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target in fumarate hydratase-
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Hospital in Pudong New District, Shanghai), Shanghai, China
Introduction: Fumarate hydratase-deficient renal cell carcinoma (FH-deficient

RCC) is a rare, aggressive malignancy with limited therapeutic options and poor

prognosis. Despite immune checkpoint inhibitors (ICIs) showing efficacy in other

cancers, responses in FH-deficient RCC remain suboptimal. Metabolic

remodeling, particularly the Warburg effect-driven glycolysis, is implicated in

immune evasion and tumor progression, highlighting the need for predictive

biomarkers and combinatorial strategies.

Methods:We integrated 41 single-cell RNA sequencing (scRNA-Seq) datasets (19

malignancies, 405 patients, 1,220,365 cells) to develop a glycolytic signature

(Glyc.Sig). Validation included pan-cancer transcriptomic analysis (30 cancer

types, n=10,154), CRISPR screening data (4 cancers), and clinical immunotherapy

cohorts (5 cancers, n=921). LDHA was identified as a top-ranked immune-

resistant candidate through CRISPR screening analysis, validated via

immunoblotting and immunohistochemistry in Renji Hospital cohorts.

Results: Glyc.Sig exhibited a robust inverse correlation between glycolytic

activity and ICI efficacy across malignancies. It outperformed conventional

biomarkers in predicting immunotherapy outcomes. CRISPR screening

prioritized LDHA, a key glycolytic enzyme, as a target to enhance ICI response.

Clinical validation confirmed elevated LDHA expression in FH-deficient RCC

tumor tissues, whichmay correlate with immunosuppressivemicroenvironments

and resistance to ICIs. Combinatorial LDHA inhibition and ICI treatment may

demonstrate synergistic antitumor effects.

Discussion: This study establishes Glyc.Sig as a dual diagnostic-predictive

biomarker system, linking glycolytic reprogramming to immune evasion.
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Comparative validation revealed its enhanced predictive capacity for ICI

responsiveness relative to existing molecular signatures. LDHA inhibition

emerges as a promising strategy to overcome ICI resistance in FH-deficient

RCC and other glycolytic tumors. These findings underscore the therapeutic

potential of targeting cancer metabolism to optimize immunotherapy efficacy.
KEYWORDS
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Background

Fumarate hydratase-deficient renal cell carcinoma (FH-

deficient RCC) represents a rare but clinically significant renal

malignancy subtype, caused by functional inactivation of the

fumarate hydratase (FH) gene (1). This aggressive tumor presents

diagnostic complexities because of its non-specific histological

features, requiring a comprehensive diagnostic approach. This

includes immunohistochemical profiling that reveals the loss of

FH protein alongside increased 2SC expression, complemented by

molecular testing to confirm FH gene mutations (2). Despite its

infrequent occurrence, FH-deficient RCC exhibits aggressive

progression, often diagnosed at late stages (3–5). Those with

advanced disease experience a poor prognosis, with a median

survival of 18 to 24 months, highlighting the urgency for

improved therapeutic strategies (4–6).

Immune checkpoint inhibitors (ICIs) have revolutionized

oncology therapeutics, demonstrating unprecedented clinical

efficacy across multiple malignancies (7). Emerging evidence has

established that FH-deficient renal cell carcinoma features a highly

immunogenic microenvironment. Clinical trials have shown that

combining ICIs with tyrosine kinase inhibitors (TKIs) yields

superior efficacy in patients with metastatic FH-deficient RCC

compared to TKI monotherapy, with an objective response rate

reaching 43.2% (8). However, a significant proportion of these cases

still struggle to achieve sustained clinical remission. The persistent

limitations of current therapeutic strategies, particularly the modest

response rates observed in advanced disease stages, highlight the

pressing need to develop robust predictive biomarkers. Such

advancements would enable more precise patient selection and

inform the design of optimized combination regimens targeting

both immune evasion pathways and oncogenic signaling cascades.

Cancer cells undergo metabolic remodeling characterized by a

predominant reliance on glycolysis to sustain survival and fulfill their

biosynthetic/energetic demands (9). This adaptive strategy, known as

the Warburg effect, not only confers proliferative advantages to

malignant cells but also shapes an immunosuppressive tumor niche

that facilitates cancer progression (10). Elevated glycolysis promotes

lactate production, which acidifies the tumor microenvironment
02
(TME), suppressing cytotoxic T-cell activity and fostering

immunosuppressive cells like regulatory T cells (Tregs) and

myeloid-derived suppressor cells (MDSCs) (11–13). Current

prognostic models predominantly focus on single cancer types,

while FH deficiency-induced metabolic dysregulation—the Warburg

effect—is prevalent across multiple solid tumors. Thus, leveraging

pan-cancer immunotherapy cohorts to construct cross-cancer

glycolytic-related prognostic models may reveal universal

biomarkers and provide an extrapolation validation basis for the

rare FH-deficient RCC subtype.

The primary objectives of this study are to investigate the role of

tumor glycolytic activity in modulating the efficacy of ICIs and to

develop a robust prognostic model based on glycolytic activity

across various malignancies. We aim to identify a glycolytic

signature (Glyc.Sig) that could serve as a universal biomarker for

predicting ICIs’ efficacy in solid tumors, as well as uncover potential

therapeutic targets to enhance ICIs’ responsiveness. By integrating

scRNA-seq data from multiple cancer types, along with clinical

immunotherapy outcomes, this study seeks to establish the Glyc.Sig

as a predictive tool to guide therapeutic strategies. Additionally,

functional CRISPR screening datasets will be explored to identify

promising targets that can potentiate ICIs’ responsiveness across

different malignancies. Figure 1 presents the graphical abstract of

this study.
Materials and methods

Bulk RNA analysis of FH-deficient RCC
cohorts

Bulk RNA-seq data from a prior Renji Hospital study (14),

including paired primary tumor and adjacent normal tissues from

three FH-deficient RCC patients, were analyzed to assess differential

gene expression patterns and their functional roles in glycolysis.

