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and Mielczarek-Palacz A (2025) NETs - as
predictors and targets of supportive
therapy for cancer treatment.
Front. Immunol. 16:1666261.
doi: 10.3389/fimmu.2025.1666261

COPYRIGHT

© 2025 Morawiec, Kubina, Jabłońska,
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NETs are network-like structures consisting mainly of DNA and various proteins

released by neutrophils physiologically in response to pathogens. Moreover,

according to recent reports, NETs also play an important role in carcinogenesis.

They are involved in all stages of carcinogenesis, assist in the process of

metastasis, and their presence has been linked to higher mortality and poorer

prognosis in numerous cancer types. This review focuses on anti-cancer

treatments related to disintegration of existing NETs, inhibition of their

formation and regulation of their formation. Cases in which the presence of

NETs was associated with anti-cancer activity and the association of NETs with

complications co-occurring with cancer or related to cancer treatment was

presented. This paper also presents mechanisms of NETs inhibition, predicting

the efficacy or resistance of anti-cancer therapy associated with NETs.
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1 Introduction

Neutrophil extracellular traps (NETs) are formed by networks composed of

deoxyribonucleic acid (DNA) and protein components, including neutrophil elastase

(NE), histones, proteases, myeloperoxidase (MPO), lactoferrin, defensin, lysozyme C,

cathelicidin, calprotectin, cathepsin G (CTSG) and matrix metalloproteinase-9 (MMP-9)

(1). The main physiological role of NETs is to capture various pathogens, while their

presence and excessive production have also been detected in numerous cancers (2). NETs

act in a dichotomous manner, their effects can be both pro- and anti-tumor depending on

the state of the immune system or the tumor microenvironment (TME) (3, 4). In contrast,

it has been shown that patients with NETs involved in the tumor process showed a less

favourable prognosis of the disease and a higher mortality rate (5, 6). A summary and
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comparison of the bidirectional role of NETs is presented in

Figure 1. It should be emphasized that the function of NETs

varies depending on the type of cancer.

The interaction of tumor cells with NETs plays an important

role in evading the immune response (10). NETs present in TME

have the ability to form a physical barrier that prevents immune

effector cells: NK cells (Natural Killer), CD8+ T lymphocytes,

cytotoxic T lymphocytes (CTL) from coming into contact with

tumor cells, thereby mitigating their anti-tumor effects, primarily

the elimination of tumor cells (10, 11). NETs can induce Th1 cell

proliferation, which is associated with improved cancer prognosis,

but at the same time they can drive macrophage polarization and

then cooperatively promote tumor cell invasion and metastasis (7).

NETs have also been shown to promote cancer metastasis by

trapping circulating tumor cells (CTCs), which, when caught in

the network, are protected from degradation and translocated to

sites of potential metastasis (10, 12). In addition, NETs have the

ability to degrade the extracellular matrix, disrupt blood vessel

integrity and activate dormant tumor cells (13). NETs are also

associated with complications associated with cancer, which include

chronic inflammation, impairment of peripheral vascular and organ

function, primarily the kidney, and thrombosis (14).

In cancer patients, under the influence of chemotactic factors, not

only neutrophils but also granulocytic myeloid-derived suppressor cells

(MDSCs) produce NETs (11). Various types of cancer cells and TME

can induce the formation of NETs (15–17). Also, the stress related to
Frontiers in Immunology 02
surgery, often performed as part of anti-neoplastic treatment, can

stimulate the formation of NETs, accelerating the development of the

disease (18). NETs formation is also influenced by the anticancer

treatment itself, primarily chemotherapy, radiotherapy and

immunotherapy (19–21). Disintegration of existing NETs, inhibition

of their formation or regulation of their formation therefore represents

a potential therapeutic target for both primary and metastatic cancers

(10, 22, 23).

This paper presents the mechanisms of NETs inhibition, the

prediction of efficacy or resistance of anticancer therapy associated

with NETs, the mechanisms of anti-cancer therapy associated with

blocking or exploiting NETs, and current clinical trials related to

NETs and cancer treatment. Figure 2 shows cancers in which

predominant direction of evidence suggests that NETs

degradation could benefit and cancers in which predominant

direction of evidence suggests that NETs are involved in the anti-

cancer response.
2 NETs degradation methods

One of the ways to inhibit the formation of NETs is the

administration of Deoxyribonuclease I, Dornase alpha, mainly

known as DNase I, which degrades the structure of NETs

consisting mainly of DNA (24–26). A change in plasma DNase

activity has been linked to the carcinogenesis, as observed in
FIGURE 1

NETs’ dual roles in pro/anti-tumor effects (1, 6–9). All the figures presented in the paper were created in https://BioRender.com.
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patients with malignant lymphomas, who showed a decrease in its

activity, while breast cancer patients showed higher levels of activity

compared to healthy subjects (27–29). Even so, physiological

amounts of DNase I are not sufficient to completely degrade

NETs in vitro (30). Meanwhile, as early as 1990, it was discovered

that DNase treatment reduced metastasis, but the mechanism of

this effect was not understood (15). DNase I also reduced the cell

viability of numerous cell lines and prevented tumor cell metastasis

to the liver in mice, while the mechanism of these actions was not

described (31). DNase I is a Ca2+/Mg2+-dependent endonuclease

distributed in plasma that has the ability to selectively degrade all

DNA, including tumor-associated cell-free DNAs (cfDNA) not only

DNA associated with NETs (10, 32, 33–35). Therefore, it cannot be

ruled out that the examples of anticancer use of DNase presented

below are also associated with the removal of DNA that is not

necessarily NETs-related (36). The efficiency of NETs degradation

depends on the combined activity of two distinct DNases, DNase 1

and DNase 1-like 3 (DNase1L3), which preferentially degrade

double-stranded DNA (dsDNA) and chromatin, respectively, and

to some extent inhibit the proteolytic activity of NE (37, 38).

Elimination of NETs results in no loss of T cells, which restores

their anti-tumor activity, reduces early adhesion of tumor cells to

NETs, i.e. abolishes the mechanism that causes cancer metastasis

(39, 40). Treatment of existing NETs with DNase I also increases the

therapeutic efficacy of tumor immunotherapy (12, 41).

Unfortunately, long-term use of DNase I is detrimental to the
Frontiers in Immunology 03
function of the immune defense mechanism, as it increases

inflammation through inappropriate release of pro-inflammatory

mediators and likely causes increased susceptibility to bacterial

infections, a common cause of death among oncology patients

(12, 42, 43). Despite the fact that DNase has a beneficial effect on

local lesions, it may not be applicable for systemic administration

due to its rapid degradation, short half-life, low stability in plasma

and limitations in removing protein components from NETs (42,

44). The lack of complete degradation of the protein components of

NETs results in less efficacy in abolishing the inflammatory

response (45). Also, monomeric G-actin released from

neutrophils as a result of NETs formation has the ability to

inhibit the enzymatic activity of DNase I, so to achieve its desired

effect, high-frequency dosing or other forms of its administration

are recommended (46). Raghavan et al. (47) have found that

positively charged DNase-loaded particles with a size of 200 nm

showed the highest degree of interaction with NETs. To overcome

the aforementioned limitations associated with DNase treatment, a

growing number of studies have focused on new modes of DNase

delivery. For example, Zhu et al. (48) developed a strategy using

polyethylene glycol-associated polyamino acids (PAAP) to deliver

DNase 1 to prevent liver metastasis in breast and colorectal cancers

by degrading NETs. The PAAP/DNase-1 complex degrades

chromatin to induce apoptosis, then DNase-1 released into the

extracellular space dissociates the NET-DNA complex. The action

of this combination is therefore bidirectional, inhibiting both
FIGURE 2

Cancer types in which predominant direction of evidence suggests that NETs degradation is beneficial and those in which evidence suggests NETs
have anti-cancer effects.
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primary tumor growth and potential metastasis (48). Another

DNase-delivery structure was developed by Filipczak et al. (49),

containing mAb2C5 and DNase I, which together have the ability to

self-organize into a micelle-like structure. The 2C5 MDM

nanoparticles have the ability to specifically recognize NETs and

promote their degradation, containing a monoclonal antibody 2C5

that has strong specificity against nucleohistones, which are found

specifically in NETs (49). Yin et al. (50) developed a nanocarrier

based on regulating the formation of tumor-associated NETs, which

consists of a core of paclitaxel (PTX) and poly-l-lysine (PLL) pro-

drug nanoparticles conjugated to an MMP-9 cleavable

deoxyribonuclease coating conjugated to Tat I cell penetrating

peptide (DNase I), abbreviated as mP-NPs-DNase/PTX, which,

when accumulated at a tumor tissue site, can release DNase I in

response to MMP-9 to degrade NETs and absorb and dissociate

tumor cells. This model enabling DNase I administration in vitro/

vivo studies increased the inhibition of malignant tumor growth and

distant metastasis (50).

NETs formation can also be supressed by inhibiting its major

components, which include NE (51, 52). An NE inhibitor, for

example, is Sivelestat, whose mechanism of action is to prevent

NE nuclear translocation and inhibit chromatin decondensation

(24, 53). NE inhibitors also include the leukocyte secretory protease

inhibitor (SLPI) and SerpinB1, which limit the production of NETs

in vitro/vivo (54). Inhibition of peptidylarginine deiminase type 4

(PAD4), the enzyme responsible for the histone modifications

required for neutrophil DNA decondensation prior to NETs

formation, also has therapeutic indications (15, 55). PAD4

deficiency has been linked to decreased growth of tumors, such as

Lewis lung carcinoma (LLC) or pancreatic tumors, and cancer

metastasis (56–58). Deletion of PAD4 in neutrophils or

pharmacological inhibition of PAD4 with JBI-589 reduced

primary tumor growth and lung metastasis, and significantly

increased the effect of immune checkpoint inhibitors in mouse

models of tumors (59). PAD4 is produced not only by physiological

structures such as neutrophils, monocytes, macrophages, brain,

uterus, joints, bone marrow, but also by tumorigenesis (60). A

major disadvantage of the PAD4 inhibitors used is their serum half-

life, as it is only 15 minutes to 4 hours (15). Small-molecule

inhibitors of PAD4 include Cl-amidine and F-amidine, which are

irreversible inhibitors that bind calcium, which is involved in the

formation of NETs, and act by covalent modification at the

enzyme’s active site (5, 61). Chlorotetracycline, minocycline and

streptomycin were identified as reversible PAD inhibitors with low

efficacy, Cl-amidine and F-amidine were formulated as inhibitors

with improved efficacy and sensitivity, GSK199 and GSK484 were

developed as highly effective selective PAD4 inhibitors (62–64). The

aforementioned inhibitors have been used in diseases with

comorbid inflammation, where they caused a reduction in

inflammation, including autoimmune diseases (62, 65). PAD4

inhibition worked synergistically with the combined checkpoint

inhibitors anti-(programmed cell death protein 1, PD-1) and anti-

(cytotoxic T-lymphocyte associated protein 4, CTLA-4) (13). Zhu

et al. (66) examined modifications of the PAD4 inhibitor with

phenylboronic acid (PBA), which has the ability to combine with
Frontiers in Immunology 04
sialic acid on the tumor surface. The combination showed dual

targeting of tumor cells, both from the primary tumor and from

metastatic tumors (66). Another route of delivery for the PAD4

inhibitor is its nanocarrier, ZD-E-1. It is formed by self-assembly of

a pH-responsive molecular PAD4 inhibitor: ZD-E-1M (67). Most

studies show slower tumor growth and/or metastasis after PAD4

inhibition, while there are also studies reporting minimal or no

effect, depending on the type of cancer (68).

Zhao et al. (69) developed neutrophil hitchhiking nanoparticles

(SPPS) that block NETs formation to enhance Bacteria-mediated

tumor therapy (BMTT). In a study in mice, after 24 hours of

bacterial therapy, there was an increase in the number of

neutrophils in the blood and an increase in SPPS reaching the

tumor tissue by stowaway neutrophils (69). The amount of NETs in

the tumors decreased by reprogramming the formation of NETs,

thereby increasing the viability of the bacteria (69). The researchers

also found that the gene drug (siBcl-2) loaded in SPPS can be re-

enclosed in apoptotic bodies by reprogramming neutrophils from

NETs into apoptosis and allows drug delivery back to tumor cells,

further enhancing anti-tumor efficacy with a synergistic effect,

resulting in increased tumor inhibition rates and increased

survival rates (69).

