeting our primary significance criteria (P <

0.01 and Cohen’s |d| > 0.5), we applied a relaxed significance threshold

(P < 0.05 and Cohen’s |d| > 0.5) to ensure sufficient coverage for

pathway-level analysis. Under this threshold, we found that in ACPA–

RA, twelve metabolites were more abundant and 33 were less abundant

than in controls; in ACPA+ RA, seven and seventeen metabolites were

more and less abundant than in controls, respectively. For this expanded

set of differential features, we observed significant enrichment of

pathways related to lipid metabolism (carnitine, sphingosine, and

medium-chain fatty acid metabolic pathways) in ACPA– RA; and

those related to pyrimidine and endocannabinoid metabolism in ACPA

+ RA (Figure 4D). Conversely, metabolites that were reduced in

abundance in both ACPA– and ACPA+ RA compared to controls

were significantly enriched in arginine and proline metabolic pathways,

suggesting shared alterations in urea cycle-linked metabolism.
Multi-omic network inference to elucidate
phenotype-associated biomolecular
features

We next addressed the integration of proteomic and metabolomic

data to uncover cross-omic relationships, which is a task complicated
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by the complex nature of multi-omic interactions. For this, we applied

elastic net penalized regression to infer intra- and inter-omic

relationships while incorporating clinical phenotypes (ACPA– RA,

ACPA+ RA, and controls) and demographic data (see Materials and

Methods for details). This analysis produced an extensive multi-omic

network comprising 8,341 nodes and 250,092 edges. (Here, nodes

represent proteins, metabolites, and demographic characteristics, while

edges denote associations between them.) To identify phenotype-

relevant features (i.e., those associated with ACPA status in RA), we

utilized a network diffusion technique (i.e., random walk with restart)

that navigates the network’s topological structure to identify features

most closely linked to the phenotype node (Materials and Methods).

This approach refined the network to a focused subnetwork of 50

biomolecular features most strongly connected to the clinical

phenotype (Figure 5A). To maintain neutrality and out-of-sample

generalizability, we inferred the phenotype-centric network solely from

observed data, deliberately excluding external biological priors. This

unbiased, data-driven approach is designed to identify parsimonious,

low-redundancy cross-omic feature sets that retain high predictive

performance and remain amenable to independent validation.

The expression patterns of the prioritized features highlighted

subtle, yet discernible, differences among the three phenotypic

groups (Figure 5B). Interestingly, the classifier features showed

only moderate concordance with the univariate signals from our

prior statistical analysis; several proteins/metabolites that were not

differentially abundant hits received high multivariate importance,

consistent with complementary, non-redundant information

captured by the integrative model. As is well recognized in multi-

omics analyses, classifier and univariate results need not coincide

perfectly: a feature can be highly predictive through multivariate

dependence (e.g., acting as a network “connector” or reducing

redundancy) even if it is not among the strongest by univariate

significance, whereas a univariately significant marker may become

redundant once correlated markers are modeled jointly.
Classification of RA phenotypes using
network-based biomolecular features

While we applied a covariate-adjusted linear regression strategy

for differential testing (interpretability), we also developed a

predictive classification pipeline comprising elastic-net network

inference (sparse cross-omic associations), phenotype-seeded

random walk with restart (feature prioritization), and random

forest classification (nonlinear prediction) (Materials and

Methods). In other words, we extended the network inference

approach into a classification framework, leveraging prioritized

network features to build predictive models of RA phenotypes.

For this, we implemented a classification framework using a 5-fold

cross-validation scheme. In each fold’s training dataset, a multi-

omic network was first inferred using elastic net penalized

regression while integrating phenotypic and demographic data.

Subsequently, the random walk with restart algorithm was

applied to identify a subset of features most closely associated

with the phenotypes. These prioritized features were then used as
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inputs to a random forest classifier to predict group membership in

the test dataset within cross-validation (Materials and Methods).

Our network-based machine learning strategy differentiated

ACPA– RA patients from controls with an area under the

receiver operating characteristic curve (AUC) of 0.92; ACPA+ RA
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patients from controls with an AUC of 0.93; and RA patients

