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NETSs are network-like structures consisting mainly of DNA and various proteins
released by neutrophils physiologically in response to pathogens. Moreover,
according to recent reports, NETs also play an important role in carcinogenesis.
They are involved in all stages of carcinogenesis, assist in the process of
metastasis, and their presence has been linked to higher mortality and poorer
prognosis in numerous cancer types. This review focuses on anti-cancer
treatments related to disintegration of existing NETs, inhibition of their
formation and regulation of their formation. Cases in which the presence of
NETs was associated with anti-cancer activity and the association of NETs with
complications co-occurring with cancer or related to cancer treatment was
presented. This paper also presents mechanisms of NETs inhibition, predicting
the efficacy or resistance of anti-cancer therapy associated with NETs.

KEYWORDS

NETs, therapy, cancer, chemoresistance, DNase 1

1 Introduction

Neutrophil extracellular traps (NETs) are formed by networks composed of
deoxyribonucleic acid (DNA) and protein components, including neutrophil elastase
(NE), histones, proteases, myeloperoxidase (MPO), lactoferrin, defensin, lysozyme C,
cathelicidin, calprotectin, cathepsin G (CTSG) and matrix metalloproteinase-9 (MMP-9)
(1). The main physiological role of NETs is to capture various pathogens, while their
presence and excessive production have also been detected in numerous cancers (2). NETs
act in a dichotomous manner, their effects can be both pro- and anti-tumor depending on
the state of the immune system or the tumor microenvironment (TME) (3, 4). In contrast,
it has been shown that patients with NETs involved in the tumor process showed a less
favourable prognosis of the disease and a higher mortality rate (5, 6). A summary and
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comparison of the bidirectional role of NETs is presented in
Figure 1. It should be emphasized that the function of NETs
varies depending on the type of cancer.

The interaction of tumor cells with NET's plays an important
role in evading the immune response (10). NETs present in TME
have the ability to form a physical barrier that prevents immune
effector cells: NK cells (Natural Killer), CD8+ T lymphocytes,
cytotoxic T lymphocytes (CTL) from coming into contact with
tumor cells, thereby mitigating their anti-tumor effects, primarily
the elimination of tumor cells (10, 11). NETs can induce Th1 cell
proliferation, which is associated with improved cancer prognosis,
but at the same time they can drive macrophage polarization and
then cooperatively promote tumor cell invasion and metastasis (7).
NETs have also been shown to promote cancer metastasis by
trapping circulating tumor cells (CTCs), which, when caught in
the network, are protected from degradation and translocated to
sites of potential metastasis (10, 12). In addition, NETs have the
ability to degrade the extracellular matrix, disrupt blood vessel
integrity and activate dormant tumor cells (13). NETs are also
associated with complications associated with cancer, which include
chronic inflammation, impairment of peripheral vascular and organ
function, primarily the kidney, and thrombosis (14).

In cancer patients, under the influence of chemotactic factors, not
only neutrophils but also granulocytic myeloid-derived suppressor cells
(MDSCs) produce NETs (11). Various types of cancer cells and TME
can induce the formation of NETs (15-17). Also, the stress related to
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surgery, often performed as part of anti-neoplastic treatment, can
stimulate the formation of NETs, accelerating the development of the
disease (18). NETs formation is also influenced by the anticancer
treatment itself, primarily chemotherapy, radiotherapy and
immunotherapy (19-21). Disintegration of existing NETs, inhibition
of their formation or regulation of their formation therefore represents
a potential therapeutic target for both primary and metastatic cancers
(10, 22, 23).

This paper presents the mechanisms of NETs inhibition, the
prediction of efficacy or resistance of anticancer therapy associated
with NETSs, the mechanisms of anti-cancer therapy associated with
blocking or exploiting NETs, and current clinical trials related to
NETs and cancer treatment. Figure 2 shows cancers in which
predominant direction of evidence suggests that NETs
degradation could benefit and cancers in which predominant
direction of evidence suggests that NETs are involved in the anti-
cancer response.

2 NETs degradation methods

One of the ways to inhibit the formation of NETs is the
administration of Deoxyribonuclease I, Dornase alpha, mainly
known as DNase I, which degrades the structure of NETSs
consisting mainly of DNA (24-26). A change in plasma DNase
activity has been linked to the carcinogenesis, as observed in
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¢ inhibition of cancer cell growth by inducing apoptosis
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NETs' dual roles in pro/anti-tumor effects (1, 6-9). All the figures presented in the paper were created in https://BioRender.com.
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FIGURE 2

Cancer types in which predominant direction of evidence suggests that NETs degradation is beneficial and those in which evidence suggests NETs

have anti-cancer effects.

patients with malignant lymphomas, who showed a decrease in its
activity, while breast cancer patients showed higher levels of activity
compared to healthy subjects (27-29). Even so, physiological
amounts of DNase I are not sufficient to completely degrade
NETs in vitro (30). Meanwhile, as early as 1990, it was discovered
that DNase treatment reduced metastasis, but the mechanism of
this effect was not understood (15). DNase I also reduced the cell
viability of numerous cell lines and prevented tumor cell metastasis
to the liver in mice, while the mechanism of these actions was not
described (31). DNase I is a Ca>"’ Mg2+—dependent endonuclease
distributed in plasma that has the ability to selectively degrade all
DNA, including tumor-associated cell-free DNAs (cfDNA) not only
DNA associated with NETs (10, 32, 33-35). Therefore, it cannot be
ruled out that the examples of anticancer use of DNase presented
below are also associated with the removal of DNA that is not
necessarily NETs-related (36). The efficiency of NETs degradation
depends on the combined activity of two distinct DNases, DNase 1
and DNase 1-like 3 (DNaselL3), which preferentially degrade
double-stranded DNA (dsDNA) and chromatin, respectively, and
to some extent inhibit the proteolytic activity of NE (37, 38).
Elimination of NETs results in no loss of T cells, which restores
their anti-tumor activity, reduces early adhesion of tumor cells to
NETs, i.e. abolishes the mechanism that causes cancer metastasis
(39, 40). Treatment of existing NET's with DNase I also increases the
therapeutic efficacy of tumor immunotherapy (12, 41).
Unfortunately, long-term use of DNase I is detrimental to the
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function of the immune defense mechanism, as it increases
inflammation through inappropriate release of pro-inflammatory
mediators and likely causes increased susceptibility to bacterial
infections, a common cause of death among oncology patients
(12, 42, 43). Despite the fact that DNase has a beneficial effect on
local lesions, it may not be applicable for systemic administration
due to its rapid degradation, short half-life, low stability in plasma
and limitations in removing protein components from NETs (42,
44). The lack of complete degradation of the protein components of
NETs results in less efficacy in abolishing the inflammatory
response (45). Also, monomeric G-actin released from
neutrophils as a result of NETs formation has the ability to
inhibit the enzymatic activity of DNase I, so to achieve its desired
effect, high-frequency dosing or other forms of its administration
are recommended (46). Raghavan et al. (47) have found that
positively charged DNase-loaded particles with a size of 200 nm
showed the highest degree of interaction with NETs. To overcome
the aforementioned limitations associated with DNase treatment, a
growing number of studies have focused on new modes of DNase
delivery. For example, Zhu et al. (48) developed a strategy using
polyethylene glycol-associated polyamino acids (PAAP) to deliver
DNase 1 to prevent liver metastasis in breast and colorectal cancers
by degrading NETs. The PAAP/DNase-1 complex degrades
chromatin to induce apoptosis, then DNase-1 released into the
extracellular space dissociates the NET-DNA complex. The action
of this combination is therefore bidirectional, inhibiting both
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primary tumor growth and potential metastasis (48). Another
DNase-delivery structure was developed by Filipczak et al. (49),
containing mAb2C5 and DNase I, which together have the ability to
self-organize into a micelle-like structure. The 2C5 MDM
nanoparticles have the ability to specifically recognize NETs and
promote their degradation, containing a monoclonal antibody 2C5
that has strong specificity against nucleohistones, which are found
specifically in NETs (49). Yin et al. (50) developed a nanocarrier
based on regulating the formation of tumor-associated NETs, which
consists of a core of paclitaxel (PTX) and poly-I-lysine (PLL) pro-
drug nanoparticles conjugated to an MMP-9 cleavable
deoxyribonuclease coating conjugated to Tat I cell penetrating
peptide (DNase I), abbreviated as mP-NPs-DNase/PTX, which,
when accumulated at a tumor tissue site, can release DNase I in
response to MMP-9 to degrade NETs and absorb and dissociate
tumor cells. This model enabling DNase I administration in vitro/
vivo studies increased the inhibition of malignant tumor growth and
distant metastasis (50).

NETs formation can also be supressed by inhibiting its major
components, which include NE (51, 52). An NE inhibitor, for
example, is Sivelestat, whose mechanism of action is to prevent
NE nuclear translocation and inhibit chromatin decondensation
(24, 53). NE inhibitors also include the leukocyte secretory protease
inhibitor (SLPI) and SerpinB1, which limit the production of NETs
in vitro/vivo (54). Inhibition of peptidylarginine deiminase type 4
(PAD4), the enzyme responsible for the histone modifications
required for neutrophil DNA decondensation prior to NETs
formation, also has therapeutic indications (15, 55). PAD4
deficiency has been linked to decreased growth of tumors, such as
Lewis lung carcinoma (LLC) or pancreatic tumors, and cancer
metastasis (56-58). Deletion of PAD4 in neutrophils or
pharmacological inhibition of PAD4 with JBI-589 reduced
primary tumor growth and lung metastasis, and significantly
increased the effect of immune checkpoint inhibitors in mouse
models of tumors (59). PAD4 is produced not only by physiological
structures such as neutrophils, monocytes, macrophages, brain,
uterus, joints, bone marrow, but also by tumorigenesis (60). A
major disadvantage of the PAD4 inhibitors used is their serum half-
life, as it is only 15 minutes to 4 hours (15). Small-molecule
inhibitors of PAD4 include Cl-amidine and F-amidine, which are
irreversible inhibitors that bind calcium, which is involved in the
formation of NETs, and act by covalent modification at the
enzyme’s active site (5, 61). Chlorotetracycline, minocycline and
streptomycin were identified as reversible PAD inhibitors with low
efficacy, Cl-amidine and F-amidine were formulated as inhibitors
with improved efficacy and sensitivity, GSK199 and GSK484 were
developed as highly effective selective PAD4 inhibitors (62-64). The
aforementioned inhibitors have been used in diseases with
comorbid inflammation, where they caused a reduction in
inflammation, including autoimmune diseases (62, 65). PAD4
inhibition worked synergistically with the combined checkpoint
inhibitors anti-(programmed cell death protein 1, PD-1) and anti-
(cytotoxic T-lymphocyte associated protein 4, CTLA-4) (13). Zhu
et al. (66) examined modifications of the PAD4 inhibitor with
phenylboronic acid (PBA), which has the ability to combine with
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sialic acid on the tumor surface. The combination showed dual
targeting of tumor cells, both from the primary tumor and from
metastatic tumors (66). Another route of delivery for the PAD4
inhibitor is its nanocarrier, ZD-E-1. It is formed by self-assembly of
a pH-responsive molecular PAD4 inhibitor: ZD-E-1M (67). Most
studies show slower tumor growth and/or metastasis after PAD4
inhibition, while there are also studies reporting minimal or no
effect, depending on the type of cancer (68).

Zhao et al. (69) developed neutrophil hitchhiking nanoparticles
(SPPS) that block NETs formation to enhance Bacteria-mediated
tumor therapy (BMTT). In a study in mice, after 24 hours of
bacterial therapy, there was an increase in the number of
neutrophils in the blood and an increase in SPPS reaching the
tumor tissue by stowaway neutrophils (69). The amount of NETs in
the tumors decreased by reprogramming the formation of NETs,
thereby increasing the viability of the bacteria (69). The researchers
also found that the gene drug (siBcl-2) loaded in SPPS can be re-
enclosed in apoptotic bodies by reprogramming neutrophils from
NETs into apoptosis and allows drug delivery back to tumor cells,
further enhancing anti-tumor efficacy with a synergistic effect,
resulting in increased tumor inhibition rates and increased
survival rates (69).

