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Inflammatory bowel disease (IBD) is characterized by chronic intestinal

inflammation, strongly influenced by gut microbiota dysbiosis, barrier

dysfunction, and immune imbalance. Increasing evidence highlights natural

polysaccharides as promising therapeutic agents due to their dual roles in

microbiota modulation and barrier reinforcement. Polysaccharides promote

the growth of beneficial bacteria such as Lactobacillus and Bifidobacterium,

enhance short-chain fatty acid (SCFA) production, and repair mucosal damage

by upregulating goblet cells and tight junction proteins. These effects collectively

restore microbial homeostasis and attenuate inflammation. Recent advances in

polysaccharide-based nanocarriers, including chitosan, alginate, and hyaluronic

acid, further enhance efficacy by enabling mucoadhesion, stimuli-responsive

release, and targeted delivery within the inflamed colon. Such systems improve

local drug retention, reshape the gut microenvironment, and amplify the

therapeutic functions of polysaccharides. This review summarizes the

pathological mechanisms of IBD, the regulatory effects of polysaccharides on

gut microbiota, and the emerging role of nanotechnology in optimizing their

delivery. Despite encouraging preclinical evidence, challenges remain regarding

structural complexity, bioavailability, and clinical translation. Clarifying structure–

activity relationships and developing multi-responsive nanocarriers represent

future directions. Collectively, polysaccharides and their nanoformulations hold

strong potential as safe and effective strategies for IBD therapy.
KEYWORDS

inflammatory bowel disease, gut microbiota, polysaccharides, nanoparticles,
gut metabolites
1 Introduction

Inflammatory bowel disease (IBD) comprises chronic inflammatory disorders of the

gastrointestinal tract, primarily Crohn’s disease (CD) and ulcerative colitis (UC). Dysbiosis

of the gut microbiota is now recognized as a critical factor in both the initiation and

progression of IBD (1). The intestinal microbiome, which includes bacteria, viruses, fungi,
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and parasites, contains approximately 100 trillion microorganisms

(2). Consequently, therapeutic strategies aimed at restoring

microbial balance have emerged as promising approaches for IBD

management (3).

5-Aminosalicylic acid (5-ASA) remains a cornerstone of IBD

therapy (4, 5). However, its use is associated with a spectrum of

adverse effects, including headaches, nausea, hepatotoxicity,

pancreatitis, bone marrow suppression, and renal complications

(6). Prolonged treatment may also result in diarrhea, alopecia, and

myalgia. Similarly, corticosteroids, although effective, are linked to

risks such as osteoporosis, hypertension, obesity, type 2 diabetes,

and exacerbation of gastrointestinal ulcers (7–9). Some of these

drug-induced adverse reactions may even be life-threatening (10).

In addition, while antibiotics can temporarily reduce pathogenic

bacteria, long-term use disrupts microbial homeostasis and

promotes resistance (11).

Natural polysaccharides have demonstrated considerable

benefits in IBD treatment, as they reduce drug-related side

effects while enhancing therapeutic efficacy (12–14). This

reduction in drug-related side effects is closely linked to their

regulatory role in gut microbiota: Evidence suggests that

polysaccharides stimulate the growth of beneficial bacteria,

facilitate intestinal barrier repair, and regulate gut metabolism

by promoting the production of SCFAs—for instance, SCFAs can

alleviate 5-ASA-induced intestinal mucosal damage by enhancing

epithelial barrier repair, and mitigate corticosteroid-associated

oxidative stress via activating antioxidant pathways (15).

Moreover, specific microbial enzymes degrade polysaccharides,

converting them into SCFAs and other secondary metabolites

with health-promoting properties (16). Such processes regulate

microbial communities and support intestinal homeostasis.

Recent findings further indicate that polysaccharides improve

barrier integrity, modulate the gut microenvironment, and

enhance metabolic functions in patients with IBD (17).

Additionally, polysaccharide-based nanoparticles have attracted

attention for their ability to improve drug stability and sustain

therapeutic activity (18, 19). Given their dual ability to regulate gut

microbiota and reinforce intest inal barrier function,

polysaccharides represent a highly promising strategy for IBD

therapy (20). This review systematically discusses the mechanistic

basis of polysaccharide interventions and highlights their potential

in future therapeutic development.
2 The relationship between the
intestinal microbiome and IBD

Numerous studies have documented significant alterations in

the intestinal microbiota of patients with IBD compared with

healthy individuals (21–23). In healthy hosts, a dynamic balance

is maintained among beneficial, potentially harmful, and

commensal microbial populations (24). However, reductions in

microbial diversity, shifts in metabolite profiles, disruption of the

mucosal barrier, or immune dysregulation—often caused by

disease, pharmacotherapy (e.g., antibiotics, laxatives), or
Frontiers in Immunology 02
unhealthy diets—can collectively drive the onset and progression

of IBD (3, 25–29).

For example, one study reported markedly reduced levels of

anti-inflammatory taxa such as Faecalibacterium prausnitzii,

Bifidobacterium adolescentis, and other beneficial species in CD

patients, alongside a significant increase in the pro-inflammatory

species Ruminococcus gnavus (30). Similarly, murine models of

colitis showed elevated levels of pathogenic genera including

Shigella, Aeromonas, Clostridium, Sutterella, and Akkermansia

muciniphila. These findings emphasize the contrasting roles of

pathogenic and commensal bacteria in IBD pathophysiology (31,

32). Importantly, the impact of these bacteria is modulated by host

immune status, environmental factors, and nutrient availability—

conditions under which beneficial microbes may even exert neutral

or deleterious effects, and vice versa.

Dynamic fluctuations in microbial populations critically

influence gut diversity and ecosystem stability. In IBD, chronic

inflammation disrupts this stability—pathogenic bacteria (e.g.,

Ruminococcus gnavus) proliferate rapidly, while beneficial taxa

(e.g., Faecalibacterium prausnitzii) decline, leading to chaotic

microbial fluctuations and reduced diversity (30, 32). Probiotic

intervention can counteract such disruptive fluctuations: In a study

of DSS-induced colitis, administration of Lactobacillus rhamnosus

GG (LGG, 109 CFU/day) markedly improved microbiota diversity,

reversing dysbiosis by enriching beneficial taxa such as

Bifidobacterium, Olsenella, Paenibacillus, and butyrate-producing

bacteria (33). Moreover, a 14-day LGG intervention suppressed

pathogenic clusters, including Escherichia coli, Zhiphyllobacterium,

Osteobacillus, and Desulphurobacteria, thereby alleviating colonic

inflammation in UC mouse models (34).

Under physiological conditions, the mucus layer segregates

luminal bacteria from intestinal epithelial cells (IECs), and the

immune system maintains tolerance toward luminal antigens (26,

35). In IBD, barrier disruption increases permeability, enabling

bacteria to contact IECs directly (36) and translocate into systemic

circulation (37). This translocation triggers inflammatory cytokine

expression and immune activation (38, 39). Barrier dysfunction is

further characterized by reduced mucin content (40), diminished

glucose-derived metabolites (41), impaired lipid-associated

protective factors (42), and decreased secretion of pancreatic-

derived defense molecules (43).

Metabolic studies further link microbial composition to

functional pathways. Dysbiotic states are associated with reduced

polysaccharide-degrading capacity and upregulated oxidative

stress-related genes (44). Excess bacterial metabolites elevate ROS,

thereby exacerbating epithelial injury and inflammation (45).

Elevated Desulfovibrio spp. in IBD patients promote hydrogen

sulfide overproduction, inducing oxidative stress, damaging IECs,

and aggravating mucosal inflammation (46).

