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Into circulating autoantibody
dynamics and treatment
outcomes in patients with
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Introduction: Immune checkpoint inhibitors (ICls) targeting the programmed
death-1/ligand-1 (PD-1/PD-L1) axis have significantly improved treatment
outcomes in non-small cell lung cancer (NSCLC); however, challenges remain
owing to the limited durability of therapeutic responses and the occurrence of
immune-related adverse events (irAEs). This study aimed to characterize dynamic
changes in the circulating autoantibody (CAAB) profile during ICl treatment and
explore their association with treatment outcomes in patients with NSCLC.
Methods: A panel of 59 CAABs showing substantial treatment-related changes
was initially identified using AlphaScreen assays in a primary screening of five
patients who developed ir-pneumonitis. These CAABs were subsequently
profiled in paired pre-and post-treatment plasma samples obtained from 179
patients with NSCLC treated with anti-PD-1/PD-L1 therapy at two Japanese
centers. Associations between CAAB dynamics and clinical parameters—
including baseline characteristics, treatment regimens, and treatment
outcomes (irAEs, ir-pneumonitis, response, progression-free survival [PFS], and
overall survival [OS])—were evaluated using permutational multivariate analysis of
variance and univariate binary logistic and Cox regression, elastic net
regularization regression, and random forest regression.

Results: Using permutational multivariate analysis of variance and univariate
binary logistic/Cox regression, we comprehensively assessed the global
associations between CAAB dynamics and eight clinical parameters, including
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background factors (PD-L1 expression and treatment line), treatment regimens
(chemotherapy exposure), and treatment outcomes (irAE occurrence, ir-
pneumonitis development, RECIST-assessed response, PFS, and OS), indicating
that chemotherapy exposure was the only significant and strong factor
influencing CAAB dynamics. In patients receiving ICl monotherapy, univariate
logistic or Cox regression analyses were performed to identify individual CAABs
significantly associated with each outcome, highlighting both shared and distinct
immunological features underlying different clinical endpoints. Through machine
learning-based evaluation of the predictive potential of CAAB dynamics for five
treatment outcomes across the overall cohort and six subgroups defined by
three stratification variables, four optimized CAAB signatures with robust
predictive performance for ICl treatment outcomes were established.
Conclusions: These findings suggest the involvement of distinct immune
pathways in therapeutic benefits and toxicity. Collectively, our results provide
mechanistic insights into ICl-induced humoral immune regulation, highlight the
potential utility of CAABs as biomarkers to enhance benefit-to-risk assessment,
and guide the development of personalized immunotherapy strategies
for NSCLC.

non-small cell lung cancer, immune checkpoint inhibitor, circulating autoantibody,
immune-related adverse events, immune-related pneumonitis, treatment response,

machine learning

1 Introduction

Although immune checkpoint inhibitors (ICIs) targeting the
programmed death-1/ligand-1 (PD-1/PD-L1) axis have
revolutionized the therapeutic paradigms for non-small cell lung
cancer (NSCLC), two major clinical challenges remain. First,
resistance limits the proportion of patients who are able to
achieve a durable therapeutic response. Second, a spectrum of
organ-specific inflammatory toxicities, known as immune-related
adverse events (irAEs), further complicate treatment management
(1, 2). These issues highlight the urgent need to elucidate the precise
immunomodulatory mechanisms by which ICIs crosstalk with
components involved in the host immune homeostasis.
Comparative analysis of the dynamic alterations in the circulating
autoantibody (CAAB) repertoire, which refers to the diversity and
composition of autoantibodies present in peripheral blood,
preceding and following ICI administration may yield novel
mechanistic insights into treatment-induced immunomodulation.
Thus, elucidating the CAAB repertoire may advance our
understanding of the role of humoral immunity in both
therapeutic efficacy and disruption of immune homeostasis.

Current evidence in cancer immunotherapy indicates that
baseline autoantibody levels and treatment-induced antibody
dynamics are associated with irAE development and therapeutic
efficacy in ICI therapy (3-19). Notably, small-scale clinical studies
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have revealed that anti-PD-1 monotherapy induces patterns of
circulating antibody/B-cell/plasmablast remodeling that are
different those induced by anti-cytotoxic T-lymphocyte-associated
antigen 4 (CTLA4)-containing ICI regimens, although the
underlying mechanisms remain elusive (15, 20). Critical
unknowns persist regarding (i) the dynamics of CAAB during
PD-1/PD-L1 blockade in a large patient cohort and (ii) the
existence and clinical relevance of associations between temporal
autoantibody profile shifts and treatment options (monotherapy or
combination therapy with chemotherapy), therapeutic response,
irAE incidence, and severe complications such as pneumonitis.

