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Combined allergic rhinitis and asthma syndrome (CARAS) involves complex
interactions between inflammation and lipid metabolism. This study recruited
90 CARAS patients admitted to the First Affiliated Hospital of Henan University of
Chinese Medicine from August 2023 to August 2024 (30 cases each for CARASa,
CARASb and CARASc), along with 30 healthy controls (HC). We systematically
profiled serum lipidomes across different CARAS stages and examined
associations with inflammatory cytokines and mucins. Baseline characteristics
were comparable among healthy controls (HC) and CARAS subgroups. CARAS
patients in the acute phase (CARASa) exhibited elevated serum-specific IgE and
fractional exhaled nitric oxide, indicating heightened allergic sensitization, while
pulmonary function remained preserved. Lipidomic analysis revealed a
pronounced shift from fatty acids to glycerolipids in CARASa, with upregulation
of triglycerides, digalactosyldiacylglycerol, phosphatidylserines,
phosphatidylethanolamines, and ceramides. CARASb (chronic persistence)
showed persistent dysregulation of sphingomyelins, lysophosphatidylcholines,
and membrane lipids, whereas CARASc (clinical remission) exhibited partial
recovery with residual alterations in specific lipid classes. Correlation analysis
indicated that fatty acid depletion strongly associated with glycerolipid
accumulation. Pathway enrichment highlighted stage-dependent disturbances
in fatty acid transport, GLP-1/incretin turnover, sphingolipid biosynthesis, and
retinoid metabolism, reflecting metabolic-immune crosstalk. Notably, differential
lipids (Digalactosyldiacylglycerol, phosphatidylethanolamines and
phosphatidylserine) positively correlated with pro-inflammatory cytokines
(TNF-¢, IL-6) and mucins (MUC1, MUC5AC) in CARASa and CARASDb groups. In
the CARASc group, these differential lipids showed a negative correlation with
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pro-inflammatory factors and mucins. These findings define a trajectory of
stage-specific lipid metabolic remodeling in CARAS, linking energy metabolism
and membrane lipid changes to inflammatory activation and mucin expression,
providing potential metabolic biomarkers and therapeutic targets.

allergic inflammation, allergic syndrome, asthma, lipidomics, mucin

1 Introduction

Combined Allergic Rhinitis and Asthma Syndrome (CARAS) is
an allergic inflammatory disorder that simultaneously affects both
the upper and lower airways, manifesting as a single syndrome
across respiratory compartments (1, 2). The notion of a “united
airway” underlies this concept: rhinitis and asthma share
overlapping immunopathology, risk factors, and often co-occur
(3, 4). In fact, intranasal corticosteroids (INCS), which target
nasal inflammation, have been explored for beneficial effects on
asthma outcomes in CARAS, supporting the concept of shared
mucosal inflammation pathways (3).

During its pathogenesis, airway epithelial barriers respond to
environmental stimuli by releasing mediators, transmitting signals,
and activating innate immune cells, which in turn dysregulate a
broad array of effector molecules (5). Indeed, the transition from
upper airway inflammation to lower airway hyperresponsiveness
may be mediated by systemic “spillover” of inflammatory signals,
recruitment of immune effectors, and modulation of distant
microenvironments (6, 7). With rising air pollution and global
environmental changes, the incidence of CARAS has steadily
increased, making it a growing public health concern (4, 8, 9).

Lipids are fundamental to cellular homeostasis, serving as
structural components of membranes, signaling molecules, and
energy reserves (10, 11). Lipidomics, the comprehensive analysis
of lipid species within biological systems, provides a powerful
platform to characterize lipid structures, abundance, and
dynamics under physiological and pathological conditions (12).
Abnormal lipid metabolism has been increasingly implicated in
immune regulation and chronic inflammatory diseases (13). In
respiratory diseases, lipid mediators such as eicosanoids,
sphingolipids, and specialized pro-resolving mediators (SPMs)
regulate initiation and resolution of inflammation, bronchomotor
tone, and tissue remodeling (14). Recent reviews emphasize how
lipid metabolism and immune function are tightly interlinked in
chronic lung diseases such as asthma and COPD (15).