Anthracyclines, or anticancer antibiotics (e.g., epirubicin,

daunorubicin, doxorubicin and idarubicin), acting through DNA

intercalation, oxidative stress and topoisomerase II poisoning,

inhibit both nicotinamide adenine dinucleotide phosphate

(NADPH)-oxidase-dependent and NADPH-oxidase-independent

NETs formation ex vivo (70, 71). Bystrzycka et al. (72)

demonstrated that two antibiotics , azithromycin and

chloramphenicol, reduce the release of NETs by modulating the

ability of neutrophils to release NETs. Also, NADPH oxidase

inhibitors significantly reduce tumor cell invasion, suggesting that

it may be mediated by NETs (73). Basyreva et al. (74) found that the

anticancer drug, 5-fluorouracil (5-FU) caused a significant and

rapid increase in the total number of NETs in the blood, while its

shielded nanoscaled polymeric form, amphiphilic poly-N-

vinylpyrrolidone (Amph-PVP) nanoparticles, blocked the

appearance of NETs in the blood (74). Other drugs that also have

the ability to block NETs include diethylcarbamazine, lapatinib,

rapamycin, bosutinib, ibrutinib, gentamicin, cyclosporine A, 5-

aminosalicylic acid (5-ASA), N-acetyl-l-cysteine (NAC), heparin,

Alveofact, Curosurf, methotrexate, hydroxychloroquine, and

probiotics (61, 65, 75–79). Metformin, a protein kinase C (PKC)

inhibitor used to treat diabetes, also has the ability to reduce the

formation of NETs (39). The treatment reduces the components of

NETs: elastase, proteinase-3, histones and double-stranded DNA.

In vitro , metformin prevented DNA release, membrane

translocation of PKC-bII and activation of NADPH oxidase in

neutrophils, resulting in reduced NETs formation (80). Another

drug used to treat diabetes, Exenatide, reduced the formation of

NETs both peripheral and originating from lung and colon tumors.

It also enhanced the anti-tumor efficacy of PD-1 and CD8+ T-cell

blockade by reducing NETs, which induced long-term tumor-

protective immunity (81). Another drug for diabetic patients that

regulates glycemic fluctuations, Liraglutide, a glucagon-like peptide-
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1 (GLP-1) induced a reduction in circulating NETs markers MPO,

NE and dsDNA by inhibiting reactive oxygen species (ROS) in lung

and liver cancer in mice. The drug also enhances the anti-tumor

efficacy of PD-1 inhibition, improves IFN-g release by CD8+ T cells,

while this effect could not be observed in the absence of NETs (82).

Interestingly, macrophages also have the ability to degrade NETs

in vivo, while this has only been studied at this point on human

abdominal aortic aneurysm (83). Another way to inhibit NETs is H2

inhalation, which inhibited the formation and release of NETs

components in mice and mini-pigs with sepsis (84). Potentially,

inhibitors of MPO, a component of NETs, could also be such a

compound, but at this point have limited clinical utility due to the

side effects they have (22). Disulfiram, which blocks gasdermin D,

required for NETs release, also has the ability to block NETs

formation. This drug is only approved for the treatment of alcohol

abuse disorders due to its effect on aldehyde dehydrogenase (85).

There is also a group of compounds that has been linked to inhibiting

NETs, while this has not been studied in the context of cancer. Such

compounds include: 2-aminoethyl diphenylborinate/2-aminoethyl

diphenylborinate (2-APB), PA-dPEG24, lactoferrin, curcumin,

Glucuronoxylomannan, Octyl gallate, Diphenyleneiodonium

chloride (DPI), F-apocynin (4-fluoro-2-methoxyphenol), CXCR1

and CXCR2 antagonist, High Mobility Group Box-1 (HMGB1)

antagonists, purinergic P2Y12 receptor blockers, therapeutic anti-

citrullinated protein antibody (tACPA), naringin, vitamin D,

tetrahydroisoquinolines (THIQs), Activated protein C (APC),

recombinant thrombomodulin, RAF inhibitors (61, 76, 78, 86–94).

Also, other substances of natural origin can affect the formation of

NETs, among such unstudied for anticancer effects are:
Frontiers in Immunology 05
Andrographolide derived from Andrographis paniculata, HMEI-A

derived from Hirudinaria manillensis, Chikusetsusaponin V derived

from Panax japonicus, Polysaccharide derived from Kochia scoparia,

Polydatin derived from Polygonum cuspidatum, Gingerol derived

from Ginger, and TTC derived from Celastrus orbiculatus (95). In

Figure 3, NETs degradation methods are collected and divided into 3

categories: inhibiting NETs components or their formation, drugs

and chemicals, and natural/human substances.
3 Predicting efficacy or resistance to
anti-cancer therapy associated with
NETs. Mechanisms of anti-cancer
therapy associated with NETs removal.
Anti-cancer effects associated with
NETs.

Cell resistance to chemotherapy i.e. chemo-resistance, radiation

resistance and resistance to immunotherapy is associated with

TME, where neutrophils and their functions play an active role

(88, 96). Massive neutrophil infiltration is often associated with

poorer response to antitumor therapy, as has been demonstrated in

several different types of cancer (96–98). In chemotherapy-resistant

patients who are unlikely to benefit clinically, treacnt may cause side

effects related to drug toxicity or delay the use of other effective

treatments, hence it is important to understand the mechanisms

responsible for chemoresistance, and one of these potential

mechanisms may include NETs (99–102).
FIGURE 3

NETs degradation methods.
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Cancer cells that die, often as a result of therapy, release adenosine

triphosphate (ATP), which induces NLR family pyrin domain

containing 3 (NLRP3) activation in surviving cancer cells, which

then leads to the release of interleukin 1-beta (IL-1b), which in turn

can stimulate the formation of NETs (103). NETs have the ability to

transform TME by reducing the number of anti-tumor effector cells,

which can impair the efficacy of immunotherapy (104). For example,

NETs affect tumor-infiltrating T cells by determining the response to

immune checkpoint inhibitors (62). Teijeira et al. (13) described that

inhibition of NETs sensitizes tumors to dual anti-PD-1+ anti-CTLA-4

checkpoint blockade. Volkov et al. (105) suggest that by reducing the

number of NETs in TME, the efficacy of CAR-T (T-cells modified by

the chimeric antigen receptor) therapy can be increased and even

extended to solid tumors. Cheng et al. (106) developed the Tandem-

locked NETosis Reporter 1 (TNR1), which activates fluorescence

signals only in the presence of both NE and cathepsin G (CTSG) to

specifically image NETosis and distinguish it from neutrophil

activation. Near-infrared signals from activated TNR1 correlated

negatively with the effect of tumor suppression after immunotherapy,

thus providing a prognosis for cancer immunotherapy (106).
3.1 Head and neck cancer

3.1.1 Head and neck squamous cell carcinoma
3.1.1.1 NETs-related predicting efficacy of anti-cancer
therapy

Li et al. (107) developed a NETs-related gene signature strongly

associated with clinicopathologic and immunologic features of

patients with head and neck squamous cell carcinoma (HNSCC).

HNSCC patients with low NETs signatures tended to express higher

levels of immune checkpoints, including CD274 and CTLA4, and

responded better to targeted therapies using afatinib, erlotinib,

ibrutinib and lapatinib. In contrast, patients with high NETs

signatures were more likely to fail to respond to immunotherapy

(107). Anti-PD-1, anti-CTLA4, or combination immunotherapy

was more beneficial in patients with low-risk HNSCC stratified by a

risk model consisting of six NETs-related genes. Response to anti-

cancer drugs was also closely correlated with the expression of

NETs-related genes (108).

3.1.1.2 NETs anti-cancer effects presented on human

The largest subgroup of CD16high CD62Ldim neutrophils found

in HNSCC patients had an increased ability to migrate and to form

NETs, but was equally associated with anti-tumor effects and

increased survival in HNSCC patients (109).
3.2 Central nervous system tumors

3.2.1 Glioblastoma multiforme
3.2.1.1 NETs-related predicting efficacy of anti-cancer
therapy

Sun and Liu (110) developed a prognostic model based on NETs

that enables the selection of precise targeted therapy for
Frontiers in Immunology 06
glioblastoma multiforme. With the model, patients were divided

into two groups, where patients in the high-risk group were more

sensitive to bicalutamide, dasatinib and gefitinib, while patients in

the low-risk group were associated with a poor response to

immunotherapy (110).

3.2.2 Glioma
3.2.2.1 NETs degradation anti-cancer effects presented
on cell lines and human tissues

NETs produced by tumor-infiltrating neutrophils (TINs)

mediate the communication between glioma progression and

TME by regulating the HMGB1/RAGE/IL-8 axis (111). HMGB1

derived from NETs binds to RAGE and activates the nuclear factor

kB (NF-kB) signaling pathway, which is also stimulated by NETs

and promotes interleukin 8 (IL-8) secretion in glioma. IL-8 then

recruits neutrophils, which in turn mediated NET formation

through the PI3K/AKT/ROS axis. Overall, overproduction of

NETs promoted the proliferation, migration and invasion of

glioma cells, with a greater number of NETs detected in high-

differentiation gliomas compared to low-differentiation gliomas.

NETs promoted the rapid proliferation of glioma cells and their

ability to invade, while this effect was abolished by DNase I. Thus,

targeting NETs formation or IL-8 secretion may be an effective

approach to inhibit glioma progression (111).
3.3 Respiratory tract cancers

3.3.1 Non-small cell lung cancer
3.3.1.1 NETs-related predicting efficacy of anti-cancer
therapy

A study by Guo et al. (112) indicates that serum NETs levels are

an effective predictor of PD-1 inhibitor response used in the

treatment of advanced non-small cell lung cancer (NSCLC) and

reflect the neutrophil-to-lymphocyte ratio (NLR) in the tissue and

the likelihood of immune-related adverse events (IrAEs). Lower

serum NETs concentrations have been associated with better

immunotherapeutic effects. The combination of serum NETs,

CD8+ T cells and tumor proportion score (TPS) predicted the

efficacy of PD-1 inhibitor treatment (112).

3.3.2 Lung cancer
3.3.2.1 NETs degradation anti-cancer effects presented
on cell lines

Najmeh et al. (40) conducted studies on lung cancer cell lines,

which showed that administration of DNase 1 caused a decrease in

cancer cell adhesion and that integrins can mediate cancer cell

interactions with NETs. DNase I or an NE inhibitor also abolished

the formation of hepatic micrometastases formed by the transfer of

lung cancer cells by NETs (16, 113).

3.3.2.2 NETs degradation anti-cancer effects presented
on mice

Sun et al. (11) developed a hybrid nanoparticle composed of

DNase I and gold (DNase I@Au) administered inhaled to increase
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the efficacy of radiotherapy, used to treat lung cancer, and to

increase the elimination of NETs that promote metastasis. The

nanoparticle reduces tumor size, gradually releases DNase thereby

degrading NETs, preventing free malignant cells from interacting

with tumor sites or blood vessels. The molecule tested supressed the

formation of breast cancer metastases to the lungs (11).
3.4 Gastrointestinal cancers

3.4.1 Esophageal cancer
3.4.1.1 NETs degradation anti-cancer effects presented on
cell lines

The MPO inhibitor azide reduces increased levels of neutrophil

ROS leading to mucosal damage in Barrett’s esophagus, considered

a precancerous lesion of esophageal adenocarcinoma. In contrast,

Sivelestat sodium, a type of NE inhibitor, can attenuate

postoperative complications in esophageal cancer patients: it

significantly reduces postoperative hypoxia, partially reduces

systemic inflammation and maintains postoperative circulatory

status (114).
3.4.2 Gastric cancer
3.4.2.1 NETs-related predicting efficacy of anti-cancer
therapy

Li et al. (115) discovered that sensitivity to chemotherapeutic

treatment of gastric cancer was linked to the expression of NETs-

related genes, from which a potential prognostic risk score “NETs-

Score” was created. The study groups were divided into those at

“low risk” and those at “high risk.” The researchers used 3 immune

checkpoints to assess the potential efficacy of the therapy: CTLA-4,

PD-1 and programmed death ligand 1. As a result, they found that

there were significantly more of them in the low-risk group,

meaning this group was more likely to activate immune defenses

and respond to immunotherapy (115). Low risk was associated with

lower inhibitory concentrations (IC50) of chemotherapeutics such

as afatinib, dactinomycin, daporinad, docetaxel, ibrutinib, lapatinib,

sepantronium bromide and 5-FU. The NETs-Score acted as a

potential predictor of chemosensitivity (115). Yang et al. (116)

created a prognostic model for gastric cancer using long non-coding

RNA (lncRNA) associated with NETs, which demonstrated

prognostic capabilities, serving as an adjunct to traditional cancer

staging and enabling the selection of an appropriate treatment

option. The researchers also analyzed checkpoint genes, which

were found to be strongly expressed in the high-risk group, while

only two genes, TNFRSF14 and LGALS9, were strongly expressed in

the low-risk group (116). They also conducted an analysis of the

relationship between risk score and drug resistance, which showed

that the IC50 value of dasatinib was higher in the low-risk group,

while the sensitivity of other targeted drugs, namely AZD5363,

dabrafenib, GSK269962A, ipatasertib, lapatinib, MK-2206,

oxaliplatin, palbociclib, PF-4708671, ribociclib, ulixertinib, VE-

822 in the low-risk group was higher than in the high-risk group

(116). Zhang et al. (117) demonstrated that NETs in gastric cancer
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activate cyclooxygenase-2 (COX-2) through Toll-like receptor 2

(TLR2) which increases the metastatic capacity of cancer cells. The

correlation of COX-2 with NETs was confirmed by the use of

DNase I, and mice given it showed lower COX-2 levels and delayed

metastasis (117). Moreover, COX-2 was correlated with anti-

CTLA4 response and a group of gastric cancer patients with high

COX-2 levels showed lower sensitivity to afatinib, erlotinib,

gefitinib, ibrutinib, osimertinib, Wnt-C59, AZD1332, AZD3795,

CDK9, P22077 and XAV939 (117). An interesting relationship

between the efficacy of advanced first-line treatment of gastric

cancer depending on the level of NETs was presented by Zhang

et al. (118). In patients with a partial response to treatment, patients

with stable disease and controls, the levels of NETs before treatment

were higher than after treatment in both plasma and serum. In

contrast, in patients with progressive disease, NET levels before

treatment were lower than after treatment in both plasma and

serum (118).