Additionally, another FH-deficient RCC bulk RNA-seq cohort

[GSE157256 dataset (15)] was adopted to investigate the different

expression patterns across metastasis, primary tumors, and adjacent

normal tissues.
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scRNA-seq ICI cohort analysis for
glycolysis–immunotherapy links

To explore the associations between glycolysis and ICI

response, four scRNA-seq datasets were evaluated: an FH-

deficient RCC cohort [from a published article in the journal Clin

Cancer Res (16).], a clear cell renal carcinoma (ccRCC) cohort
Frontiers in Immunology 03
[SRP308561 (17)], a skin cutaneous melanoma (SKCM) cohort

[GSE115978 (18)], and a basal cell carcinoma (BCC) cohort

(GSE123813 (19)). The obtained gene expression matrices were

converted into Seurat objects, and all subsequent analyses were

conducted using R software. Probable doublets were first removed

using the DoubletFinder package. After integrating Seurat objects

across all samples, strict quality control (QC) filters were applied to
FIGURE 1

The graphical abstract of this study.
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exclude cells meeting any of the following criteria: genes detected

>7,500 or <200, total reads >75,000, or mitochondrial RNA content

>20%. Qualifying cells underwent normalization and scaling via the

LogNormalize method in Seurat, which concurrently identified

highly variable genes. Principal component analysis (PCA) was

performed on the highly variable gene matrix, with significant

principal components (PCs) selected based on elbow plot

inflection points and heatmap-driven evaluation of variance

contributions. Using these PCs, a k-nearest neighbor graph was

constructed (FindNeighbors), and graph-based clustering

(FindClusters) was executed at a resolution parameter of 1.

Cluster identities were visualized via UMAP projection, and cell

annotations for all clusters were provided by the literature from the

data sources.

Glycolysis-related genes from the Molecular Signatures

Database (MSigDB) (https://www.gsea-msigdb.org/gsea/msigdb)

were used to compute glycolysis pathway enrichment scores via

gene set variation analysis (GSVA). Cohort details are summarized

in Supplementary Table S1.
Pan-cancer scRNA-seq datasets for
glycolysis signature development

A pan-cancer glycolysis signature (Glyc.Sig) was developed

using 41 scRNA-seq datasets (405 patients, 1,220,365 cells, 21

cancer types, Supplementary Table S2) encompassing malignant,

stromal, and immune cells from the Gene Expression Omnibus

(GEO, https://www.ncbi.nlm.nih.gov/geo/) and TISCH portal

(http://tisch.comp-genomics.org/) (20), as well as directly from

the published articles. These included breast cancer (BRCA), basal

cell carcinoma (BCC), clear cell renal cell carcinoma (ccRCC),

colorectal cancer (CRC), cholangiocarcinoma (CHOL), glioma,

fumarate hydratase-deficient renal cell carcinoma (FH-deficient

RCC), head and neck cancer (HNSC), liver hepatocellular

carcinoma (LIHC), multiple myeloma (MM), Merkel cell

carcinoma (MCC), medulloblastoma (MB), non-small cell lung

cancer (NSCLC), neuroendocrine tumor (NET), ovarian serous

cystadenocarcinoma (OV), pancreatic adenocarcinoma (PAAD),

skin cutaneous melanoma (SKCM), stomach adenocarcinoma

(STAD), and uveal melanoma (UVM) (16–19, 21–53).
Pan-cancer transcriptomic analysis of the
potential correlation between Glyc.Sig and
immune suppression

TCGA pan-cancer transcriptomic data (10,154 patients; 30

cancer types) from the UCSC Xena data portal (https://

xenabrowser.net) (54) were analyzed to evaluate the associations

between Glyc.Sig and immune suppression. Acute myeloid

leukemia (AML), diffuse large B-cell lymphoma (DLBC), and

thymoma (THYM) were excluded due to immunocyte

predominance (55). Tumor mutation burden (TMB) data from

cBioPortal (https://www.cbioportal.org) (56, 57) and intratumor
Frontiers in Immunology 04
heterogeneity (ITH) data from a published article [Thorsson et al.

(58)] were introduced to assess their correlations with Glyc.Sig

scores calculated by GSVA.
ICI RNA-seq cohorts for Glyc.Sig-based
predictive modeling

Pretreatment transcriptomic data with clinical information

from 10 ICI RNA-seq cohorts were used to develop and validate

a Glyc.Sig-driven predictive model. These include five SKCM

cohorts, provided by Van Allen in 2015 (59), Riaz in 2017 (60),

Hugo in 2016 (61), Liu in 2019 (62), and Gide in 2019 (63); one

renal cell carcinoma (RCC) cohort provided by Braun in 2020 (64);

two urothelial carcinoma (UC) cohort from Mariathasan in 2018

(65) and Synder in 2017 (66); one glioblastoma multiforme (GBM)

cohort from Zhao in 2019 (67); and one gastric cancer (GC) cohort

from Kim in 2018 (68). Detailed cohort characteristics are

demonstrated in Supplementary Table S3.
CRISPR Screening for Immune Resistance
Gene Identification

Seven CRISPR/Cas9 screening datasets derived from previous

studies by Freeman (69), Kearney (70), Manguso (71), Pan (72),

Patel (73), Vredevoogd (74), and Lawson (75) across multiple

cancer types (BRCA, CRC, RCC, and SKCM) were analyzed to

identify immune resistance-related genes. Following Fu et al. (76),

who curated the first six datasets (except Lawson’s cohort), we

divided the data from these 7 datasets into 17 distinct groups

(Supplementary Table S4). The CRISPR screening methodological

framework involved genome-wide CRISPR-Cas9 knockout in

cancer cell lines subjected to cytotoxic lymphocyte (CTL) co-

culture/not subjected to CTL (in vitro), or xenograft models in

immune-deficient or immune-competent (in vivo) mice, followed

by sgRNA abundance quantification through RNA sequencing

(RNA-seq). Immunomodulating effects were quantified by

calculating log-fold changes in sgRNA reads between

experimental pairs (CTL-treated vs. untreated; immune-deficient

vs. immune-competent mice) (75). Subsequent Z-score

normalization was conducted for cross-dataset comparisons. Gene

rankings were determined through an average Z-score across all

datasets, and top-ranked genes with low Z-scores were regarded as

potential mediators of immune resistance.
Glycolysis scoring, pathway analysis, and
immune profiling