Importantly, because CARAS represents a systemic disorder
that integrates both allergic rhinitis and asthma, lipidomic profiling
may offer new insights into the shared and distinct metabolic
alterations underlying this comorbidity. Indeed, in asthma
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research, lipidomic stratification of induced sputum has been
shown to discriminate phenotypes of disease (16). Moreover,
plasma lipidomic studies in asthmatic patients have already
revealed altered species (e.g. phosphatidylethanolamine,
sphingomyelin, triglycerides) correlated with disease severity and
immunoglobulin E (IgE) levels (17). On the genomic front, lipid
metabolism-related genes have been implicated in asthma
pathogenesis and shown to modulate the local immune
microenvironment (18).

Despite growing recognition of the immunological and
inflammatory aspects of CARAS, the role of systemic lipid
metabolism in its initiation, exacerbation, and remission remains
poorly defined. A central unanswered question is whether lipidomic
alterations can explain disease progression and heterogeneity across
clinical stages of CARAS. We hypothesize that distinct lipid
metabolic signatures are associated with acute exacerbation,
chronic persistence, and remission of CARAS, and that these
signatures may help elucidate pathogenic mechanisms and
identify candidate biomarkers.

By systematically characterizing serum lipid profiles across
disease stages, our study aims to: define lipid alterations linked to
CARAS pathophysiology, explore their associations with
inflammatory mediators and mucins, provide a metabolic
framework for improved diagnosis, subtyping, and therapeutic
strategies. This lipidomic perspective may ultimately contribute to
a clearer understanding of CARAS as a unified airway syndrome
and inform precision medicine approaches for allergic
airway diseases.

2 Materials and methods
2.1 Ethical approval and informed consent

This study was approved by the Ethics Committee of the First
Affiliated Hospital of Henan University of Traditional Chinese
Medicine in accordance with the Helsinki Declaration (2023HL-
113-01). Notify patients participating in this study of relevant
information and obtain their consent and sign an informed

consent form (Supplementary Table S1).
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2.2 Research subjects and enrollment
process

2.2.1 Research subjects

30 CARASa patients (CARASa group), 30 CARASb patients
(CARASD group), 30 CARASc patients (CARASc group) and 30
healthy volunteers (HC group) admitted to the First Affiliated
Hospital of Henan University of Traditional Chinese Medicine
from August 2023 to August 2024 were selected as the study
subjects. Collect basic and main clinical information of three
groups of research subjects, including basic information (age,
gender, BMI, smoking history and drinking history) and clinical
data (blood routine). The basic information and main clinical
information of all research subjects are shown in Table 1.

2.2.2 Enrollment process

Inclusion criteria: (1) Diagnosis of allergic rhinitis: Met symptom
criteria per Allergic Rhinitis and its Impact on Asthma (ARIA)
guidelines (nasal itching, sneezing, rhinorrhea, congestion >4 days/
week for >4 weeks); Positive allergen test (skin prick test or serum IgE
confirming sensitization to aeroallergens). (2) Diagnosis of bronchial
asthma: Met Global Initiative for Asthma (GINA) diagnostic criteria
(reversible airflow limitation: post-bronchodilator FEV,
improvement > 12% and absolute increase > 200 mL); Typical
asthma symptoms. (3) Temporal association: Clear time-linked
exacerbation (e.g, rhinitis episodes triggering/worsening asthma);

10.3389/fimmu.2025.1666214

Consistent allergen sensitization profiles for both conditions. (4) Age:
12-65 years; disease duration of asthma or allergic rhinitis >1 year.