Additionally, dysbiosis frequently results in SCFA depletion,

which worsens intestinal inflammation (47–49). As major products

of polysaccharide fermentation, SCFAs suppress pathogen

proliferation, enhance nutrient absorption, regulate immune

responses, and reinforce the mucus barrier (50–53). They lower

intestinal pH, facilitating the colonization of beneficial bacteria such
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https://doi.org/10.3389/fimmu.2025.1666866
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Yang et al. 10.3389/fimmu.2025.1666866
as Lactobacillus and Bifidobacterium. These bacteria further ferment

carbohydrates into SCFAs, strengthening mucosal immunity (54).

Probiotics such as Bifidobacterium and Lactobacillus mitigate

inflammation by modulating NF-kB signaling, enhancing

epithelial adhesion, and inhibiting pathogens (55, 56). The

dominant gut phyla, Bacteroidetes and Firmicutes, produce acetate

and propionate (mainly Bacteroidetes) and butyrate (predominantly

Firmicutes) (57). Butyrate, in particular, serves as the primary

energy source for IECs and promotes epithelial proliferation,

which is essential for mucosal repair (58).
3 Disruption of the intestinal upper
barrier and imbalance of the
microbiome

3.1 Interaction between the intestinal
microbiome and the mucous layer

The intestinal surface is covered by a bi-layered mucus structure

that plays a fundamental role in preserving the integrity of the

upper intestinal barrier (59). The outer mucus layer directly

interfaces with the gut microbiota and provides a nutrient source

for commensal species. Certain bacteria, such as Akkermansia

muciniphila and Bacteroides fragilis, secrete mucin-degrading

enzymes that remodel this layer to facilitate colonization. A

healthy microbiota also contributes to the maturation of gut-

associated lymphoid tissue and modulates immune responses,

thereby preventing pathogen invasion and endotoxin

translocation. In addition, commensal microbes reinforce mucus

barrier function by reducing luminal oxygen levels and stimulating

host immune activity. Microbial metabolites act as key molecular

mediators, directly regulating mucosal immune signaling, shaping

host physiology, and maintaining immune homeostasis.

Johansson et al. demonstrated that Erysipelotrichia and

Paenibaci l lus decreased mucus permeabi l i ty , whereas

Proteobacteria and Saccharibacteria increased it, highlighting that

mucus properties are strongly influenced by microbiota

composition (60). Probiotic supplementation can also upregulate

mucin synthesis. For example, lymphocyte-associated pathways

induce Mucin 2 expression in IECs, while colonization by rod-

shaped bacteria restores mucus production (61). These findings

underscore the impact of probiotics on mucus barrier integrity and

intestinal health (62, 63).

Animal studies further revealed a marked reduction in goblet

cells in germ-free mice (64). The mucus layer in these animals

lacked critical immune molecules, such as regenerating islet-derived

protein III, rendering them more vulnerable to bacterial infection.

Under severe infection, the intestinal mucosa compensates by

secreting large amounts of mucus to physically limit bacterial

invasion (65). Moreover, SCFAs—key metabolites of the gut

microbiota—regulate mucus dynamics, stimulating mucin

secretion at low concentrations but potentially suppressing it at

higher levels (66–68).
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3.2 Influence of microbiota on IECs

The renewal and coordinated function of IECs are essential for

maintaining barrier integrity. Together with gut microbes and the

mucosal immune system, IECs constitute the first line of defense

against luminal pathogens and antigens (69). Exposed directly to

the intestinal lumen, IECs express a wide array of pattern

recognition receptors that enable microbial sensing. Beneficial

microbes form a protective biological barrier on the mucosal

surface, outcompeting pathogens for adhesion sites, secreting

antimicrobial compounds, stimulating mucus production, and

strengthening tight junction complexes. Collectively, these

interactions promote IEC growth, regeneration, proliferation, and

repair, thereby preserving mucosal barrier function (70–73).

In contrast, pathogenic colonization disrupts commensal

communities and adversely affects IEC structure and function

(74). In IBD patients, elevated populations of sulfate-reducing

bacteria produce hydrogen sulfide, which damages IECs and

triggers mucosal inflammation (75). Notably, such pathogenic

colonization also inhibits the growth of SCFA-producing bacteria

(e.g., Firmicutes), reducing SCFA availability—a double blow to IEC

homeostasis. Conversely, SCFAs, as key microbial metabolites, can

reverse IEC damage: SCFAs interact with G-protein-coupled

receptors (GPCR41 and GPCR43) on IECs to induce

enteroendocrine hormone release, thereby modulating disease

processes (76). Notably, butyrate provides a major energy source

for IECs, regulates cell proliferation and differentiation, and

stimulates Paneth cells to secrete antimicrobial peptides through

GPCR43 signaling (77). Other microbial metabolites, including

succinate and propionate, also contribute to IEC growth,

differentiation, and colonic energy metabolism (78).

In addition, epithelial polysaccharides serve a decisive role in

shaping gut microbiota by providing binding ligands and

nutritional substrates, thereby influencing microbial composition

and colonization. Recent evidence links IBD to altered O-glycan

expression in the mucus layer, including increased levels of short-

chain O-glycans and modified terminal structures. These changes

impair mucus barrier function, disrupt lectin-sugar interactions,

disturb host-microbe communication, and weaken mucosal

immunity, collectively promoting IBD pathogenesis (79).
3.3 Effect of gut microbiota on intestinal
permeability

The preceding discussion on microbial interactions with the

mucus layer and IECs underscores how the gut microbiota governs

multiple aspects of barrier function. To further clarify how specific

bacterial species regulate barrier integrity—particularly

mechanisms that alter intestinal permeability—additional analysis

is warranted.

A prominent example is adherent-invasive Escherichia coli

(AIEC), which has been closely associated with intestinal

inflammation. Patients with IBD often exhibit elevated AIEC
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abundance. These bacteria compromise barrier function by directly

increasing intestinal permeability, disrupting microbial diversity,

and modulating the expression of inflammatory mediators (80).

Enhanced colonization of epithelial-adherent pathogens such as

AIEC exacerbates mucosal permeability, reshapes microbial

community composition, and initiates inflammatory cascades via

upregulation of pro-inflammatory genes, ultimately driving

intestinal inflammation (81).

Conversely, certain probiotic strains protect against barrier

disruption. Escherichia coli Nissle 1917 (EcN), a Gram-negative,

non-lactic acid probiotic strain, can colonize the gut stably, interact

with IECs and resident microbes, and exert protective effects. In T84

colonic epithelial cell models, Zyrek et al. demonstrated that EcN

upregulates tight junction proteins zonula occludens-1 (ZO-1) and

zonula occludens-2 (ZO-2), thereby preserving mucosal integrity

and reducing permeability (82). In murine studies, oral

administration of EcN (109 CFU/day) alleviated colitis symptoms,

improved histopathological outcomes, protected intestinal

permeability, reduced neutrophil and eosinophil infiltration,

decreased chemokine and cytokine levels, and increased

regulatory T cell populations within Peyer’s patches (83).

Mechanistically, EcN’s ability to preserve tight junction

architecture is thought to involve the MLCK/MLC signaling

pathway. Further investigations into EcN-mediated regulation of

tight junction proteins—such as ZO-1, claudin-1, and occludin—

through MLCK pathway modulation may provide deeper insights

into molecular mechanisms underlying its barrier-protective effects.
4 intestinal microecology and
intestinal immunity

The inflammatory response in IBD originates from the

activation of innate immune cells—including macrophages,

dendritic cells, neutrophils, natural killer cells, and innate

lymphoid cells—which release cytokines, chemokines, and

antimicrobial peptides. This innate activation subsequently

triggers adaptive immunity, with T and B lymphocytes serving as

central mediators of intestinal inflammation in IBD (84) (Figure 1).