Anthracyclines, or anticancer antibiotics (e.g., epirubicin,
daunorubicin, doxorubicin and idarubicin), acting through DNA
intercalation, oxidative stress and topoisomerase II poisoning,
inhibit both nicotinamide adenine dinucleotide phosphate
(NADPH)-oxidase-dependent and NADPH-oxidase-independent
NETs formation ex vivo (70, 71). Bystrzycka et al. (72)
demonstrated that two antibiotics, azithromycin and
chloramphenicol, reduce the release of NETs by modulating the
ability of neutrophils to release NETs. Also, NADPH oxidase
inhibitors significantly reduce tumor cell invasion, suggesting that
it may be mediated by NET's (73). Basyreva et al. (74) found that the
anticancer drug, 5-fluorouracil (5-FU) caused a significant and
rapid increase in the total number of NETs in the blood, while its
shielded nanoscaled polymeric form, amphiphilic poly-N-
vinylpyrrolidone (Amph-PVP) nanoparticles, blocked the
appearance of NETs in the blood (74). Other drugs that also have
the ability to block NETs include diethylcarbamazine, lapatinib,
rapamycin, bosutinib, ibrutinib, gentamicin, cyclosporine A, 5-
aminosalicylic acid (5-ASA), N-acetyl-I-cysteine (NAC), heparin,
Alveofact, Curosurf, methotrexate, hydroxychloroquine, and
probiotics (61, 65, 75-79). Metformin, a protein kinase C (PKC)
inhibitor used to treat diabetes, also has the ability to reduce the
formation of NETSs (39). The treatment reduces the components of
NETs: elastase, proteinase-3, histones and double-stranded DNA.
In vitro, metformin prevented DNA release, membrane
translocation of PKC-BII and activation of NADPH oxidase in
neutrophils, resulting in reduced NETs formation (80). Another
drug used to treat diabetes, Exenatide, reduced the formation of
NETs both peripheral and originating from lung and colon tumors.
It also enhanced the anti-tumor efficacy of PD-1 and CD8+ T-cell
blockade by reducing NETSs, which induced long-term tumor-
protective immunity (81). Another drug for diabetic patients that
regulates glycemic fluctuations, Liraglutide, a glucagon-like peptide-
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1 (GLP-1) induced a reduction in circulating NETs markers MPO,
NE and dsDNA by inhibiting reactive oxygen species (ROS) in lung
and liver cancer in mice. The drug also enhances the anti-tumor
efficacy of PD-1 inhibition, improves IFN-y release by CD8+ T cells,
while this effect could not be observed in the absence of NETs (82).

Interestingly, macrophages also have the ability to degrade NET's
in vivo, while this has only been studied at this point on human
abdominal aortic aneurysm (83). Another way to inhibit NET's is H2
inhalation, which inhibited the formation and release of NETSs
components in mice and mini-pigs with sepsis (84). Potentially,
inhibitors of MPO, a component of NETs, could also be such a
compound, but at this point have limited clinical utility due to the
side effects they have (22). Disulfiram, which blocks gasdermin D,
required for NETs release, also has the ability to block NETs
formation. This drug is only approved for the treatment of alcohol
abuse disorders due to its effect on aldehyde dehydrogenase (85).
There is also a group of compounds that has been linked to inhibiting
NETs, while this has not been studied in the context of cancer. Such
compounds include: 2-aminoethyl diphenylborinate/2-aminoethyl
diphenylborinate (2-APB), PA-dPEG24, lactoferrin, curcumin,
Glucuronoxylomannan, Octyl gallate, Diphenyleneiodonium
chloride (DPI), F-apocynin (4-fluoro-2-methoxyphenol), CXCRI
and CXCR2 antagonist, High Mobility Group Box-1 (HMGBI1)
antagonists, purinergic P2Y12 receptor blockers, therapeutic anti-
citrullinated protein antibody (tACPA), naringin, vitamin D,
tetrahydroisoquinolines (THIQs), Activated protein C (APC),
recombinant thrombomodulin, RAF inhibitors (61, 76, 78, 86-94).
Also, other substances of natural origin can affect the formation of
NETs, among such unstudied for anticancer effects are:

10.3389/fimmu.2025.1666261

Andrographolide derived from Andrographis paniculata, HMEI-A
derived from Hirudinaria manillensis, Chikusetsusaponin V derived
from Panax japonicus, Polysaccharide derived from Kochia scoparia,
Polydatin derived from Polygonum cuspidatum, Gingerol derived
from Ginger, and TTC derived from Celastrus orbiculatus (95). In
Figure 3, NETs degradation methods are collected and divided into 3
categories: inhibiting NETs components or their formation, drugs
and chemicals, and natural/human substances.

3 Predicting efficacy or resistance to
anti-cancer therapy associated with
NETs. Mechanisms of anti-cancer
therapy associated with NETs removal.
Anti-cancer effects associated with
NETSs.

Cell resistance to chemotherapy i.e. chemo-resistance, radiation
resistance and resistance to immunotherapy is associated with
TME, where neutrophils and their functions play an active role
(88, 96). Massive neutrophil infiltration is often associated with
poorer response to antitumor therapy, as has been demonstrated in
several different types of cancer (96-98). In chemotherapy-resistant
patients who are unlikely to benefit clinically, treacnt may cause side
effects related to drug toxicity or delay the use of other effective
treatments, hence it is important to understand the mechanisms
responsible for chemoresistance, and one of these potential
mechanisms may include NETs (99-102).
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FIGURE 3
NETs degradation methods.
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Cancer cells that die, often as a result of therapy, release adenosine
triphosphate (ATP), which induces NLR family pyrin domain
containing 3 (NLRP3) activation in surviving cancer cells, which
then leads to the release of interleukin 1-beta (IL-1B), which in turn
can stimulate the formation of NETs (103). NETs have the ability to
transform TME by reducing the number of anti-tumor effector cells,
which can impair the efficacy of immunotherapy (104). For example,
NETs affect tumor-infiltrating T cells by determining the response to
immune checkpoint inhibitors (62). Teijeira et al. (13) described that
inhibition of NETS sensitizes tumors to dual anti-PD-1+ anti-CTLA-4
checkpoint blockade. Volkov et al. (105) suggest that by reducing the
number of NETs in TME, the efficacy of CAR-T (T-cells modified by
the chimeric antigen receptor) therapy can be increased and even
extended to solid tumors. Cheng et al. (106) developed the Tandem-
locked NETosis Reporter 1 (TNR1), which activates fluorescence
signals only in the presence of both NE and cathepsin G (CTSG) to
specifically image NETosis and distinguish it from neutrophil
activation. Near-infrared signals from activated TNRI correlated
negatively with the effect of tumor suppression after immunotherapy,
thus providing a prognosis for cancer immunotherapy (106).

3.1 Head and neck cancer

3.1.1 Head and neck squamous cell carcinoma
3.1.1.1 NETs-related predicting efficacy of anti-cancer
therapy

Lietal. (107) developed a NETs-related gene signature strongly
associated with clinicopathologic and immunologic features of
patients with head and neck squamous cell carcinoma (HNSCC).
HNSCC patients with low NETSs signatures tended to express higher
levels of immune checkpoints, including CD274 and CTLA4, and
responded better to targeted therapies using afatinib, erlotinib,
ibrutinib and lapatinib. In contrast, patients with high NETSs
signatures were more likely to fail to respond to immunotherapy
(107). Anti-PD-1, anti-CTLA4, or combination immunotherapy
was more beneficial in patients with low-risk HNSCC stratified by a
risk model consisting of six NETs-related genes. Response to anti-
cancer drugs was also closely correlated with the expression of
NETs-related genes (108).

3.1.1.2 NETs anti-cancer effects presented on human

The largest subgroup of CD16"" CD62L*™ neutrophils found
in HNSCC patients had an increased ability to migrate and to form
NETs, but was equally associated with anti-tumor effects and
increased survival in HNSCC patients (109).

3.2 Central nervous system tumors

3.2.1 Glioblastoma multiforme
3.2.1.1 NETs-related predicting efficacy of anti-cancer
therapy

Sun and Liu (110) developed a prognostic model based on NET's
that enables the selection of precise targeted therapy for
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glioblastoma multiforme. With the model, patients were divided
into two groups, where patients in the high-risk group were more
sensitive to bicalutamide, dasatinib and gefitinib, while patients in
the low-risk group were associated with a poor response to
immunotherapy (110).

3.2.2 Glioma
3.2.2.1 NETs degradation anti-cancer effects presented
on cell lines and human tissues

NETs produced by tumor-infiltrating neutrophils (TINs)
mediate the communication between glioma progression and
TME by regulating the HMGB1/RAGE/IL-8 axis (111). HMGBI
derived from NETs binds to RAGE and activates the nuclear factor
kB (NF-xB) signaling pathway, which is also stimulated by NET's
and promotes interleukin 8 (IL-8) secretion in glioma. IL-8 then
recruits neutrophils, which in turn mediated NET formation
through the PI3K/AKT/ROS axis. Overall, overproduction of
NETs promoted the proliferation, migration and invasion of
glioma cells, with a greater number of NETs detected in high-
differentiation gliomas compared to low-differentiation gliomas.
NETs promoted the rapid proliferation of glioma cells and their
ability to invade, while this effect was abolished by DNase I. Thus,
targeting NETs formation or IL-8 secretion may be an effective
approach to inhibit glioma progression (111).

3.3 Respiratory tract cancers

3.3.1 Non-small cell lung cancer
3.3.1.1 NETs-related predicting efficacy of anti-cancer
therapy

A study by Guo et al. (112) indicates that serum NETSs levels are
an effective predictor of PD-1 inhibitor response used in the
treatment of advanced non-small cell lung cancer (NSCLC) and
reflect the neutrophil-to-lymphocyte ratio (NLR) in the tissue and
the likelihood of immune-related adverse events (IrAEs). Lower
serum NETs concentrations have been associated with better
immunotherapeutic effects. The combination of serum NETs,
CD8+ T cells and tumor proportion score (TPS) predicted the
efficacy of PD-1 inhibitor treatment (112).

3.3.2 Lung cancer
3.3.2.1 NETs degradation anti-cancer effects presented
on cell lines

Najmeh et al. (40) conducted studies on lung cancer cell lines,
which showed that administration of DNase 1 caused a decrease in
cancer cell adhesion and that integrins can mediate cancer cell
interactions with NETs. DNase I or an NE inhibitor also abolished
the formation of hepatic micrometastases formed by the transfer of
lung cancer cells by NETs (16, 113).

3.3.2.2 NETs degradation anti-cancer effects presented
on mice

Sun et al. (11) developed a hybrid nanoparticle composed of
DNase I and gold (DNase I@Au) administered inhaled to increase
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the efficacy of radiotherapy, used to treat lung cancer, and to
increase the elimination of NETs that promote metastasis. The
nanoparticle reduces tumor size, gradually releases DNase thereby
degrading NETs, preventing free malignant cells from interacting
with tumor sites or blood vessels. The molecule tested supressed the
formation of breast cancer metastases to the lungs (11).

3.4 Gastrointestinal cancers

3.4.1 Esophageal cancer
3.4.1.1 NETs degradation anti-cancer effects presented on
cell lines

The MPO inhibitor azide reduces increased levels of neutrophil
ROS leading to mucosal damage in Barrett’s esophagus, considered
a precancerous lesion of esophageal adenocarcinoma. In contrast,
Sivelestat sodium, a type of NE inhibitor, can attenuate
postoperative complications in esophageal cancer patients: it
significantly reduces postoperative hypoxia, partially reduces
systemic inflammation and maintains postoperative circulatory
status (114).