In this study, we profiled 59 specific CAABs in pairs before and
after treatment, using plasma samples from 179 patients who
received anti-PD-1/PD-L1 therapy. By examining the antibody
dynamics, we quantitatively assessed the associations between
changes in the CAAB dynamic repertoire and clinical parameters,
including baseline characteristics (PD-L1 expression and treatment
line), treatment regimens (chemotherapy exposure), and treatment
outcomes [irAE occurrence, ir-pneumonitis development, response,
progression-free survival (PFS), and overall survival (OS)]
(Figure 1A). These findings provide novel insights into the
systemic immunomodulatory effects of the PD-1/PD-L1 blockade
and potential autoantibody targets for disentangling therapeutic
benefits from associated risks, thereby informing benefit-to-risk
assessments and development of novel adjunctive strategies.
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Overview of (A) the study design; (B) patient demographics, clinical characteristics, and the association between PD-L1 expression and treatment
response; (C) Kaplan-Meier survival curves for progression-free survival (PFS); and (D) overall survival (OS) of the cohort (n = 179). The survival curves
were generated using Cox regression based on different grouping criteria: a treatment option, b best clinical response, ¢ irAE, and d ir-pneumonitis.
ALK, anaplastic lymphoma kinase gene; AUC, area under the receiver operating characteristic curve; BMI, body mass index; Combi, combination
therapy; EGFR, epidermal growth factor receptor gene; HR, hazard ratio in the Cox proportional hazards model; ICl, immune checkpoint inhibitor;
iIrAE, immune-related adverse event; Mono, monotherapy; ns, not significant (p > 0.05, Chi-square test); OS, overall survival; P, p-value in the Cox
proportional hazards model; PD, progressive disease; PD-L1, programmed death-ligand 1; PFS, progression-free; Pneu, ir-pneumonitis; survival; PR,
partial response; SD, stable disease; WT, wild type.
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2 Materials and methods
2.1 Patients and data collection

This study included patients diagnosed with advanced, recurrent,
or metastatic NSCLC who received anti-PD-1 (nivolumab or
pembrolizumab) or anti-PD-L1 therapy (atezolizumab), either as
monotherapy or in combination with chemotherapy, at Kurume
University Hospital (Kurume, Japan) and Kanagawa Cancer Center
(Yokohama, Japan). The patient cohort partially overlapped with that
of a previous study conducted by our group (21, 22). The cohort
consisted of 179 patients enrolled between February 2016 and August
2019. The clinical course of the enrolled patients was followed until
July 2024. The patient characteristics are summarized in Figures 1B-
D, and Table 1. Tumor PD-LI1 expression was assessed via
immunohistochemical staining of paraffin-embedded tumor
sections using anti-PD-L1 monoclonal antibodies (clone EIL3N:
Cell Signaling Technology, Danvers, MA, USA and clone 22C3:
Agilent Technologies/Dako, Carpinteria, CA, USA). For most
patients, PD-L1 expression was evaluated in tumor specimens
collected prior to first-line therapy. This analysis was also done in
patients who received ICIs as second- or subsequent-line treatment.
Clinical response was evaluated based on the Response Evaluation

TABLE 1 Summary of patient characteristics in the study.

10.3389/fimmu.2025.1666030

TABLE 1 Continued

Characteristic Value

ALK 2(1.1)

Unknown 5(2.8)

Tumor PD-L1 expression, n (%)

< 1% 41 (22.9)
1% - 49% 38 (21.2)
> 50% 77 (43.0)
Unknown 23 (12.8)

ECOG performance status, n (%)

0 76 (42.5)
1 71 (39.7)
2 26 (14.5)
3 6 (3.4)

Treatment line, n (%)
First line 54 (30.2)

Further lines 125 (69.8)

Prior therapy, n (%)

Chemotherapy 107 (59.8)

Age (years), mean (SD) 69.2 (8.0) Chemotherapy and radiation 13 (7.3)

Sex, n (%) Surgery 3(1.7)
Female 44 (24.6) Radiation 6(3.4)
Male 135 (75.4) None 48 (26.8)

BMI, mean (SD) 21.9 (3.5) Treatment regimen, n (%)

Smoking, n (%) Monotherapy 128 (71.5)
Former 143 (79.9) Combination therapy 51 (28.5)
Never 36 (20.1) Best clinical response (RECIST), n (%)