GSVA (R package “GSVA”) was employed to calculate scores of

HALLMARK pathways, Glyc.Sig, and glycolysis intensity (using

glycolysis-related genes obtained from MsigDB). Pathway

enrichment analysis was conducted using data from the Reactome

Knowledgebase (https://reactome.org) and the Kyoto Encyclopedia
frontiersin.org
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of Genes and Genomes (KEGG) database (https://www.kegg.jp/) via

the R package “clusterProfiler.” Immune infiltration was quantified

using the R package MCP-counter v1.1.0.
ICI response prediction model
development

Cohort integration and preprocessing
Five RNA-seq cohorts, namely, Riaz 2017 SKCM (60),

Mariathasan 2018 UC (65), Liu 2019 SKCM (62), Gide 2019

SKCM (63), and Braun 2020 RCC (64), which included 772

patients (181 RCC, 348 UC, and 243 SKCM patients), were

merged. Batch effects were mitigated using the ComBat method

(77). The cohort was split into training (80%, n = 618) and

validation (20%, n = 154) sets, with an independent test set (n =

149) comprising five additional cohorts, including Van 2015 SKCM

(59), Hugo 2016 SKCM (61), Snyder 2017 UC (66), Kim 2018 GC

(68), and Zhao 2019 GBM (67).

Model optimization and validation
Seven machine learning algorithms, namely, AdaBoost

Classification Trees (AdaBoost), boosted logistic regressions

(LogitBoost), cancerclass, k-nearest neighbors (KNN), naive Bayes

(NB), random forest (RF), and support vector machine (SVM) (78,

79), were trained with five-fold cross-validation (10 optimization

iterations with different random seeds) (80). For cancerclass, the

entire training set was used for model training, as cancerclass does

not need parameters. Subsequently, we tested the performance of these

models using the validation set. The top-performing model was

selected for independent testing. Predicted risk stratification (“R” vs.

“NR”) was evaluated by the final model for survival analysis.

Comparative signature analysis
Glyc.Sig was compared against six published ICI response

signatures [INFG.Sig (81), T.cell.inflamed.Sig (81), PDL1.Sig (82),

LRRC15.CAF.Sig (83), NLRP3.Sig (84), and Cytotoxic.Sig (85)]

using individual AUC and average AUC values across 10 ICI

cohorts. The algorithms and code for these six signatures were

previously used in their original studies. Detailed information on

these signatures is demonstrated in Supplementary Table S5.
Immunohistochemistry

Immunohistochemical (IHC) staining was carried out on five

tumor samples with adjacent normal tissues from FH-deficient

RCC patients at Renji Hospital, with ethical committee approval.

The experimental procedure included the following steps:
Fron
1. Paraffin sections underwent primary antibody incubation

with LDHA (Proteintech 19987-1-AP, rabbit polyclonal

Proteintech: Wuhan, China).

2. Subsequent application of peroxidase-conjugated goat anti-

r a b b i t I gG s e c o n d a r y a n t i b o d i e s ( J a c k s o n
tiers in Immunology 05
ImmunoResearch: West Grove, Pennsylvania, USA 111-

035-003).

3. Chromogenic detection using 3,3′-diaminobenzidine

(DAB, Sigma-Aldrich: St. Louis, Missouri, USA D8001)

coupled with hematoxyl in countersta ining for

nuclear visualization.
The final IHC score was determined by multiplying the scores

for the percentage positivity of target protein-expressing cells.
Immunoblotting analysis of paired tumor
and adjacent tissues

FH-deficient RCC patients’ tumors and adjacent normal tissues

were lysed in 2% SDS, followed by thermal denaturation at 99°C for

30 min. Proteins were separated by SDS-PAGE and then transferred

onto nitrocellulose membranes. After blocking with 3% BSA in TBST

for 1 h at room temperature, membranes were probed with primary

antibodies through overnight incubation at 4°C. Following three

washes with TBST, membranes were incubated with species-matched

HRP-conjugated secondary antibodies (1:5,000 dilution) for 1 h at

ambient temperature. Protein bands were visualized using

chemiluminescence (Thermo Fisher Scientific). Paired samples from

each patient were always run on the same gel to ensure comparability.

Antibodies used in this study included anti‐LDHA (19987-1-AP,

Proteintech) and anti‐b‐actin (66009-1-Ig, Proteintech).
Statistical methods

Analyses were performed in R v4.3.1 (https://www.r-

project.org). A two-sided Wilcoxon test was adopted to compare

glycolysis scores between the ICI response and non-response

groups. Spearman correlation analysis assessed associations

between Glyc.Sig and other biological signatures, including scores

of HALLMARK pathways, immune-related genes, ITH, TMB, and

immune infiltration. FDR was adjusted via Benjamini–Hochberg.

Model training, validation, and testing were conducted based on the

R package cancerclass and caret. The predictive performance of the

models was evaluated by ROC and AUC (86). Survival differences

were analyzed using Cox regression analysis.
Results

Cancer glycolysis was linked to resistance
to ICI

FH-deficient RCC is an aggressive cancer syndrome driven by

inactivation of the fumarate hydratase gene. To investigate the potential

phenotype correlated with FH-deficient RCC, we utilized data from the

Renji cohort in our prior investigation (14), which contains bulk RNA-

seq data of primary cancer and adjacent normal tissues from three FH-

deficient RCC patients (Figure 2A). After that, we compared the
frontiersin.org

https://www.kegg.jp/
https://www.r-project.org
https://www.r-project.org
https://doi.org/10.3389/fimmu.2025.1666121
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1666121
expression levels of different genes between cancer and adjacent normal

tissues (Figure 2B), and some glycolysis-related genes, such as ENO1,

PLOD2, and PKM, were upregulated. Considering loss-of-function

mutations in FH trigger a metabolic crisis characterized by defective

tricarboxylic acid (TCA) cycle flux, forcing cellular metabolic

reprogramming toward aerobic glycolysis, we speculated that

glycolysis might be more active in FH-deficient RCC cancer tissues.