Accumulating evidence indicates that distinct microbial

communities differentially regulate T cell-mediated immunity. For

instance, Faecalibacterium prausnitzii alleviates chemically induced

colitis in mice by enhancing regulatory T cell (Treg) activity (85).

Similarly, Clostridium butyricum promotes the expansion of

CD4+Foxp3+ Tregs in the intestinal lamina propria, thereby

preventing colitis and attenuating hypersensitivity reactions (86).

Invariant natural killer T (iNKT) cells, which share features of

both NK and T cell lineages, also contribute to intestinal

immunoregulation. Germ-free mice display heightened

susceptibility to iNKT-mediated colitis and asthma following

oxazolone or ovalbumin challenge. This susceptibility arises

because germ-free conditions lack microbial metabolites (e.g.,

SCFAs, bile acid derivatives) that suppress iNKT cell

overactivation—neonatal exposure to commensal microbes

promotes the production of these metabolites, thereby limiting
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iNKT-mediated inflammatory responses. Remarkably, neonatal

exposure to commensal microbes is required to mitigate this

susceptibility (87).

During programmed cell death, neutrophils release neutrophil

extracellular traps (NETs)—web-like structures composed of

chromatin, histones, proteases, granule proteins, and enzymes

such as myeloperoxidase and neutrophil elastase. NETs restrict

pathogen dissemination and exhibit bactericidal activity through

associated proteases. However, their components can also disrupt

immune homeostasis (88). NETs have been shown to influence B

cell differentiation and function. In rheumatoid arthritis, for

example, NET-immune cell interactions promote B cell

proliferation and autoantibody production via B cell-activating

factor, while synovial NETs provide citrullinated proteins that

fuel anti-citrullinated protein antibody (ACPA) responses (89).

In IBD, depletion of SCFA-producing bacteria—particularly

butyrate producers—correlates with increased neutrophil infiltration

and NET formation, thereby accelerating disease progression (90).

Microbial metabolites, especially SCFAs, also shape macrophage

function: SCFAs suppress pro-inflammatory cytokine production by

inhibiting histone deacetylases, while upregulating anti-inflammatory

IL-10 (91). Butyrate, in particular, inhibits HDAC3, reduces mTOR

activation and glycolysis, enhances macrophage bactericidal activity,

and promotes an anti-inflammatory phenotype (92).

Considerable evidence supports a role for SCFAs in regulating

CD4+ T cell subsets, particularly Tregs, which are critical for

immune tolerance. SCFAs promote Treg differentiation by

inhibiting HDAC activity; however, under strong anti-CD3

stimulation favoring Th1/Th17 polarization, this induction is

attenuated (93). Although less studied, SCFAs also affect CD8+ T

cells, which are essential for intracellular pathogen clearance and

tumor surveillance. For example, systemic acetate elevation during

bacterial infection enhances glycolysis and boosts memory CD8+ T

cell recall responses (94).

Beneficial microbes such as Bifidobacterium and Lactobacillus

further modulate intestinal Treg populations, highlighting their role

in IBD pathogenesis (95). Treg-deficient mice spontaneously

develop colitis, underscoring the indispensable role of Tregs in

intestinal homeostasis (96). Moreover, LGG promotes B cell

differentiation and IgA secretion in the intestinal lamina propria

of piglets, thereby strengthening mucosal immunity (97).

Additional mechanisms involve microbial regulation of innate

sensors and inflammatory pathways. For instance, Bacteroides

fragilis suppresses NLRP3 inflammasome activation via SCFA

production, thereby inhibiting M1 macrophage polarization and

reducing pro-inflammatory cytokines such as IL-18 and IL-1b (98).

Faecalibacterium prausnitzii exerts anti-inflammatory effects by

downregulating IL-12 and IFN-a, while enhancing IL-10

secretion and inhibiting NF-kB signaling (85, 99).
5 Gut microbiota and oxidative stress

In IBD, excessive production of ROS—including superoxide

anions, peroxynitrite, hypochlorite, and hydrogen peroxide—has
frontiersin.org
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been strongly implicated in disease progression. ROS directly

damage IECs, activate mucosal immune responses, and trigger

oxidative stress-related signaling pathways such as NF-kB and

nuclear factor erythroid 2-related factor 2 (Nrf2), thereby

aggravating barrier dysfunction and chronic inflammation

(100, 101).

Metagenomic analyses of IBD patients have revealed

downregulation of genes involved in carbohydrate and amino

acid metabolism, coupled with upregulation of genes associated

with oxidative stress responses. These findings suggest that altered

microbial metabolic capacity may exacerbate IBD by enhancing

oxidative stress and impairing epithelial integrity.

LGG exhibits potent antioxidant activity and supports intestinal

barrier function. LGG reduces oxidative stress-induced damage by

enhancing endogenous antioxidant enzyme production, including

superoxide dismutase (SOD) and glutathione (GSH), while

simultaneously suppressing ROS generation. These protective

effects are mediated through activation of the Keap1/Nrf2
Frontiers in Immunology 05
pathway and inhibition of ERK1/2 and NF-kB signaling (102).

Further studies demonstrate that LGG reduces Giardia-induced

colonization, enhances antioxidant defenses, and lowers lipid

peroxidation, thereby maintaining epithelial integrity (103).

In a hydrogen peroxide-induced oxidative stress model using

porcine IECs, extracellular polysaccharides from LGG accelerated

ROS clearance by upregulating antioxidant enzyme expression and

downregulating oxidative stress-related proteins. These effects

collectively facilitated the repair of epithelial barrier damage (104).

Additional studies have investigated synergistic effects of

natural polysaccharides with bioactive plant-derived compounds.

For example, Lycium barbarum polysaccharides (LBPs), known for

immunomodulatory properties, and capsaicin, an anti-

inflammatory and antioxidant agent, were tested in a DSS-

induced colitis rat model. LBPs alone decreased serum IL-6 and

malondialdehyde (MDA, a lipid peroxidation marker), while

enhancing catalase activity. Co-administration of LBPs and

capsaicin further reduced IL-6 and colonic tumor necrosis factor-
FIGURE 1

Flora disorders in inflammatory bowel disease. According to their relationship to the human body, normal intestinal bacteria can be divided into
three categories: 1 symbiotic (beneficial) 2 conditional (neutral) 3 pathogenic (harmful). Inflammation leads to changes in bacterial clusters, such as
the proliferation of deformed bacteria, caused by increased oxygen synthesis in the inflammatory intestinal environment, nitrate (NO-) and increased
availability of host-generated oxygeon receptors and iron. The flora disorder is manifested by a general decrease in microbial diversity and a loss of
beneficial bacteria, which may lead to increased mucous adhesion and transfer of the beneficial flora.
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a (TNF-a), and significantly increased SOD activity. These results

underscore the synergistic antioxidant and anti-inflammatory

potential of combining natural polysaccharides with plant

bioactives in ulcerative colitis therapy (105).
6 Polysaccharides regulate the gut
microbiota

Natural polysaccharides are widespread biological

macromolecules that function as structural components, energy

reserves, and protective agents in diverse organisms. They are

complex carbohydrates formed by the condensation of multiple

monosaccharide units through glycosidic bonds, generally

represented by the formula (C6H10O5)n (106). Polysaccharides

can be derived from plants, algae, animals, or microorganisms

(107, 108). Their physicochemical properties—including

monosaccharide composition, chain length, branching degree,

and substituents—profoundly influence their bioactivities.

Hydrophilic groups such as hydroxyl, carboxyl, and amino groups

confer high solubility and dispersibility, while additional functional

groups permit chemical modification, enabling the formation of

functionalized supramolecular structures (109) (Figure 2).