3.4.2.2 NETs degradation anti-cancer effects presented
on cell lines and mice

Tao et al. (119) discovered that Danshen, a dried root of Salvia

miltiorrhiza known for its anticancer properties, among other

things, reduces lung metastasis of gastric cancer cells. The

mechanism of this action takes into account the prevention of the

movement of neutrophils to metastatic sites with reduced NE levels.

Danshen-derived compounds salvianolic acid B (Sal B) and 15,16-

dihydrotanshinone I (DHT I) have shown inhibitory effects on the

formation of NETs by acting on MPO and NOX (119). In in vitro

studies, after treatment with phorbol myristate acetate (PMA),

which promotes NETs formation, or DNase 1/GSK-484, which

inhibits NETs formation, the ability of gastric tumors to migrate

was found to be altered; however, no significant changes were

observed in cell proliferation or cell cycle progression (120).

3.4.2.3 NETs anti-cancer effects presented on mice

Ju et al. (121) developed a neoadjuvant chemotherapy based on

Abraxane/human neutrophils cytopharmaceuticals together with

radiotherapy to treat gastric cancer. In this regimen, neutrophils are

used to carry Abraxane, a commercial albumin-bound PTX

nanoparticle that maintains the intrinsic function of neutrophils.

Radiotherapy increases the release of inflammatory factors that

increase the influx of neutrophils into the tumor area, NETs are

formed, resulting in the shedding of Abraxane and improved tumor

suppression (121).

3.4.3 Hepatocellular carcinoma
3.4.3.1 NETs-related predicting efficacy of anti-cancer
therapy

Hepatocellular carcinoma (HCC) cell resistance to drugs and

tumor sensitivity to chemotherapeutics showed a significant

correlation with the expression of prognostic NETs-related genes

(NETs) (122). Yuan et al. (123) constructed a six-gene NETs-related

signature that could predict survival outcomes in patients with

HCC. The TME of HCC differed between high-risk and low-risk
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groups, which influenced tumor resistance to therapy. Researchers

used the Immunophenoscore (IPS) scale to assess susceptibility to

immunotherapy in high- and low-risk subgroups. In the high-risk

group, most immune-related genes were poorly expressed, while the

low-risk subgroup showed a higher IPS in the CTLA4-PD1+,

CTLA4+ PD1- and CTLA4+ PD1+ groups (123). Higher IPS

indicated a more favorable immunotherapeutic response, with

those in the low-risk group showing an increased response to

immunotherapy. When analyzing the response to another

therapeutic strategy, chemotherapy, the IC50 values of 9 drugs: A-

443654, AKT VIII inhibitor, PD-173074, BMS-509744,

CCT007093, CGP-60474, GSK690693, JNK-9L and KIN001-102,

showed a marked reduction in the high-risk group compared to

their low-risk counterparts, indicating increased sensitivity to

treatment (123). In other studies as well, the group with low

expression of NETs-related genes showed higher expression levels

of immune checkpoint genes, so they tended to respond better to

immunotherapy compared to the group with high expression of

NETs-related genes (124).

3.4.4 Liver cancer
3.4.4.1 NETs degradation anti-cancer effects presented
on cell lines

The ability of neutrophils to stimulate invasion tested on the

human liver cancer cell line HuH7 was inhibited by DNase I, while

it showed no effect on tumor cell invasion stimulated with fetal

bovine serum (FBS). Pre-incubation of neutrophils with the PAD4

inhibitor GSK484 before co-culture reduced the ability of

neutrophils to form NETs, which in turn blocked the promotion

of HCC cell invasion (125). The neutrophils tested could

significantly increase the trans-endothelial migration of HepG2

cells, while this effect was abolished by DNase I (126).

3.4.4.2 NETs degradation anti-cancer effects presented
on mice

Mou et al. (127) investigated the suppressive effects of icaritin

(ICT), used to treat HCC in mice. ICT inhibited the growth of

subcutaneous tumors, increased infiltration of CTLs, macrophages

and M1-type macrophages, and promoted the secretion of anti-

tumor effector molecules such as IFN-g and Granzyme B (127).

Inside the tumor, researchers found ICT-induced suppression of

neutrophil infiltration. Reduction of NETs by DNase I or PAD4

inhibitor, could inhibit HCC tumor metastasis in mice in vivo (126).

Also, in a study by Yang et al. (45) in mice, combining DNase 1 with

the anti-inflammatory drugs aspirin/hydroxychloroquine (HCQ)

effectively reduced hepatocellular carcinoma metastasis. NETs

trigger an inflammatory response in trapped HCC cells.

Treatment with prostaglandin E2 (PGE2), a direct product of

COX2, abolished the effects of NETs on HCC cells. HCQ, a drug

with the ability to block the TLR pathway, can effectively abolish the

up-regulation of COX2 and subsequently block the metastatic

behavior of HCC cells induced by NETs (45). In a study by Zhan

et al. (128) DNase 1 also inhibited the growth and lung metastasis of

hepatocellular carcinoma induced by NETs. Acting on oxidized
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mitochondrial DNA (mtDNA) with metformin prevents HCC

metastasis enabled by NETs. HCC cells are able to stimulate the

formation of NETs rich in oxidized mtDNA, which have strong

pro-inflammatory and metastasis-promoting properties.

Metformin treatment reduced the formation of NETs, decreased

the up-regulation of several inflammatory mediators that promote

metastasis triggered by HCC-NETs, i.e. reduced the inflammatory

response accompanying the tumor (129).

3.4.4.3 NETs degradation anti-cancer effects presented
on cell lines and mice

NETs-CM, a conditioned medium containing NETs, markedly

increased the invasive potential of HCC cells. Co-culture of NETs-

CM with a cathepsin G inhibitor equally blocked the ability to

induce invasion. Digestion of NETs-DNA by DNase I prevented

invasion, although CTSG was not removed by DNase I digestion.

The NE inhibitor, Sivelestat, showed no significant effect on

neutrophil-stimulated invasion. In contrast, in in vivo studies in

mice, NETs-CitH3 complexes began to be detectable at the pre-

metastatic stage in a model lung compared to controls, which could

be abolished by DNase I treatment. The cathepsin G inhibitor

showed little effect on NETs formation in vivo, while it significantly

reduced NETs-CitH3 release in vitro. NETs-derived CTSG

promoted HCC cell invasion by reducing E-cadherin expression

in vitro (125). Yoshimoto et al. (130) demonstrated that NETs

promoted the motility and migratory capacity of intrahepatic

cholangiocarcinoma (iCCA) cells in vitro. The increased motility

of cancer cells after co-culture with NETs was abolished by DNase

and the PAD4 inhibitor, Cl-amidine. The co-culture was also

characterized by decreased expression of E-cadherin and

increased expression of vimentin. P-selectin-mediated platelet

binding to tumor cells promoted the induction of NETs, an effect

that was abrogated by the use of antiplatelet drugs. Injection of

iCCA cells into the spleen of mice induced liver micrometastases

coexisting with NETs. Reduction of metastasis was achieved after

treatment with dual antiplatelet therapy (DAPT) consisting of

aspirin and ticagrelor (130).

3.4.4.4 NETs degradation anti-cancer effects presented
on mice and rabbits

Cheng et al. (32) formulated a dual pH-responsive hydrogel

with a tumor acidity neutralizer in the form of mesoporous

bioactive glass nanoparticles and DNase I, which they used in

combination with infusion of NK cells, which have the ability to

selectively recognize and kill cancer cells. The combination of NK

cell infusion and a hydrogel-based delivery system can effectively

prevent HCC recurrence after resection. NK cell infusion is

negatively affected by acidic TME and NETs, so combining with a

biocompatible hydrogel that neutralizes tumor acidity and leads to

NETs lysis would significantly improve the efficacy of the therapy.

The gel also had the ability to reduce tumor infiltration by M2-type

macrophages, regulatory T cells and MDSCs and to activate

endogenous anti-tumor immunity associated with CD8+ T

cells (32).
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3.4.5 Pancreatic carcinoma, pancreatic cancer,
pancreatic adenocarcinoma & pancreatic ductal
adenocarcinoma
3.4.5.1 NETs-related predicting efficacy of anti-cancer
therapy

Zhang et al. (3) created a prognostic model based on NETs and

(epithelial-mesenchymal transition) EMT signatures in patients

with pancreatic adenocarcinoma (PAAD), the use of which

indicates potentially effective immunotherapeutic strategies and

can predict the prognosis of patients with PAAD. This prognosis

was strongly correlated with immune invasion, immune cycle,

immune checkpoint and sensitivity to treatment. NETs are

promising potential targets for neoadjuvant immuno- and

chemotherapy against cancer metastasis in patients with PAAD.

In addition, a combined suppressor of NETs and EMT may be a

highly effective intervention for patients with PAAD (3). Interleukin

17 (IL-17) sustains pancreatic ductal adenocarcinoma (PDAC)

immunosuppression by reducing CD8+ T-cell recruitment and

activation, and recruits neutrophils and stimulates NETs

formation in pancreatic tumors via factors released from tumor

cells. IL-17 blockade increased sensitivity to PD-1 and CTLA4,

while blockade of neutrophils or PAD4-dependent NETs formation

synergized with PD-1 blockade to dramatically reduce tumor

growth (2). PDAC patients with lower neutrophil infiltration,

where 45.4% have the ability to form extracellular traps or

negative staining for neutrophil extracellular traps, are more likely

to benefit from adjuvant chemotherapy (131).

3.4.5.2 NETs degradation anti-cancer effects presented
on cell lines

A study by Deng et al. (73) showed that inhibition of PAD4 and

NE inhibited NETs formation and tumor cell invasion in

neutrophils co-cultured with a primary human PDAC cell line

with strong expression of discoid domain receptor 1 (DDR1) and a

cell line without DDR1 expression. NADPH oxidase inhibition had

no effect on NETs or tumor cell invasion, and DNase I treatment

showed only a partial effect compared to the control group. NETs

formation, phosphorylation of NF-kB, PKC and SYK, CXCL5

production, and cancer cell invasion were significantly reduced in

cells treated with 7rh benzamide, a specific DDR1 inhibitor. The

researchers suggest that administration of this inhibitor at

therapeutic doses, may increase the sensitivity of cancer cells to

conventional chemotherapy and inhibit liver metastasis by blocking

the formation of NETs (73).

3.4.5.3 NETs degradation anti-cancer effects presented
on mice

Takesue et al. (132) discovered that DNase I, by inhibiting NETs,

suppressed PDAC metastasis to the liver. DNase I also inhibited

micrometastasis and reduced the number of Cancer-associated

fibroblasts (CAFs), a major component of TME in PDAC. In

PDAC, pancreatic cancer cells induce the formation of NETs,

which increase the migration of hepatic stellate cells, a source of
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CAFs potentially involved in metastasis formation (132). In another

studies, DNase treatment of mice reversed the ability of pancreatic

stellate cells (PSCs) to promote tumor growth, as demonstrated by

the reduced tumor weight of treated mice. DNase’s mechanism of

action involved blocking endogenous DNA, derived from NETs,

which had the ability to activate PSCs (57).