3.4.2 Gastric cancer
3.4.2.1 NETs-related predicting efficacy of anti-cancer
therapy

Li et al. (115) discovered that sensitivity to chemotherapeutic
treatment of gastric cancer was linked to the expression of NETs-
related genes, from which a potential prognostic risk score “NETs-
Score” was created. The study groups were divided into those at
“low risk” and those at “high risk.” The researchers used 3 immune
checkpoints to assess the potential efficacy of the therapy: CTLA-4,
PD-1 and programmed death ligand 1. As a result, they found that
there were significantly more of them in the low-risk group,
meaning this group was more likely to activate immune defenses
and respond to immunotherapy (115). Low risk was associated with
lower inhibitory concentrations (ICsy) of chemotherapeutics such
as afatinib, dactinomycin, daporinad, docetaxel, ibrutinib, lapatinib,
sepantronium bromide and 5-FU. The NETs-Score acted as a
potential predictor of chemosensitivity (115). Yang et al. (116)
created a prognostic model for gastric cancer using long non-coding
RNA (IncRNA) associated with NETs, which demonstrated
prognostic capabilities, serving as an adjunct to traditional cancer
staging and enabling the selection of an appropriate treatment
option. The researchers also analyzed checkpoint genes, which
were found to be strongly expressed in the high-risk group, while
only two genes, TNFRSF14 and LGALS9, were strongly expressed in
the low-risk group (116). They also conducted an analysis of the
relationship between risk score and drug resistance, which showed
that the ICs, value of dasatinib was higher in the low-risk group,
while the sensitivity of other targeted drugs, namely AZD5363,
dabrafenib, GSK269962A, ipatasertib, lapatinib, MK-2206,
oxaliplatin, palbociclib, PF-4708671, ribociclib, ulixertinib, VE-
822 in the low-risk group was higher than in the high-risk group
(116). Zhang et al. (117) demonstrated that NET's in gastric cancer
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activate cyclooxygenase-2 (COX-2) through Toll-like receptor 2
(TLR2) which increases the metastatic capacity of cancer cells. The
correlation of COX-2 with NETs was confirmed by the use of
DNase I, and mice given it showed lower COX-2 levels and delayed
metastasis (117). Moreover, COX-2 was correlated with anti-
CTLA4 response and a group of gastric cancer patients with high
COX-2 levels showed lower sensitivity to afatinib, erlotinib,
gefitinib, ibrutinib, osimertinib, Wnt-C59, AZD1332, AZD3795,
CDK9, P22077 and XAV939 (117). An interesting relationship
between the efficacy of advanced first-line treatment of gastric
cancer depending on the level of NETs was presented by Zhang
etal. (118). In patients with a partial response to treatment, patients
with stable disease and controls, the levels of NET's before treatment
were higher than after treatment in both plasma and serum. In
contrast, in patients with progressive disease, NET levels before
treatment were lower than after treatment in both plasma and
serum (118).

3.4.2.2 NETs degradation anti-cancer effects presented
on cell lines and mice

Tao et al. (119) discovered that Danshen, a dried root of Salvia
miltiorrhiza known for its anticancer properties, among other
things, reduces lung metastasis of gastric cancer cells. The
mechanism of this action takes into account the prevention of the
movement of neutrophils to metastatic sites with reduced NE levels.
Danshen-derived compounds salvianolic acid B (Sal B) and 15,16-
dihydrotanshinone I (DHT I) have shown inhibitory effects on the
formation of NETs by acting on MPO and NOX (119). In in vitro
studies, after treatment with phorbol myristate acetate (PMA),
which promotes NETs formation, or DNase 1/GSK-484, which
inhibits NETs formation, the ability of gastric tumors to migrate
was found to be altered; however, no significant changes were
observed in cell proliferation or cell cycle progression (120).

3.4.2.3 NETs anti-cancer effects presented on mice

Juet al. (121) developed a neoadjuvant chemotherapy based on
Abraxane/human neutrophils cytopharmaceuticals together with
radiotherapy to treat gastric cancer. In this regimen, neutrophils are
used to carry Abraxane, a commercial albumin-bound PTX
nanoparticle that maintains the intrinsic function of neutrophils.
Radiotherapy increases the release of inflammatory factors that
increase the influx of neutrophils into the tumor area, NETs are
formed, resulting in the shedding of Abraxane and improved tumor
suppression (121).

3.4.3 Hepatocellular carcinoma
3.4.3.1 NETs-related predicting efficacy of anti-cancer
therapy

Hepatocellular carcinoma (HCC) cell resistance to drugs and
tumor sensitivity to chemotherapeutics showed a significant
correlation with the expression of prognostic NETs-related genes
(NETs) (122). Yuan et al. (123) constructed a six-gene NETs-related
signature that could predict survival outcomes in patients with
HCC. The TME of HCC differed between high-risk and low-risk

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1666261
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Morawiec et al.

groups, which influenced tumor resistance to therapy. Researchers
used the Immunophenoscore (IPS) scale to assess susceptibility to
immunotherapy in high- and low-risk subgroups. In the high-risk
group, most immune-related genes were poorly expressed, while the
low-risk subgroup showed a higher IPS in the CTLA4-PD1+,
CTLA4+ PD1- and CTLA4+ PDI+ groups (123). Higher IPS
indicated a more favorable immunotherapeutic response, with
those in the low-risk group showing an increased response to
immunotherapy. When analyzing the response to another
therapeutic strategy, chemotherapy, the IC5, values of 9 drugs: A-
443654, AKT VIII inhibitor, PD-173074, BMS-509744,
CCT007093, CGP-60474, GSK690693, JNK-9L and KIN001-102,
showed a marked reduction in the high-risk group compared to
their low-risk counterparts, indicating increased sensitivity to
treatment (123). In other studies as well, the group with low
expression of NETs-related genes showed higher expression levels
of immune checkpoint genes, so they tended to respond better to
immunotherapy compared to the group with high expression of
NETs-related genes (124).

3.4.4 Liver cancer
3.4.4.1 NETs degradation anti-cancer effects presented
on cell lines

The ability of neutrophils to stimulate invasion tested on the
human liver cancer cell line HuH7 was inhibited by DNase I, while
it showed no effect on tumor cell invasion stimulated with fetal
bovine serum (FBS). Pre-incubation of neutrophils with the PAD4
inhibitor GSK484 before co-culture reduced the ability of
neutrophils to form NETs, which in turn blocked the promotion
of HCC cell invasion (125). The neutrophils tested could
significantly increase the trans-endothelial migration of HepG2
cells, while this effect was abolished by DNase I (126).

3.4.4.2 NETs degradation anti-cancer effects presented
on mice

Mou et al. (127) investigated the suppressive effects of icaritin
(ICT), used to treat HCC in mice. ICT inhibited the growth of
subcutaneous tumors, increased infiltration of CTLs, macrophages
and MI1-type macrophages, and promoted the secretion of anti-
tumor effector molecules such as IFN-y and Granzyme B (127).
Inside the tumor, researchers found ICT-induced suppression of
neutrophil infiltration. Reduction of NETs by DNase I or PAD4
inhibitor, could inhibit HCC tumor metastasis in mice in vivo (126).
Also, in a study by Yang et al. (45) in mice, combining DNase 1 with
the anti-inflammatory drugs aspirin/hydroxychloroquine (HCQ)
effectively reduced hepatocellular carcinoma metastasis. NETs
trigger an inflammatory response in trapped HCC cells.
Treatment with prostaglandin E2 (PGE2), a direct product of
COX2, abolished the effects of NETs on HCC cells. HCQ, a drug
with the ability to block the TLR pathway, can effectively abolish the
up-regulation of COX2 and subsequently block the metastatic
behavior of HCC cells induced by NETs (45). In a study by Zhan
etal. (128) DNase 1 also inhibited the growth and lung metastasis of
hepatocellular carcinoma induced by NETs. Acting on oxidized
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mitochondrial DNA (mtDNA) with metformin prevents HCC
metastasis enabled by NETs. HCC cells are able to stimulate the
formation of NETs rich in oxidized mtDNA, which have strong
pro-inflammatory and metastasis-promoting properties.
Metformin treatment reduced the formation of NETs, decreased
the up-regulation of several inflammatory mediators that promote
metastasis triggered by HCC-NETSs, i.e. reduced the inflammatory
response accompanying the tumor (129).

3.4.4.3 NETs degradation anti-cancer effects presented
on cell lines and mice

NETs-CM, a conditioned medium containing NETSs, markedly
increased the invasive potential of HCC cells. Co-culture of NETs-
CM with a cathepsin G inhibitor equally blocked the ability to
induce invasion. Digestion of NETs-DNA by DNase I prevented
invasion, although CTSG was not removed by DNase I digestion.
The NE inhibitor, Sivelestat, showed no significant effect on
neutrophil-stimulated invasion. In contrast, in in vivo studies in
mice, NETs-CitH3 complexes began to be detectable at the pre-
metastatic stage in a model lung compared to controls, which could
be abolished by DNase I treatment. The cathepsin G inhibitor
showed little effect on NETs formation in vivo, while it significantly
reduced NETs-CitH3 release in vitro. NETs-derived CTSG
promoted HCC cell invasion by reducing E-cadherin expression
in vitro (125). Yoshimoto et al. (130) demonstrated that NETs
promoted the motility and migratory capacity of intrahepatic
cholangiocarcinoma (iCCA) cells in vitro. The increased motility
of cancer cells after co-culture with NET's was abolished by DNase
and the PAD4 inhibitor, Cl-amidine. The co-culture was also
characterized by decreased expression of E-cadherin and
increased expression of vimentin. P-selectin-mediated platelet
binding to tumor cells promoted the induction of NETs, an effect
that was abrogated by the use of antiplatelet drugs. Injection of
iCCA cells into the spleen of mice induced liver micrometastases
coexisting with NETs. Reduction of metastasis was achieved after
treatment with dual antiplatelet therapy (DAPT) consisting of
aspirin and ticagrelor (130).

3.4.4.4 NETs degradation anti-cancer effects presented
on mice and rabbits

Cheng et al. (32) formulated a dual pH-responsive hydrogel
with a tumor acidity neutralizer in the form of mesoporous
bioactive glass nanoparticles and DNase I, which they used in
combination with infusion of NK cells, which have the ability to
selectively recognize and kill cancer cells. The combination of NK
cell infusion and a hydrogel-based delivery system can effectively
prevent HCC recurrence after resection. NK cell infusion is
negatively affected by acidic TME and NETs, so combining with a
biocompatible hydrogel that neutralizes tumor acidity and leads to
NETs lysis would significantly improve the efficacy of the therapy.
The gel also had the ability to reduce tumor infiltration by M2-type
macrophages, regulatory T cells and MDSCs and to activate
endogenous anti-tumor immunity associated with CD8+ T
cells (32).
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3.4.5 Pancreatic carcinoma, pancreatic cancer,
pancreatic adenocarcinoma & pancreatic ductal
adenocarcinoma
3.4.5.1 NETs-related predicting efficacy of anti-cancer
therapy

Zhang et al. (3) created a prognostic model based on NETs and
(epithelial-mesenchymal transition) EMT signatures in patients
with pancreatic adenocarcinoma (PAAD), the use of which
indicates potentially effective immunotherapeutic strategies and
can predict the prognosis of patients with PAAD. This prognosis
was strongly correlated with immune invasion, immune cycle,
immune checkpoint and sensitivity to treatment. NETs are
promising potential targets for neoadjuvant immuno- and
chemotherapy against cancer metastasis in patients with PAAD.
In addition, a combined suppressor of NETs and EMT may be a
highly effective intervention for patients with PAAD (3). Interleukin
17 (IL-17) sustains pancreatic ductal adenocarcinoma (PDAC)
immunosuppression by reducing CD8+ T-cell recruitment and
activation, and recruits neutrophils and stimulates NETs
formation in pancreatic tumors via factors released from tumor
cells. IL-17 blockade increased sensitivity to PD-1 and CTLA4,
while blockade of neutrophils or PAD4-dependent NET's formation
synergized with PD-1 blockade to dramatically reduce tumor
growth (2). PDAC patients with lower neutrophil infiltration,
where 45.4% have the ability to form extracellular traps or
negative staining for neutrophil extracellular traps, are more likely
to benefit from adjuvant chemotherapy (131).

3.4.5.2 NETs degradation anti-cancer effects presented
on cell lines

A study by Deng et al. (73) showed that inhibition of PAD4 and
NE inhibited NETs formation and tumor cell invasion in
neutrophils co-cultured with a primary human PDAC cell line
with strong expression of discoid domain receptor 1 (DDR1) and a
cell line without DDRI expression. NADPH oxidase inhibition had
no effect on NETs or tumor cell invasion, and DNase I treatment
showed only a partial effect compared to the control group. NETs
formation, phosphorylation of NF-xB, PKC and SYK, CXCL5
production, and cancer cell invasion were significantly reduced in
cells treated with 7rh benzamide, a specific DDRI1 inhibitor. The
researchers suggest that administration of this inhibitor at
therapeutic doses, may increase the sensitivity of cancer cells to
conventional chemotherapy and inhibit liver metastasis by blocking
the formation of NETs (73).