Exclusion criteria: (1) Other respiratory/Nasal disorders:
Chronic rhinosinusitis with nasal polyps, non-allergic rhinitis
(e.g., vasomotor rhinitis); Chronic obstructive pulmonary disease,
bronchiectasis, pulmonary fibrosis, active tuberculosis. (2) Systemic
comorbidities: Severe cardiac/hepatic/renal failure;
Immunodeficiency disorders, active malignancies. (3) Recent
interventions: Systemic glucocorticoids or immunosuppressants
within 4 weeks; Allergen immunotherapy within 6 months. (4)
Special populations: Pregnancy or lactation; Inability to cooperate
(e.g., severe cognitive impairment, psychiatric disorders).

2.3 Sample collection

Using sterile disposable vacuum blood collection needles and
EDTA-anticoagulated tubes, perform venipuncture for blood
collection and immediately conduct complete blood count
analysis. Subsequently, collect a portion of the plasma sample for
subsequent lipid identification. Collect a peripheral blood sample
and isolate peripheral blood mononuclear cells (PBMCs) through
Ficoll density gradient centrifugation, followed by cryopreservation
in liquid nitrogen for subsequent inflammatory factor (TNF-a and
IL-6) mRNA analysis. Collect induced sputum samples for
subsequent mucin (MUC5AC and MUC1) mRNA analysis.

TABLE 1 Clinical data of patients with combined allergic rhinitis and asthma syndrome at different stages.

Variables HC group CARASa group CARASDb group CARASc group P-value
Gender (Male) 10 (33.3%) 10 (33.3%) 10 (33.3%) 11 (36.7%) NA
Age-years 42.83 +16.13 44.80 + 11.66 46.73 + 14.28 40.13 + 10.44 0.37
BMI 23.10 + 2.92 25.10 + 5.80 24.49 + 3.78 2425 +3.17 0.56
Smoking history 2 (6.7%) 4 (13.3%) 2 (6.7%) 3 (10.0%) NA
Drinking history 2 (6.7%) 4 (13.3%) 2 (6.7%) 4(13.3%) NA
Blood routine

WBC 572 +1.26 6.57 + 2.02 6.28 + 1.70 6.12 + 1.67 0.28
RBC 470 + 0.46 4.65 +0.48 4.74 +0.50 4.54 + 061 0.62
PLT 240.73 + 56.74 247.13 + 68.48 229.73 + 56.64 229.52 + 70.89 0.39
NEU 3.46 + 1.07 541+ 7.81 381+ 1.16 361 + 115 0.48
EOS 0.12 +0.10 0.44 + 0.47 0.29 +0.37 029 +0.25 0.19

IgE 150.11 + 37.37° 4454.88 + 565.20° 78.38 + 32.86° 228.65 + 26.61° <0.05

Respiratory Function

FVC 3.84 +0.99 3.69 + 0.73 393 +1.23 3.78 + 0.96 0.27
FEV1 323 +0.90 258 +0.73 283+ 123 2.82 +0.96 035
FEVI/FVC 84.77 + 9.53 69.61 + 11.92 73.35 + 8.10 7491 + 891 0.15

FeNO 14.33 + 4554 87.92 + 37.10° 22.90 + 2.47° 48.68 + 6.34° <0.05

WBC, White Blood Cell; RBC, Red Blood Cell; PLT, Platelet; NEU, Neutrophil; EOS, Eosinophil; IgE, Immunoglobulin E; FVC, Forced Vital Capacity; FEV1, Forced Expiratory Volume in 1
second; FEV1/FVC, Forced Expiratory Volume in 1 second/Forced Vital Capacity; FeNO, Fractional Exhaled Nitric Oxide. Data in the same row are marked with different capitals a, b and ¢,

indicating significant difference (P-value < 0.05).
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2.4 Serum lipidomics analysis

2.4.1 Lipid extraction

Lipids were extracted using a modified Bligh-Dyer method. 100
UL plasma was mixed with 1 mL chloroform-methanol (2:1, v/v)
containing internal standards, vortexed for 5 min and centrifuged at
12,000 xg for 10 min at 4 °C. The lower organic phase was collected,
dried under a nitrogen stream, reconstituted in 100 LLL acetonitrile-
methanol (6:4, v/v) with 0.1% formic acid, filtered through a 0.22
pum membrane and prepared for instrumental analysis.