3.4.5.4 NETs degradation anti-cancer effects presented
on mice and human tissues

Canè et al. (133) demonstrated that NETs present in PDAC

patients form a microdomain in which cathepsin S (CTSS) cleaves

human arginase 1 (hARG1) into different molecular forms endowed

with enhanced enzymatic activity at physiological pH. Arginase 1

(ARG1) has the ability to degrade arginine, which inhibits the anti-

tumor response (133). NETs-associated hARG1 inhibits T cells,

whose proliferation can be restored by adding a monoclonal

antibody (mAb) specific for hARG1 or by preventing CTSS-

dependent cleavage (133). Researchers have found that ARG1

blockade, in combination with immune checkpoint inhibitors, can

restore CD8+ T cell function in PDAC tumors ex vivo, and that

anti-hARG1 monoclonal antibodies increase the number of tumor-

specific CD8+ T cells in the tumor and enhance the efficacy of

immune checkpoint therapy in humanized mice (133). Wang et al.

(134) discovered that metformin could effectively inhibit the

progression of pancreatic cancer promoted by obesity, where

adipocytes promoted NETs formation, a phenomenon that did

not occur in lean mice. NETs promote pancreatic carcinogenesis

through activation of TLR4-dependent pathways, expression of

inflammatory factors and initiation of EMT. In a study,

metformin and DNase I significantly reversed the pro-cancer

effects of obesity and NETs in vitro/vivo. DNase I inhibited the

progression and EMT of pancreatic intraepithelial ductal neoplasia

in mice, while metformin suppressed the inflammatory response

induced by NETs in these cells manifested as increased IL-1b
express ion (134) . Kaj ioka et a l . (44) descr ibed that

thrombomodulin degraded HMGB1, which inhibited NET

induction, thereby preventing pancreatic cancer metastasis to the

liver, and blocked EMT and attenuated the malignant potential of

pancreatic cancer cells. Researchers examined that mice with NETs

that were given DNase had significantly reduced liver metastasis.

The finding has implications for surgical procedures performed to

treat pancreatic cancer, which promote liver metastasis and often

cause systemic inflammation, leading to NETs (44).

3.4.5.5 NETs degradation anti-cancer effects presented
on mice and human

In a study by Boone et al. (135) inhibition of autophagy by

chloroquine treatment reversed the propensity to form NETs in

vitro. Both mouse models and patients treated by inhibiting

autophagy had reduced NETs formation both by circulating

neutrophils and in TME PDAC. Moreover, the greater the

response to treatment, the more effective inhibition of NETs

occurred in TME (135).
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3.4.5.6 NETs anti-cancer effects presented on mice

Chan et al. (136) presented beneficial anti-tumor effects of

NETs in patients with pancreatic adenocarcinoma. Melatonin

supplementation induced neutrophils and increased the

occurrence of NETs, resulting in apoptosis of tumor cells via cell-

to-cell contact. The number of NETs increased during melatonin

treatment, resulting in slower tumor growth (136).

3.4.6 Colon carcinoma
3.4.6.1 NETs-related predicting efficacy of anti-cancer
therapy

The results obtained by Feng et al. (104) indicate that the

prognostic signature of six NETs-related genes, CRISPLD2,

CPPED1, VNN3, ENTPD4 and MPO, can estimate the prognosis

and response to chemo-/immunotherapy in patients with colon

carcinoma (COAD). Researchers used the Tumor Immune

Dysfunction and Exclusion (TIDE) technique to assess response

to immunotherapy. The technique is able to predict

immunotherapeutic response based on two main mechanisms of

tumor immune escape: infiltration and T-cell dysfunction. The

higher the TIDE score, the stronger the potential for immune

evasion, i.e., the more likely patients are to benefit from immune

checkpoint inhibitor therapy. Compared to a high-risk NET

population with high TIDE scores, a better prognosis can be

obtained for a low-risk NET population with low TIDE

scores (104).

3.4.6.2 NETs degradation anti-cancer effects presented
on mice

Systemic treatment with DNase I and a mixture of proteases in

rats with colorectal cancer showed antitumor effects, reduced the

amount of DNA and proteins in serum. Researchers did not observe

anti-cancer effects in immunodeficient mice treated with enzymes

administered separately (137).

3.4.7 Colorectal cancer
3.4.7.1 NETs-related treatment resistance

In a study on colorectal cancer mice, DNase I degraded NETs

induced by tumor cells, suppressing NETs-created resistance to

anti-PD-1 blockade by increasing CD8+ T-cell infiltration and

cytotoxicity. In addition, it reduced the number of tumor-

associated neutrophils (138). Wang et al. (139) discovered that

the PAD4 inhibitor, GSK484, promotes colorectal cancer (CRC)

radiosensitivity and inhibits the formation of NETs both in vitro/

vivo. Researchers detected PAD4 overexpression in CRC patients,

which was also an indicator of adverse disease prognosis. GSK484

treatment promoted tumor cell radiosensitivity, induced cell death

by promoting DNA double-strand breaks, inhibited the effects of

PAD4 overexpression in irradiated cells, and inhibited the

formation of NETs in vivo (139). Chen et al. (12) designed a

plasmonic core black-body gold (AuPB) nanoplatform with a

broad spectrum of photoactivity and a mesoporous polydopamine

(mPDA) coating for efficient loading and photo-regulated release of
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DNase I. The on-demand DNase I released by the mechanism

triggered by a second near-infrared light irradiation (NIR-II) breaks

down the barrier formed by NETs, thereby increasing the contact of

immune cytotoxic cells with tumor cells in living mice and

sensitizing CRC to immune checkpoint therapy. Moreover, the

use of this mechanism in the liver, the most common site of CRC

metastasis, abolished NETs-mediated metastatic spread. Also, the

anti-tumor therapeutic effect of the PD-1 monoclonal antibody was

enhanced by DNase I delivery (12). In patients with locally

advanced rectal cancer treated with neoadjuvant therapy, a high

density of NETs in biopsy specimens was significantly associated

with a decreased likelihood of a complete/proximal tumor response

to therapy (140).

3.4.7.2 NETs degradation anti-cancer effects presented
on cell lines

In a study by Wang et al. (141) mice with colorectal cancer

treated with DNase I after injection of lipopolysaccharide (LPS) to

stimulate NETs formation showed significantly less metastasis

compared to mice treated with LPS alone, which was also

associated with a decrease in the expression of TLR9, p-p38, p-

p65, p-JNK and p-Stat, and the same effect could be observed after

using the PAD4 inhibitor YW4-03 (141).

3.4.7.3 NETs degradation anti-cancer effects presented
on mice

In a study conducted by Zhang et al. (138) combination therapy

for CRC with DNase I and PD-1 antibody showed higher efficacy,

prevented tumor growth to a greater extent compared to treatment

with a single agent in vitro/vivo. Due to the limitations of DNase

administration, Xia et al. (46) developed a new startegy for its

delivery, a gene therapy vector based on an adeno-associated virus

(AAV) that specifically expresses DNase I in the liver, which would

reduce the development of liver metastasis by modulating the innate

and adaptive immunity of colorectal tumors. In a study conducted

on mice with CRC, the developed therapeutic startegy inhibited the

development of liver metastases, reduced neutrophil infiltration

into the tumor and the formation of NETs, while the percentage of

CD8+ T cells increased (46). Pan et al. (142) showed that Huang

Qin Decoction inhibits intestinal tumor initiation and proliferation

by attenuating inflammation, i.e. by reducing intestinal neutrophil

infiltration, enhancing CD8+ T-cell immune surveillance, and by

controlling NETs formation through effects on PAD4. Reduced

levels of interleukin 1 (IL-1), tumor necrosis factor a (TNF-a) and
MMP-9, alleviation of decreased intestinal permeability caused by

intestinal damage, and elevated white blood cell and granulocyte

counts after decoction were noted in the mice studied (142). Rayes

et al. (143) found that blocking carcinoembryonic Ag cell adhesion

molecule 1 (CEACAM1) associated with NETs leads to a significant

reduction in adhesion, migration and metastasis of colorectal cancer

cells. NETs-associated CEACAM1 promotes colorectal cancer cell

adhesion and migration in vitro/vivo, and increases the possibility of

metastasis formation in vivo (143).
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3.4.7.4 NETs degradation anti-cancer effects presented
on cell lines and mice

In a study by Yazdani et al. (144) both in mice lacking PAD4,

and therefore unable to form NETs, and in non-PAD4-deficient

mice, DNase reduced tumor-associated inflammation and reduced

metastatic tumor growth in the liver. Inhibition of NETs formation

by DNase and NE inhibitor (NEi) in vivo or blocking the NE-TLR4-

PGC-1a axis in vitro can inhibit mitochondrial biogenesis and slow

tumor growth (144). Inhibition of CRC metastasis formation in the

liver by NE inhibition with Sivelestat was also confirmed by a mouse

study by Okamoto et al. (145). Blocking NE is an effective option

due to the release of NE during the formation of NETs, which

accelerates CRC cell migration through activation of ERK in vitro

which is important in cell proliferation, differentiation and

migration, and enables infiltration of tumor cells from veins into

liver tissues, which is the initial step in liver metastasis (145).

Tohme et al. (146) found that in patients undergoing liver

resection for metastatic CRC, increased postoperative NETs

formation was associated with a more than 4-fold reduction in

disease-free survival. NETs formation increases in response to the

stress of surgery, which correlates with accelerated development

and progression of metastatic disease. These effects were abolished

in mice by local DNase treatment or PAD4 inhibition (146).

Inhibition of PAD4-enabled citrullination by the PAD4 inhibitor,

BB-Cl-amidine, significantly reduces the burden of CRC metastasis

to the liver, where higher levels of PAD4 were observed compared

to healthy liver and primary tumor (147). IFNg treatment on cell

lines from patients with Microsatellite Stable Colorectal Cancer

induced more NETs formation and cell apoptosis. The results were

confirmed in mice with this tumor, where IFNg reduced tumor size

and increased tumor killing activity induced by PD-1 antibody,

accompanied by increased NETs formation and cel l

apoptosis (148).

3.4.7.5 NETs degradation anti-cancer effects presented
on human tissues and serum

Due to the increased expression levels of NE and its ability to

generate an environment favorable to tumor cells by degrading the

insulin receptor substrate-1 (IRS-1) and increasing the interaction

of phosphatidylinositol 3-kinase (PI3K) and the potent platelet-

derived growth factor mitogen receptor (PDGF) in CRC patients,

Ho et al. (149) have proposed a potential therapeutic strategy for

this cancer involving blocking the enzymatic activity of NE using

Sivelestat to inhibit tumor progression. The results indicate that

Sivelestat can inhibit tumor growth (149). Zhang et al. (150)

demonstrated that epigallocatechin-3-gallate (EGCG), one of the

main active components of tea catechins, inhibits the formation of

NETs, consequently suppressing the migration and invasion of

colon cancer cells by regulating the signal transducer and

activator of transcription 3 (STAT3)/CXCL8 (IL-8) signaling

pathway. Compared to healthy subjects, STAT3 and CXCL8

mRNA expression was increased in neutrophils from colorectal

cancer patients, as was STAT3, p-STAT3 and CXCL8 protein

expression (150). Overexpression of STAT3 promoted CXCL8

production and NETs formation in colorectal cancer patients
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(150). STAT3 deficiency, like DNase I, inhibited NETs formation

(150). EGCG treatment inhibited STAT3 and CXCL8 expression

and NETs formation in colorectal cancer-derived neutrophils (150).

3.4.7.6 NETs anti-cancer effects presented on mice and
human

NETs can limit the growth of CRC cells in vitro by inducing

apoptosis and/or inhibiting proliferation. Interestingly, the use of

DNase I or heparin abolished the inhibitory effect (151).

Chemotherapy for CRC produces NETs that release cathepsin G,

which enters cancer cells and induces apoptosis. Specifically, the

combination of the glutaminase inhibitor CB-839 and 5-FU

inhibited the growth of colorectal cancers with PIK3CA mutation

in part through NETs in mouse models. Degradation of NETs by

DNase I or deletion of neutrophils attenuated the anti-tumor effect

of the drug combination tested. The mechanism of this action was

the induction of IL-8 expression preferentially in CRC with

PIK3CA mutation to attract neutrophils to tumors, increasing

ROS levels in neutrophils, inducing NETs. CTSG, a component of

NETs, enters CRC cells through the cell surface protein RAGE,

where it cleaved 14-3-3e proteins, causing mitochondrial

translocation of BAX and inducing apoptosis in CRC cells.

Researchers conducted a phase II clinical trial of the combination

of CB-839 and capecitabine, an oral pro-drug of 5-FU, in patients

with metastatic colorectal cancer with a PIK3CA mutation who

were refractory to prior fluoropyrimidine-based chemotherapy,

which showed an increased number of NETs in most patients’

tumors, which was associated with longer progression-free survival.

These patients also showed reduced tumor growth, but no more

than 30% (152).
3.5 Urological cancers

3.5.1 Clear cell renal cell carcinoma
3.5.1.1 NETs-related predicting efficacy of anti-cancer
therapy

NETs gene signatures were significantly correlated with the

sensitivity of clear cell renal cell carcinoma (ccRCC) to targeted

therapy with afatinib, axitinib, erlotinib, gefitinib, ibrutinib and

saptinib. With the exception of TIM-3, the expression of most

selected immune checkpoints, namely PD-1, CTLA4, LAG3, A2BR

and B7-H3, was significantly increased in the high-risk group (153).