3.4.5.3 NETs degradation anti-cancer effects presented
on mice

Takesue et al. (132) discovered that DNase I, by inhibiting NETs,
suppressed PDAC metastasis to the liver. DNase I also inhibited
micrometastasis and reduced the number of Cancer-associated
fibroblasts (CAFs), a major component of TME in PDAC. In
PDAC, pancreatic cancer cells induce the formation of NETs,
which increase the migration of hepatic stellate cells, a source of
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CAFs potentially involved in metastasis formation (132). In another
studies, DNase treatment of mice reversed the ability of pancreatic
stellate cells (PSCs) to promote tumor growth, as demonstrated by
the reduced tumor weight of treated mice. DNase’s mechanism of
action involved blocking endogenous DNA, derived from NETs,
which had the ability to activate PSCs (57).

3.4.5.4 NETs degradation anti-cancer effects presented
on mice and human tissues

Cane et al. (133) demonstrated that NETs present in PDAC
patients form a microdomain in which cathepsin S (CTSS) cleaves
human arginase 1 (hARG1) into different molecular forms endowed
with enhanced enzymatic activity at physiological pH. Arginase 1
(ARG1) has the ability to degrade arginine, which inhibits the anti-
tumor response (133). NETs-associated hARGI inhibits T cells,
whose proliferation can be restored by adding a monoclonal
antibody (mAb) specific for hARG1 or by preventing CTSS-
dependent cleavage (133). Researchers have found that ARGI
blockade, in combination with immune checkpoint inhibitors, can
restore CD8+ T cell function in PDAC tumors ex vivo, and that
anti-hARGI monoclonal antibodies increase the number of tumor-
specific CD8+ T cells in the tumor and enhance the efficacy of
immune checkpoint therapy in humanized mice (133). Wang et al.
(134) discovered that metformin could effectively inhibit the
progression of pancreatic cancer promoted by obesity, where
adipocytes promoted NETs formation, a phenomenon that did
not occur in lean mice. NETs promote pancreatic carcinogenesis
through activation of TLR4-dependent pathways, expression of
inflammatory factors and initiation of EMT. In a study,
metformin and DNase I significantly reversed the pro-cancer
effects of obesity and NETs in vitro/vivo. DNase I inhibited the
progression and EMT of pancreatic intraepithelial ductal neoplasia
in mice, while metformin suppressed the inflammatory response
induced by NETs in these cells manifested as increased IL-1f
expression (134). Kajioka et al. (44) described that
thrombomodulin degraded HMGBI, which inhibited NET
induction, thereby preventing pancreatic cancer metastasis to the
liver, and blocked EMT and attenuated the malignant potential of
pancreatic cancer cells. Researchers examined that mice with NET's
that were given DNase had significantly reduced liver metastasis.
The finding has implications for surgical procedures performed to
treat pancreatic cancer, which promote liver metastasis and often
cause systemic inflammation, leading to NETs (44).

3.4.5.5 NETs degradation anti-cancer effects presented
on mice and human

In a study by Boone et al. (135) inhibition of autophagy by
chloroquine treatment reversed the propensity to form NETs in
vitro. Both mouse models and patients treated by inhibiting
autophagy had reduced NETs formation both by circulating
neutrophils and in TME PDAC. Moreover, the greater the
response to treatment, the more effective inhibition of NETs
occurred in TME (135).
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3.4.5.6 NETs anti-cancer effects presented on mice

Chan et al. (136) presented beneficial anti-tumor effects of
NETs in patients with pancreatic adenocarcinoma. Melatonin
supplementation induced neutrophils and increased the
occurrence of NETs, resulting in apoptosis of tumor cells via cell-
to-cell contact. The number of NETs increased during melatonin
treatment, resulting in slower tumor growth (136).

3.4.6 Colon carcinoma
3.4.6.1 NETs-related predicting efficacy of anti-cancer
therapy

The results obtained by Feng et al. (104) indicate that the
prognostic signature of six NETSs-related genes, CRISPLD2,
CPPED1, VNN3, ENTPD4 and MPO, can estimate the prognosis
and response to chemo-/immunotherapy in patients with colon
carcinoma (COAD). Researchers used the Tumor Immune
Dysfunction and Exclusion (TIDE) technique to assess response
to immunotherapy. The technique is able to predict
immunotherapeutic response based on two main mechanisms of
tumor immune escape: infiltration and T-cell dysfunction. The
higher the TIDE score, the stronger the potential for immune
evasion, i.e., the more likely patients are to benefit from immune
checkpoint inhibitor therapy. Compared to a high-risk NET
population with high TIDE scores, a better prognosis can be
obtained for a low-risk NET population with low TIDE
scores (104).

3.4.6.2 NETs degradation anti-cancer effects presented
on mice

Systemic treatment with DNase I and a mixture of proteases in
rats with colorectal cancer showed antitumor effects, reduced the
amount of DNA and proteins in serum. Researchers did not observe
anti-cancer effects in immunodeficient mice treated with enzymes
administered separately (137).

3.4.7 Colorectal cancer
3.4.7.1 NETs-related treatment resistance

In a study on colorectal cancer mice, DNase I degraded NETs
induced by tumor cells, suppressing NETs-created resistance to
anti-PD-1 blockade by increasing CD8+ T-cell infiltration and
cytotoxicity. In addition, it reduced the number of tumor-
associated neutrophils (138). Wang et al. (139) discovered that
the PAD4 inhibitor, GSK484, promotes colorectal cancer (CRC)
radiosensitivity and inhibits the formation of NETs both in vitro/
vivo. Researchers detected PAD4 overexpression in CRC patients,
which was also an indicator of adverse disease prognosis. GSK484
treatment promoted tumor cell radiosensitivity, induced cell death
by promoting DNA double-strand breaks, inhibited the effects of
PAD4 overexpression in irradiated cells, and inhibited the
formation of NETs in vivo (139). Chen et al. (12) designed a
plasmonic core black-body gold (AuPB) nanoplatform with a
broad spectrum of photoactivity and a mesoporous polydopamine
(mPDA) coating for efficient loading and photo-regulated release of
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DNase I. The on-demand DNase I released by the mechanism
triggered by a second near-infrared light irradiation (NIR-II) breaks
down the barrier formed by NETSs, thereby increasing the contact of
immune cytotoxic cells with tumor cells in living mice and
sensitizing CRC to immune checkpoint therapy. Moreover, the
use of this mechanism in the liver, the most common site of CRC
metastasis, abolished NETs-mediated metastatic spread. Also, the
anti-tumor therapeutic effect of the PD-1 monoclonal antibody was
enhanced by DNase I delivery (12). In patients with locally
advanced rectal cancer treated with neoadjuvant therapy, a high
density of NETs in biopsy specimens was significantly associated
with a decreased likelihood of a complete/proximal tumor response
to therapy (140).

3.4.7.2 NETs degradation anti-cancer effects presented
on cell lines

In a study by Wang et al. (141) mice with colorectal cancer
treated with DNase I after injection of lipopolysaccharide (LPS) to
stimulate NETs formation showed significantly less metastasis
compared to mice treated with LPS alone, which was also
associated with a decrease in the expression of TLRY, p-p38, p-
p65, p-JNK and p-Stat, and the same effect could be observed after
using the PAD4 inhibitor YW4-03 (141).

3.4.7.3 NETs degradation anti-cancer effects presented
on mice

In a study conducted by Zhang et al. (138) combination therapy
for CRC with DNase I and PD-1 antibody showed higher efficacy,
prevented tumor growth to a greater extent compared to treatment
with a single agent in vitro/vivo. Due to the limitations of DNase
administration, Xia et al. (46) developed a new startegy for its
delivery, a gene therapy vector based on an adeno-associated virus
(AAV) that specifically expresses DNase I in the liver, which would
reduce the development of liver metastasis by modulating the innate
and adaptive immunity of colorectal tumors. In a study conducted
on mice with CRC, the developed therapeutic startegy inhibited the
development of liver metastases, reduced neutrophil infiltration
into the tumor and the formation of NETs, while the percentage of
CD8+ T cells increased (46). Pan et al. (142) showed that Huang
Qin Decoction inhibits intestinal tumor initiation and proliferation
by attenuating inflammation, i.e. by reducing intestinal neutrophil
infiltration, enhancing CD8+ T-cell immune surveillance, and by
controlling NETs formation through effects on PAD4. Reduced
levels of interleukin 1 (IL-1), tumor necrosis factor oo (TNF-ot) and
MMP-9, alleviation of decreased intestinal permeability caused by
intestinal damage, and elevated white blood cell and granulocyte
counts after decoction were noted in the mice studied (142). Rayes
et al. (143) found that blocking carcinoembryonic Ag cell adhesion
molecule 1 (CEACAM1) associated with NETs leads to a significant
reduction in adhesion, migration and metastasis of colorectal cancer
cells. NETs-associated CEACAMI1 promotes colorectal cancer cell
adhesion and migration in vitro/vivo, and increases the possibility of
metastasis formation in vivo (143).
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3.4.7.4 NETs degradation anti-cancer effects presented
on cell lines and mice

In a study by Yazdani et al. (144) both in mice lacking PAD4,
and therefore unable to form NETSs, and in non-PAD4-deficient
mice, DNase reduced tumor-associated inflammation and reduced
metastatic tumor growth in the liver. Inhibition of NETs formation
by DNase and NE inhibitor (NEi) in vivo or blocking the NE-TLR4-
PGC-1o axis in vitro can inhibit mitochondrial biogenesis and slow
tumor growth (144). Inhibition of CRC metastasis formation in the
liver by NE inhibition with Sivelestat was also confirmed by a mouse
study by Okamoto et al. (145). Blocking NE is an effective option
due to the release of NE during the formation of NETs, which
accelerates CRC cell migration through activation of ERK in vitro
which is important in cell proliferation, differentiation and
migration, and enables infiltration of tumor cells from veins into
liver tissues, which is the initial step in liver metastasis (145).
Tohme et al. (146) found that in patients undergoing liver
resection for metastatic CRC, increased postoperative NETs
formation was associated with a more than 4-fold reduction in
disease-free survival. NETs formation increases in response to the
stress of surgery, which correlates with accelerated development
and progression of metastatic disease. These effects were abolished
in mice by local DNase treatment or PAD4 inhibition (146).
Inhibition of PAD4-enabled citrullination by the PAD4 inhibitor,
BB-Cl-amidine, significantly reduces the burden of CRC metastasis
to the liver, where higher levels of PAD4 were observed compared
to healthy liver and primary tumor (147). IFNYy treatment on cell
lines from patients with Microsatellite Stable Colorectal Cancer
induced more NETs formation and cell apoptosis. The results were
confirmed in mice with this tumor, where IFNY reduced tumor size
and increased tumor killing activity induced by PD-1 antibody,
accompanied by increased NETs formation and cell
apoptosis (148).

3.4.7.5 NETs degradation anti-cancer effects presented
on human tissues and serum

Due to the increased expression levels of NE and its ability to
generate an environment favorable to tumor cells by degrading the
insulin receptor substrate-1 (IRS-1) and increasing the interaction
of phosphatidylinositol 3-kinase (PI3K) and the potent platelet-
derived growth factor mitogen receptor (PDGF) in CRC patients,
Ho et al. (149) have proposed a potential therapeutic strategy for
this cancer involving blocking the enzymatic activity of NE using
Sivelestat to inhibit tumor progression. The results indicate that
Sivelestat can inhibit tumor growth (149). Zhang et al. (150)
demonstrated that epigallocatechin-3-gallate (EGCG), one of the
main active components of tea catechins, inhibits the formation of
NETs, consequently suppressing the migration and invasion of
colon cancer cells by regulating the signal transducer and
activator of transcription 3 (STAT3)/CXCL8 (IL-8) signaling
pathway. Compared to healthy subjects, STAT3 and CXCLS8
mRNA expression was increased in neutrophils from colorectal
cancer patients, as was STAT3, p-STAT3 and CXCL8 protein
expression (150). Overexpression of STAT3 promoted CXCL8
production and NETs formation in colorectal cancer patients
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(150). STAT3 deficiency, like DNase I, inhibited NETs formation
(150). EGCG treatment inhibited STAT3 and CXCL8 expression
and NETs formation in colorectal cancer-derived neutrophils (150).