Therefore, we conducted the GSEA analysis of glycolysis pathways, and

predictably, there was a significant positive enrichment of glycolysis
Frontiers in Immunology 06
pathways in cancer tissues of FH-deficient RCC (Figure 2C). Next, we

investigated the relationship between glycolysis and ICI outcomes in

FH-deficient RCC. Figure 2D showed the t-Distributed Stochastic

Neighbor Embedding (t-SNE) visualization of the FH-deficient RCC

from previously published datasets. Patients with progressive disease

(PD) exhibited significantly higher levels of glycolysis compared to

those with partial response (PR) (Figure 2E). In particular, glycolysis

was more enriched in cancer cells (epithelial cells in Figure 2F)

compared to other cell types. As glycolysis is a key metabolic
FIGURE 2

An inverse correlation was observed between glycolytic activity and response to ICIs in both FH-deficient RCC and ccRCC. (A) Schematic workflow
of bulk RNA-seq analysis in FH-deficient RCC specimens. (B) Differential expression profile visualized through a volcano plot comparing FH-deficient
RCC tumors with matched normal tissues. Significantly upregulated genes (red), downregulated genes (blue), and non-significant transcripts (gray)
are demarcated. (C) Glycolytic pathway genes showed prominent enrichment through Gene Set Enrichment Analysis (GSEA) in FH-deficient RCC
specimens. (D) Dimensionality reduction analysis using t-SNE visualization for FH-deficient RCC cellular populations.
(E) Comparative distribution of glycolytic activity quantified through raincloud plots, stratified by treatment response categories (PR, partial response;
PD, progressive disease) in FH-deficient RCC cases. (F) Cell type-specific glycolytic metabolic scores across FH-deficient RCC tumor
microenvironments. (G) UMAP projection illustrating cellular heterogeneity in clear cell renal cell carcinoma (ccRCC) specimens. (H) Cellular
compartment-based glycolysis quantification in ccRCC ecosystems. (I) Treatment response-associated glycolytic profiles (CR, complete response;
MR, mixed response; R, resistance) depicted through raincloud plots for the ccRCC cohort. (*p < 0.05, **p < 0.01, ***p < 0.001).
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pathway that is often upregulated in many cancers (87), we examined

the findings above in another renal cancer type, clear cell renal cell

carcinoma (ccRCC), and similar findings were observed, as shown in

Figures 2G–I, further supporting the potential role of glycolysis in

influencing the outcomes of ICI therapy.

To further investigate the role of glycolysis in ICI responses, the

relationships between ICI outcomes and glycolysis intensity were

explored in BCC and SKCM cancer datasets. In BCC, Figures 3A, B

demonstrate that non-responders (NR) exhibited a higher glycolysis

intensity compared to responders (R). A quantitative analysis

shown in Figure 3C further confirms this finding, revealing that

the NR subgroup had significantly higher glycolysis intensity than

the R subgroup. For SKCM, an additional dataset was used (18),

which excluded samples lacking data on malignant cells, to validate

the findings. However, due to missing data for some responders, the

comparison was made between treatment-naive (TN) patients and

NR. It was hypothesized that treatment-naive patients might consist

of both potential responders and non-responders. The analysis also

demonstrated a significantly higher glycolysis intensity in the NR

subgroup than the TN subgroup in the SKCM cohort, as shown in

Figures 3D–F (p < 0.001).
Development of Glyc.Sig based on pan-
cancer scRNA-seq datasets

Since the intensity of glycolysis was significantly correlated with

ICI resistance, we suggested that a gene set containing genes

reflecting the level of glycolysis, named as glycolysis signature
Frontiers in Immunology 07
(Glyc.Sig), might help in predicting the ICI response. Therefore,

we utilized 41 pan-cancer scRNA-seq datasets to develop the

Glyc.Sig. Spearman correlation was initially adopted between

enrichment scores of tumor glycolysis and gene expression levels.

The Gx gene set contained genes with a positive correlation with

scores of glycolysis intensity (R > 0 and FDR < 1e−05). The Gy gene

set comprised significantly overexpressed genes in malignant cells.

We intersected Gx and Gy to formulate the Gn gene set within each

dataset (n = 1, 2,…, 41) (18), which contained upregulated genes of

tumor specificity with a positive correlation with glycolysis

intensity. For each gene in the G1–G41 gene sets, we calculated

the geometric mean of the Spearman R value, and genes with a final

R mean greater than 0.3 (88) were selected to form Glyc.Sig. The

detailed gene list is demonstrated in Supplementary Table S6. The

simplified process of the generation of Glyc.Sig could be intuitively

observed in Figure 4A. Additionally, pathway analysis based on

Reactome (Figure 4B) and KEGG (Figure 4C) was adopted to

explore the biological functions of Glyc.Sig. The overrepresented

pathways were primarily associated with glycolysis, hypoxia, the

KEAP1-NFE2L2 pathway, G1/S DNA damage checkpoints,

glutathione metabolism, and carbohydrate metabolism processes.
Investigating potential correlations
between Glyc.Sig and immunity

We first investigated the relations between Glyc.Sig and 75

immune-related genes (58), consisting of the HLA set, stimulatory

set, and inhibitory set. A general negative correlation was found
FIGURE 3

Glycolysis intensity was negatively correlated with ICI outcomes in other cancer types. (A, D) t-SNE map of BCC and SKCM malignant cells classified
by treatment response status. (B, E) t-SNE visualization of BCC and SKCM malignant cells with dark-blue and dark-red indicating low and high
glycolytic scores, respectively. (C, F) Comparative raincloud distribution analysis of glycolytic scores between non-responders (NR) and responders
(R) or treatment-naive (TN) patients in BCC and SKCM specimens. (*p < 0.05, **p < 0.01, ***p < 0.001).
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across almost all 75 genes in 30 different cancer types (Figure 4D).