2.4.2 Lipid separation and identification (UPLC-
MS)

Chromatographic conditions: Waters ACQUITY UPLC BEH
C18 column (1.7 wm, 2.1x100 mm); column temperature 45 °C;
flow rate 0.4 mL/min; injection volume 2 UL. Mobile phase A:
methanol-water (95:5, v/v) with 0.1% formic acid; mobile phase B:
acetonitrile-isopropanol (60:40, v/v) with 0.1% formic acid.
Gradient program: 0-1 min, 50% B; 1-10 min, 50% to 95% B;
10-12 min, 95% B; 12-13 min, 95% to 50% B; 13-15 min, 50% B.
Mass spectrometry conditions: ESI ion source with positive/
negative ion switching; capillary voltage 3.0 kV; cone voltage 40
V; desolvation gas temperature 500 °C; flow rate 800 L/h; scan range
m/z 100-1500.

2.4.3 Data processing and analysis

Raw data were processed using Waters MassLynx 4.2. Lipid
annotation was performed via LipidSearch 4.1, with structural
confirmation against the LIPID MAPS database and authentic
standards. Quantitation used internal standardization. Differential
lipids were screened by multivariate statistics (PLS-DA) with
significance thresholds of P < 0.05 and variable importance in
projection (VIP) >1.0.

2.5 qRT-PCR

Total RNA was isolated following the manufacturer’s
instructions and quantified with a NanoDrop ND-2000
spectrophotometer (Thermo Fisher Scientific, Waltham, MA,
USA). The RNA integrity of each sample was evaluated via
denaturing agarose gel electrophoresis (Liuyi Biotechnology,
Beijing, China). In brief, 1 ug of total RNA was subjected to
treatment with an RNase-free DNase [ set, after which reverse
transcription was conducted using a ReverAid First Strand cDNA
Synthesis kit (Thermo Scientific, USA). Subsequently, qRT-PCR
analysis was carried out using a LightCycler 96 instrument (Roch,
USA) along with SYBR Green master mix (BioRed, USA). The
GAPDH gene served as the reference gene for normalization, and
the results were calculated using the 2-AACt method. Detailed
information on genes and primers is provided in Supplementary
Table S1. For qRT-PCR analysis, three biological replicates
were included.
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2.6 Statistical analysis

All data were processed using SPSS 24.0 statistical software. One
way analysis of variance (ANOVA) was used for data that followed
a normal distribution, while non parametric tests (Kruskal Wallis)
were used for data that did not follow a normal distribution. P <
0.05 was considered statistically significant.

3 Results

3.1 Clinical characteristics indicate stage-
dependent inflammatory activation

The baseline characteristics (age, gender, BMI, smoking and
drinking history) were comparable among HC and CARAS
subgroups (Table 1). However, CARASa patients displayed
significantly elevated serum-IgE and fractional exhaled nitric oxide
(FeNO) levels compared with HC and other CARAS subgroups (P <
0.05). These findings suggest stronger allergic sensitization and
eosinophilic inflammation during acute exacerbation, whereas
pulmonary function parameters (FVC, FEV1/FVC, FEV1%) remained
preserved across groups (P > 0.05). This indicates that inflammatory and
metabolic dysregulation may precede overt functional decline.

3.2 Global lipidomic profiling reveals a
consistent shift from fatty acids to
glycerolipids

Lipid compositional analysis revealed a marked redistribution of
lipid categories across CARAS subgroups. Compared with HC (FA
22.08%, GL 54.55%), CARASa showed a striking depletion of fatty
acids (FA, 7.66%) and expansion of glycerolipids (GL, 84.68%), while
CARASb and CARASc demonstrated similar but stage-modulated
patterns (Figures 1A-D). OPLS-DA score plots confirmed distinct
separation between HC and CARAS groups, with > 95% of samples
within Hotelling’s T-squared ellipses (Figures 1E-G). Volcano plots
identified progressively larger sets of differentially abundant lipids from
CARASa (total: 77, upregulated: 58, downregulated: 19) to CARASb
(total: 66, upregulated: 52, downregulated: 19) and CARASc (total: 235,
upregulated: 210, downregulated: 25) versus HC (Figures 1H-]). As the
lipid annotations were primarily database-driven with limited use of
authentic standards, the identifications should be regarded as putative
and the quantification as semi-quantitative, underscoring the inherent
limitations of untargeted lipidomics.