3.4.7.6 NETs anti-cancer effects presented on mice and
human

NETs can limit the growth of CRC cells in vitro by inducing
apoptosis and/or inhibiting proliferation. Interestingly, the use of
DNase I or heparin abolished the inhibitory effect (151).
Chemotherapy for CRC produces NETs that release cathepsin G,
which enters cancer cells and induces apoptosis. Specifically, the
combination of the glutaminase inhibitor CB-839 and 5-FU
inhibited the growth of colorectal cancers with PIK3CA mutation
in part through NETs in mouse models. Degradation of NETs by
DNase I or deletion of neutrophils attenuated the anti-tumor effect
of the drug combination tested. The mechanism of this action was
the induction of IL-8 expression preferentially in CRC with
PIK3CA mutation to attract neutrophils to tumors, increasing
ROS levels in neutrophils, inducing NETs. CTSG, a component of
NETs, enters CRC cells through the cell surface protein RAGE,
where it cleaved 14-3-3¢ proteins, causing mitochondrial
translocation of BAX and inducing apoptosis in CRC cells.
Researchers conducted a phase II clinical trial of the combination
of CB-839 and capecitabine, an oral pro-drug of 5-FU, in patients
with metastatic colorectal cancer with a PIK3CA mutation who
were refractory to prior fluoropyrimidine-based chemotherapy,
which showed an increased number of NETs in most patients’
tumors, which was associated with longer progression-free survival.
These patients also showed reduced tumor growth, but no more
than 30% (152).

3.5 Urological cancers

3.5.1 Clear cell renal cell carcinoma
3.5.1.1 NETs-related predicting efficacy of anti-cancer
therapy

NETs gene signatures were significantly correlated with the
sensitivity of clear cell renal cell carcinoma (ccRCC) to targeted
therapy with afatinib, axitinib, erlotinib, gefitinib, ibrutinib and
saptinib. With the exception of TIM-3, the expression of most
selected immune checkpoints, namely PD-1, CTLA4, LAG3, A2BR
and B7-H3, was significantly increased in the high-risk group (153).
Quan & Huang (154) identified 23 NETs-related genes in ccRCC
and three clusters of ccRCC cases with significant differences in
disease prognosis, immune infiltration and response to
chemotherapy, specifically to axitinib, cisplatin, gemcitabine,
sorafenib and sunitinib and targeted therapy. The signature of 6
NETs-related genes, G0S2, DYSF, MMP9, SLC22A4, SELP and
KCNJ15, was significantly correlated with drug sensitivity in ccRCC
patients (154). NETs levels in tumor tissue can also predict
treatment efficacy in patients with metastatic ccRCC who have
received systemic therapy. Elevated levels of NET's in tumor tissue
have also been associated with poor efficacy in increasing patient
survival (155).
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3.5.2 Bladder cancer
3.5.2.1 NETs-related predicting efficacy of anti-cancer
therapy & nets-related treatment resistance

A high NETs-score, has been associated with poor response to
chemotherapy and reduced recurrence-free survival of patients with
muscle-invasive bladder cancer (MIBC) (99). In a bladder cancer
model Shinde-Jadhav et al. (24) observed increased deposition of
NETs in the TME in mice after radiation therapy. Inhibition of
NETs, via DNase I or NEi, improved the response to radiation.
NETs were observed in MIBC tumors in patients who did not
respond to radiation therapy or had chronic disease after treatment.
HMGBI1-dependent induction of NETs in the context of
radiotherapy is mediated by Toll-like receptor 4 (TLR4). In in
vivo studies, inhibition of both HMGBI1 and NETs delayed tumor
growth (24).

3.5.2.2 NETs degradation anti-cancer effects presented
on human

Patients with bladder cancer were characterized by increased
formation of NETSs both systemically and in the TME, partly due to
impaired DNase I-mediated degradation of NETs. The degradation
defect can be therapeutically restored in vitro with recombinant
human DNase (rhDNasel), Pulmozyme®. Compensation of DNase
I downregulation, associated with reduced formation of NETs in
TME reduces the likelihood of tumor progression and
metastasis (25).

3.5.2.3 NETs anti-cancer effects presented on mice

Bacillus Calmette-Guerin (BCG), a treatment for bladder cancer,
induces the formation of NETs, which in turn had cytotoxic effects,
induced apoptosis and cell cycle arrest in the GO/G1 phase, and
inhibited the migration of tumor cells into the bladder environment
(156, 157). Mean tumor weight and volume were lower in mice given
NETs. The effect of NETs was almost eliminated by protein
inactivation, while increased intratumor CD3+ and CD14+
infiltration was reduced by boiling, but not by DNase
pretreatment (156).

3.5.3 Urothelial cancer
3.5.3.1 NETs degradation anti-cancer effects presented
on cell lines and mice

In a study by Mou et al. (127) ICT, a metabolite of icariin, a
Chinese herbal remedy, reduced the production of NETs by the
suicide pathway and prevented neutrophil infiltration into the
microenvironment of urothelial carcinoma. The mechanism of
action involves ICT binding to protein-arginine deiminase 2
(PADI2) in neutrophils and inhibiting granulocyte-macrophage
colony-stimulating factor (GM-CSF), interleukin 6 (IL-6)
expression and inhibiting PADI2-dependent histone
citrullination. ICT enhances the infiltration of cytotoxic T cells
and M1-type macrophages, while levels of PD-1 and CTLA-4 and
M2-type macrophages tended to decrease after treatment. ICT also
inhibits ROS generation, suppresses PI3K/AKT and MEK/ERK/p38
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signalling pathways, and inhibits NETs-induced tumor metastasis.
Decreased IL-6 expression forms a regulatory feedback loop
through the JAK2/STAT3/IL-6 axis. Combining ICT with DNase
I reduced the production of NETs promoting tumor invasion and
metastasis, while combining ICT with immune checkpoint
inhibitors, primarily the PD-1 inhibitor, reduced tumor growth.
ICT inhibits lung metastasis by reducing its number and size,
inhibits N-cadherin expression, increases E-cadherin expression,
inhibits EMT and NETs-enabled tumor stem cell formation (127).

3.5.4 Prostate cancer
3.5.4.1 NETs-related predicting efficacy of anti-cancer
therapy

NETs-related signature (NETs) has excellent predictive value in
predicting the efficacy of prostate cancer chemotherapy (158).

3.6 Gynecological cancers

3.6.1 Ovarian cancer
3.6.1.1 NETs-related predicting efficacy of anti-cancer
therapy & nets-related treatment resistance

A high eight-gene signature score of NETs-related genes in ovarian
cancer (OC) patients was associated with greater sensitivity to sorafenib
and less sensitivity to immunotherapy. In addition, a study of the
expression of eight immune checkpoints: LAG3, CTLA4, CD274,
PDCD1, PDCDILG2, TIGIT, showed that they were overregulated
in the low-risk group. Also, the estimated ICs, values for cisplatin,
gemcitabine and veliparib were higher among high-risk individuals
(159). In contrast, Wang et al. (160) developed a model with six
IncRNAs associated with NETs: GAS5, GBP1P1, LINC00702,
LINC01933, LINC02362 and ZNF687-AS1. ICs, values for
chemotherapeutic drugs (bexarotene, bicalutamide, embelin,
GDC0941 and thapsigargin) were higher in patients in the low-risk
group. Overall, the high-risk group had less immune cell infiltration
and differences in immune checkpoint gene expression compared to
the low-risk group, indicating a worse prognosis of the disease in these
patients (160). De Amorim et al. (161) found that patients with high-
grade serous ovarian cancer (HGSOC) resistant to platinum (PR) were
characterized by the presence of a novel deep intron variant, CHEK2,
and higher expression of L1, the calprotectin component of NETs.
Tamura et al. (162) have demonstrated that NETSs capture and inhibit
the diffusion of the chemotherapeutic drug doxorubicin (DOX), which
may impair its ability to induce apoptosis of ovarian cancer cells. Using
1,000 u/ml of DNase I to degrade NETs increased the diffusion of the
drug and enhanced the apoptosis of cancer cells, ie. improved the
response of OC to DOX. The researchers also found that NETs could
also trap and inhibit PTX diffusion, but in this case the reduced
diffusion was not restored by DNase I. PTX inhibits cell growth by
inducing tubulin polymerization and stabilizing it prior to
depolymerization, so when bound to polymerized tubulin, it forms
large complexes that do not diffuse through micropores, even after
using DNase I (162).
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3.6.1.2 NETs degradation anti-cancer effects presented
on cell lines and mice

Inhibition of NETs formation with GSK484 inhibited tumor
progression in OVCARS8-GCSF tumor-bearing mice and
significantly delayed the spread of tumor cells to the peritoneum,
characteristic of OC. A limitation of the action of PAD4 inhibitors
in this case is the lack of a significant anti-tumor effect on ovarian
cancer cells without co-occurring neutrophils in vivo. The
researchers’ results also indicated that pre-treatment of
neutrophils with Cl-amidine or DNase 1 significantly inhibited
the formation of NETs and consistently reduced the number of
ovarian cancer cells attached to them, while it did not decrease the
number of cancer cells carried by NETs. Another strategy proposed
by the researchers to inhibit NET's is a combination of DNase 1,
blockade of granulocyte colony-stimulating factor (G-CSF), which
stimulates NETs formation, by an anti-GCSF antibody or its
receptor, and removal of neutrophils by an anti-Grl antibody.
Blockade of NETs was provided by the anti-GCSF antibody in in
vitro studies, whereas G-CSF itself was not blocked in in vivo
studies (163).

3.6.1.3 NETs degradation anti-cancer effects presented
on mice

CI-amidine and GSK484, reduced net colonisation enabled by
NETs, a common site of ovarian cancer metastasis. The number of
tumor cells in the peritoneal fluid of mice treated with GSK484 was
reduced compared to mice treated with saline solution, and ascites
occurring at an advanced stage of disease was also reduced in mice
treated with the PAD4 inhibitor. Treatment of mice with DNase
also significantly reduced tumor cell implantation in the omentum
(164). Singel et al. (165) demonstrated that neutrophils exposed to
supernatants of ascites collected from ovarian cancer patients
resulted in NETs formation and NE release. A reduction in NE
release occurred after heat inactivation and after DNase I
administration, also to remove genomic DNA (gDNA) and
mitochondrial DNA (mtDNA) (165).

3.6.2 Cervical cancer
3.6.2.1 NETs degradation anti-cancer effects presented
on mice

Ning et al. (42) showed that DNase 1 and chloroquine are
effective in inhibiting lymph node metastasis occurring with cervical
cancer induced by NETs. The mechanism of action of chloroquine,
an antimalarial drug, is inhibition of Toll-like receptors (TLRs).
Inhibition of TLRs, specifically TLR2, prevents interaction with
NETs and thus inhibits activation of the P38-MAPK/ERK/NF«B
pathway, which increased the migratory capacity of cervical cancer
cells. The drug has also been described to alleviate the
hypercoagulation associated with NETSs (42).

3.6.3 Breast cancer
3.6.3.1 NETs-related predicting efficacy of anti-cancer
therapy & nets-related treatment resistance

In a study by Jiang et al. (166) response to chemotherapy and
immunotherapy was associated with the expression of NETs-related
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IncRNAs. Huang et al. (167) identified five NETs-related genes and
constructed subgroups based on this, with patients with triple-
negative breast cancer (TNBC) of the high-risk group having a less
favorable response to therapy compared to patients with TNBC of
the low-risk group. The low-risk patient group instead was enriched
in the Wnt signaling pathway, and its inhibitors (Wnt-C59, IWP-2
and XVA-939) had higher sensitivity in patients in this group, as
confirmed by in vitro studies. In addition, low-risk patients with
TNBC treated with radiotherapy had a better therapeutic response.
The ICsy values of chemotherapy drugs (cisplatin, gemcitabine,
olaparib, thalazoparib and vincristine) in high-risk breast cancer
(BC) patients were higher than in the low-risk group (167).
However, according to a study by Mousset et al. (168) cisplatin-
or adriamycin/cyclophosphamide-related chemotherapy used to
treat breast cancer metastasis to the lungs induced NLRP3-
associated IL-1fB secretion by tumor cells, which induced
neutrophil recruitment and NETs formation, resulting in a
reduced response to therapy in the mice tested. Resistance to
chemotherapy in this case is associated with two proteins also
associated with NETs: integrin-owvfB1, which captures latent
Transforming Growth Factor f (TGF-B), and MMP-9, which
cleaves and activates trapped latent TGF-B. Through TGEF-8
activation, tumor cells undergo EMT, which correlates with
resistance to chemotherapy. Treatment with a PAD4 inhibitor or
DNase I overcame neutrophil-dependent chemoresistance, but had
no effect on the number of tumor cells in mice not given
chemotherapy, while in vitro inhibition of PAD4 improved the
efficacy of chemotherapy. IL-1f blocking antibody inhibited the
formation of NETS, reduced neutrophil recruitment and improved
the response to chemotherapy. In combination with a PAD4
inhibitor, short-term IL-1f inhibition led only to a statistically
insignificant reduction in lung neutrophil recruitment, excluding
neutrophils evoked by tumor cells. Long-term PAD4 inhibition
reduced IL-1P levels induced by chemotherapy in metastatic lungs
(168). Wei et al. (169) discovered that pretreatment with GSK484
enhanced the irradiation-induced (IR) inhibitory effects on TNBC
cell proliferation, migration and invasion, and facilitated their
apoptosis, which was tested on two TNBC cell lines: MDA-MB-
231 and BT-549. In vivo studies showed that combined treatment
with IR and GSK484 showed a marked decrease in tumor growth in
contrast to treatment with IR alone or GSK484 alone (169).