Figure 4E demonstrates the situation of immune cell infiltration. A

higher level of glycolysis intensity was negatively correlated with

various categories of immune cell infiltration, including cytotoxic
Frontiers in Immunology 08
cells (CD8 T cell, cytotoxic lymphocyte, NK cells), B lineage cells,

and myeloid dendritic cells. The analysis above suggested a

decreased antitumor immunity in tumors with a high intensity

of glycolysis.
FIGURE 4

Construction and functional description of Glyc.Sig. (A) A circos diagram illustrated the developmental workflow of Glyc.Sig construction.
(B, C) Functional pathway enrichment analysis was performed on genes in Glyc.Sig. (B) The top 20 enriched pathways based on the Reactome
database; (C) the top 20 significantly enriched KEGG pathways. (D) Circos visualization revealing correlations between Glyc.Sig and immune-related
gene expressions across various malignant tumors. The vertical tick-marked line denoted distinct cancer types, corresponding to the x-axis in
(E). (E) Heatmap visualization illustrating the relationships between Glyc.Sig and immune cell infiltration levels in multiple cancer types.
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Next, we explored the links between enrichment of HALLMARK

pathways and expression intensity of Glyc.Sig. Both of them were

calculated through GSVA. All of the top 10 HALLMARK pathways,

including DNA repair, MYC signaling, and glycolysis, were positively

correlated with the expression intensity of Glyc.Sig (Figure 5A). All of

these pathways might be associated with a weak immune response

based on previous studies (89–91). We also explored the relations

between enrichment of tertiary lymphoid structure (TLS)-related

genes and the expression intensity of Glyc.Sig. As shown in

Figure 5B, TLS scores as well as most of the TLS-related genes were
Frontiers in Immunology 09
negatively related to the expression intensity of Glyc.Sig. Notably, high

TLS scores and related genes usually indicated an abundant immune

cell infiltration. Additionally, we investigated the relations between the

median score of Glyc.Sig and the median ITH as well as the median

TMB. ITH was a feature that facilitated immunosuppression (92). As

anticipated, the expression intensity of Glyc.Sig was positively

correlated with ITH (R = 0.64, p = 0.00014, Figure 5C). However, a

positive link between TMB and Glyc.Sig was found (R = 0.8, p = 9.1e

−8, Figure 5D), which seemed to go against our current understanding

of TMB. Generally, higher TMB means better immune response
FIGURE 5

Investigation of potential relations between Glyc.Sig and immune resistance. (A) Heatmap illustrating the relationships between Glyc.Sig and the top
10 HALLMARK signaling pathways. (B) Heatmap depicting the relationships between Glyc.Sig and TLS-related genes. (C) Scatter plot showing the
association between median GSVA scores of Glyc.Sig and median intratumor heterogeneity (ITH) across pan-cancer datasets. (D) Correlation
analysis of median GSVA scores of Glyc.Sig with median log10 tumor mutational burden (TMB) levels in pan-cancer datasets. (E) Comparative box
plots analyzing the relationship between MCP levels and Glyc.Sig activity. (F) Box plots evaluating specific immune cell infiltration patterns in groups
with different Glyc.Sig status and TMB (Mann–Whitney U test; ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1666121
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1666121
because of abundant antigenicity, while a high level of Glyc.Sig does

the opposite. Based on the median GSVA score of Glyc.Sig and the

median TMB as grouping criteria, patients were divided into four

distinct subgroups: high Glyc.Sig/high TMB (HGHT), high Glyc.Sig/

low TMB (HGLT), low Glyc.Sig/high TMB (LGHT), and low

Glyc.Sig/low TMB (LGLT). First, we clarified that both high

Glyc.Sig and low TMB had decreased cytotoxic lymphocyte

infiltration (Figure 5E, Supplementary Figure S1A), which was

consistent with our current understanding. We further compared

immune cell infiltration among the LGLT, LGHT, HGLT, and HGHT

subgroups. LGHT was identified as the group with the highest

infiltration of cytotoxic lymphocytes and NK cells, while HGLT was

found to have the lowest infiltration of most immune cells, including

cytotoxic lymphocytes, monocytic lineage, CD8 T cells, NK cells, T

cells, and B lineage (Figure 5F, Supplementary Figure S1B). As for the

LGLT and HGHT subgroups, the situation seemed to be unclear,

possibly for the reason that these two subgroups had both immune-

stimulating factors and inhibiting factors.
Predicting immunotherapy response based
on Glyc.Sig

To explore the prognostic value of Glyc.Sig, bulk RNA-seq data,

and the corresponding clinical data from 10 ICI cohorts were

curated and analyzed to construct the models for ICI response

prediction based on Glyc.Sig. To better utilize these data, we divided

them into three subsets: the training set for model training and

parameter tuning based on five-fold cross-validation repeated 10

times (except cancerclass); a validation set for model comparison

and selection according to AUC; and the independent testing set for

final model diagnosis. The flowchart reflected the whole process

(Figure 6A). Seven different models were incorporated and trained

at the beginning; naive Bayes was finally chosen as the Glyc.Sig

model with the highest AUC of 0.69 (Figure 6B). Next, we utilized

the independent testing set to make further evaluation of the

Glyc.Sig model by predicting the ICI response. An AUC of 0.66

was finally observed (Figure 6C).

To evaluate the predictive value of Glyc.Sig on overall survival

(OS), patients were divided into a high-risk group (predicted non-

responders, NR) and a low-risk group (predicted responders, R)

according to the prediction of ICI response given by the Glyc.Sig

model. Kaplan–Meier survival analysis demonstrated that in both

validation and testing cohorts, a high-risk group had a significantly

shorter OS than the low-risk group (p < 0.01, Figure 6D). In the

validation cohorts, the low-risk group exhibited a median OS of

29.9 months (HR = 1.83, 95% CI 1.17–2.86), nearly doubling the OS

(14.42 months) observed in high-risk counterparts. In the testing

cohort, low-risk patients had a 31.7-month median OS, while the

OS in high-risk subjects was 11.23 months (HR = 2.28, 95% CI:

1.27–4.09). Subsequently, we examined the performance of the

Glyc.Sig predictive model in each of the 10 ICI RNA-seq cohorts.