3.3 Differential metabolite signatures
define stage-specific lipid remodeling

Lipidomic profiling revealed distinct metabolic signatures across
different clinical stages of CARAS (Figures 2, 3). Differential lipid
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FIGURE 1

Lipid composition and differential lipid analysis. (A) Plasma lipid composition in HC group. (B) Plasma lipid composition in CARASa group. (C) Plasma
lipid composition in CARASb group. (D) Plasma lipid composition in CARASc group. (E) Scatter plot of OPLS-DA scores between CARASa and HC
group. (F) Scatter plot of OPLS-DA scores between CARASb and HC group. (G) Scatter plot of OPLS-DA scores between CARASc and HC group.
(H) Differential lipid volcano plot between CARASa and HC group. (I) Differential lipid volcano plot between CARASb group and HC group.

(J) Differential lipid volcano plot between CARASc and HC group.

analysis and hierarchical clustering further illustrated stage-specific
patterns. Specifically, the results demonstrated a clear separation
between CARASa (acute exacerbation) and healthy controls,
indicating pronounced lipid disturbances during the acute phase.
CARASa was characterized by a significant upregulation of lipid
species previously implicated in inflammatory responses, including
phosphatidylserine (PSs), phosphatidylethanolamines (PEs),
ceramides (Hex2Cers), digalactosyldiacylglycerol (DGDGs) and
triglycerides (TGs), consistent with acute immune activation and
membrane remodeling. CARASbD (chronic persistence) still exhibited
a marked deviation from controls, though less pronounced than
CARASa, persistent dysregulation was observed mainly in
sphingomyelins (SMs), lysophosphatidylcholines (LPCs),
phosphatidylserine (PSs), phosphatidylethanolamines (PEs) and
digalactosyldiacylglycerol (DGDGs), reflecting chronic metabolic
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imbalance and impaired lipid signaling. In contrast, PEs, PSs, and
DGDGs were significantly downregulated in the CARASc group
compared with the HC group.

3.4 Correlation analysis links FA depletion
to glycerolipid accumulation

Correlation heatmaps revealed strong negative correlations
between FA and several glycerolipids, including DGDG, PE, and
TG (Figures 4A-C). Bar plots further confirmed the consistent
elevation of these glycerolipids (DGDG, PE, and TG) across CARAS
stages relative to HC (Figures 5A-C). Collectively, the data show
that depletion of FA pools is accompanied by a metabolic flux shift
toward glycerolipid accumulation.
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lower abundance). (B) Hierarchical clustering analysis of differential lipids between CARASb and HC groups. (C) Hierarchical clustering analysis of

differential lipids between CARASc and HC groups.

3.5 Pathway enrichment highlights lipid
transport and metabolic-immune crosstalk

In this study, we systematically analyzed lipid metabolic
pathways across different clinical stages of CARAS. Several core
pathways, including fatty acid transport and signaling related to free
fatty acid receptors and GLP-1/incretin function, remained
consistently enriched across all stages. In the acute phase,
differential lipids were mainly associated with fatty acid transport,
GLP-1 and incretin turnover, omega-9 fatty acid synthesis, and
neurotransmitter release, suggesting a tight link between acute
inflammation, energy metabolism, and neuroimmune regulation
(Figure 6A). During the chronic persistent phase, the metabolic
network became more complex, with additional enrichment in
linoleic acid metabolism, retinoid cycling and transport,
sphingolipid biosynthesis, and fat-soluble vitamin metabolism,
reflecting a shift toward structural and vitamin-related
disturbances under sustained inflammation (Figure 6B). In the
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clinical remission phase, the lipid metabolic profile showed partial
recovery, however, persistent alterations in sphingolipid and
retinoid pathways indicated incomplete normalization
(Figure 6C). Collectively, CARAS progression is marked by a
transition from acute energy and signaling disruption to broader
metabolic imbalance, followed by partial but unresolved recovery.