3.6.3.2 NETs degradation anti-cancer effects presented
on cell lines

In a study by Safarulla et al. (170) blocking the formation of
NETs using Sivelestat, significantly reduced the influx of
neutrophils towards metastatic BC cells, but not to their parent
tumor. NE inhibition blocked the ability of neutrophils to stimulate
invasion of human BC cells, as did NADPH oxidase inhibition.
Nawa et al. (171) demonstrated that the combined use of Sivelestat
and trastuzumab may be a therapeutic strategy for HER2-positive
BC due to NE inhibition, which enables tumor growth via tumor
growth factor-o. (TGF-ar), which in turn blocks HER2 down-
regulation enabled by trastuzumab. NE enhances cell growth with
phosphorylation of EGFR, HER2 and ERK1/2 in BC cells (171).
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Removal of PAD4 from BC cells (4T1) reduced the rate of tumor
growth in a model and reduced their metastasis to the lungs. DNase
I treatment also reduced lung metastasis in PAD4-positive as well as
PAD4-negative cells, but did not change the number of CTCs (172).
A study by Martins-Cardoso et al. (173) on BC cell lines showed
that DNase-mediated digestion of NET's had little effect on tumor
cell migration, as well as on CXCL8 and MMP9 gene expression. In
another study by Martins-Cardoso et al. (174) NEi was found to
reduce the expression of metastasis-related genes. In MCF7 cells,
the inhibitor reduced the effect of NET's on the expression of CD44,
IL-6 and F3 genes, but not ZEB1 and CXCL8, whereas in T-42D
cells, it disrupted the expression of all the mentioned genes except
ZEB1 (174). Zhao et al. (175), found that DHT, a bioactive
compound in Salvia miltiorrhiza Bunge (S. miltiorrhiza), blocked
NETs formation by reducing TIMP1 expression. Researchers
initially investigated the effects of four tanshinones (DHT,
tanshinone I (Tan I), tanshinone IIA (Tan IIA), and
cryptotanshinone (CPT)) on different breast cancer cell types,
where DHT showed the most significant inhibitory effect. In
studies conducted, DHT inhibited the growth of BC cells more
strongly than breast epithelial cells, also inhibited the healing,
invasion and migration of BC cells and blocked the progression
and spread of BC metastases in lung tissue (175). Cholesterol
biosynthesis induced by ASPP2 depletion in BC cells promoted
NETs formation in vitro and in lung metastases in mice
intravenously injected with ASPP2-deficient breast cancer cells.
ASPP2, a tumor suppressor and activator of p53, inhibits 3-
hydroxy-3-methylglutaryl-CoAreductase (HMGCR) expression.
Cholesterol synthesis inhibitors, simvastatin (Simvastatin), which
is also an HMGCR inhibitor, and berberine (BBR), effectively
blocked NETs formation induced by ASPP2 depletion. DNase I
administration inhibited the invasion of ASPP2-depleted cancer
cells, indicating that NETs are involved in the process. Also, the
expression of Coiled-coil domain containing protein 25 (CCDC25)
and caveolin-1, increased in lung metastases from ASPP2-depleted
mice, was attenuated by treatment with cholesterol biosynthesis
inhibitors or DNase I. The lipid rafts inhibitor piceatannol also
reduced CCDC25 expression. Given the proven involvement of
NETs in BC metastasis, targeting cholesterol biosynthesis may be a
promising therapeutic strategy for their treatment (176).

3.6.3.3 NETs degradation anti-cancer effects presented
on mice

DNase I and GSK484 treatment significantly reduced the
number of micrometastases in the lungs 24 hours after
intravenous injection of labeled tumor cells (13). NETSs stimulated
invasion and migration of BC cells in vitro, and inhibition of this
process with DNase I abolished pro-neoplastic targeting of cells.
Treatment with DNase I-coated nanoparticles, where the
nanoparticles were thought to increase the stability of the
enzyme, reduced lung metastasis in mice, while primary tumor
growth was unaffected (15). Another DNase delivery system was
developed by Herre et al. (9), based on an adeno-associated virus
(AAV) vector. It consists of a KP1 capsid and an expression cassette
encoding a hyperactive mouse DNase I (AAV-mDNase I) under the
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control of a liver-specific promoter. The aim of using such a vector
is to maintain elevated expression and activity of serum mouse
DNase I for at least eight months. After the use of AAV-mDNase I,
the proportion of mice in which lung metastases could be observed
decreased (9). Inhibition of cathepsin G, a protease associated with
NETs, blocked the ability of neutrophils to promote invasion
without affecting the ability of tumor cells to invade and also
reduced the proliferation of NETs (15). Another cathepsin,
cathepsin C (CTSC), involved in the formation of neutrophil
serine proteases (NSPs, neutrophil serine proteases), the
components of NETSs, secreted by the tumor promotes BC
metastasis to the lungs via NETs, among others (177, 178). Xiao
et al. (178) discovered that CTSC activates neutrophil membrane-
associated proteinase 3 (PR3), which activates interleukin-1f (IL-
1B) and nuclear factor kB activation, thereby increasing IL-6 and
CCL3 expression to recruit neutrophils. The resulting axis induces
ROS production by neutrophils and the formation of NETs, which
degrade thrombospondin-1 (TSP-1) and promote metastatic tumor
cell growth in the lung. Administration of the CTSC inhibitor,
AZD7986, effectively inhibited breast cancer metastasis to the lung
in a mouse model. Inhibition of PR3 with Sivelestat or IL-1f3 with a
neutralising antibody, but not inhibition of NE or CTSG, reversed
CTSC-induced p65 phosphorylation and IL-6 and CCL3
expression. Blocking IL-1B secretion in neutrophils with a
lysosome inhibitor also led to inhibition of CTSC-induced
neutrophil recruitment. Treatment of mice with an IL-1B-
neutralising antibody had no clear effect on primary tumor
growth, but effectively inhibited CTSC-increased levels of
circulating IL-6 and CCL3, as well as lung metastasis in mice.
Inhibition of IL-1B, p38 and ROS production also suppressed
CTSC-induced NETs formation in the body and lung. Addition
of Sivelestat/CI-amidine/DNase I to neutrophils cultured with
cancer cells inhibited NETs formation and blocked the effects of
CTSCs. Treatment of mice with GSK484, also inhibited lung
metastasis and NETs formation induced by breast cancer cells
overexpressing CTSCs, with no significant effect on primary
tumor growth (178). Sivelestat, NEi, also reduced the proliferation
of NETs induced by cancer cells (15). The NADPH oxidase
inhibitor, apocynin, inhibited the formation of NETs and
inhibited neutrophil-stimulated tumor cell invasion (15). Also, the
PAD4 inhibitor, Cl-amidine, reduced NETs formation and blocked
the ability of neutrophils to promote invasion (15). In contrast, in a
study by Varada et al. (179) chronic use of rhDNase I had no effect
on primary breast tumor growth. Zhu et al. (180) demonstrated that
the PAD4 inhibitor inhibits NF-xB and NETs formation, which
reduces BC growth and metastasis. The essence of the mechanism at
work is that NETs promote breast cancer progression and factors
that originate from cancer cells, IL-8 and G-CSF, stimulate
neutrophils to form NETs. NETs increased the interaction of the
NF-kB essential modifier (NEMO) with IkB kinase (IKK)a/p and
enhanced NF-kB activation. Peptide NBD, corresponding to the
NEMO-binding domain (NBD) as a selective NF-xB inhibitor,
interfered with the NETs-dependent interaction of NEMO with
IKKo/B and abolished NF-kB activation in vitro. NBD peptide also
reduced IL-8 levels and NETs formation, as evidenced by decreased
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levels of MPO-DNA and citH3 complexes in the circulation of NBD
peptide-treated mice, and inhibited primary tumor growth and/or
lung metastasis in mouse models of BC (180). Yu et al. (181)
identified resveratrol (RES), a silent information regulator-1
(SIRT1) agonist, which inhibited NETs formation after CTSC
treatment. The action of RES is to inhibit histone H3
citrullination, while the agonist action abolished the specific
deficiency of SIRT1 in neutrophils that promoted NETs
formation and BC metastasis to the lung. In vivo, RES reduced
primary tumor volume and significantly impeded BC metastasis to
the lung in a mouse model; researchers also observed lower serum
levels of MPO-DNA and NE-DNA complexes after treatment and
lower levels of MMP-2, MMP-9, E-cadherin and pro-inflammatory
cytokines (IL-1f, IL-6 and TNF-0) in the metastatic lung. In
contrast, tumor-infiltrating CD8+ T cells increased, and levels of
tissue inhibitor of metalloproteinase-1 (TIMP-1), N-cadherin and
Snail increased in the metastatic lung. In BC, RES has been shown
to affect every stage of tumor transformation as well as inducing cell
cycle arrest and apoptosis. Researchers also mention that, in
addition to RES, pentoxifylline, cepharanthine, colchicine,
artesunate, dihydroartemisinin and piceatannol also show
therapeutic potential with a mechanism similar to RES,
dependent on citrullinated H3 or NADPH, ROS, elastase, key
pyroptosis execution protein (GSDMD), associated with the
formation of NETs (181). Kaempferol (kaem) is a flavonoid that
has the ability to inhibit both primary BC tumor growth and its
metastasis to the lungs in a mouse model. The addition of GSK484,
an inhibitor of NETSs, completely abolished the inhibitory effect of
kaem on metastasis, while having little or no effect on primary
tumor growth, indicating the specificity of kaem’s action on NETs.
Addition of the ROS scavenger DPI abolished kaem’s effect on
NETs, suggesting the involvement of the flavonoid in NADPH/
ROS-NETs signalling. Also, the use of DNase I inhibited the pro-
proliferative effects of neutrophils and p-p38 and p-AKT signalling,
which NETs potentially use for pro-tumorigenic activities (182).
Zhu et al. (183) synthesised cationic oligopeptides with specific
numbers of arginine (R) and glycine (G), in this case oligoarginines
R5, R7 and R9, which inhibited the interaction of CCDC25 with
NET-DNA. Consequently, cell migration and metastasis to the liver
and lung of tumors in mouse models of TNBC was inhibited (183).
Ye et al. (184) developed a startegy to regulate iron metabolism to
reduce the formation of NETs, which would be expected to improve
the immune response in TME. The researchers developed a peptide-
drug conjugate (PDC) based on transformable iron nanochelate
(TIN) equipped with the ability to regulate neutrophil iron
metabolism. The mechanism of action of TIN is to expose iron-
binding motifs through NE-mediated morphological
transformation from nanoparticles to [-sheet nanofibres, which
further evolve into stable c-helix nanofibres upon chelation with
iron (II) ions, whose regulation inhibits the formation of NETs. TIN
in combination with the PAD4 inhibitor, GSK484, synergistically
enhanced anti-PD-L1 treatment, as the efficacy in tumor growth
inhibition was as high as 93.3%, as tested in BC mice. The tumor
growth inhibition rate in mice treated with TIN + GSK484
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increased to 87.5%. Tumors from mice treated with TIN +
GSK484 had 1.8-fold higher levels of T cells and a 2.2-fold
increase in the production of IFN-y from T cells in tumors, which
was also observed in mice treated with TIN + aPD-L1, indicating an
increased anti-tumor response compared with control mice (184).
TGF-B is necessary in promoting BC recurrence after surgery,
which is mediated by NETs. The principle of NETs formation has
been used to construct a surgical hydrogel. The hydrogel is prepared
based on the electrostatic interaction between histidine (His) and
sodium alginate (Alg). The electrical properties of His in the
hydrogel lead to the local release of anti-TGF-B. The hydrogel
system is a beneficial therapeutic agent due to its ability to
specifically and selectively release the drug at the target site, in
this case the site of NETs formation. The group that was treated
with hydrogel showed better efficacy in reducing metastatic lesions
compared to the group in which hydrogel was not used. Hydrogel
can mimic the process of NET's formation, release drugs and use the
principle of NET's formation to block the mechanisms of recurrence
promoted by NETs (185). Lu et al. (186) formulated a micellar
nanoparticle of low-molecular-weight heparin and astaxanthin
(LMWH-AST/DOX, LA/DOX NP) loaded with DOX to inhibit
BC metastasis to the lung and liver. Its mechanism is to inhibit
NETs formation, reduce neutrophil recruitment and MPO
expression in the liver and MDSCs in the lung and tumor by
blocking P-selectin, inhibiting NF-xB and STAT3 signalling
pathways. In the tumor itself, the molecule has the ability to
reduce ROS, interleukin 10 (IL-10) and nitric oxide (NO)
levels (186).