Quan & Huang (154) identified 23 NETs-related genes in ccRCC

and three clusters of ccRCC cases with significant differences in

disease prognosis, immune infiltration and response to

chemotherapy, specifically to axitinib, cisplatin, gemcitabine,

sorafenib and sunitinib and targeted therapy. The signature of 6

NETs-related genes, G0S2, DYSF, MMP9, SLC22A4, SELP and

KCNJ15, was significantly correlated with drug sensitivity in ccRCC

patients (154). NETs levels in tumor tissue can also predict

treatment efficacy in patients with metastatic ccRCC who have

received systemic therapy. Elevated levels of NETs in tumor tissue

have also been associated with poor efficacy in increasing patient

survival (155).
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3.5.2 Bladder cancer
3.5.2.1 NETs-related predicting efficacy of anti-cancer
therapy & nets-related treatment resistance

A high NETs-score, has been associated with poor response to

chemotherapy and reduced recurrence-free survival of patients with

muscle-invasive bladder cancer (MIBC) (99). In a bladder cancer

model Shinde-Jadhav et al. (24) observed increased deposition of

NETs in the TME in mice after radiation therapy. Inhibition of

NETs, via DNase I or NEi, improved the response to radiation.

NETs were observed in MIBC tumors in patients who did not

respond to radiation therapy or had chronic disease after treatment.

HMGB1-dependent induction of NETs in the context of

radiotherapy is mediated by Toll-like receptor 4 (TLR4). In in

vivo studies, inhibition of both HMGB1 and NETs delayed tumor

growth (24).

3.5.2.2 NETs degradation anti-cancer effects presented
on human

Patients with bladder cancer were characterized by increased

formation of NETs both systemically and in the TME, partly due to

impaired DNase I-mediated degradation of NETs. The degradation

defect can be therapeutically restored in vitro with recombinant

human DNase (rhDNaseI), Pulmozyme®. Compensation of DNase

I downregulation, associated with reduced formation of NETs in

TME reduces the likelihood of tumor progression and

metastasis (25).

3.5.2.3 NETs anti-cancer effects presented on mice

Bacillus Calmette-Guerin (BCG), a treatment for bladder cancer,

induces the formation of NETs, which in turn had cytotoxic effects,

induced apoptosis and cell cycle arrest in the G0/G1 phase, and

inhibited the migration of tumor cells into the bladder environment

(156, 157). Mean tumor weight and volume were lower in mice given

NETs. The effect of NETs was almost eliminated by protein

inactivation, while increased intratumor CD3+ and CD14+

infiltration was reduced by boiling, but not by DNase

pretreatment (156).

3.5.3 Urothelial cancer
3.5.3.1 NETs degradation anti-cancer effects presented
on cell lines and mice

In a study by Mou et al. (127) ICT, a metabolite of icariin, a

Chinese herbal remedy, reduced the production of NETs by the

suicide pathway and prevented neutrophil infiltration into the

microenvironment of urothelial carcinoma. The mechanism of

action involves ICT binding to protein-arginine deiminase 2

(PADI2) in neutrophils and inhibiting granulocyte-macrophage

colony-stimulating factor (GM-CSF), interleukin 6 (IL-6)

express ion and inhibi t ing PADI2-dependent his tone

citrullination. ICT enhances the infiltration of cytotoxic T cells

and M1-type macrophages, while levels of PD-1 and CTLA-4 and

M2-type macrophages tended to decrease after treatment. ICT also

inhibits ROS generation, suppresses PI3K/AKT and MEK/ERK/p38
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signalling pathways, and inhibits NETs-induced tumor metastasis.

Decreased IL-6 expression forms a regulatory feedback loop

through the JAK2/STAT3/IL-6 axis. Combining ICT with DNase

I reduced the production of NETs promoting tumor invasion and

metastasis, while combining ICT with immune checkpoint

inhibitors, primarily the PD-1 inhibitor, reduced tumor growth.

ICT inhibits lung metastasis by reducing its number and size,

inhibits N-cadherin expression, increases E-cadherin expression,

inhibits EMT and NETs-enabled tumor stem cell formation (127).

3.5.4 Prostate cancer
3.5.4.1 NETs-related predicting efficacy of anti-cancer
therapy

NETs-related signature (NETs) has excellent predictive value in

predicting the efficacy of prostate cancer chemotherapy (158).
3.6 Gynecological cancers

3.6.1 Ovarian cancer
3.6.1.1 NETs-related predicting efficacy of anti-cancer
therapy & nets-related treatment resistance

A high eight-gene signature score of NETs-related genes in ovarian

cancer (OC) patients was associated with greater sensitivity to sorafenib

and less sensitivity to immunotherapy. In addition, a study of the

expression of eight immune checkpoints: LAG3, CTLA4, CD274,

PDCD1, PDCD1LG2, TIGIT, showed that they were overregulated

in the low-risk group. Also, the estimated IC50 values for cisplatin,

gemcitabine and veliparib were higher among high-risk individuals

(159). In contrast, Wang et al. (160) developed a model with six

lncRNAs associated with NETs: GAS5, GBP1P1, LINC00702,

LINC01933, LINC02362 and ZNF687-AS1. IC50 values for

chemotherapeutic drugs (bexarotene, bicalutamide, embelin,

GDC0941 and thapsigargin) were higher in patients in the low-risk

group. Overall, the high-risk group had less immune cell infiltration

and differences in immune checkpoint gene expression compared to

the low-risk group, indicating a worse prognosis of the disease in these

patients (160). De Amorim et al. (161) found that patients with high-

grade serous ovarian cancer (HGSOC) resistant to platinum (PR) were

characterized by the presence of a novel deep intron variant, CHEK2,

and higher expression of L1, the calprotectin component of NETs.

Tamura et al. (162) have demonstrated that NETs capture and inhibit

the diffusion of the chemotherapeutic drug doxorubicin (DOX), which

may impair its ability to induce apoptosis of ovarian cancer cells. Using

1,000 u/ml of DNase I to degrade NETs increased the diffusion of the

drug and enhanced the apoptosis of cancer cells, i.e. improved the

response of OC to DOX. The researchers also found that NETs could

also trap and inhibit PTX diffusion, but in this case the reduced

diffusion was not restored by DNase I. PTX inhibits cell growth by

inducing tubulin polymerization and stabilizing it prior to

depolymerization, so when bound to polymerized tubulin, it forms

large complexes that do not diffuse through micropores, even after

using DNase I (162).
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3.6.1.2 NETs degradation anti-cancer effects presented
on cell lines and mice

Inhibition of NETs formation with GSK484 inhibited tumor

progression in OVCAR8-GCSF tumor-bearing mice and

significantly delayed the spread of tumor cells to the peritoneum,

characteristic of OC. A limitation of the action of PAD4 inhibitors

in this case is the lack of a significant anti-tumor effect on ovarian

cancer cells without co-occurring neutrophils in vivo. The

researchers’ results also indicated that pre-treatment of

neutrophils with Cl-amidine or DNase 1 significantly inhibited

the formation of NETs and consistently reduced the number of

ovarian cancer cells attached to them, while it did not decrease the

number of cancer cells carried by NETs. Another strategy proposed

by the researchers to inhibit NETs is a combination of DNase 1,

blockade of granulocyte colony-stimulating factor (G-CSF), which

stimulates NETs formation, by an anti-GCSF antibody or its

receptor, and removal of neutrophils by an anti-Gr1 antibody.

Blockade of NETs was provided by the anti-GCSF antibody in in

vitro studies, whereas G-CSF itself was not blocked in in vivo

studies (163).

3.6.1.3 NETs degradation anti-cancer effects presented
on mice

CI-amidine and GSK484, reduced net colonisation enabled by

NETs, a common site of ovarian cancer metastasis. The number of

tumor cells in the peritoneal fluid of mice treated with GSK484 was

reduced compared to mice treated with saline solution, and ascites

occurring at an advanced stage of disease was also reduced in mice

treated with the PAD4 inhibitor. Treatment of mice with DNase

also significantly reduced tumor cell implantation in the omentum

(164). Singel et al. (165) demonstrated that neutrophils exposed to

supernatants of ascites collected from ovarian cancer patients

resulted in NETs formation and NE release. A reduction in NE

release occurred after heat inactivation and after DNase I

administration, also to remove genomic DNA (gDNA) and

mitochondrial DNA (mtDNA) (165).

3.6.2 Cervical cancer
3.6.2.1 NETs degradation anti-cancer effects presented
on mice

Ning et al. (42) showed that DNase 1 and chloroquine are

effective in inhibiting lymph node metastasis occurring with cervical

cancer induced by NETs. The mechanism of action of chloroquine,

an antimalarial drug, is inhibition of Toll-like receptors (TLRs).

Inhibition of TLRs, specifically TLR2, prevents interaction with

NETs and thus inhibits activation of the P38-MAPK/ERK/NFkB
pathway, which increased the migratory capacity of cervical cancer

cells. The drug has also been described to alleviate the

hypercoagulation associated with NETs (42).

3.6.3 Breast cancer
3.6.3.1 NETs-related predicting efficacy of anti-cancer
therapy & nets-related treatment resistance

In a study by Jiang et al. (166) response to chemotherapy and

immunotherapy was associated with the expression of NETs-related
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lncRNAs. Huang et al. (167) identified five NETs-related genes and

constructed subgroups based on this, with patients with triple-

negative breast cancer (TNBC) of the high-risk group having a less

favorable response to therapy compared to patients with TNBC of

the low-risk group. The low-risk patient group instead was enriched

in the Wnt signaling pathway, and its inhibitors (Wnt-C59, IWP-2

and XVA-939) had higher sensitivity in patients in this group, as

confirmed by in vitro studies. In addition, low-risk patients with

TNBC treated with radiotherapy had a better therapeutic response.

The IC50 values of chemotherapy drugs (cisplatin, gemcitabine,

olaparib, thalazoparib and vincristine) in high-risk breast cancer

(BC) patients were higher than in the low-risk group (167).

However, according to a study by Mousset et al. (168) cisplatin-

or adriamycin/cyclophosphamide-related chemotherapy used to

treat breast cancer metastasis to the lungs induced NLRP3-

associated IL-1b secretion by tumor cells, which induced

neutrophil recruitment and NETs formation, resulting in a

reduced response to therapy in the mice tested. Resistance to

chemotherapy in this case is associated with two proteins also

associated with NETs: integrin-avb1, which captures latent

Transforming Growth Factor b (TGF-b), and MMP-9, which

cleaves and activates trapped latent TGF-b. Through TGF-b
activation, tumor cells undergo EMT, which correlates with

resistance to chemotherapy. Treatment with a PAD4 inhibitor or

DNase I overcame neutrophil-dependent chemoresistance, but had

no effect on the number of tumor cells in mice not given

chemotherapy, while in vitro inhibition of PAD4 improved the

efficacy of chemotherapy. IL-1b blocking antibody inhibited the

formation of NETs, reduced neutrophil recruitment and improved

the response to chemotherapy. In combination with a PAD4

inhibitor, short-term IL-1b inhibition led only to a statistically

insignificant reduction in lung neutrophil recruitment, excluding

neutrophils evoked by tumor cells. Long-term PAD4 inhibition

reduced IL-1b levels induced by chemotherapy in metastatic lungs

(168). Wei et al. (169) discovered that pretreatment with GSK484

enhanced the irradiation-induced (IR) inhibitory effects on TNBC

cell proliferation, migration and invasion, and facilitated their

apoptosis, which was tested on two TNBC cell lines: MDA-MB-

231 and BT-549. In vivo studies showed that combined treatment

with IR and GSK484 showed a marked decrease in tumor growth in

contrast to treatment with IR alone or GSK484 alone (169).

3.6.3.2 NETs degradation anti-cancer effects presented
on cell lines

In a study by Safarulla et al. (170) blocking the formation of

NETs using Sivelestat, significantly reduced the influx of

neutrophils towards metastatic BC cells, but not to their parent

tumor. NE inhibition blocked the ability of neutrophils to stimulate

invasion of human BC cells, as did NADPH oxidase inhibition.

Nawa et al. (171) demonstrated that the combined use of Sivelestat

and trastuzumab may be a therapeutic strategy for HER2-positive

BC due to NE inhibition, which enables tumor growth via tumor

growth factor-a (TGF-a), which in turn blocks HER2 down-

regulation enabled by trastuzumab. NE enhances cell growth with

phosphorylation of EGFR, HER2 and ERK1/2 in BC cells (171).
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Removal of PAD4 from BC cells (4T1) reduced the rate of tumor

growth in a model and reduced their metastasis to the lungs. DNase

I treatment also reduced lung metastasis in PAD4-positive as well as

PAD4-negative cells, but did not change the number of CTCs (172).