However, due to variations in monosaccharide composition,

degree of polymerization, and linkage patterns, extraction and

purification of polysaccharides are inherently complex. For

example, polysaccharides with high branching degrees require

more precise ethanol concentration adjustments to avoid co-
Frontiers in Immunology 06
precipi tat ion with impurit ies ; high-molecular-weight

polysaccharides (due to high polymerization degrees) easily clog

membrane pores during separation, necessitating stricter pressure

control; and different monosaccharide linkages affect the binding

affinity to macroporous resins, complicating elution gradient

design. In plant polysaccharide extraction, ethanol precipitation is

commonly applied to remove proteins, lipids, nucleic acids,

pigments, and other small molecules from crude extracts,

followed by fractionation to obtain homogeneous polysaccharides.

Frequently used purification strategies include macroporous

adsorption resins for initial separation, ion-exchange

chromatography for selective fractionation, and membrane

separation techniques exploiting molecular weight cut-offs under

controlled pressure (110, 111).

Polysaccharides are generally classified by source into animal-,

plant-, microbial-, and marine-derived types (112). Animal

polysaccharides—often early pharmaceutical candidates—are

typically mucopolysaccharides with high water solubility (113,

114). Plant-derived polysaccharides, such as pectin, Angelica, LBP,

rhubarb, and Bupleurum polysaccharides, are usually water-soluble

and low in toxicity, making them suitable for precise dosing in

experimental settings (115). In contrast, starch and cellulose are

insoluble plant polysaccharides. Microbial polysaccharides are

produced by bacteria and fungi, while marine polysaccharides,

isolated from aquatic organisms, often possess unique biological

activities (116, 117).

Functionally, polysaccharides act as fermentable carbon sources

for probiotics, promoting their growth, reshaping microbial
FIGURE 2

Polysaccharides modulate gut microbiota and enhance gut barrier function. The healthy gut barrier consists of a Tight layer of IECS, which are
interconnected by Tight junctions that control the Permeability of matter. In good health, the intestinal immune system maintains the immune
balance by secreting cytokines (such as IL-2, IL-5, IL-6, IL-9, TNF-a and IFN-g) and activating immune cells (such as T cells, B cells and
macrophages). Mucins, antimicrobial peptides and secretory IgA can form biochemical barrier and enhance intestinal protective function. Goblet
cells secrete mucins that form a dense, sticky, and permeable gel that coats the intestinal mucosa, preventing erosion by microbes. Once the tight
junctions are broken, a phenomenon known as Leaky gut is formed, which increases intestinal permeability and allows harmful substances and
pathogens to enter the bloodstream.
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community structure, and suppressing pathogenic bacteria (118).

For example, polysaccharides extracted from Polygonum

multiflorum increase populations of Bifidobacterium and

Lactobacillus while decreasing Helicobacter, thereby alleviating gut

dysbiosis and contributing to IBD management (119). In juvenile

Hucho taimen, dietary supplementation with lentinan enhanced

beneficial genera such as Lactobacillus, Trichinella , and

Ruminococcus , while reducing harmful taxa including

Enterobacteriaceae, Fusobacteriaceae, and Flavobacteriaceae, thus

improving microbial balance (120).

The structural features of polysaccharides also determine

preferential fermentation by specific microbes (121). For instance,

oat b-glucans selectively promote Bifidobacterium and Lactobacillus

(122), while Bacteroides efficiently degrade fructans (123), and

Prevotella bryantii utilizes xylan (124). In vitro fermentation

studies with Fuzhuan brick tea polysaccharides (FBTPS-3)

showed modulation of IBD patient microbiota toward a profile

resembling that of healthy individuals, specifically by increasing

Bacteroides and decreasing Escherichia/Shigella (125).

Beyond shaping microbial composition, polysaccharides

reinforce the mucus barrier by enhancing thickness, adhesiveness,

and protective capacity, thereby preventing pathogen invasion

(126). Dietary polysaccharides also directly upregulate tight

junction proteins such as occludin and ZO-1, strengthening

epithelial barrier integrity. For example, interventions significantly

enhanced occludin and claudin-1 expression while reducing pro-

inflammatory cytokines including TNF-a and IL-1b (127).

Polysaccharides from natural sources have demonstrated

protective effects against colitis. Gloiopeltis furcata polysaccharides

safeguard colonic mucosa by modulating mucin-microbe

interactions, promoting probiotic growth, and reducing epithelial

injury (128). Dendrobium huoshanense polysaccharides increase

goblet cell numbers and stimulate mucin secretion in both small and

large intestines, reinforcing mucosal defenses (129). Functionalized

fucoidan restores microbial balance and mucosal integrity after injury

(130). In vitro studies reveal that glucomannan from Aloe vera gel

maintains barrier function via the Nrf2-mitochondrial axis and

alleviates anoikis induced by mitochondrial dysfunction (131).

Marine polysaccharides such as fucoidan exhibit strong anti-

inflammatory and immunomodulatory activity by inhibiting NF-kB
signaling and downregulating TNF-a, IL-6, and IL-8 (132).

Fucoidan also promotes Treg differentiation, enhances tight

junction proteins and IgA secretion, and reduces intestinal

permeability (133). In murine models, fucoidan mitigates colitis

by lowering nitric oxide, myeloperoxidase, and malondialdehyde

levels, reducing immune cell infiltration, and preserving colon

length (134, 135). Additionally, fucoidan may stimulate dendritic

cell maturation via TNF-dependent pathways, strengthening

host immunity.

Other plant polysaccharides also improve IEC structure. Yam

polysaccharides maintain epithelial morphology, increase goblet

cell density, and decrease inflammatory infiltration (136). High-

molecular-weight fucoidan from Undaria pinnatifida and

Sargassum fusiforme protects Caco-2 cells against ROS-induced
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injury, likely via antioxidant activity (137). Composite

polysaccharides (e.g., yam plus inulin) modulate microbiota by

reducing Proteus, Bacteroides, and Firmicutes, enhancing

metabolism, and relieving oxidative stress, ultimately improving

ulcerative colitis (138).

Polysaccharide-mediated modulation of SCFA production

represents another therapeutic mechanism (139). Ganoderma

lucidum polysaccharides significantly increase acetate, propionate,

and butyrate levels (140, 141). Similarly, LBPs undergo

fermentation to generate SCFAs while enriching Bifidobacterium

and Lactobacillus (142). Longan polysaccharides enrich SCFA-

producing taxa such as Bifidobacterium, Bacillus, and Bacteroides

fragilis, boosting acetate, propionate, and butyrate synthesis (143).

Seaweed polysaccharides also act as fermentation substrates,

indirectly supporting probiotic growth (144–147).

Importantly, the structural features of polysaccharides dictate

fermentation kinetics and SCFA profiles, with identical

fermentation conditions producing variable SCFA yields (148).

Thus, targeted research on specific polysaccharides is required to

define their optimal application in colitis therapy (Table 1). Taken

together, natural polysaccharides reshape gut ecology (beneficial

taxa↑, SCFAs↑), reinforce the epithelial barrier (mucus/TJ

proteins↑), rebalance mucosal immunity (Tregs↑, NF-kB↓), and
mitigate oxidative stress (Nrf2 axis↑). However, these biological

benefits are highly contingent on local concentration and residence

time at inflamed colonic sites. Oral administration faces substantial

hurdles—acidic gastric milieu, digestive enzymes, rapid mucus

clearance, and heterogeneous lesion distribution—leading to

suboptimal on-target exposure. This translational gap motivates

an engineering solution: polysaccharide-based nanomedicines that

exploit the inflammatory microenvironment (pH↓, ROS↑, bacterial
glycosidases↑, receptor overexpression) to achieve spatiotemporally

controlled delivery and thereby amplify the very mechanisms

delineated above.
7 Nanotechnology delivers
polysaccharides to treat IBD

We therefore conceptualize polysaccharide nanomedicines as

mechanism amplifiers: mucoadhesion and receptor targeting

extend residence (boosting barrier repair); pH/ROS/enzyme

responsiveness gates on-site release (boosting anti-inflammatory

and antioxidant actions); and co-delivery strategies align metabolic

support (SCFAs) with immune reprogramming (Tregs↑, M1→M2).