3.6 Correlation analysis reveals
associations between differential lipids,
inflammatory cytokines, and mucins

qPCR validation demonstrated significant upregulation of pro-
inflammatory cytokines (TNF-¢, IL-6) in all CARAS groups
compared with HC (P < 0.05). Mucin expression (MUCI and
MUCS5AC) was significantly increased in CARASa and CARASb
(P < 0.05), but not CARASc (P > 0.05) (Figure 7). Correlation
analysis of inflammatory factors and mucins with differential lipid
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FIGURE 4

Correlation analysis and lipid composition changes. (A) Correlation analysis heatmap between CARASa and HC group (Note: The horizontal and vertical
axes represent differential metabolites for the group comparison. Each color of square indicates the correlation coefficient magnitude between
corresponding metabolites: red signifies positive correlation, blue denotes negative correlation, and color intensity scales with correlation strength.
Asterisks (*) mark statistically significant correlations P < 0.05). (B) Correlation analysis heatmap between CARASb and HC group. (C) Correlation analysis
heatmap between CARASc and HC group.
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FIGURE 5

Lipid species

Column chart of lipid composition between CARAS groups and HC group. (A) Column chart of lipid composition between CARASa group and HC
group (Note: In the lipidomics bar chart, each bar represents a class of metabolites. The ordinate of the chart represents the percentage of relative
change in the content of each substance in the comparison of this group. If the percentage of relative change in content is zero, it indicates that the
content of the substance is the same in both groups; a positive percentage of relative change in content indicates that the content of the substance
is higher in the CARASa group; a negative percentage of relative change in content indicates that the content of the substance is higher in the HC
group. The abscissa of the lipidomics bar chart indicates the classification information of lipids). (B) Column chart of lipid composition between
CARASb group and HC group. (C) Column chart of lipid composition between CARASc group and HC group.

profiles showed that in the CARASa and CARASb groups,
inflammatory factors (TNF-¢ and IL-6) and mucins (MUCI and
MUCS5AC) were positively correlated with differential lipid profiles
(PSs and PEs), but negatively correlated with FAs. In the CARASc
group, inflammatory factors (TNF-¢ and IL-6) and mucins (MUCI
and MUC5AC) were positively correlated only with differential lipid
profiles (TGs), but negatively correlated with FAs (Figure 8).

4 Discussion

In this study, we systematically characterized lipid metabolic
alterations in patients with combined allergic rhinitis and asthma
syndrome (CARAS) across different clinical stages, and integrated

Frontiers in Immunology

these findings with inflammatory cytokines and mucin expression.
Several novel insights were obtained that may contribute to
understanding the interplay between lipid metabolism, immune
activation, and epithelial barrier dysfunction in CARAS.

The lipidomic analysis revealed that triglycerides (TG),
diacylglycerols (DG), and free fatty acids (FA) were significantly
elevated in CARAS patients compared with healthy controls. These
lipids showed a strong positive correlation with IgE levels and
disease severity, suggesting that enhanced lipid mobilization may
accompany or even promote allergic inflammation. Similar
associations have been reported in allergic rhinitis and asthma
cohorts, where TG, DG, and FA concentrations were linked to
exacerbation severity and immunoglobulin responses (17, 19). The
accumulation of these neutral lipids may contribute to energy

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1666214
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shi et al. 10.3389/fimmu.2025.1666214