A study by Martins-Cardoso et al. (173) on BC cell lines showed

that DNase-mediated digestion of NETs had little effect on tumor

cell migration, as well as on CXCL8 and MMP9 gene expression. In

another study by Martins-Cardoso et al. (174) NEi was found to

reduce the expression of metastasis-related genes. In MCF7 cells,

the inhibitor reduced the effect of NETs on the expression of CD44,

IL-6 and F3 genes, but not ZEB1 and CXCL8, whereas in T-42D

cells, it disrupted the expression of all the mentioned genes except

ZEB1 (174). Zhao et al. (175), found that DHT, a bioactive

compound in Salvia miltiorrhiza Bunge (S. miltiorrhiza), blocked

NETs formation by reducing TIMP1 expression. Researchers

initially investigated the effects of four tanshinones (DHT,

tanshinone I (Tan I), tanshinone IIA (Tan IIA), and

cryptotanshinone (CPT)) on different breast cancer cell types,

where DHT showed the most significant inhibitory effect. In

studies conducted, DHT inhibited the growth of BC cells more

strongly than breast epithelial cells, also inhibited the healing,

invasion and migration of BC cells and blocked the progression

and spread of BC metastases in lung tissue (175). Cholesterol

biosynthesis induced by ASPP2 depletion in BC cells promoted

NETs formation in vitro and in lung metastases in mice

intravenously injected with ASPP2-deficient breast cancer cells.

ASPP2, a tumor suppressor and activator of p53, inhibits 3-

hydroxy-3-methylglutaryl-CoAreductase (HMGCR) expression.

Cholesterol synthesis inhibitors, simvastatin (Simvastatin), which

is also an HMGCR inhibitor, and berberine (BBR), effectively

blocked NETs formation induced by ASPP2 depletion. DNase I

administration inhibited the invasion of ASPP2-depleted cancer

cells, indicating that NETs are involved in the process. Also, the

expression of Coiled-coil domain containing protein 25 (CCDC25)

and caveolin-1, increased in lung metastases from ASPP2-depleted

mice, was attenuated by treatment with cholesterol biosynthesis

inhibitors or DNase I. The lipid rafts inhibitor piceatannol also

reduced CCDC25 expression. Given the proven involvement of

NETs in BC metastasis, targeting cholesterol biosynthesis may be a

promising therapeutic strategy for their treatment (176).

3.6.3.3 NETs degradation anti-cancer effects presented
on mice

DNase I and GSK484 treatment significantly reduced the

number of micrometastases in the lungs 24 hours after

intravenous injection of labeled tumor cells (13). NETs stimulated

invasion and migration of BC cells in vitro, and inhibition of this

process with DNase I abolished pro-neoplastic targeting of cells.

Treatment with DNase I-coated nanoparticles, where the

nanoparticles were thought to increase the stability of the

enzyme, reduced lung metastasis in mice, while primary tumor

growth was unaffected (15). Another DNase delivery system was

developed by Herre et al. (9), based on an adeno-associated virus

(AAV) vector. It consists of a KP1 capsid and an expression cassette

encoding a hyperactive mouse DNase I (AAV-mDNase I) under the
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control of a liver-specific promoter. The aim of using such a vector

is to maintain elevated expression and activity of serum mouse

DNase I for at least eight months. After the use of AAV-mDNase I,

the proportion of mice in which lung metastases could be observed

decreased (9). Inhibition of cathepsin G, a protease associated with

NETs, blocked the ability of neutrophils to promote invasion

without affecting the ability of tumor cells to invade and also

reduced the proliferation of NETs (15). Another cathepsin,

cathepsin C (CTSC), involved in the formation of neutrophil

serine proteases (NSPs, neutrophil serine proteases), the

components of NETs, secreted by the tumor promotes BC

metastasis to the lungs via NETs, among others (177, 178). Xiao

et al. (178) discovered that CTSC activates neutrophil membrane-

associated proteinase 3 (PR3), which activates interleukin-1b (IL-

1b) and nuclear factor kB activation, thereby increasing IL-6 and

CCL3 expression to recruit neutrophils. The resulting axis induces

ROS production by neutrophils and the formation of NETs, which

degrade thrombospondin-1 (TSP-1) and promote metastatic tumor

cell growth in the lung. Administration of the CTSC inhibitor,

AZD7986, effectively inhibited breast cancer metastasis to the lung

in a mouse model. Inhibition of PR3 with Sivelestat or IL-1b with a

neutralising antibody, but not inhibition of NE or CTSG, reversed

CTSC-induced p65 phosphorylation and IL-6 and CCL3

expression. Blocking IL-1b secretion in neutrophils with a

lysosome inhibitor also led to inhibition of CTSC-induced

neutrophil recruitment. Treatment of mice with an IL-1b-
neutralising antibody had no clear effect on primary tumor

growth, but effectively inhibited CTSC-increased levels of

circulating IL-6 and CCL3, as well as lung metastasis in mice.

Inhibition of IL-1b, p38 and ROS production also suppressed

CTSC-induced NETs formation in the body and lung. Addition

of Sivelestat/CI-amidine/DNase I to neutrophils cultured with

cancer cells inhibited NETs formation and blocked the effects of

CTSCs. Treatment of mice with GSK484, also inhibited lung

metastasis and NETs formation induced by breast cancer cells

overexpressing CTSCs, with no significant effect on primary

tumor growth (178). Sivelestat, NEi, also reduced the proliferation

of NETs induced by cancer cells (15). The NADPH oxidase

inhibitor, apocynin, inhibited the formation of NETs and

inhibited neutrophil-stimulated tumor cell invasion (15). Also, the

PAD4 inhibitor, Cl-amidine, reduced NETs formation and blocked

the ability of neutrophils to promote invasion (15). In contrast, in a

study by Várada et al. (179) chronic use of rhDNase I had no effect

on primary breast tumor growth. Zhu et al. (180) demonstrated that

the PAD4 inhibitor inhibits NF-kB and NETs formation, which

reduces BC growth and metastasis. The essence of the mechanism at

work is that NETs promote breast cancer progression and factors

that originate from cancer cells, IL-8 and G-CSF, stimulate

neutrophils to form NETs. NETs increased the interaction of the

NF-kB essential modifier (NEMO) with IkB kinase (IKK)a/b and

enhanced NF-kB activation. Peptide NBD, corresponding to the

NEMO-binding domain (NBD) as a selective NF-kB inhibitor,

interfered with the NETs-dependent interaction of NEMO with

IKKa/b and abolished NF-kB activation in vitro. NBD peptide also

reduced IL-8 levels and NETs formation, as evidenced by decreased
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levels of MPO-DNA and citH3 complexes in the circulation of NBD

peptide-treated mice, and inhibited primary tumor growth and/or

lung metastasis in mouse models of BC (180). Yu et al. (181)

identified resveratrol (RES), a silent information regulator-1

(SIRT1) agonist, which inhibited NETs formation after CTSC

treatment. The action of RES is to inhibit histone H3

citrullination, while the agonist action abolished the specific

deficiency of SIRT1 in neutrophils that promoted NETs

formation and BC metastasis to the lung. In vivo, RES reduced

primary tumor volume and significantly impeded BC metastasis to

the lung in a mouse model; researchers also observed lower serum

levels of MPO-DNA and NE-DNA complexes after treatment and

lower levels of MMP-2, MMP-9, E-cadherin and pro-inflammatory

cytokines (IL-1b, IL-6 and TNF-a) in the metastatic lung. In

contrast, tumor-infiltrating CD8+ T cells increased, and levels of

tissue inhibitor of metalloproteinase-1 (TIMP-1), N-cadherin and

Snail increased in the metastatic lung. In BC, RES has been shown

to affect every stage of tumor transformation as well as inducing cell

cycle arrest and apoptosis. Researchers also mention that, in

addition to RES, pentoxifylline, cepharanthine, colchicine,

artesunate, dihydroartemisinin and piceatannol also show

therapeutic potential with a mechanism similar to RES,

dependent on citrullinated H3 or NADPH, ROS, elastase, key

pyroptosis execution protein (GSDMD), associated with the

formation of NETs (181). Kaempferol (kaem) is a flavonoid that

has the ability to inhibit both primary BC tumor growth and its

metastasis to the lungs in a mouse model. The addition of GSK484,

an inhibitor of NETs, completely abolished the inhibitory effect of

kaem on metastasis, while having little or no effect on primary

tumor growth, indicating the specificity of kaem’s action on NETs.

Addition of the ROS scavenger DPI abolished kaem’s effect on

NETs, suggesting the involvement of the flavonoid in NADPH/

ROS-NETs signalling. Also, the use of DNase I inhibited the pro-

proliferative effects of neutrophils and p-p38 and p-AKT signalling,

which NETs potentially use for pro-tumorigenic activities (182).

Zhu et al. (183) synthesised cationic oligopeptides with specific

numbers of arginine (R) and glycine (G), in this case oligoarginines

R5, R7 and R9, which inhibited the interaction of CCDC25 with

NET-DNA. Consequently, cell migration and metastasis to the liver

and lung of tumors in mouse models of TNBC was inhibited (183).

Ye et al. (184) developed a startegy to regulate iron metabolism to

reduce the formation of NETs, which would be expected to improve

the immune response in TME. The researchers developed a peptide-

drug conjugate (PDC) based on transformable iron nanochelate

(TIN) equipped with the ability to regulate neutrophil iron

metabolism. The mechanism of action of TIN is to expose iron-

binding mot i fs through NE-mediated morphologica l

transformation from nanoparticles to b-sheet nanofibres, which

further evolve into stable a-helix nanofibres upon chelation with

iron (II) ions, whose regulation inhibits the formation of NETs. TIN

in combination with the PAD4 inhibitor, GSK484, synergistically

enhanced anti-PD-L1 treatment, as the efficacy in tumor growth

inhibition was as high as 93.3%, as tested in BC mice. The tumor

growth inhibition rate in mice treated with TIN + GSK484
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increased to 87.5%. Tumors from mice treated with TIN +

GSK484 had 1.8-fold higher levels of T cells and a 2.2-fold

increase in the production of IFN-g from T cells in tumors, which

was also observed in mice treated with TIN + aPD-L1, indicating an

increased anti-tumor response compared with control mice (184).

TGF-b is necessary in promoting BC recurrence after surgery,

which is mediated by NETs. The principle of NETs formation has

been used to construct a surgical hydrogel. The hydrogel is prepared

based on the electrostatic interaction between histidine (His) and

sodium alginate (Alg). The electrical properties of His in the

hydrogel lead to the local release of anti-TGF-b. The hydrogel

system is a beneficial therapeutic agent due to its ability to

specifically and selectively release the drug at the target site, in

this case the site of NETs formation. The group that was treated

with hydrogel showed better efficacy in reducing metastatic lesions

compared to the group in which hydrogel was not used. Hydrogel

can mimic the process of NETs formation, release drugs and use the

principle of NETs formation to block the mechanisms of recurrence

promoted by NETs (185). Lu et al. (186) formulated a micellar

nanoparticle of low-molecular-weight heparin and astaxanthin

(LMWH-AST/DOX, LA/DOX NP) loaded with DOX to inhibit

BC metastasis to the lung and liver. Its mechanism is to inhibit

NETs formation, reduce neutrophil recruitment and MPO

expression in the liver and MDSCs in the lung and tumor by

blocking P-selectin, inhibiting NF-kB and STAT3 signalling

pathways. In the tumor itself, the molecule has the ability to

reduce ROS, interleukin 10 (IL-10) and nitric oxide (NO)

levels (186).

3.6.3.4 NETs degradation anti-cancer effects presented
on cell lines and mice

Kong et al. (187) based on their findings about the effect of

NETs on the formation of cancer metastasis through a self-

reinforcing feedback loop involving two steps: hypoxia-induced

aerobic respiration of mitochondria promotes the formation of

NETs, which in turn enhance mitochondrial metabolism to

exacerbate the hypoxia often present in TME, developed two

strategies to nullify NETs. The first is a nanoparticle with DNase

I and 5-hydroxytryptamine (5-HT) on the surface to specifically

recognise MPO (5HT-NP@D), while the second is a mitochondria-

targeting polymer consisting of a water-soluble N-(2-

hydroxypropyl)methacrylamide copolymer backbone (HPMA)

that was conjugated to the hydrophobic cytotoxic drug

camptothecin (CPT) and a mitochondria-targeting peptide (RLA)

on the side chains (p-TC-RLA). The function of the nanoparticle is

to eliminate NETs and inhibit mitochondrial biogenesis induced by

them, while the function of the polymer is to damage mitochondria

and alleviate non-oxidation, i.e. synergistically, nanoparticles and

polymers completely interrupt the presented feedback loop between

NETs and mitochondria. In TNBC tumor-bearing mice,

combination therapy effectively inhibited tumor growth compared

to monotherapy, with an overall tumor growth inhibition rate of

55.5%; at the highest drug dose, the anti-tumor effect was 70%, and

anti-metastatic effects were also observed (187). In a study by Yang
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et al. (188) inhibition of NETs formation and inhibition of liver

metastasis were observed after administration of DNase I to breast

tumor mice. DNase I administration also abolished the promotion

of migration and adhesion of MDA-MB-231 breast cancer cells by

the NET-DNA complex. Also, pretreatment of isolated NET-DNA

with DNase I abolished the interaction between CCDC25 and NET-

DNA, which enabled migration, adhesion and proliferation of

tumor cells. In vitro, the CCDC25 antibody inhibited NETs-

induced tumor cell migration, adhesion and cytoskeletal

remodelling and inhibited liver metastasis when MDA-MB-231

cells were injected into mouse spleens (188).