The AUC across these 10 cohorts ranged from 0.53 to 0.91

(Supplementary Figure S2), with the AUC of the SKCM cohort in

2017 by Riaz reaching the highest (AUC = 0.91, 95% CI: 0.82–0.99),
Frontiers in Immunology 10
followed by a UC cohort in 2018 by Mariathasan (AUC = 0.90, 95%

CI: 0.87–0.94). The GBM cohort in 2019 by Zhao exhibited the

lowest predictive accuracy (AUC = 0.53, 95% CI: 0.24–0.82), which

could be attributed to its restricted sample size. As for survival

analysis, the GC cohort in 2018 by Kim was excluded due to the lack

of OS data. For the remaining nine cohorts, high-risk patients

predicted by the Glyc.Sig model showed significant survival

benefits. Notable observations were made in the SKCM cohort

from 2015 (Van Allen), the UC cohort from 2017 (Synder), the UC

cohort from 2018 (Mariathasan), the SKCM cohort from 2019

(Liu), and the SKCM cohort from 2019 (Gide) (Supplementary

Figure S3).

Comparison between Glyc.Sig and other well-constructed

predictive gene signatures was made by calculating the AUC for each

gene signature. In comparison with other gene signatures (81–85),

Glyc.Sig performed best in the validation cohort (Figure 6E) with an

AUC of 0.69. Additionally, Glyc.Sig manifested the best performance in

most of the 10 individual ICI cohorts, while most of the other

signatures performed ideally in only one or two cohorts (Figure 6F,

Supplementary Table S7). We also compared the average AUC of these

gene signatures over the 10 individual ICI cohorts. Notably, Glyc.Sig

dominated the list with an average AUC of 0.76, surpassing the second

signature (INFG.sig) with an AUC of 0.62 (Figure 6G).
Investigation of potential therapeutic
targets based on Glyc.Sig

Immune response data corresponding to gene knockouts were

collected from seven CRISPR cohorts. These cohorts were further

categorized into 17 datasets based on the model cells and treatments

adopted. A total of 22,505 genes were documented across these

datasets. By ranking the genes according to their average Z-scores,

we identified the top-ranked genes as immune-resistant, suggesting

that their knockout could enhance antitumor immunity.

Conversely, the bottom-ranked genes were classified as immune-

sensitive, indicating that their knockout might suppress antitumor

immunity. The ranking process is depicted in Figure 7A. Out of the

22,505 genes, the numbers of genes in the top 5%, 10%, and 20%

rankings were 1,125, 2,250, and 4,501, respectively. To further

investigate the immunotherapeutic value of Glyc.Sig, we

subsequently calculated and compared the proportion of the top

5%, 10%, and 20% ranked genes in Glyc.sig and other previously

reported immune-resistant gene signatures, including TcellExc.Sig,

ImmuneCells.Sig, IMS.Sig, LRRC15.CAF.Sig, and CRMA.Sig (18,

83, 93–95). The IPRES signature was excluded due to its unique

composition of pathways rather than genes. As anticipated, Glyc.Sig

had the highest proportion of overlapped top-ranked genes

compared to other gene signatures (Figure 7B). The immune-

resistant genes (those in the top 20%) were significantly enriched

in Glyc.Sig (p = 0.02, Fisher’s exact test). Twenty-seven genes in

Glyc.Sig, including PSMF1, GCLC, CES1, MAF1, LDHA, KLHL24,

FCGR2B, POLR2K, MCCC1, GPI, COMMD8, C19orf24,

DNAJC12, YDJC, HSPB7, DERL1, NDUFA4L2, AGTRAP,

RNF128, MRPL10, EIF5A2, B3GNT3, SSR1, DNAJC2,
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SDCCAG8, TPI1, and CKAP4, ranked in the top 20%. The relations

between tumor immune regulation and these glycolysis-related

genes were verified using a series of independent CRISPR datasets

(Figure 7C, Supplementary Figure S4), indicating their potential as

therapeutic targets for combination with immune checkpoint

blockade (ICB).

Given the upregulation of glycolysis and the predictive value of

Glyc.Sig in FH-deficient RCC and pan-cancer data, we

hypothesized that the hub gene of CRISPR cohorts, LDHA, might

play a key role in this process. LDHA encodes the final step of

glycolysis, where pyruvate is converted into lactate, generating ATP.

Analysis of the FH-deficient RCC scRNA-seq dataset revealed that

LDHA expression was notably higher in FH-deficient RCC

epithelial cells (Figure 7D) compared to other cell types.

Additionally, when comparing LDHA expression across

metastasis, primary tumors, and adjacent normal tissues using the
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GSE157256 dataset (15), we found significantly lower LDHA levels

in adjacent normal tissues (Figure 7E). To further confirm these

results, immunoblotting analysis and IHC staining from patients at

Renji Hospital showed significantly higher LDHA expression in

tumor tissues compared to normal adjacent tissues (Figures 7F, G).
Discussion

Conventional biomarker discovery has primarily relied on

whole-exome sequencing (WES) or bulk-tissue RNA-seq analyses

(76, 96). These methodologies are constrained by their inability to

resolve cellular heterogeneity, generating population-averaged

genetic profiles that obscure critical cell subtype-specific

variations. The limited predictive accuracy of existing immune

checkpoint inhibitor biomarkers derived from bulk analyses
FIGURE 6

Construction and validation of a Glyc.Sig-based ICI outcome prediction model. (A) The workflow for developing the Glyc.Sig model encompassed
training, validation, and testing phases, as demonstrated in the flowchart. The training stage incorporated five-fold cross-validation to optimize
parameters among multiple machine learning approaches. During validation, the naive Bayes (nb) algorithm, demonstrating the best AUC
performance, was chosen as the finalized Glyc.Sig model (parameters: fL = 0, adjust = 1, usekernel = TRUE). (B) Predictive accuracy assessment of
diverse machine learning algorithms in the validation cohorts, quantified through AUC values. (C) Receiver operating characteristic (ROC) curves
illustrating the classification performance of the final Glyc.Sig model (nb algorithm) across both validation and independent testing cohorts.
(D) Comparative survival outcomes between model-predicted high-risk (non-responders) and low-risk (responders) subgroups, visualized through
Kaplan–Meier survival curves in the validation and testing datasets. (E) Circos plot visualization of pan-cancer signature efficacy in different cohorts,
with the vertical axis representing AUC measurements. (F) Comparative heatmap displaying predictive performance (AUC values) between Glyc.Sig
and established pan-cancer signatures. (G) Bar chart visualization comparing AUC values of Glyc.Sig against other pan-cancer signatures. TPR, true
positive rate; FPR, false positive rate; AUC, area under the curve; HR, hazard ratio; CI, confidence interval.
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highlights inherent technical constraints. Breakthroughs in single-

cell RNA sequencing have revolutionized biomarker discovery by

enabling high-resolution transcriptomic profiling at the individual

cell level (97), thereby uncovering previously undetectable

molecular patterns with enhanced prognostic capabilities (98).