(combining ACPA– and ACPA+ RA) from controls with an AUC

of 0.93 (Table 2). To provide more granular insight, we report in

Supplementary Table S18 the full set of performance metrics (AUC,

accuracy, F1-score, Matthews correlation coefficient), along with
FIGURE 4

Metabolomic profiles and pathway enrichment analyses reveal differences between ACPA– RA and ACPA+ RA. (A, B) Pair-wise group comparisons
(ACPA– RA vs. controls and ACPA+ RA vs. controls) were conducted to identify differentially abundant metabolites. Among the 1,061 metabolites
analyzed, those demonstrating a significant regression coefficient (P < 0.01 in a model adjusted for potential confounders) and an effect size of
Cohen’s |d| > 0.5 were considered to be differentially abundant. Age, sex, BMI, smoking history, use of prednisone, use of bDMARDs, and use of
csDMARDs were considered as potential confounders. (C) Venn diagram showing the overlap of metabolites associated with each subgroup.
(D) Metabolic pathway analysis (using Metabolon’s super-pathway and sub-pathway annotations) revealed distinct pathways enriched in metabolites
that were found to be associated with the ACPA– RA and ACPA+ RA subgroups. Statistical enrichment was determined using a modified one-tailed
Fisher’s exact test (P < 0.05).
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misclassification counts (TN, FP, FN, TP), across different

subnetwork cutoffs. Notably, our phenotype classification strategy

using both multi-omic datasets generally outperformed models

trained on single-omic datasets, displaying the value of

integrating proteomic and metabolomic data. In addition, across

all nine classification tasks (three pair-wise phenotype comparisons

× three data modalities), the network-guided approach achieved the

highest AUC in most cases and consistently delivered the best

classification accuracy (Supplementary Table S19). Relative to

models trained without feature selection, accuracy improved by

up to 28 percentage points; compared with standard univariate

filters (e.g., ANOVA F-test, mutual information), the network

approach matched or exceeded AUC in most settings and

produced markedly higher accuracy. These findings indicate that

random-walk-prioritized features capture complementary cross-

omic structure and provide a robust foundation for classification.

In summary, compared to the diagnostic sensitivity of standardized

serological ACPA tests (30–60%), our integrative multi-omic
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approach could demonstrate a substantial improvement in

distinguishing RA patients from controls, particularly in ACPA–

RA where clinical diagnosis remains challenging.
Discussion

Our integrative multi-omic analysis in plasma revealed that

ACPA– RA and ACPA+ RA differ across multiple data modalities,

suggesting that these subgroups may have distinct disease biology

rather than varying along a single RA spectrum. While prior studies

have largely focused on the absence or presence of ACPA as the

defining feature of these subgroups, our findings suggest that

ACPA– and ACPA+ RA differ at multiple molecular levels. These

results not only challenge the conventional view that ACPA– RA is

simply a seronegative variant of ACPA+ RA, but also highlight the

potential for multi-omic profiling to refine RA classification and

improve diagnostic and therapeutic strategies.
FIGURE 5

Phenotype-driven multi-omic network of RA-associated biomolecular features. (A) This network visualizes predictive associations between omic
features and phenotype (i.e., study group), identified using elastic net penalized regression. Biomolecules are shown as nodes, with proteins depicted
as orange circles and metabolites as gray hexagons. Associations between biomolecules are represented by edges (gray lines), where links between
nodes signify non-zero regression coefficients. All edges in the undirected graph have equal weight. The clinical phenotype (ACPA– RA, ACPA+ RA,
Control) was one-hot encoded into three binary indicators, yielding three phenotype nodes in the network (green nodes located in the middle).
Omic features closely linked to a clinical phenotype were calculated using a random walk with restart (RWR) approach (see Materials and Methods
for a details). Briefly, the phenotype was used as the starting seed for RWR with a 50% chance of being the restart location of the random walker
(restart probability r = 0.5). For visual clarity, a focused subnetwork comprising the top 50 biomolecules with the closest associations to the
phenotype node (based on the network topology) is presented. (B) Heatmap showing Z-scores of the mean abundance of a network feature in each
study group (n = 40 samples per group). Features that were previously identified as differentially abundant in RA subgroups compared to controls
are marked with an asterisk (*).
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ACPA– RA exhibited differentially abundant proteins in

immune-related pathways, including acute-phase and

complement components—differences that persisted in treatment-

naïve individuals. Notably, three complement proteins (CFB, CFD,

and CFHR5) were differentially abundant exclusively in ACPA–

RA, and these differences persisted in the treatment-naïve sub-

cohort. Previous studies have reported that CFB gene expression in

synovial tissue correlates with RA disease activity (34), suggesting a

possible role for complement activation in local joint inflammation.

While our results pertain to protein levels in plasma rather than

gene expression in synovial tissue, the elevated CFB levels do align

with previously reported transcriptional patterns. While CFB and

CFD are both involved in the alternative complement pathway,

functional evidence is currently more robust for CFD. In particular,

studies using the collagen antibody-induced arthritis (CAIA)

murine model have shown that CFD is required for disease

induction, as CFD–/– C57BL/6 mice did not develop arthritis (35).