3.6.3.5 NETs degradation anti-cancer effects presented
on mice and human models

Nanoparticulate poly (aspartic acid) derivatives (cANPs), due to

their strong affinity for DNA and retention in the liver, reduce levels

of NET-DNA hepatic infiltration, leading to significant inhibition of

breast cancer tumor metastasis in mice and in human metastatic

models of BC and CRC (189). Liang et al. (189) in an attempt to

disrupt the interaction between NET-DNA and CCDC25, used poly

(aspartic acid)-based cationic materials that inhibit NET-DNA-

dependent chemotaxis and tumor cell migration through its

electrostatic binding.
3.7 Hematological cancers

3.7.1 Multiple myeloma
3.7.1.1 NETs-related treatment resistance

In multiple myeloma (MM), NETs through DNA absorb

anthracyclines, preventing their anti-tumor activity and reducing

their efficacy (190). Lin et al. (190) observed that the presence of

purified NETs protected human cancer cells from doxorubicin-

induced apoptosis, a mechanism abrogated by DNase. A similar

effect was not observed after the use of PTX. Interestingly, DNase

administration alone did not result in an anti-tumor effect, while

myeloma symptoms did not appear in MM mice that received the

combination of doxorubicin and DNase. The PAD4 inhibitor, BMS-

P5, showed a moderate anti-tumor effect on MM, while in

combination with doxorubicin, it exhibited potent anti-tumor

activity characterized by prolonged survival (190).
3.7.1.2 NETs degradation anti-cancer effects presented on
cell lines and mice

Li et al. (191) showed that mouse and human MM cells

stimulate histone H3 citrullination and NETs formation. MM

cells were unable to induce NETs formation in PAD4-deficient

neutrophils. This process is inhibited by pharmacological inhibition

of PAD4 with the specific small molecule BMS-P5. Administration

of BMS-P5 to mice with MM delayed the onset of symptoms and

progression of the disease. The ability of BMS-P5 to inhibit NETs

formation was compared with PAD inhibitors: Cl-A inhibitor and

GSK-484. All three compounds significantly reduced MM-induced

histone H3 citrullination and NETs formation (191).
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3.7.2 Diffuse large B-cell lymphoma
3.7.2.1 NETs degradation anti-cancer effects presented on
cell lines, mice and human tissues

Higher amounts of NETs in plasma and tumor tissues were

associated with poor prognosis in patients with diffuse large B-cell

lymphoma (DLBCL). In a study by Nie et al. (53) NETs in vitro

increase cell proliferation and migration, while in vivo they increase

tumor growth and lymph node dissemination. DLBCL-derived IL-8

interacted with its receptor (CXCR2) on neutrophils, resulting in

the formation of NETs, which directly increased the expression of

Toll-like receptor 9 (TLR9) pathways in DLBCL and subsequently

activated the NFkB, STAT3 and p38 pathways, promoting tumor

progression. Disruption of NETs formation, including blocking the

IL-8-CXCR2 axis or inhibiting TLR9, can delay tumor progression.

The pro-tumorigenic properties of NETs were attenuated after

administration of DNase I and an NE inhibitor. Inhibition of

CXCR2 in vivo also reduced NETs formation and DLBCL

progression, just as TLR9 inhibition inhibited growth and lymph

node metastasis in DLBCL patients (53).

3.7.3 Acute leukemia
3.7.3.1 NETs-related treatment resistance

Histones released from leukemic cells during the formation of

extracellular traps, mainly containing the histone-DNA complex

and NE, induce endothelial activation, which may protect leukemic

cells from spontaneous and chemotherapy-induced death (192).

3.7.4 Lymphatic leukemia
3.7.4.1 NETs degradation anti-cancer effects presented
on mice

Salganik et al. (193) studied the effect of DNase I injection in

mice with spontaneous lymphocytic leukaemia. The study showed

that DNase I resulted in a reduction in lymph node size and an

increase in survival time by 12 weeks (194).

3.7.5 Acute promyelocytic leukemia
3.7.5.1 NETs degradation anti-cancer effects presented on
cell lines and human tissues

Ma et al. (195) found that a small percentage of acute

promyelocytic leukemia (APL) cells release extracellular DNA

traps in untreated patients. Inhibition of autophagy by

pharmacological inhibitors or by small interfering RNAs against

Atg7 attenuated LC3 autophagy formation and significantly

reduced the generation of extracellular traps, which may

represent a novel therapeutic pathway (195). NE can promote

APL development, and its inhibitor GW311616A inhibited tumor

cell growth and induced apoptosis (196).

3.7.5.2 NETs anti-cancer effects presented on cell lines

Li et al. (197) demonstrated that arsenic trioxide (ATO)

increased the formation of extracellular traps by acute

promyelocytic leukemia (APL) cells through mammalian target of

rapamycin (mTOR)-dependent autophagy, which was partially

regulated by ROS. In addition, activation of autophagy with
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rapamycin enhanced the removal of APL leukemia-initiating cells

by ATO (197).

3.7.5.3 NETs anti-cancer effects presented on cell lines
and mice

Another study showed that the ability of immature neutrophils

to release extracellular traps was impaired in APL, while mature

neutrophils produced traps associated with activated platelets. In

addition, the combination of all-trans-retinoic acid with ATO

induced the differentiation of immature neutrophils, and

increased the release of traps from mature neutrophils, excessive

amounts of which damaged endothelial cells, causing leakage of

blood cells. Administration of DNase 1 alleviated endothelial

damage and reduced blood cell leakage (198).

3.7.6 Acute myeloid leukemia
3.7.6.1 NETs-related predicting efficacy of anti-cancer
therapy

Zhong et al. (199) showed that patients with acute myeloid

leukemia (AML) with high expression of NETs-related genes also

have elevated expression of immune checkpoint genes: PD-1, PD-

L1 and CTLA4. Similarly, patients with a high risk score had a

favorable response to anti-PD-1 therapy, that is, they benefited

more from immunotherapy. Compared to the low-risk group, a

higher percentage of patients in the high-risk group did not respond

to chemotherapy. In addition, the low-risk group showed greater

sensitivity to GSK-1838705A, while the high-risk group showed

greater sensitivity to 17-AAG (tanespimycin), bosutinib, CI-1040,

dowitinib, foretinib, crenolanib, linifanib, selumetinib and

trametinib (199).

3.7.6.2 NETs anti-cancer effects presented on cell lines

In vitro co-culture of primary AML cells with NETs inhibited

the growth of AML cells, reduced their proliferation and induced

apoptosis. Both DNase and heparin abolished the effects of NETs on

AML cell proliferation and apoptosis (151). Leukemic cells can

form extracellular traps containing leukemia-associated antigens,

such as mutant nucleophosmin (NPMc+), which is part of NETs.
3.7.6.3 NETs anti-cancer effects presented on mice

The interaction of NETs with dendritic cells (DCs) enables their

activation and maturation toward presentation of antigens caught

in the network (197). NETs could therefore serve as carriers for DC-

based vaccines (200). Tripodo et al. (200) created a vaccine using

DCs loaded with NPMc+ and NETs (NPMc+ NET/DC). It reduced

myeloproliferation in mice, promoting the development of

antibodies to mutant NPMc and induction of CD8+ T-cell

responses (86, 200). In mixed bone marrow chimeras, vaccination

impaired NPMc+ expansion and allowed control of aggressive

leukemia transduced with mutant NPMc, effectively inducing an

anti-leukemic CD8 memory T cell response (200).
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3.8 Skin cancers

3.8.1 Melanoma
3.8.1.1 NETs degradation anti-cancer effects presented on
cell lines and mice

Ivermectin (IVM), used as an antiparasitic drug in vivo, inhibits

melanoma metastasis to the lungs without affecting tumor growth.

IVM significantly inhibited NETs formation after cathepsin B

(CTSB) treatment. Tumor-infiltrating MDSCs were significantly

inhibited, while the number of CD8+ T cells infiltrating the tumor

in the lungs increased after IVM treatment in a mouse model of

melanoma. IVM targeted GSDMD, whose direct interaction with

IVM significantly inhibited GSDMD oligomerisation, which is

required for NETs formation. In vitro treatment of CTSB in

neutrophils located in the bone marrow significantly promotes

NETs formation, which was inhibited by IVM. IVM decreases

TGF-b, vascular endothelial growth factor (VEGF) and MMP-9

levels, inhibits gasdermin-dependent pore formation and inhibits

thermal swelling of cells, which limits the formation of CTSB-

induced reticular structures leading to melanoma metastasis (201).

CAFs present in the TME and normally acting pro-tumor, have the

ability to induce NETs, which in turn are driven by a ROS-

dependent pathway dependent on CAF-derived amyloid b.
Inhibition of NETs formation in mouse tumors tilts neutrophils

towards an anti-tumor phenotype, preventing tumor growth, and at

the same time the enhancement of CAF activation by NETs is

blocked. Treatment of melanoma mice with GSK484 and Cl-

amidine completely inhibited tumor growth compared to

controls, whereas this result was not repeated in a pancreatic

cancer model (202).

3.8.2 Malignant melanoma
3.8.2.1 NETs anti-cancer effects presented on cell lines

Schedel et al. (203) found that co-culture of NETs with

melanoma cells had a cytotoxic effect on ulcerative melanoma

cells, causing necrosis. In in vitro studies, melanoma cells

attached to NETs through integrin-dependent adhesion. In this

cancer, NETs inhibited cancer cell migration. Interestingly, addition

of DNase I reversed the inhibitory effect of NETs (203).
3.9 Osteogenic tumors

3.9.1 Osteosarcoma
3.9.1.1 NETs-related predicting efficacy of anti-cancer
therapy

The high amount of NETs arising in initial diagnostic biopsies

in patients with suspected osteosarcoma has been associated with

poor response to neoadjuvant chemotherapy. Response to

chemotherapy was determined by the percentage of tissue

necrosis at the time of definitive surgery (Sazer-Kuntschik score).

NETs and only NETs, among other parameters: neutrophil-to-
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lymphocyte ratio, number of neutrophils infiltrating the tumor,

CD3+ T cells or CD8+ T cells, were correlated with the extent of

necrosis after neoadjuvant therapy (204).
4 NETs-releated complication co-
occurring with cancer or related to
cancer treatment and ways to limit
them

Cancer causes a number of side effects in patients, including

general organ failure, dysfunction of distal organs, impairment of

their vascular function and increased inflammation. It has been

shown that these processes may be mediated by NETs, presented in

Figure 4 (205).

Cedervall et al. (205) observed the accumulation of NETs in the

vasculature of tumor-bearing mice, which was associated with the

up-regulation of pro-inflammatory molecules ICAM-1, VCAM-1,

E-selectin, IL-1b, IL-6 and CXCL1. Administration of DNase I

restored perfusion in the kidneys and heart to levels observed in the

control group, i.e., mice without tumors, and prevented vascular

leakage in the blood vasculature of these organs (205). Neutrophil

Gelatinase-Associated Lipocalin (NGAL), a biomarker of renal

hypoperfusion that is up-regulated in the urine of mice with

metastatic BC, was suppressed in mice receiving AAV-mDNase I.
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This indicates the potential of AAV-mDNase I to reduce cancer-

related renal impairment (9).