The following subsections organize the evidence not by polymer

name, but by pathophysiological lever addressed, creating a one-to-

one mapping between IBD axes and nanodesign features. Natural

polysaccharides are attractive candidates for nanocarrier

development in IBD therapy due to their inherent bioactivity, pH

responsiveness, gastric stability, susceptibility to colonic microbial

degradation, and strong mucoadhesive properties (172–176). By

modifying functional groups on their surfaces, polysaccharide-

based nanocarriers can be engineered to encapsulate drugs,
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TABLE 1 Polysaccharides regulate the gut microbiota.

Polysaccharides Models Gut microbiota regulation References

Agaricus blazei Murrill polysaccharide DSS-induced colitis in mice Ruminosae and Oxisella↑;Lactobacillus and Shigella↓ (149)

Mytilus coruscus polysaccharide DSS-induced colitis in mice
Anaerotruncus Lactobacillus Alestris Odoles Desulphurization
Vibrio and Intestinal vibrio↑;Bacteroides Longiella and Specific
bacteria↓

(150)

Astragalus polysaccharides DSS-induced colitis in mice

Lactobacillus casei Lactobacillus acidophilus Rhamnobacter Long
yeast Saccharomyces cerevisiae Rhamnococcus acidophilus and
Actinomycetes↑;Vibrio desulphurization Bifidobacterium
Lactococcus Escherichia coli and Citrobacter↓

(151)

Large Yellow Tea Polysaccharide
HFD-induced intestinal homeostasis
dysbiosis in mice

Ileibacterium Lactobacillus Bifidobacterium and Akkermansia↑;
Dubosiella Faecalibaculum Coriobacteriaceae_UCG-002 and
Erysipelatoclostridium↓

(152)

Pumpkin polysaccharides DSS-induced colitis in mice
Lactobacillus Culturing bacteria Slime spirochetes Shigella Alistipes
Helicobacteria and Campylobacter↑

(153)

Callicarpa nudiflora Hook
polysaccharides

DSS-induced colitis in mice

Desulfovibrio Clostridium_XlVa Flavonifractor Barnesiella
Oscillibacter Pseudoflavonifractor Clostridium_IV Firmicutes
Proteus Tropomycetes and Verruca↑;Bacteroidetes Bdelloides
Bacteroidetes and Proteus↓

(154)

Schisandra chinensis (Turcz.) Baill.
polysaccharide

DSS-induced colitis in mice
Baculaceae and Lachnospiraceae_NK4A136↑;Bacteroides and
Erysipelatoclostridium↓

(155)

Pectic polysaccharides from Aconitum
carmichaelii leaves

DSS-induced colitis in mice
Acinetobacter A. finegoldii Prevotella 9 and Lachnospira↑;
Bacteroides Alistipes Streptococcus Ruminococcus and Dubosiella↓

(156)

Bamboo (Phyllostachys edulis) shoot
polysaccharide

DSS-induced colitis in mice
Prevotella Aliti Anaerobes Stenobacteria Bifidobacterium
Butyrobacter and Lactobacillus↑;Lactobacillus parasitosus Slime
spirochetes Helicobacteria and Streptococcus↓

(157)

Floral mushroom polysaccharide DSS-induced colitis in mice
Lachnospiraceae_NK4A13G Odoribacter↑;Bacteroides Helicobacter
and Parasutterella↓

(158)

Allium tenuissimum L. flowers
polysaccharide

DSS-induced colitis in mice
Lachnospiraceae and Alloprevotella↑; Bacteroides Lactobacillus
Pneumococcus Anaerovoracaceae and Butyricicoccaceae↓

(159)

Laiyang pear residue polysaccharides DSS-induced colitis in mice
Actinomycetes and Lactobacillus↑; Verrucomicrobiota Turicibacter
and Romboutsia ↓

(160)

Safflower polysaccharide DSS-induced colitis in mice Verrucomicrobiota and Akkermansia↑;Bacteroides↓ (161)

Rosa laevigata polysaccharides DSS-induced colitis in beagles
Prevotella Bacteroides Faecalibacterium Turicibacter Toricibacter
and Megamonas↑;Romboutsia and Terrisporobacter↓

(162)

Ishige okamurae polysaccharide DSS-induced ulcerative colitis in mice

Bacteroidetes Campylobacter and Proteus↑; sessile fungi
Actinomycetes Dubosiella Romboutsia
norank_f_norank_Clostridia_UCG-014 Bifi-dobacterium
Coriobacteriaceae_UCG-002 Saccharimonas Allobaculum
unclassified_f_Prevotellaceae and Tyzzerella↓

(163)

Sagittaria sagittifolia L. polysaccharides DSS-induced colitis in mice
Firmi- cutes Bacteroidetes Lactobacillus and Yeasts↑;Aspergillus
ligilactobacillus and Akkermansia↓

(164)

Gastrodia elata polysaccharides DSS-induced colitis in mice
Eosinophilic bacteria Ligilactobacillus and Alloprevotella↑;
Bacteroides and EscherichiaShigella↓

(165)

Tamarind seed polysaccharide
hydrolysate

DSS-induced ulcerative colitis in mice Akkermansia Prevotella and Blautia↑; Coprobacillus↓ (166)

Sea buckthorn polysaccharide DSS-induced colitis in mice
Prevotella Prevotella Allobaculum Escherichia Saudi Clostridium
Parabacteroides and Escherichia ↓

(167)

Rehmannia glutinosa polysaccharide DSS-induced colitis in mice
Solid condensation bacteria Lactobacillus Alistipes and
Lachnospiraceae_NK4A13↑;Bacteroides and Proteobacteria↓

(168)

Nostoc commune Vaucher
polysaccharide

DSS-induced acute ulcerative colitis in
mice

Akkermansia muciniphila g norank_f Muribaculaceae and g
norank_f norank_o Clostridia_UCG-014↑

(169)

(Continued)
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achieve sustained release, and selectively target specific gut

microbial populations (177).

Nanomedicine delivery systems, owing to their nanoscale

dimensions and unique structural properties, enhance drug

accumulation and retention at target sites, thereby supporting

localized therapy (178). The viscosity and intrinsic charge of

polysaccharides further enable intimate interactions with the

intestinal barrier, prolonging retention within the colon (13, 179).

For instance, positively charged nanoparticles adhere to or

penetrate negatively charged mucosal surfaces via electrostatic

interactions, whereas negatively charged nanoparticles

preferentially accumulate in positively charged inflamed tissues,

thereby improving lesion targeting. Moreover, polysaccharide-

based nanocarriers promote cellular uptake by IECs and immune

cells through endocytosis and exocytosis (180). Collectively, these

systems improve solubility, intestinal retention, and site-specific

drug accumulation, resulting in enhanced therapeutic efficacy and

reduced systemic side effects (172, 181).