3.6.3.4 NETs degradation anti-cancer effects presented
on cell lines and mice

Kong et al. (187) based on their findings about the effect of
NETs on the formation of cancer metastasis through a self-
reinforcing feedback loop involving two steps: hypoxia-induced
aerobic respiration of mitochondria promotes the formation of
NETs, which in turn enhance mitochondrial metabolism to
exacerbate the hypoxia often present in TME, developed two
strategies to nullify NETs. The first is a nanoparticle with DNase
I and 5-hydroxytryptamine (5-HT) on the surface to specifically
recognise MPO (5HT-NP@D), while the second is a mitochondria-
targeting polymer consisting of a water-soluble N-(2-
hydroxypropyl)methacrylamide copolymer backbone (HPMA)
that was conjugated to the hydrophobic cytotoxic drug
camptothecin (CPT) and a mitochondria-targeting peptide (RLA)
on the side chains (p-TC-RLA). The function of the nanoparticle is
to eliminate NETs and inhibit mitochondrial biogenesis induced by
them, while the function of the polymer is to damage mitochondria
and alleviate non-oxidation, i.e. synergistically, nanoparticles and
polymers completely interrupt the presented feedback loop between
NETs and mitochondria. In TNBC tumor-bearing mice,
combination therapy effectively inhibited tumor growth compared
to monotherapy, with an overall tumor growth inhibition rate of
55.5%; at the highest drug dose, the anti-tumor effect was 70%, and
anti-metastatic effects were also observed (187). In a study by Yang
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et al. (188) inhibition of NETs formation and inhibition of liver
metastasis were observed after administration of DNase I to breast
tumor mice. DNase I administration also abolished the promotion
of migration and adhesion of MDA-MB-231 breast cancer cells by
the NET-DNA complex. Also, pretreatment of isolated NET-DNA
with DNase I abolished the interaction between CCDC25 and NET-
DNA, which enabled migration, adhesion and proliferation of
tumor cells. In vitro, the CCDC25 antibody inhibited NETs-
induced tumor cell migration, adhesion and cytoskeletal
remodelling and inhibited liver metastasis when MDA-MB-231
cells were injected into mouse spleens (188).

3.6.3.5 NETs degradation anti-cancer effects presented
on mice and human models

Nanoparticulate poly (aspartic acid) derivatives (cANPs), due to
their strong affinity for DNA and retention in the liver, reduce levels
of NET-DNA hepatic infiltration, leading to significant inhibition of
breast cancer tumor metastasis in mice and in human metastatic
models of BC and CRC (189). Liang et al. (189) in an attempt to
disrupt the interaction between NET-DNA and CCDC25, used poly
(aspartic acid)-based cationic materials that inhibit NET-DNA-
dependent chemotaxis and tumor cell migration through its
electrostatic binding.

3.7 Hematological cancers

3.7.1 Multiple myeloma
3.7.1.1 NETs-related treatment resistance

In multiple myeloma (MM), NETs through DNA absorb
anthracyclines, preventing their anti-tumor activity and reducing
their efficacy (190). Lin et al. (190) observed that the presence of
purified NETs protected human cancer cells from doxorubicin-
induced apoptosis, a mechanism abrogated by DNase. A similar
effect was not observed after the use of PTX. Interestingly, DNase
administration alone did not result in an anti-tumor effect, while
myeloma symptoms did not appear in MM mice that received the
combination of doxorubicin and DNase. The PAD4 inhibitor, BMS-
P5, showed a moderate anti-tumor effect on MM, while in
combination with doxorubicin, it exhibited potent anti-tumor
activity characterized by prolonged survival (190).

3.7.1.2 NETs degradation anti-cancer effects presented on
cell lines and mice

Li et al. (191) showed that mouse and human MM cells
stimulate histone H3 citrullination and NETs formation. MM
cells were unable to induce NETs formation in PAD4-deficient
neutrophils. This process is inhibited by pharmacological inhibition
of PAD4 with the specific small molecule BMS-P5. Administration
of BMS-P5 to mice with MM delayed the onset of symptoms and
progression of the disease. The ability of BMS-P5 to inhibit NET's
formation was compared with PAD inhibitors: Cl-A inhibitor and
GSK-484. All three compounds significantly reduced MM-induced
histone H3 citrullination and NETs formation (191).
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3.7.2 Diffuse large B-cell lymphoma
3.7.2.1 NETs degradation anti-cancer effects presented on
cell lines, mice and human tissues

Higher amounts of NETs in plasma and tumor tissues were
associated with poor prognosis in patients with diffuse large B-cell
lymphoma (DLBCL). In a study by Nie et al. (53) NETs in vitro
increase cell proliferation and migration, while in vivo they increase
tumor growth and lymph node dissemination. DLBCL-derived IL-8
interacted with its receptor (CXCR2) on neutrophils, resulting in
the formation of NETSs, which directly increased the expression of
Toll-like receptor 9 (TLR9) pathways in DLBCL and subsequently
activated the NFxB, STAT3 and p38 pathways, promoting tumor
progression. Disruption of NETs formation, including blocking the
IL-8-CXCR?2 axis or inhibiting TLR9, can delay tumor progression.
The pro-tumorigenic properties of NETs were attenuated after
administration of DNase I and an NE inhibitor. Inhibition of
CXCR2 in vivo also reduced NETs formation and DLBCL
progression, just as TLR9 inhibition inhibited growth and lymph
node metastasis in DLBCL patients (53).

3.7.3 Acute leukemia
3.7.3.1 NETs-related treatment resistance

Histones released from leukemic cells during the formation of
extracellular traps, mainly containing the histone-DNA complex
and NE, induce endothelial activation, which may protect leukemic
cells from spontaneous and chemotherapy-induced death (192).

3.7.4 Lymphatic leukemia
3.7.4.1 NETs degradation anti-cancer effects presented
on mice

Salganik et al. (193) studied the effect of DNase I injection in
mice with spontaneous lymphocytic leukaemia. The study showed
that DNase I resulted in a reduction in lymph node size and an
increase in survival time by 12 weeks (194).

3.7.5 Acute promyelocytic leukemia
3.7.5.1 NETs degradation anti-cancer effects presented on
cell lines and human tissues

Ma et al. (195) found that a small percentage of acute
promyelocytic leukemia (APL) cells release extracellular DNA
traps in untreated patients. Inhibition of autophagy by
pharmacological inhibitors or by small interfering RNAs against
Atg7 attenuated LC3 autophagy formation and significantly
reduced the generation of extracellular traps, which may
represent a novel therapeutic pathway (195). NE can promote
APL development, and its inhibitor GW311616A inhibited tumor
cell growth and induced apoptosis (196).

3.7.5.2 NETs anti-cancer effects presented on cell lines

Li et al. (197) demonstrated that arsenic trioxide (ATO)
increased the formation of extracellular traps by acute
promyelocytic leukemia (APL) cells through mammalian target of
rapamycin (mTOR)-dependent autophagy, which was partially
regulated by ROS. In addition, activation of autophagy with
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rapamycin enhanced the removal of APL leukemia-initiating cells
by ATO (197).

3.7.5.3 NETs anti-cancer effects presented on cell lines
and mice

Another study showed that the ability of immature neutrophils
to release extracellular traps was impaired in APL, while mature
neutrophils produced traps associated with activated platelets. In
addition, the combination of all-trans-retinoic acid with ATO
induced the differentiation of immature neutrophils, and
increased the release of traps from mature neutrophils, excessive
amounts of which damaged endothelial cells, causing leakage of
blood cells. Administration of DNase 1 alleviated endothelial
damage and reduced blood cell leakage (198).

3.7.6 Acute myeloid leukemia
3.7.6.1 NETs-related predicting efficacy of anti-cancer
therapy

Zhong et al. (199) showed that patients with acute myeloid
leukemia (AML) with high expression of NETs-related genes also
have elevated expression of immune checkpoint genes: PD-1, PD-
L1 and CTLAA4. Similarly, patients with a high risk score had a
favorable response to anti-PD-1 therapy, that is, they benefited
more from immunotherapy. Compared to the low-risk group, a
higher percentage of patients in the high-risk group did not respond
to chemotherapy. In addition, the low-risk group showed greater
sensitivity to GSK-1838705A, while the high-risk group showed
greater sensitivity to 17-AAG (tanespimycin), bosutinib, CI-1040,
dowitinib, foretinib, crenolanib, linifanib, selumetinib and
trametinib (199).

3.7.6.2 NETs anti-cancer effects presented on cell lines

In vitro co-culture of primary AML cells with NETSs inhibited
the growth of AML cells, reduced their proliferation and induced
apoptosis. Both DNase and heparin abolished the effects of NETs on
AML cell proliferation and apoptosis (151). Leukemic cells can
form extracellular traps containing leukemia-associated antigens,
such as mutant nucleophosmin (NPMc+), which is part of NETs.

3.7.6.3 NETs anti-cancer effects presented on mice

The interaction of NET's with dendritic cells (DCs) enables their
activation and maturation toward presentation of antigens caught
in the network (197). NET's could therefore serve as carriers for DC-
based vaccines (200). Tripodo et al. (200) created a vaccine using
DCs loaded with NPMc+ and NETs (NPMc+ NET/DC). It reduced
myeloproliferation in mice, promoting the development of
antibodies to mutant NPMc and induction of CD8+ T-cell
responses (86, 200). In mixed bone marrow chimeras, vaccination
impaired NPMc+ expansion and allowed control of aggressive
leukemia transduced with mutant NPMc, effectively inducing an
anti-leukemic CD8 memory T cell response (200).
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3.8 Skin cancers

3.8.1 Melanoma
3.8.1.1 NETs degradation anti-cancer effects presented on
cell lines and mice

Ivermectin (IVM), used as an antiparasitic drug in vivo, inhibits
melanoma metastasis to the lungs without affecting tumor growth.
IVM significantly inhibited NETs formation after cathepsin B
(CTSB) treatment. Tumor-infiltrating MDSCs were significantly
inhibited, while the number of CD8+ T cells infiltrating the tumor
in the lungs increased after IVM treatment in a mouse model of
melanoma. IVM targeted GSDMD, whose direct interaction with
IVM significantly inhibited GSDMD oligomerisation, which is
required for NETs formation. In vitro treatment of CTSB in
neutrophils located in the bone marrow significantly promotes
NETs formation, which was inhibited by IVM. IVM decreases
TGF-, vascular endothelial growth factor (VEGF) and MMP-9
levels, inhibits gasdermin-dependent pore formation and inhibits
thermal swelling of cells, which limits the formation of CTSB-
induced reticular structures leading to melanoma metastasis (201).
CAFs present in the TME and normally acting pro-tumor, have the
ability to induce NETs, which in turn are driven by a ROS-
dependent pathway dependent on CAF-derived amyloid B.
Inhibition of NETs formation in mouse tumors tilts neutrophils
towards an anti-tumor phenotype, preventing tumor growth, and at
the same time the enhancement of CAF activation by NETs is
blocked. Treatment of melanoma mice with GSK484 and Cl-
amidine completely inhibited tumor growth compared to
controls, whereas this result was not repeated in a pancreatic
cancer model (202).