EEEEl Linclic acid metabolism affocted by SARS-CoV-2 R
Tansportot atty acics - NN Transport o sty acss - [N
Increti synthesis, secretion,and inactvation { AR Transportof atyacids Omega fatty aca syntesis [l
thesis i [CLE Incretin synthesis, secretion, and inactivation 1 JE por leosides { ]
Froetatty ack roceptors { [N hesls, secrt e | SLC wransportr disordors 1]
Omega-9fatty acid synthesis { Fre taty acareceptors { N Discrders of rnacnombears wansporees |}
Neurotransmitter release cycie -] P-Value Omega-9 fatty acid synthosis | P-Value Linoleic acid metabolism affected by SARS-Cov-2 [l P-Value
o006 000020
G alpha () signaling events ] o “The canonical retinoid cycle in rods (twilight vision) { | o001z SLC-mediated transmembrane transport < 00001S
o008 00010
3060 s
poptid hormone metabatism | ol Retinoid metaboliem and ransport [l oot Increinsynthesis,secrtion, and inactvation 1|l .
Transport o viaming,nuclecsides, and rlated malecules [ Sehingolpid donovo biosynthess { il mihesis,secretio e[l
G alpha (@ signating events {J] Wetabolism of atsclubl viamins |l Fros oty aciareceptors [l
Nouronal System {[] Nourctransmittr reloase oyct J[ll Transport o small molecules |
Transmission across Chemical Synapses -] ‘Sphingolipid metabolism: integrated pathway i ‘The canonical retinoid cycle in rods (twitight vision) ~ [l
SLC transporter disorders ]| G alpha (q) signaling events - ] Retinoid metabolism and transport <[
Disorders of ransmembrane transportors {] Poptids hormone metabarism | Sohingolpid donovo biosynthesis <[

010200080 0 50100150 0102080800
Enrichment Ratio Enrichment Ratio Enrichment Ratio

FIGURE 6

Enrichment analysis of metabolic pathways for differential lipids in the database. (A) Pathway enrichment plot of the CARASa group compared with
the HC group (The x-axis represents the enrichment ratio for each pathway, while the y-axis lists metabolic pathway names. Color intensity indicates
the magnitude of the P-value: smaller P-values correspond to redder hues, denoting greater enrichment significance). (B) Pathway enrichment plot
of the CARASb group compared with the HC group. (C) Pathway enrichment plot of the CARASc group compared with the HC group.

demands during chronic inflammation and facilitate the production ~ Enrichment analysis indicated significant involvement of the
of pro-inflammatory lipid mediators. glycerophospholipid and sphingolipid pathways. These pathways

In addition, we observed marked alterations in  have been previously implicated in airway remodeling and immune
glycerophospholipids (GPs) and sphingolipids (SPs), particularly  cell activation in both murine models of allergic sensitization and
phosphatidylethanolamine (PE) and phosphatidylserine (PS).  clinical asthma (16, 20, 21). Given the role of phospholipids in
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FIGURE 7
Analysis of relative expression levels of inflammatory cytokines and mucins. (A, B) Relative expression levels of inflammatory cytokines (TNF-a and

IL-6) in blood. (C, D) Relative expression levels of mucins (MUC5AC and MUCI) in sputum. n = 10. * P < 0.05 was considered statistically significant.
ns P > 0.05 was considered no statistically significant.
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Correlation analysis between differential lipids and inflammatory cytokines, mucins. (A) Correlation heatmap of CARASa group and HC group.
(B) Correlation heatmap of CARASb group and HC group. (C) Correlation heatmap of CARASc group and HC group. *P < 0.05 and **P < 0.01 were

considered statistically significant.

membrane dynamics and signal transduction, disturbances in these
pathways may affect epithelial integrity and leukocyte recruitment.