Currently, chitosan (CS), alginate (ALG), hyaluronic acid (HA),

and Angelica sinensis polysaccharide (ASP) are among the most

widely studied polysaccharide-based nanocarriers for IBD
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treatment, owing to their favorable biocompatibility and

functionality (18, 19) (Figure 3). However, some polysaccharides

exhibit high solubility and poor film-forming ability, leading to

premature drug release and reduced colonic targeting. To address

these limitations, composite nanocarrier systems combining

multiple polysaccharides have been developed, effectively

overcoming the weaknesses of single-component carriers (182,

183). Despite these advances, challenges remain, including

instability in gastric acid and limited colon-targeting efficiency.

Moreover, clinical data on dose-response relationships of

polysaccharides in IBD remain scarce (131).
7.1 Properties of Cs and application of
nano-carriers

CS is a cationic natural polysaccharide characterized by its

positive charge, mucoadhesive properties, biocompatibility, non-

toxicity, and biodegradability (136). Its cationic nature facilitates

electrostatic interactions with the negatively charged mucus layer,

thereby extending its retention time in the intestinal mucosa (184).
TABLE 1 Continued

Polysaccharides Models Gut microbiota regulation References

Paecilomyces hepiali polysaccharides DSS-induced colitis in mice
Bacteroides and Desulfobacterota↑;Firmicutes Verrucomicrobiota
Deferribacterota Desulfovibrionaceae Anaerovoracaceae
Oscillospiraceae Enterobacteriaceae and Lachnospiraceae↓

(170)

Polysaccharide from Enteromorpha
clathrata

DSS-induced ulcerative colitis in mice
Parabacteroides Lachnospiraceae NK4A136 Lactobacillus johnsonii
Muribaculaceae Parabacteroides and Alistipes↑;Akkermansia
muciniphila and Bacteroides thetaiotaomicron↓

(171)
"↑" indicates an increase in the abundance of the corresponding intestinal microbiota taxa, and "↓" indicates a decrease in the abundance of the corresponding intestinal microbiota taxa.
FIGURE 3

Sources of natural polysaccharides for nanodelivery systems.
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As CS resists degradation in the upper gastrointestinal tract, orally

administered CS can reach the colon intact, exerting localized

therapeutic effects. In a DSS-induced colitis mouse model, CS

reduced disease activity, ameliorated histopathological alterations,

upregulated tight junction proteins, decreased TNF expression, and

modulated gut microbial composition by increasing Lactobacillus

and Blautia populations (185).

CS can also remodel gut microbial communities by increasing

the abundance of probiotics such as Prevotella, Vibrio, and SCFA-

producing taxa (186). Notably, the pH responsiveness of CS further

supports its microbiota-regulating effect: Its amino groups impart

pH responsiveness, enabling environmentally triggered drug release

—it remains stable in the acidic gastric environment (pH 1.2) to

avoid premature degradation, and only dissociates in the neutral-to-

weakly alkaline colonic environment (pH 6.0-7.0) where it can

directly interact with gut microbes and exert probiotic-enriching

effects (187, 188). This pH-responsive feature, combined with

targeted delivery, enhances therapeutic synergy: For instance,

amphiphilic CS nanoparticles self-assembled with quercetin allow

targeted intestinal delivery (189).CS hydrogels swell more under

acidic than alkaline conditions, making them effective carriers for

gastric nutrient release (190). A CS-pectin delivery system has also

been developed to encapsulate anthocyanins, protecting them

through the gastric environment and ensuring controlled release

in the small intestine, thereby improving stability and

bioavailability (191).

A dual-responsive nanodelivery system, RH-F/C-NPs, based on

CS and fucan, exhibits pH/ROS sensitivity and strong

mucoadhesion, making it suitable for ulcerative colitis therapy.

This system significantly decreased pathogenic bacteria while

increasing beneficial species such as Lactobacillus (192). The

composite nanosystem achieves stable structure through

electrostatic and hydrogen bonding interactions, ensuring efficient

colon delivery and microbiota regulation (193).

Due to the strong adhesion between CS and mucins, CS-based

nanoparticles persist in the colon, providing sustained drug release.

They also restore gut microbial balance by inhibiting TLR4/NF-kB
signaling, activating Nrf2/HO-1 antioxidant pathways, repairing

epithelial barriers, and re-establishing gut homeostasis.

Importantly, RH-F/C-NPs markedly upregulated barrier-

associated proteins including occludin, claudin-1, and ZO-1,

underscoring their therapeutic potential for epithelial injury

repair (194–197).
7.2 Characteristics of alginic acid and
application of nano-carriers

ALG is a naturally occurring polysaccharide rich in hydroxyl

and carboxyl groups, enabling hydrogen bonding, gel formation,

mucoadhesion, and enhanced transdermal penetration (198). Due

to its excellent biocompatibility, biodegradability, and drug-loading

capacity, ALG nanoparticles (NPs) are readily degraded in

biological systems, thereby reducing the risk of long-term
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accumulation (198). Furthermore, ALG possesses intrinsic pH

sensitivity, allowing structural modification for controlled release

under specific gastrointestinal conditions.

For example, CS-calcium-ALG microparticles have been

developed by crosslinking ALG with polymers and calcium

through spray drying, encapsulating Lactobacillus casei together

with inulin rich in fructooligosaccharides (199). This delivery

system significantly improved mucosal integrity, promoted

vasodilation and glandular development, and reduced

inflammatory cell infiltration in colonic tissues. Moreover,

Lactobacillus counts in treated rats returned to levels comparable

to healthy controls (200).

Notably, shifts in the relative proportions of Lactobacillus and

pathogenic bacteria such as Escherichia coli are closely associated

with colonic inflammation (201). Enhancing the abundance of

Lactobacillus may thus restore high-molecular-weight equilibrium

and rebalance pro- and anti-inflammatory responses in the

gut (202).
7.3 Properties of HA and application of
nano-carriers

HA, a major component of synovial fluid and the extracellular

matrix, exhibits notable immunomodulatory activities. It modulates

macrophage function, stimulates antimicrobial peptide production,

inhibits bacterial proliferation (203), and regulates CD4+ T cell

responses. Studies have shown that HA protects the intestinal

epithelium by reducing inflammation and permeability, thereby

preserving barrier integrity. Chemically modified HA formulations,

such as biphasic enema suspensions, significantly decreased

inflammation and permeability while maintaining mucosal

function in murine colitis models (204).

HA-based nanocarriers have been engineered for enhanced

colonic targeting. For example, HA-functionalized polymer

nanoparticles preferentially accumulate within inflamed intestinal

epithelia compared with native HA, forming a protective barrier

and strengthening tight junction signaling (204). Conjugation of

HA to CS-modified nanoparticles via amide bonding improved

targeting efficiency and cellular uptake, while CS-HA combinations

synergistically attenuated colitis symptoms in mice. Amphiphilic

HA-bilirubin conjugates have also been developed to form HA-

bilirubin nanomedicine (HABN) (205). HABN preferentially

accumulates in inflamed IECs, restores barrier integrity, and

reshapes the gut microbiota, enriching Akkermansia muciniphila

and Clostridium cluster XIV, both critical for gut homeostasis (206).

A. muciniphila and its outer membrane protein Amuc alleviate

inflammation by modulating host immune responses. HABN also

increased Lactobacillus abundance (207), complementing the

butyrate-mediated Treg activation by Clostridium cluster

XIV (192).

Current evidence suggests that Lactobacillus exerts anti-

inflammatory effects in various animal models of colitis (208–

210) and in patients with IBD (211–213). Notably, treatment with
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broad-spectrum oral antibiotics partially diminished the protective

efficacy of HABN against DSS-induced colitis, underscoring the role

of microbiota in mediating these effects.