3.8.2 Malignant melanoma
3.8.2.1 NETs anti-cancer effects presented on cell lines
Schedel et al. (203) found that co-culture of NETs with
melanoma cells had a cytotoxic effect on ulcerative melanoma
cells, causing necrosis. In in vitro studies, melanoma cells
attached to NETs through integrin-dependent adhesion. In this
cancer, NETs inhibited cancer cell migration. Interestingly, addition
of DNase I reversed the inhibitory effect of NET's (203).

3.9 Osteogenic tumors

3.9.1 Osteosarcoma
3.9.1.1 NETs-related predicting efficacy of anti-cancer
therapy

The high amount of NETs arising in initial diagnostic biopsies
in patients with suspected osteosarcoma has been associated with
poor response to neoadjuvant chemotherapy. Response to
chemotherapy was determined by the percentage of tissue
necrosis at the time of definitive surgery (Sazer-Kuntschik score).
NETs and only NETs, among other parameters: neutrophil-to-
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lymphocyte ratio, number of neutrophils infiltrating the tumor,
CD3+ T cells or CD8+ T cells, were correlated with the extent of
necrosis after neoadjuvant therapy (204).

4 NETs-releated complication co-
occurring with cancer or related to
cancer treatment and ways to limit
them

Cancer causes a number of side effects in patients, including
general organ failure, dysfunction of distal organs, impairment of
their vascular function and increased inflammation. It has been
shown that these processes may be mediated by NETs, presented in
Figure 4 (205).

Cedervall et al. (205) observed the accumulation of NETs in the
vasculature of tumor-bearing mice, which was associated with the
up-regulation of pro-inflammatory molecules ICAM-1, VCAM-1,
E-selectin, IL-1B, IL-6 and CXCL1. Administration of DNase I
restored perfusion in the kidneys and heart to levels observed in the
control group, i.e., mice without tumors, and prevented vascular
leakage in the blood vasculature of these organs (205). Neutrophil
Gelatinase-Associated Lipocalin (NGAL), a biomarker of renal
hypoperfusion that is up-regulated in the urine of mice with
metastatic BC, was suppressed in mice receiving AAV-mDNase 1.

10.3389/fimmu.2025.1666261

This indicates the potential of AAV-mDNase I to reduce cancer-
related renal impairment (9).

Cancer-associated thrombosis (CAT) is the second most
common cause of mortality in cancer patients and can be
intensified by anti-cancer treatment. NETs have been linked to
both hypercoagulation, thrombosis, venous thromboembolism
(VTE) and CAT directly (206-211). Cao et al. (208) investigated
that dunnione (a potent substrate of NAD(P)H quinone
oxidoreductase 1, NQOI) attenuates prothrombotic status and
pulmonary thrombosis in tumor-bearing mice by inhibiting tissue
factor expression and NETs formation. Dunnione increases cellular
NAD-+ levels in the lung tissues of tumor-bearing mice to restore
declining sirtuin 1 (SIRT1) activity, thereby deacetylating NF-kB
and preventing tissue factor overexpression in bronchial epithelial
and vascular endothelial cells. Dunnione also abrogates the ability
of neutrophils to produce NETSs by inhibiting histone acetylation
and NADPH oxidase activity (208). Chronic treatment with
rhDNase I reduced NETs-dependent thrombosis in a mouse
model of cancer in a study by Varady et al. (179). The higher
mortality rate observed with long-term rhDNase administration
was attenuated by treatment with an antibiotic, Ertapenem from the
carbapenem group (179). The NETs inhibitor, chloroquine, reduces
platelet aggregation, decreases fn tissue factor and reduces
hypercoagulation in mice with PDA tumor and associated
hypercoagulable state. Administration of DNase I to mice also
reduced platelet aggregation (206). Abdol Razak et al. (212)

GENEEAL
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NETs RELATED \__
COMPLICATIONS THAT MAY A &
OCCUR IN A CANCER PATIENT
IMPAIRMENT
DISTAL OF
ORSG AN EXACERBATION OF VASCULAR
DYSFUNCTION INFLAMMATION FUNCTION

FIGURE 4
Complications of cancer and its treatment associated with NETSs.
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described that degradation of NETs by DNase I and/or prevention
of histone-platelet interaction by heparin may become a potential
new treatment option for pancreatic cancer patients due to their
high risk of VTE. DNase I also reduced the procoagulant effect of
NETs in patients with metastatic BC, prolonged plasma clotting
time in stage IV patients, and reduced D-dimer and fibrin
production (207). Gomes et al. (213) found that IL-1B modulates
the expression of G-CSF, which also affects the formation of NETs,
and therefore blockade of IL-1R, the IL-1f receptor, with its
inhibitor anakinra abolishes the prothrombotic state observed in
breast tumor-bearing mice. Researchers have also shown that
DNase I and GSK484 have the ability to attenuate clot formation
in mice with breast tumor (213). Treatment with recombinant
human DNase 1 reversed the prothrombotic phenotype of breast
tumor mice, confirming the involvement of NETs in this pathology
(214). Compensation of DNase I downregulation, associated with
reduced NETSs formation in bladder cancer TME, reduces the risk of
CAT (25). Also in gastric cancer patients, NETs increased the
potential of plasma to generate thrombin and fibrin, an effect that
was reduced by DNase administration (215). In another study, a
combination of DNase I, activated protein C and Sivelestat
markedly abolished the procoagulant activity of NETs in gastric
cancer patient samples by simultaneously inhibiting NETs,
phosphatidylserine and P-selectin activity on platelets (216). The
promyelocyte extracellular chromatin released during APL
increases the generation of thrombin and plasmin, shortens the
plasma clotting time of APL cells and increases fibrin formation,
while this effect was inhibited by DNase I. Extracellular chromatin is
cytotoxic to endothelial cells, and together with phosphatidylserine
on APL cells provide platforms for fibrin deposition and make clots
more resistant to fibrinolysis (217). The predisposition to
hypercoagulation caused by NETs in patients with oral squamous
cell carcinoma (OSCC) was attenuated by the use of DNase I (218).
The ascites that occurs in women with ovarian cancer is also
prothrombogenic, Singel et al. (165) found that protease
inhibitors were slightly more effective at preventing platelet
activation compared to DNase I, suggesting that there are
multiple pathways for platelet activation in cancer patients, not
always associated with NETs. Wolach et al. (219) showed that
neutrophils from patients with myeloproliferative neoplasms
(MPNs) form NETSs, which has been linked to thrombosis. Also,
mice with the most common molecular driver of MPNs, Jak2"%17F,
have an increased propensity to form NETs and thrombosis.
Inhibition of JAK-STAT signaling with the clinically available
JAK2 inhibitor, ruxolitinib, abolished NETs formation and
reduced thrombosis in a mouse model of deep vein stenosis.
Moreover, expression of PAD4, which is required for NETSs
formation, is increased in JAK2"*""F-expressing neutrophils and
that PAD4 is required for thrombosis formation in vivo (219).
Diosmetin reduced NETs formation by decreasing ROS, which
reduced inferior vena cava thrombosis in an animal model of
thrombosis, indicating a potential application in CAT (220). In
contrast, although pancreatic cancer cells and pancreatic cancer
cell-induced platelets induce the formation of NETs, which
promote clot formation when exposed ex vivo, after pretreatment

Frontiers in Immunology

19

10.3389/fimmu.2025.1666261

with DNase I, platelets continued to adhere and spread to NETs,
albeit to a lesser extent. The results of this study suggest that the
protein component of NETs is also capable of promoting platelet
activation and adhesion (212). Treatment of melanoma mice with
GSK484, but not Cl-amidine, reduced von Willebrand coagulation
factor (VWF) levels, while fibrinogen levels remained unchanged,
suggesting a reduction in NETs-induced thrombosis (202).
Cardiovascular disorders commonly occur in cancer patients,
and there is a separate category of disorders: cancer treatment-
related cardiovascular toxicity (CTRCT) (221). The association of
such disorders with NETs in breast cancer patients was investigated
by Zeng et al. (222). In their study, the use of DNase 1 partially
reversed changes in the levels of myocardial enzymes, lactate
dehydrogenase (LDH) and malondialdehyde (MDA), reduced the
distribution of NETs, blocked increasing Bax expression and
decreasing Bcl-2 levels in breast cancer liver metastasis tissues
studied. The researchers also examined cardiac muscle, whose
damage worsened as the metastasis progressed, and
administration of DNase 1 may reduce the severity of damage (222).
Not only the cancer itself, but also its treatment, most notably
chemotherapy, causes a number of side effects, some of which have
been linked to NETs. Such side effects include intestinal damage,
caused by irinotecan hydrochloride (CPT-11) used, for example, in
advanced colorectal cancer (223). Bai et al. (223) investigated the
potential mechanisms of action of phenethyl isothiocyanate
(PEITC), an isothiocyanate found in cruciferous (cabbage) plants,
in inhibiting NETs and ameliorating chemotherapeutic intestinal
injury, in which there is increased neutrophil activation, production
of NETs that damage the intestinal epithelium, ischemia and
increased expression of inflammatory factors. In a study in
chemotherapy-treated mice, PEITC prolonged clotting time,
improved intestinal microcirculation, inhibited the expression of
inflammatory factors, protected intestinal epithelial junctions, and
directly inhibited intestinal cell damage (223). A common and
serious complication of cisplatin administration, used for example
in breast cancer, is acute kidney damage (168). Mousset et al. (168)
detected NETs in the kidney of mice with and without tumor after
cisplatin treatment, and that inhibition of NETs formation by a
PAD4 inhibitor or IL-1f blockade reduced kidney damage.
Interestingly, cisplatin treatment increased the number of NETSs
in plasma even in tumor-free mice, which would suggest induction
of NETs by cisplatin alone. In addition, the researchers did not
detect NETS in other potentially affected organs, namely the spleen
and liver, suggesting the specificity of NETs toward kidney damage
(168). Abdominal infectious complication (AIC) after gastrectomy
associated with gastric cancer, for example, stimulates neutrophils
to release NETs in both the peripheral blood and abdominal cavity
(224). Xia et al. (224) found that AIC-induced NETSs can facilitate
gastric cancer metastasis in vitro/vivo in a TGF-B-dependent
manner. The researchers therefore used the TGF-f inhibitor LY
2157299 as a potential therapy to reduce metastasis without
exacerbating other complications (224). Todorova et al. (225)
demonstrated that NET levels, assessment of prothrombotic
status via the thrombin-antithrombin complex and plasma
exosome levels are associated with pre-symptomatic DOX
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cardiotoxicity after a single dose of chemotherapy in breast cancer.

Researchers have also found that the risk of DOX-induced
cardiotoxicity in breast cancer is associated with endothelial

dysfunction, inflammation and prothrombotic status (226).

TABLE 1 Current clinical trials related to NETs-related cancer treatment.
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Name of
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Study
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NETs
connection

10.3389/fimmu.2025.1666261

5 Current clinical trials related to NETs

Table 1 shows current clinical trials related to NETs-related cancer
treatment based on ClinicalTrials.gov accessed on June 24, 2025 (227).
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TABLE 1 Continued
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6 Conclusions

Despite the existence of an increasing number of therapeutic
strategies with their treatment, cancers are, and as projections
indicate will continue to be, a condition with an increasing
number of patients. In order to create an appropriate therapeutic
strategy, it is necessary to understand the mechanisms involved in
the cancer process, in which it has been proven that NETs may play
a key role. Numerous studies have shown that the gene signature
associated with NETs allows for the determination of the sensitivity
of various cancers to treatment methods used, which enables the
selection of appropriate therapy. Moreover, as studies to date
indicate, in a significant number of cancers, the degradation of
NETs has a positive effect on treatment, which confirms their
predominantly pro-tumor nature. It is also important to consider
that in some types of cancer, NETs have both pro- and anti-cancer
effects. It should be noted that in order to obtain therapeutic
benefits, it is necessary to understand all the mechanisms
involved in carcinogenesis, and those related to NETs needs
further research, for example, the issue of NETS involvement in
the early and late stages of the disease and potential biomarker
validation for patient stratification. The importance and intensive
research required by issues related to the predictive value of NET's
and the possibilities of their regulation is demonstrated by the
number of centers worldwide addressing these issues.
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