The pathway enrichment analysis revealed stage-dependent
perturbations in lipid metabolism that reflect the dynamic
immune-metabolic landscape of CARAS. In the acute phase
(CARASa), enrichment of fatty acid transport, incretin turnover,
and neurotransmitter-related pathways suggests that acute
inflammation rapidly reprograms lipid metabolism to support
energy demands and neuroimmune communication. This finding
is consistent with previous studies showing that acute allergic
inflammation promotes fatty acid mobilization and signaling
through G-protein-coupled free fatty acid receptors, which in
turn amplify cytokine responses and epithelial barrier dysfunction
(22-24) (25, 26). In contrast, the chronic phase (CARASD) was
characterized by broader metabolic remodeling, with additional
enrichment of linoleic acid metabolism, retinoid cycling, and
sphingolipid biosynthesis. These pathways are known to modulate
epithelial integrity, T helper cell polarization, and mucus
hypersecretion during sustained airway inflammation (27-32).
Although partial recovery of lipid metabolic balance was observed
during remission (CARASc), persistent alterations in sphingolipid
and retinoid metabolism suggest that metabolic-immune cross-talk
remains incompletely resolved, potentially underlying susceptibility
to recurrent exacerbations (29, 33, 34).

Correlation analyses further emphasized the close relationship
between lipid alterations, inflammatory mediators, and mucus
production. In both acute and chronic phases,
phosphatidylserines (PSs) and phosphatidylethanolamines (PEs)
positively correlated with pro-inflammatory cytokines (TNF-o,
IL-6) and mucins (MUC1, MUC5AC), while free fatty acids
(FAs) exhibited an inverse correlation, indicating a pro-
inflammatory role of membrane phospholipid remodeling. This
aligns with evidence that phospholipid derivatives can act as
signaling mediators to activate NF-kB pathways and stimulate
mucin expression in airway epithelial cells (26, 34). Interestingly,
in the remission phase, triglycerides (TGs) rather than
phospholipids were positively associated with inflammatory
mediators, suggesting a metabolic shift in the residual
inflammatory state (33, 35). These findings indicate that distinct
lipid species differentially interact with immune effectors depending
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on disease stage, highlighting lipid metabolism as both a driver and
a potential biomarker of airway inflammation in CARAS.

5 Conclusions

This study systematically characterized lipid metabolic alterations
across different clinical stages of combined allergic rhinitis and
asthma syndrome (CARAS). Neutral lipids (TGs and DGs) and
membrane lipids (GPs, SPs, particularly PS and PE) exhibited
significant changes that were associated with disease severity,
inflammatory cytokines, and mucin expression. Pathway analysis
indicated stage-dependent patterns: acute inflammation was linked
with fatty acid mobilization and neuroimmune signaling, chronic
persistence showed alterations in linoleic acid, retinoid, and
sphingolipid pathways, and remission demonstrated partial
metabolic recovery. Associations between specific lipid species and
inflammatory mediators were observed, suggesting a potential role of
lipid metabolism in immune and epithelial responses. These results
provide a detailed reference for understanding lipid-immune-
epithelial interactions in CARAS and may inform future studies on
stage-specific biomarkers and therapeutic strategies.
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Glossary
CARAS
ARIA
GINA
KEGG
PBMCs
ESI
TNEF-ou
IL-6
MUC
IgE
FVC
FEV1
FA

GL

Combined Allergic Rhinitis and Asthma Syndrome
Allergic Rhinitis and its Impact on Asthma
Global Initiative for Asthma

Kyoto encyclopedia of genes and genomes
Peripheral blood mononuclear cells
Electric spray ionization source

Tumor necrosis factor o

Interleukin

Mucin

Immunoglobulin E

Forced vital capacity

Forced expiratory volume in 1 second
Fatty acids

Glycerolipids
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GP
SP
ST
SL
PK

OPLS-DA

DGDG
TG
DAG
PE

TG

IPS

10.3389/fimmu.2025.1666214

Glycerophospholipids
Sphingolipids

Sterol lipids
Saccharolipids
Polyketides

Orthogonal projections to latent structures

discriminant analysis
Digalactosyldiacylglycerol
Triacylglycerol
Diacylglycerol
Phosphatidylethanolamine
Triacylglycerol

Ichthyosis prematurity syndrome
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