FH-deficient RCC, an uncommon yet aggressive malignancy,

lacks established therapeutic standards, creating a critical gap in

treatment options for this fatal condition. These tumors exhibit
Frontiers in Immunology 12
heightened immunogenicity, marked by rich lymphocyte

infiltration and checkpoint protein overexpression (5), suggesting

a responsive microenvironment. Recent studies report improved

responses and survival rates when combining ICIs with tyrosine

kinase inhibitors (TKIs) in advanced FH-deficient RCC across

treatment phases, outperforming TKI monotherapy. However,

objective response rates remain modest (16.7%–43.2%), indicating

a need for further optimization (4, 8, 16). Loss of fumarate hydratase
FIGURE 7

Identifying LDHA as a potential therapeutic target for FH-deficient RCC using CRISPR screening data. (A) Gene prioritization based on knockout
effects on antitumor immune responses across the CRISPR subgroups. The classification was determined through aggregated Z-score
computations, with elevated ranks signifying greater contributions to immune resistance. Vacancies in the heatmap reflect the absence of gene-level
data in primary experimental cohorts. (B) Radar chart demonstrating the relative representation frequency of Glyc.Sig-associated genes within the
5%, 10%, and 20% top-ranked genes derived from the CRISPR datasets, compared with other predictive signatures. (C) Z-score visualization matrix
depicting 27 Glyc.Sig genes ranked within the top 20% top-ranked genes derived from the CRISPR datasets. (D) Uniform manifold approximation and
projection (UMAP) plot of FH-deficient RCC sample labeled by expression levels of LDHA. (E) Comparison among the expression levels of LDHA in
metastasis lesion, primary lesion, and adjacent normal tissue in FH-deficient RCC. (F) Immunoblotting analysis of LDHA expression in FH-deficient
RCC and adjacent normal tissues. (G) Representative IHC staining images of LDHA in the tumor and adjacent normal tissue areas.
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drives metabolic reprogramming toward aerobic glycolysis in FH-

deficient RCC (99), offering insights for diagnostic strategies and

therapeutic avenues.

While the interplay between tumor glycolysis and immune

regulation has been extensively studied, clinical validation of the

impact of glycolysis on ICI effectiveness remains limited. Through

GSVA-based evaluation of single-cell glycolytic activity in

malignant cells, we identified a consistent negative correlation

between metabolic activity and therapeutic outcomes across four

distinct ICI-treated cohorts (FH-deficient RCC, ccRCC, SKCM, and

BCC). This metabolic–immune axis appears particularly significant

given the established role of glycolysis as a cancer-enabling

mechanism that promotes proliferation and treatment resistance

in multiple tumor types (100).

Building upon these findings, we proposed that impaired

immunotherapy effectiveness might universally correlate with

elevated glycolytic activity in diverse malignancies. To

systematically investigate this relationship, we conducted a pan-

cancer analysis to identify genes that are overexpressed in

malignant cells and positively associated with glycolytic flux,

identifying 103 genes (Glyc.Sig). This conserved 103-gene panel

demonstrated superior predictive accuracy for ICI responsiveness

compared to existing biomarkers (T.cell.inflamed.Sig, INFG.Sig,

PDL1.Sig, NLRP3.Sig, LRRC15.CAF.Sig, Cytotoxic.Sig) across 10

independent ICI cohorts spanning five cancer types. Our work

establishes the first multi-omics validated link between tumor

glycolysis and immunotherapy resistance while providing a

clinically actionable predictive tool applicable across multiple

cancer types, potentially for FH-RCC.

Our analysis revealed significant enrichment of Glyc.Sig genes in

critical biological processes, including glycolysis, cellular response to

hypoxia, HIF-1 signaling pathway, KEAP1−NFE2L2 pathway, G1/S

DNA damage checkpoints, and glutathione metabolism. Hypoxic

conditions stabilize HIF-1a, which transcriptionally upregulates

glycolytic enzymes (e.g., LDHA, PGK1) and glucose transporters

(e.g., GLUT-1). This process is synergistically amplified by

interactions with c-Myc, NF-kB, and other oncogenic factors,

establishing a feedforward loop to maintain elevated glycolytic flux

for tumor bioenergetics (101). NFE2L2 (NRF2) dynamically

balances antioxidant defense and glycolytic metabolism under

stress. During oxidative stress, NFE2L2 evades KEAP1-dependent

ubiquitination, accumulates in the nucleus, and activates antioxidant

response element (ARE)-regulated genes. Concurrently, NFE2L2

directly enhances hexokinase 1 (HK1) expression and indirectly

primes glycolysis, prioritizing ATP generation over oxidative

phosphorylation (102, 103). Enhanced glycolytic flux elevates

lactate synthesis, which catalyzes the lactylation of XRCC1 to

promote its nuclear import, thereby augmenting DNA damage

repair and fostering resistance to DNA-damaging therapies like

chemoradiotherapy (104). In parallel, lactate-mediated lactylation

of NBS1 stabilizes the MRE11–RAD50–NBS1 (MRN) complex,

potentiating homologous recombination (HR)-dependent repair of

DNA double-strand breaks (105).