HA can also be metabolized by gut probiotics including

Bacteroides, Lactobacillus, and Bifidobacterium, which degrade

orally administered HA into unsaturated oligosaccharides. These

metabolites are further converted into SCFAs, CO2, and H2 (214),

providing nutrients for IECs and reinforcing epithelial defenses

(215). SCFAs support epithelial turnover, mucosal growth, and

immune regulation. In IBD models, HABN reduced tissue injury,

immune infiltration, and peroxidase activity while enhancing colon

length and antimicrobial peptide expression (216). Interestingly, the

regulatory effects of HA within the gut depend on its molecular

weight (217–221). High-molecular-weight HA stabilizes the

intestinal mucosa and counteracts immune dysregulation,

whereas low-molecular-weight HA enhances metabolic absorption

and modulates innate immune responses. Specific HA fragment

sizes also exhibit distinct biological activities, playing pivotal roles in

inducing immune defense mechanisms within the intestinal

epithelium (222, 223).
7.4 Characteristics of ASP and application
of nano-carriers

Water-soluble polysaccharides can be transformed into

amphiphilic polymers through partial dehydrogenation, enabling

spontaneous self-assembly in aqueous environments. In such

systems, hydrophobic moieties aggregate to form the core, while

hydrophilic polysaccharide chains constitute the shell, yielding

stable micellar structures (224). The hydrophobic core

accommodates hydrophobic drugs via noncovalent interactions,

whereas the hydrophilic shell can be chemically modified with

responsive groups for controlled or targeted release (225).

ASP, owing to its high solubility, biocompatibility,

biodegradability, abundant hydroxyl groups, and modifiability, is

an ideal candidate for constructing amphiphilic polymeric micelles

with therapeutic potential (226, 227). For instance, cystine

dihydrochloride has been used as a crosslinker to synthesize ASP-

based nanoparticles encapsulating proanthocyanidins for ulcerative

colitis therapy. These nanoparticles were glutathione-sensitive,

enabling efficient release in inflamed tissues. However, due to the

complexity of the colonic microenvironment, single-responsive

systems often fail to ensure precise delivery. To overcome this

limitation, dual-responsive ASP nanocarriers, sensitive to both pH

and redox conditions, were developed to deliver ginsenoside Rh2

selectively to inflamed colonic sites. This system significantly

alleviated colitis symptoms and modulated gut microbial

composition (228, 229).

ASP has also been chemically modified with allantoic acid to

generate amphiphilic polymers that self-assemble into

nanoparticles through carboxyl-mediated interactions. The

imidazole group of allantoic acid confers pH sensitivity,

promoting rapid degradation in acidic inflammatory sites (230).
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Similarly, ASP conjugation with a-lipoic acid introduces redox

responsiveness via disulfide bonds, enabling degradation under

glutathione-rich conditions (231). In vivo studies demonstrated

that ASP-based nanocarriers enriched beneficial taxa such as

Norank, Lactobacillus, and Lachnospiraceae, while reducing

harmful genera including Bacteroides, Turicibacter, and

Ruminococcus. These Rh2-loaded ASP nanoparticles enhanced

SCFA production, particularly acetate, propionate, and butyrate,

and upregulated ZO-1 expression in colonic tissues, thereby

improving mucosal barrier homeostasis (232). The nanoparticles

exhibited dual targeting: passive accumulation in inflamed tissues

through the enhanced permeability and retention (EPR) effect, and

active targeting via dual responsiveness. Their small particle size

also facilitated cellular uptake by IECs and immune cells (e.g.,

neutrophils, macrophages, and M cells) through endocytosis (172).

Collectively, ASP nanocarriers not only enhanced drug

bioavailability but also increased anti-inflammatory efficacy in

colitis therapy.
7.5 Characteristics of rhubarb
polysaccharides and application of nano-
carriers

Rhubarb polysaccharide (DHP), predominantly extracted from

rhubarb, is characterized by its biodegradability, low

immunogenicity, and minimal toxicity. Its abundant hydroxyl

groups facilitate electrostatic and hydrogen-bond interactions,

enabling co-assembly with berberine (BBR) to form BBR-DHP

nanoparticles (BD). Studies using DSS-induced colitis models

revealed that disease groups exhibited increased Proteobacteria

and decreased Firmicutes. BD treatment restored microbial

balance, reducing Proteobacteria and enriching Lactobacillus, a

key probiotic genus within Firmicutes that promotes gut

homeostasis (233).

Lactobacillus contributes to epithelial repair, mucosal defense,

and immune regulation. It competitively inhibits pathogen

adhesion to IECs, produces antimicrobial metabolites (e.g., lactic,

acetic, and propionic acids, bacteriocins, ROS), and strengthens

host defenses (234). Notably, Lactobacillus abundance was

significantly reduced in both DSS and BBR-only groups, but

maintained in the DHP and BD groups, consistent with genus-

and phylum-level shifts. These findings suggest that the microbiota-

modulating effect of BD is primarily attributable to DHP (233).

Histological analyses further demonstrated that BD treatment

ameliorated colonic injury, restoring crypt architecture,

preserving goblet cells, and reducing muscular edema. BD also

maintained colon length (~8 cm), comparable to healthy controls.

Tight junction proteins occludin and ZO-1, markedly reduced in

DSS groups, were restored by BD treatment. Deficient O-

glycosylation compromises mucin production and disrupts the

mucus barrier, thereby facilitating inflammasome activation (e.g.,

caspase-1, IL-1, IL-18) and exacerbating inflammation. High-

performance liquid chromatography (HPLC) revealed that minor
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monosaccharides in DHP—such as mannose, xylose, and GalNAc

—may promote glycosylation, reduce inflammation, and contribute

to therapeutic efficacy (235, 236).
7.6 Properties of Phellodendron amurense
polysaccharides and application of nano-
carriers

Phel lodendron amurense polysaccharide (PIP) has

demonst ra ted the ab i l i t y to improve the in tes t ina l

microenvironment by modulating gut microbiota and enhancing

mucosal immunity (237). Given its potent anti-inflammatory and

prebiotic properties, researchers developed a PIP-loaded CS-

modified poly(lactic-co-glycolic acid) (PLGA) nanoparticle (CS-

PIPP). Experimental results showed that CS-PIPP decreased

pathogenic taxa while increasing beneficial bacteria such as

Lactobacillus and Akkermansia muciniphila, underscoring its

potential as a prebiotic agent (238). Further investigations

revealed that both free PIP and CS-PIPP increased Lactobacillus

and A. muciniphila populations. Notably, CS-PIPP more effectively

reduced Escherichia coli and Shigella abundance, thereby limiting

pathogen invasion of colonic mucosa and suppressing

inflammatory responses. In addition, CS-PIPP enriched probiotic

genera such as Alloprevotella while reducing harmful taxa including

Romboutsia, often elevated in ulcerative colitis (239, 240).

CS-PIPP also exerted immunomodulatory effects. It enhanced

IL-10 secretion, inhibited M1 macrophage polarization, and

preserved tight junction proteins (ZO-1 and occludin), thereby

maintaining barrier integrity. Regulation of SCFA production may

represent an additional protective mechanism. Collectively, these

findings highlight CS-PIPP as a synbiotic nanocarrier with

multifaceted roles in protecting against IBD through reshaping

the microbiota, strengthening the barrier, and modulating

immune responses (241–243).
7.7 Characteristics of Eucommia ulmoides
polysaccharide and application of nano-
carriers

Eucommia ulmoides polysaccharide (EUP) refers to a group of

sugars extracted from the leaves and roots of Eucommia ulmoides.

Previous studies have shown that EUP possesses anti-inflammatory,

antioxidant, and immunomodulatory properties (244, 245).