Although the animal model does not fully recapitulate human RA,

these observations highlight a potential role for alternative pathway

components (such as CFD) in shaping inflammatory responses.

Our findings raise the possibility that complement activation may

be differentially regulated in ACPA– RA, but further mechanistic

studies will be needed to establish its relevance to human disease.

In addition to complement components, anti-inflammatory

cytokine Interleukin 1 receptor antagonist (IL1RN) was also

elevated specifically in ACPA– RA, including in treatment-naïve

individuals. While IL1 is a known therapeutic target in RA (36),

upregulation of IL1RN in ACPA– RA may reflect a compensatory

response to inflammation rather than a deficiency in IL1 inhibition.

This raises the possibility that IL1 targeted therapies may have

differing relevance across RA subgroups, though further studies are

needed to explore this hypothesis.

We acknowledge a few limitations of this study. First, while we

utilized cross-validation to assess the performance of our random
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forest classification models, the ideal scenario would involve testing

the classifiers on an independent validation cohort for a more

stringent evaluation of our model’s generalizability. Second, the

composition of our three study groups (40 persons per cohort) is

not a full representation of the broad RA and healthy population, as

the majority of our recruited participants were of White race mostly

from the Midwest region of the United States. This limits the

generalizability of our findings. Future studies with ethnically and

geographically diverse cohorts will be necessary for more robust

insights regarding ACPA– RA. Third, ACPA– RA itself is a

heterogeneous entity that may encompass RF-positive, erosive, or

genetically distinct subgroups. Such heterogeneity may obscure

biologically meaningful differences between groups, thereby

limiting the interpretability of observed molecular patterns.

Future multi-omic studies would benefit from stratified designs

that account for clinical, serologic, and genetic variation within

ACPA– RA to more precisely delineate subgroup-specific

signatures. Fourth, heterogeneity in disease activity within the

ACPA– and ACPA+ RA subgroups warrants careful

interpretation of our results. Our within-subgroup sensitivity

analyses indicate that while disease-activity heterogeneity

contributes some noise, it is unlikely to be the primary driver of

the subgroup-vs.-control differences. Since the independence of

ACPA status and disease activity remains uncertain, future

studies with more balanced or stratified disease activity

distributions will be important to disentangle autoantibody status

from disease-activity effects. Fifth, we lose most of the significant

“hits” in our statistical analyses after Benjamini–Hochberg multiple

hypothesis correction. This could be attributed to multiple factors

including a lack of strong differences in biomolecular features

between study groups, and the very large number of tests

resulting from the high dimensionality of our screening

platforms. To mitigate the risk of false discoveries, we carefully

designed our cohort selection and applied multiple measures to
TABLE 2 RA classification performance in 5-fold cross-validation.

Classification
taska

AUCb (mean
± SD)

Accuracy (mean
± SD)

Sensitivity (mean
± SD)

Specificity (mean
± SD)

PPVg (mean
± SD)

NPVd (mean
± SD)