Pan-cancer transcriptomic profiling from TCGA datasets

demonstrated that tumors exhibiting elevated Glyc.Sig activity
Frontiers in Immunology 13
showed significant suppression of immune-related gene networks

and decreased lymphocyte infiltration. Notably, we identified a

notable inverse correlation between B-cell abundance and Glyc.Sig

intensity. Given the established role of B-cell-mediated TLSs in

enhancing immunotherapy efficacy through antigen presentation

and T-cell priming (106), we further explored the relationship

between TLS and Glyc.Sig. We revealed a significant inverse

relationship between TLS scores and Glyc.Sig, suggesting that

glycolytic activity may impair TLS formation. Further analysis

revealed the upregulation of several immune-related biological

functions, including metabolism, MYC signaling, and DNA repair.

The shift toward a hypermetabolic state was implicated in evading

immune surveillance (90). Elevated MYC signaling suppresses

immune responses by increasing the expression of CD47 and PD-

L1 (91). Enhanced DNA repair enables malignant cells to survive in

hostile environments (107). These findings align with Glyc.Sig’s

high-scoring tumors showing marked immunosuppression,

validating its prognostic significance. Moreover, we noted a

concordance between Glyc.Sig and both tumor mutational burden

and intratumoral heterogeneity. Notably, high TMB is associated

with increased glycolysis. Despite TMB’s predictive role for ICIs,

many high-TMB patients show treatment resistance (108).

Intriguingly, our stratified analysis confirmed Glyc.Sig’s inverse

relation to antitumor immune function across TMB strata,

implicating cancer’s glucose metabolism as a pivotal factor in

high-TMB immune escape. This underscores Glyc.Sig’s pivotal

role as a predictive biomarker in immunotherapy responsiveness.

Glyc.Sig emerges as an innovative biomarker, excelling in

forecasting ICI responsiveness and identifying patients with

survival benefits. In comparative assessments against six leading

pan-cancer biomarker sets (81–85), it demonstrated superior

predictive strength and adaptability across diverse cohorts. Its

consistent performance highlights robustness and generalizability,

outperforming existing tools. Beyond refining patient stratification,

our research aims to uncover synergistic combination therapeutic

strategies capable of counteracting immune evasion mechanisms.

The strong association between Glyc.Sig and ICI therapeutic

efficacy prompted our systematic investigation. Through

computational analysis of genome-wide CRISPR screening

datasets, we identified targetable vulnerabilities within Glyc.Sig-

enriched tumor ecosystems, prioritizing candidates with dual

potential to enhance ICI responsiveness and reverse resistance

pathways. As a prominent Glyc.Sig gene, LDHA critically

mediates ICI resistance by reshaping TME. Mechanistically,

LDHA converts pyruvate to lactate, which subsequently

undergoes lactylation to establish an inhibitory epigenetic

network that broadly suppresses immune surveillance. This

metabolic shift enables tumor cells to dominate nutrient

utilization while generating a lactate-rich niche characterized by

extracellular acidosis and systemic immunosuppression. The

lactate-dominated milieu differentially modulates immune cells by

impairing the cytotoxic function of CD8+ T cells (109), natural

killer (NK/NKT) cells (11), and dendritic cells (110) through

metabolic interference and inhibition of signaling pathways.

Additionally, it sustains immunosuppressive phenotypes in
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regulatory T (Treg) cells (12) and promotes lactate-induced M2

macrophage polarization through HIF-1a stabilization, along with

the induction of vascular endothelial growth factor (VEGF) and

arginase-1 (ARG1) (111). Integrative analysis of pan-cancer

CRISPR screening data revealed that genetic ablation of top-tier

glycolysis-associated signature components—including PSMF1,

GCLC, MAF1, and KLHL24—demonstrated enhanced antitumor

immunity across melanoma, breast carcinoma, renal cell carcinoma,

and colorectal adenocarcinoma models. These metabolic regulators

emerge as promising therapeutic vulnerabilities for developing

immunotherapy combination strategies through modulating

immune–metabolic crosstalk in the tumor microenvironment.

Additionally, they offer potential targets for FH-RCC treatment

and could improve the efficacy of ICIs.

Our investigation has three principal constraints. First, the

analyzed bulk ICI cohorts excluded FH-RCC cases due to the

scarcity of patients with this tumor subtype, necessitating future

validation of identified therapeutic targets in dedicated FH-RCC

immunotherapy cohorts. Second, critical clinical parameters—

including demographic variables, tumor staging, mutational burden,

and intratumoral heterogeneity—were missing from certain

transcriptomic datasets, limiting comprehensive survival modeling

through multivariable regression. Third, while the 10 RNA-

sequencing immunotherapy cohorts spanned five malignancies

(gastric cancer, melanoma, renal cell carcinoma, urothelial cancer,

and glioblastoma), the pan-cancer predictive capacity of Glyc.Sig

requires verification in prospective trials across additional tumor

types, despite compensatory evidence from multi-cancer analyses

demonstrating Glyc.Sig’s inverse correlation with immune activation.

Our future research will prioritize prospective clinical validation of

Glyc.Sig in FH-deficient RCC cohorts receiving ICIs, coupled with

functional studies targeting LDHA and other Glyc.Sig components to

validate combinatorial synergies with immunotherapy. Mechanistic

exploration of lactate-mediated immunosuppression—particularly

lactylation-dependent epigenetic reprogramming and metabolic

crosstalk impairing TLS formation—warrants deeper investigation.

Integrating spatial transcriptomics will further resolve glycolytic–

immune cell interactions within tumor niches.
Conclusions

Our research marked the first robust clinical evidence linking

cancer’s glucose metabolism to resistance against immune

checkpoint inhibitors. By analyzing single-cell transcriptomics

across various cancers, we devised Glyc.Sig, a gene expression

signature that outperforms established signatures in forecasting

ICI treatment responses in different patient groups. This signature

not only enhances our ability to identify patients who may benefit

from immunotherapy but also uncovers new therapeutic avenues,

particularly highlighting LDHA as a combinatory therapeutic target

for FH-deficient RCC treatment. Our findings open avenues for

precision immunotherapy and propose strategies to overcome ICI

resistance by targeting cancer’s sugar metabolism to enhance

immune response against tumors.
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