Selenium nanoparticles (SeNPs) are known for their excellent

biological activity in IBD therapy. In this context, EUP was used

as a surface modifier to prepare EUP-SeNPs with an approximate

size of 170 nm. Oral administration of EUP-SeNPs effectively

counteracted DSS-induced reductions in beneficial bacteria such

as Actinomycetes, DNA, Rikenellaceae, and Muribaculaceae.

Concurrently, they decreased the abundances of pathogenic

bacteria including Campylobacter, Escherichia coli, Vibrio,

Desulfobacter, and Ruminococcus. These findings align with

previous studies (246, 247), suggesting that EUP-SeNPs can
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mitigate colonic injury by modulating the gut microbiota,

enhancing benefic ia l taxa , and suppress ing harmful

populations (248).

Mucins in the intestinal mucus layer act as a primary defense by

preventing pathogen infiltration (249, 250). Studies revealed that

EUP-SeNPs improve the expression of tight junction proteins by

reducing inflammatory cell infiltration and intestinal permeability,

increasing goblet cell numbers and mucin secretion, regulating IEC

apoptosis and proliferation, and modulating inflammatory

cytokines, collectively ameliorating DSS-induced colonic damage.

Additionally, EUP-SeNPs inhibited activation of the TLR4/NF-kB
signaling pathway. Maintaining redox balance is critical for overall

health, with multiple indicators used to evaluate colonic oxidative

status. Oral administration of EUP-SeNPs was found to

significantly enhance colonic antioxidant capacity and attenuate

the severity of DSS-induced colitis, underscoring their potential as a

multifunctional therapeutic strategy for IBD (248).
7.8 Other polysaccharides

Polysaccharides from various natural sources, including

Codonopsis pilosula, Dendrobium officinale, LBP, and Tremella

fuciformis, have also shown therapeutic promise against

IBD (Table 2).

Codonopsis pilosula polysaccharides (CPP) help maintain gut

homeostasis by sustaining Lactobacillus abundance and reducing

Escherichia-Shigella populations, thereby restoring microbial

balance (251). Dendrobium officinale polysaccharides (DOP)

significantly increased microbial diversity and improved the

relative abundances of Firmicutes and Bacteroidetes in colitis

models. DOP also suppressed harmful taxa such as Proteobacteria

and reduced inflammation, oxidative stress, and apoptosis,

ultimately enhancing barrier integrity by upregulating ZO-1 and

occludin expression (252). LBPs improved microbial composition

by elevating Lactobacillus and Bifidobacterium, restoring microbial

d ivers i ty , and strengthening mucosa l defenses . LBP

supplementation increased SCFA levels, reduced colonic

inflammation, and upregulated tight junction proteins, thereby

ameliorating colitis pathology (253, 254). Tremella fuciformis

polysaccharides (TFP) exhibited strong microbiota-regulating

activity by increasing SCFA-producing bacteria and Lactobacillus,

while simultaneously enhancing tight junction protein expression

and reducing oxidative stress. These effects collectively protected

epithelial integrity and alleviated colitis (255). In addition, selenium

nanoparticles prepared with seaweed polysaccharides demonstrated

anti-inflammatory efficacy by inhibiting NF-kB activation,

preserving intestinal barrier integrity, and reducing inflammation

in colitis models (256).
8 Challenges and prospects

This review has systematically analyzed the core pathological

mechanisms underlying IBD, including gut microbiota dysbiosis,
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impaired intestinal barrier function, immune dysregulation, and

oxidative stress. Natural polysaccharides, derived from diverse

sources and exhibiting distinct structural characteristics, demonstrate

strong therapeutic potential in modulating these pathways. Their dual

mechanisms—microbiota regulation and barrier enhancement—

include stimulation of beneficial bacteria such as Lactobacillus and

Bifidobacterium, elevation of SCFA production (e.g., butyrate as an

epithelial energy source, acetate for Treg differentiation), inhibition of

TLR4/NF-kB inflammatory signaling, and activation of the Nrf2/HO-1

antioxidant pathway. Moreover, the context-dependent roles of key

microbes, such as Akkermansia muciniphila, highlight their ability to

maintain barrier integrity in health but exacerbate inflammation under

pathological conditions.

Polysaccharide-based nanocarriers—including CS, ALG, HA, and

ASP—further enhance therapeutic efficacy by enabling targeted,

responsive, and sustained drug delivery. Smart designs, such as pH/

ROS dual-sensitive RH-F/C-NPs and composite carriers like CS-PIPP,

combine prebiotic activity, controlled release, and mucoadhesion,

achieving superior probiotic enrichment and pathogen suppression

compared with single-component systems. Recent advances have also

underscored the importance of polysaccharide structure-activity

relationships. For instance, low-molecular-weight fucoidan (2.56

kDa) and konjac glucomannan (KGM2, 7413 Da) exhibit enhanced

anti-inflammatory activity due to improved microbial fermentation

into SCFAs, while branched polysaccharides such as SHPS-1 exert

effects via specific glycosidic linkages (257).

Despite these promising developments, challenges remain.

Structural complexity, variability in extraction and purification,

and difficulties in achieving reproducible formulations hinder

translational application. Furthermore, polysaccharide bioactivity

is strongly influenced by molecular weight, branching degree, and

monosaccharide composition (258, 259). Although low-molecular-
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weight fractions often show superior bioactivity (260–262), results

remain inconsistent. Future efforts should focus on clarifying

structure-activity relationships, designing multi-responsive

nanocarriers for precise release, and extending applications to

biomacromolecule delivery systems such as vaccines and nucleic

acids. In conclusion, polysaccharides and their nanoformulations

represent highly promising therapeutic strategies for restoring

microbial homeostasis, reinforcing mucosal barriers, and

attenuating intestinal inflammation in IBD.
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TABLE 2 BD nanodesign mechanisms, pathological axes, and therapeutic outcomes.

Nanodesign mechanism
Corresponding IBD
pathological axis

Representative materials/
systems

Key therapeutic outcomes

Mucoadhesion & Retention
Barrier disruption (mucus thinning, loss
of tight junction proteins)

CS nanoparticles; HA nanoparticles
Enhanced adhesion, reduced DAI,
increased colon length, upregulation of
ZO-1/occludin, thicker mucus layer

pH-Responsive Release
Microbiota dysbiosis+acidic inflamed
environment

pH-sensitive CS-based systems
Increased drug concentration at
inflamed sites, reduction of pathogens,
enrichment of probiotics

ROS/Redox-Responsive Release
Oxidative stress (ROS accumulation,
GSH upregulation)

ROS - or redox - sensitive
polysaccharide systems (e.g., CS-fucan,
ASP-LA)

Decreased ROS and MDA, activation of
Nrf2/HO-1 pathway, reduced
inflammatory cytokines

Enzyme-Responsive Degradation
Microbiota dysbiosis (overexpression of
microbial enzymes)

Polysaccharide nanoparticles degradable
by bacterial enzymes

Enrichment of beneficial bacteria,
elevated SCFAs, alleviation of
inflammation

Receptor-Mediated Targeting
Immune dysregulation (Treg depletion,
NF-kB activation)

HA-modified nanomedicines targeting
CD44; b-glucan-based ligands targeting
Dectin-1

Increased Treg levels, upregulated IL-
10, M1→M2 macrophage polarization,
inhibition of NF-kB

Co-Delivery & Synergy
Combined pathological axes
(microbiota, barrier, immunity,
oxidative stress)

Dual-delivery systems combining
polysaccharides with small molecules or
inorganic nanoparticles

Decreased pathogens, enrichment of
probiotics, restoration of tight junction
proteins, enhanced antioxidant
enzymes, suppression of TLR4/NF-kB
signaling
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