Cancer-associated thrombosis (CAT) is the second most

common cause of mortality in cancer patients and can be

intensified by anti-cancer treatment. NETs have been linked to

both hypercoagulation, thrombosis, venous thromboembolism

(VTE) and CAT directly (206–211). Cao et al. (208) investigated

that dunnione (a potent substrate of NAD(P)H quinone

oxidoreductase 1, NQO1) attenuates prothrombotic status and

pulmonary thrombosis in tumor-bearing mice by inhibiting tissue

factor expression and NETs formation. Dunnione increases cellular

NAD+ levels in the lung tissues of tumor-bearing mice to restore

declining sirtuin 1 (SIRT1) activity, thereby deacetylating NF-kB
and preventing tissue factor overexpression in bronchial epithelial

and vascular endothelial cells. Dunnione also abrogates the ability

of neutrophils to produce NETs by inhibiting histone acetylation

and NADPH oxidase activity (208). Chronic treatment with

rhDNase I reduced NETs-dependent thrombosis in a mouse

model of cancer in a study by Várady et al. (179). The higher

mortality rate observed with long-term rhDNase administration

was attenuated by treatment with an antibiotic, Ertapenem from the

carbapenem group (179). The NETs inhibitor, chloroquine, reduces

platelet aggregation, decreases fn tissue factor and reduces

hypercoagulation in mice with PDA tumor and associated

hypercoagulable state. Administration of DNase I to mice also

reduced platelet aggregation (206). Abdol Razak et al. (212)
FIGURE 4

Complications of cancer and its treatment associated with NETs.
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described that degradation of NETs by DNase I and/or prevention

of histone-platelet interaction by heparin may become a potential

new treatment option for pancreatic cancer patients due to their

high risk of VTE. DNase I also reduced the procoagulant effect of

NETs in patients with metastatic BC, prolonged plasma clotting

time in stage IV patients, and reduced D-dimer and fibrin

production (207). Gomes et al. (213) found that IL-1b modulates

the expression of G-CSF, which also affects the formation of NETs,

and therefore blockade of IL-1R, the IL-1b receptor, with its

inhibitor anakinra abolishes the prothrombotic state observed in

breast tumor-bearing mice. Researchers have also shown that

DNase I and GSK484 have the ability to attenuate clot formation

in mice with breast tumor (213). Treatment with recombinant

human DNase 1 reversed the prothrombotic phenotype of breast

tumor mice, confirming the involvement of NETs in this pathology

(214). Compensation of DNase I downregulation, associated with

reduced NETs formation in bladder cancer TME, reduces the risk of

CAT (25). Also in gastric cancer patients, NETs increased the

potential of plasma to generate thrombin and fibrin, an effect that

was reduced by DNase administration (215). In another study, a

combination of DNase I, activated protein C and Sivelestat

markedly abolished the procoagulant activity of NETs in gastric

cancer patient samples by simultaneously inhibiting NETs,

phosphatidylserine and P-selectin activity on platelets (216). The

promyelocyte extracellular chromatin released during APL

increases the generation of thrombin and plasmin, shortens the

plasma clotting time of APL cells and increases fibrin formation,

while this effect was inhibited by DNase I. Extracellular chromatin is

cytotoxic to endothelial cells, and together with phosphatidylserine

on APL cells provide platforms for fibrin deposition and make clots

more resistant to fibrinolysis (217). The predisposition to

hypercoagulation caused by NETs in patients with oral squamous

cell carcinoma (OSCC) was attenuated by the use of DNase I (218).

The ascites that occurs in women with ovarian cancer is also

prothrombogenic, Singel et al. (165) found that protease

inhibitors were slightly more effective at preventing platelet

activation compared to DNase I, suggesting that there are

multiple pathways for platelet activation in cancer patients, not

always associated with NETs. Wolach et al. (219) showed that

neutrophils from patients with myeloproliferative neoplasms

(MPNs) form NETs, which has been linked to thrombosis. Also,

mice with the most common molecular driver of MPNs, Jak2V617F,

have an increased propensity to form NETs and thrombosis.

Inhibition of JAK-STAT signaling with the clinically available

JAK2 inhibitor, ruxolitinib, abolished NETs formation and

reduced thrombosis in a mouse model of deep vein stenosis.

Moreover, expression of PAD4, which is required for NETs

formation, is increased in JAK2V617F-expressing neutrophils and

that PAD4 is required for thrombosis formation in vivo (219).

Diosmetin reduced NETs formation by decreasing ROS, which

reduced inferior vena cava thrombosis in an animal model of

thrombosis, indicating a potential application in CAT (220). In

contrast, although pancreatic cancer cells and pancreatic cancer

cell-induced platelets induce the formation of NETs, which

promote clot formation when exposed ex vivo, after pretreatment
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with DNase I, platelets continued to adhere and spread to NETs,

albeit to a lesser extent. The results of this study suggest that the

protein component of NETs is also capable of promoting platelet

activation and adhesion (212). Treatment of melanoma mice with

GSK484, but not Cl-amidine, reduced von Willebrand coagulation

factor (vWF) levels, while fibrinogen levels remained unchanged,

suggesting a reduction in NETs-induced thrombosis (202).

Cardiovascular disorders commonly occur in cancer patients,

and there is a separate category of disorders: cancer treatment-

related cardiovascular toxicity (CTRCT) (221). The association of

such disorders with NETs in breast cancer patients was investigated

by Zeng et al. (222). In their study, the use of DNase 1 partially

reversed changes in the levels of myocardial enzymes, lactate

dehydrogenase (LDH) and malondialdehyde (MDA), reduced the

distribution of NETs, blocked increasing Bax expression and

decreasing Bcl-2 levels in breast cancer liver metastasis tissues

studied. The researchers also examined cardiac muscle, whose

damage worsened as the metastas is progressed, and

administration of DNase 1 may reduce the severity of damage (222).

Not only the cancer itself, but also its treatment, most notably

chemotherapy, causes a number of side effects, some of which have

been linked to NETs. Such side effects include intestinal damage,

caused by irinotecan hydrochloride (CPT-11) used, for example, in

advanced colorectal cancer (223). Bai et al. (223) investigated the

potential mechanisms of action of phenethyl isothiocyanate

(PEITC), an isothiocyanate found in cruciferous (cabbage) plants,

in inhibiting NETs and ameliorating chemotherapeutic intestinal

injury, in which there is increased neutrophil activation, production

of NETs that damage the intestinal epithelium, ischemia and

increased expression of inflammatory factors. In a study in

chemotherapy-treated mice, PEITC prolonged clotting time,

improved intestinal microcirculation, inhibited the expression of

inflammatory factors, protected intestinal epithelial junctions, and

directly inhibited intestinal cell damage (223). A common and

serious complication of cisplatin administration, used for example

in breast cancer, is acute kidney damage (168). Mousset et al. (168)

detected NETs in the kidney of mice with and without tumor after

cisplatin treatment, and that inhibition of NETs formation by a

PAD4 inhibitor or IL-1b blockade reduced kidney damage.

Interestingly, cisplatin treatment increased the number of NETs

in plasma even in tumor-free mice, which would suggest induction

of NETs by cisplatin alone. In addition, the researchers did not

detect NETs in other potentially affected organs, namely the spleen

and liver, suggesting the specificity of NETs toward kidney damage

(168). Abdominal infectious complication (AIC) after gastrectomy

associated with gastric cancer, for example, stimulates neutrophils

to release NETs in both the peripheral blood and abdominal cavity

(224). Xia et al. (224) found that AIC-induced NETs can facilitate

gastric cancer metastasis in vitro/vivo in a TGF-b-dependent
manner. The researchers therefore used the TGF-b inhibitor LY

2157299 as a potential therapy to reduce metastasis without

exacerbating other complications (224). Todorova et al. (225)

demonstrated that NET levels, assessment of prothrombotic

status via the thrombin-antithrombin complex and plasma

exosome levels are associated with pre-symptomatic DOX
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cardiotoxicity after a single dose of chemotherapy in breast cancer.

Researchers have also found that the risk of DOX-induced

cardiotoxicity in breast cancer is associated with endothelial

dysfunction, inflammation and prothrombotic status (226).
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5 Current clinical trials related to NETs

Table 1 shows current clinical trials related to NETs-related cancer

treatment based on ClinicalTrials.gov accessed on June 24, 2025 (227).
TABLE 1 Current clinical trials related to NETs-related cancer treatment.

Cancer
Research

ID
Phase

Name of
drug

Sponsor
Study

population
NETs

connection
Primary objective

Breast Cancer NCT05056857 Recruiting
Tamoxifen
(TAM)

University of Kansas
Medical Center,
Kanmsas, USA

18 years and
older – female

Determining
whether an

increased number
of NETs in the
body has a

harmful effect on
BC

Examination of the effect of
long-term tamoxifen (TAM)
treatment on excessive NET
formation in breast cancer

patients

Colon Cancer NCT06017141 Recruiting NS
University of Kansas

Medical Center, Kansas,
USA

18 years and
older – male
and female

Correlation of
peri-operative
clinical and
anesthetic

outcomes to NETs
levels

Evaluation of the differential
impact of TIVA versus

inhaled anesthesia on NETs
inflammation and

immunosuppression among
patients undergoing cancer

surgery

NS NCT03781531 Recruiting NS
Danderyd Hospital,
Stockholm, Sweden

18 years and
older – male
and female

To investigate the
diagnostic
potential of
inflammatory

markers, including
NET markers, in
detecting occult
cancer in patients

with VTE

Identification of novel
biomarkers to aid in the

detection of occult cancer in
patients with venous
thromboembolism

Triple Negative
Breast Cancer

NCT06355037 Recruiting

Dasatinib
combined

with
Quercetin

Fudan University,
Shanghai, China

18 years to 70
years – female

NS

NS NCT06355245 Recruiting NS
Danderyd Hospital,
Stockholm, Sweden

18 years and
older – male
and female

Identification of multi-analyte
blood test that can detect and
map occult cancer within a
mixed population of patients
presenting with serious but

unspecific symptoms

Bladder Cancer NCT06325423
Not yet
recruiting

neoadjuvant
chemotherapy

Assiut University,
Assiut, Egypt

19 years and
older – male
and female

NETs as a
prognostic factor
for response to
NAC in MIBC

Predicting response to
neoadjuvant chemotherapy in

muscle-invasive bladder
cancer

Sarcoma NCT06815666
Not yet
recruiting

NS
University Health
Network, Toronto,
Ontario, Canada

18 years and
older – male
and female

NETs as a
biomarker of
inflammation

BAL fluid biomarkers in
sarcoma

Hepatocellular
Carcinoma

NCT05040347 Completed NS

The Affiliated Hospital
of Qingdao University,
Qingdao, Shandong,

China

18 years to 80
years – male
and female

NETs as a
biomarker to

predict portal vein
tumor thrombosis
in patients with
hepatocellular
carcinoma

The aim of this study was to
investigate whether NETs

markers can enhance predict
portal vein tumor thrombosis
in patients with live cirrhosis,
so as to establish a novel
predictor to guide clinical

decision-making

(Continued)
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6 Conclusions

Despite the existence of an increasing number of therapeutic

strategies with their treatment, cancers are, and as projections

indicate will continue to be, a condition with an increasing

number of patients. In order to create an appropriate therapeutic

strategy, it is necessary to understand the mechanisms involved in

the cancer process, in which it has been proven that NETs may play

a key role. Numerous studies have shown that the gene signature

associated with NETs allows for the determination of the sensitivity

of various cancers to treatment methods used, which enables the

selection of appropriate therapy. Moreover, as studies to date

indicate, in a significant number of cancers, the degradation of

NETs has a positive effect on treatment, which confirms their

predominantly pro-tumor nature. It is also important to consider

that in some types of cancer, NETs have both pro- and anti-cancer

effects. It should be noted that in order to obtain therapeutic

benefits, it is necessary to understand all the mechanisms

involved in carcinogenesis, and those related to NETs needs

further research, for example, the issue of NETs’ involvement in

the early and late stages of the disease and potential biomarker

validation for patient stratification. The importance and intensive

research required by issues related to the predictive value of NETs

and the possibilities of their regulation is demonstrated by the

number of centers worldwide addressing these issues.
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TABLE 1 Continued

Cancer
Research

ID
Phase

Name of
drug

Sponsor
Study

population
NETs

connection
Primary objective

Myeloproliferative
Neoplasms

NCT04177576 Completed NS
University Hospital,
Bordeaux, France

18 years and
older – male
and female

NETs as a
biomarker of
thrombosis in

myeloproliferative
neoplasms

Evaluation of new biomarkers
of thrombosis in

myeloproliferative neoplasms

Solid and
Hematological
Malignancies

NCT01533779
Unknown
status

NS
Tel-Aviv Sourasky
Medical Center, Tel-

Aviv, Israel

up to 21 years
– male and
female

The formation of
NETs against
cancer cell lines

and their ability to
kill cancer cells

NETs formation following
chemotherapy and their role

in antitumor activity

Solid Cancers NCT04294589
Unknown
status

NS

Assistance Publique -
Hôpitaux de Paris,

Boulogne-Billancourt,
Haut de Seine, France

18 years and
older – male
and female

NETs as a
biomarker

correlated with the
occurrence of

Venous
Thromboembolic

Events

Evaluation of NETs in
patients with solid cancers

associated with a high risk of
venous thromboembolic

events
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