ACPA– RA vs. controls

Multi-omic
Proteomic
Metabolomic

0.92 ± 0.08
0.91 ± 0.08
0.90 ± 0.12

91.3% ± 7.1%
87.5% ± 8.8%
88.8% ± 12.0%

92.5% ± 6.8%
90.0% ± 10.5%
90.0% ± 10.5%

90.0% ± 16.3%
85.0% ± 10.5%
87.5% ± 15.3%

92.0% ± 12.1%
86.0% ± 9.2%
88.6% ± 13.6%

93.1% ± 6.4%
89.8% ± 9.8%
89.6% ± 11.7%

ACPA+ RA vs. controls

Multi-omic
Proteomic
Metabolomic

0.93 ± 0.06
0.85 ± 0.09
0.85 ± 0.12

88.8% ± 5.2%
81.3% ± 12.5%
82.5% ± 8.1%

85.0% ± 10.5%
72.5% ± 22.4%
80.0% ± 11.2%

92.5% ± 11.2%
90.0% ± 16.3%
85.0% ± 20.5%

93.3% ± 9.9%
90.0% ± 14.1%
87.9% ± 16.7%

86.9% ± 8.2%
78.7% ± 14.6%
82.3% ± 10.6%

RA vs. controls

Multi-omic
Proteomic
Metabolomic

0.93 ± 0.04
0.83 ± 0.08
0.87 ± 0.13

87.5% ± 5.1%
81.7% ± 6.3%
82.5% ± 6.8%

96.3% ± 5.6%
97.5% ± 3.4%
96.3% ± 5.6%

70.0% ± 16.8%
50.0% ± 17.7%
55.0% ± 30.1%

87.0% ± 6.3%
79.9% ± 6.0%
82.4% ± 10.2%

92.2% ± 10.8%
91.7% ± 11.8%
93.1% ± 10.1%
aThree types of classifiers were trained for each classification task: “Multi-omic” used all omic features for network inference, feature selection, and classifier training, while “Proteomic” and
“Metabolomic” used solely protein and metabolite components, respectively. The classifier was tested using various cut-offs of subnetwork sizes (i.e., total number of nodes or features) and
performance metrics were reported based on the optimal (i.e., highest AUC) subnetwork size. The number of study participants in the ACPA– RA, ACPA+ RA, controls, and total RA (ACPA–
RA and ACPA+ RA combined) are 40, 40, 40, and 80, respectively. bAUC, area under the receiver operating characteristic curve. gPPV, positive predictive value. dNPV, negative predictive value.
Instances where the denominator in the NPV formulas would be zero are excluded from the calculation. Supplementary Table S18 provides the complete set of performance metrics across
different subnetwork cutoffs.
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address possible confounders, such as adjusting for demographic

factors and medication effects in our statistical analyses and

considering effect size (Cohen’s d) as an additional criterion.

Sixth, treatment heterogeneity represents a potential confounding

factor. Although we adjusted for medication use (bDMARDs,

csDMARDs, and prednisone) in our linear regression models, the

composition of treatments differed between ACPA– and ACPA+

RA groups. This raises the possibility that some observed

biomolecular differences may reflect treatment effects rather than

underlying biology. Seventh, although we utilized current state-of-

the-art platforms, they capture only a portion of the vast and

complex biomolecular landscape in blood. Consequently, this

could result in missing important associations with proteins and/

or metabolites that could not be profiled. Future advancements in

profiling technologies could help mitigate this concern. Eighth,

although our machine learning strategy showed high accuracy in

distinguishing ACPA– RA patients from controls, it did not account

for environmental and lifestyle factors. Not incorporating these

factors could potentially hamper how accurately our network

inference strategy identifies disease-relevant connections.

Therefore, a future study incorporating additional data (e.g., diet,

exposome) may enhance the classification performance of our

approach. Ninth, while our statistical analyses accounted for BMI,

we lacked patient data on metabolic syndrome comorbidities, such

as type 2 diabetes and dyslipidemia. The extent to which potential

metabolic comorbidities might have impacted our findings remains

a topic of future study. Finally, we did not include disease controls

such as other inflammatory arthritides. The current analysis

focused only on ACPA– RA and ACPA+ RA, raising questions

about the specificity of our findings to RA and whether they are

applicable to other autoimmune diseases. Future research

incorporating disease controls is recommended to validate and

extend our findings.

Despite these limitations, our study showcases the transformative

potential of multi-omic analyses in understanding subgroup-specific

features in RA. By identifying distinct blood protein and metabolite

patterns, we provide a strong foundation for future research to

validate these findings and explore the biomolecular pathways

driving these differences. As a discovery-phase study, our findings

highlight the need for translational follow-up, including validation in

independent cohorts and assessment of key biomolecules using

targeted assay platforms such as ELISA. These efforts could

determine whether the identified molecules—particularly those

elevated in ACPA– RA—may serve as practical, blood-based

biomarkers to supplement existing serologic tests for RA diagnosis.

In addition, as we move toward the era of classifying patients based

on their biomolecular features (37), we encourage researchers

worldwide to build upon our findings using the publicly accessible,

de-identified multi-omic datasets we have made available. Through

collaborative efforts, we aim to deepen the understanding of

seronegative RA, enabling the development of targeted treatment

strategies and improving patient outcomes by addressing the unique

mechanisms underlying this disease subgroup.

Finally, to bridge our research findings to routine rheumatology

practice—and to complement existing ACPA/RF serology with a
Frontiers in Immunology 14
minimally invasive, plasma-based digital readout—we outline a

pragmatic path to implementation. Specifically, to facilitate

clinical translation of the proposed classification approach into a

clinically applicable tool for individualized patient assessment, we

envision (i) locking down a minimal targeted panel with a fixed

decision rule or algorithm; (ii) conducting CLIA-concordant

analytical validation; and (iii) performing prospective external

validation with pre-specified thresholds, calibration, and decision-

curve analyses to demonstrate incremental utility beyond ACPA/RF

assays. Initial deployment as a laboratory-developed test with EHR-

integrated reporting would enable case-level interpretability and

ongoing performance monitoring. This staged pathway would

prioritize reproducibility, scalability, and real-world impact.
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