Stages, n (%) Partial response 56 (31.3)
Stage IIT 32 (17.9) Stable disease 37 (20.7)
Stage IV 99 (55.3) Progressive disease 86 (48.0)
Recurrence 48 (26.8) Progression-free survival (days), median (95% Cl) 131 (90-182)

Histology, n (%) Overall survival (days), median (95% CI) 468 (385-676)
Non-squamous 127 (71.0) Occurrence of irAE, n (%)

Squamous 52 (29.0) None 110 (61.4)

Driver mutation, n (%) Yes 69 (38.6)
Wild type 150 (83.8) ir-pneumonitis 21 (11.7)
EGER 22 (12.3) ALK, anaplastic lymphoma kinase; BMI, body mass index; ECOG, Eastern Cooperative

Oncology Group; EGFR, epidermal growth factor receptor; irAE, immune-related adverse
(Continued) event; RECIST, Response Evaluation Criteria in Solid Tumors.
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Criteria in Solid Tumors (RECIST) version 1.1. IrAEs were defined
according to the Common Terminology Criteria for Adverse Events
(CTCAE) v5.0 grading scale. This study was conducted in accordance
with the principles of the Declaration of Helsinki and was approved
by the Institutional Review Boards of Kurume University Hospital
(approval numbers: 15210 and 19240) and Kanagawa Cancer Center
(approval number: 28-85). Informed consent was obtained from all
enrolled patients after the nature of the study and its possible
consequences were explained.

2.2 Plasma antibody profiling

Peripheral blood samples were collected in heparin-coated tubes
before and 6 weeks after therapy initiation. Plasma was separated from
whole blood via centrifugation and stored at —80 °C until analysis.
Plasma autoantibodies were assessed via the AlphaScreen assay using
two human protein arrays generated using a wheat germ cell-free
protein production system (23, 24). The HuPEX protein array,
containing 19,713 human proteins, was purchased from CellFree
Science Co., Ltd. (Yokohama, Japan). The Ehime-Kazusa protein
array, consisting of 4,144 human proteins, was prepared in-house
using a cell-free protein synthesis reagent. Gene resources for the
protein array were provided by the Kazusa DNA Research Institute
(Kisarazu, Japan) (25). Each cDNA clone was subcloned into the pEU-
E01-FLAG-GST-K1-02 vector (26). In vitro transcription and
translation were performed using the WEPRO7240 Expression Kit
(CellFree Science) as previously described (27, 28). Briefly, the DNA
fragments coding for each protein were amplified via PCR and used as
templates for in vitro transcription. The mRNA generated by in vitro
transcription was used as a template for in vitro translation (total
reaction mixture, 5 pl; components, 2.5 pL mRNA; 1.67 uL. WEPRO
7240 wheat germ extract; 0.14 pL creatine kinase [20 mg/mL]; and 0.11
uL RNase inhibitor) was layered below 50 pL. SUB-AMIX SGC substrate
solution in a 384-well plate and incubated at 20°C for 18 h. The
translated protein arrays were diluted 2-fold with AlphaScreen buffer
(100 mM Tris-HCI, pH 8.0; 0.01% Tween 20; 1 mg/mL BSA), aliquoted
into 384-well plates, flash-frozen in liquid nitrogen, and stored at —80°C.

The AlphaScreen assay was performed as previously described,
with minor modifications (27). Specificity was achieved through two
independent high-affinity binding steps (1): glutathione-coated donor
beads that selectively bind GST-tagged recombinant antigens, and (2)
Protein G-conjugated acceptor beads that specifically recognize
human IgG, thereby minimizing nonspecific interactions. For
primary screening, autoantibody reactivity was assessed after
incubating 10 paired plasma samples from patients with NSCLC
(five pre- and post-ICI treatment, respectively) with a library of
23,857 human proteins. Plasma samples were diluted 1:667 in
AlphaScreen reaction buffer (100 mM Tris-HCI, pH 8.0, 0.01% [v/
v] Tween 20, 0.1% [w/v] bovine serum albumin), and 20 uL diluted
plasma was dispensed into each well of OptiPlate-384 plates (Revvity,
Yokohama, Japan) using a Liquidator96 pipetting system. Next, 1 uL
of each FLAG-GST tagged protein was transferred from 384-well
stock plate to the reaction plate using JANUS automated dispensing
workstation equipped with a NanoHead 384-channel microsyringe
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head (Revvity). Subsequently, 9 uL detection mixture (containing
0.06 uL AlphaScreen GSH Donor Beads [Revvity] and 0.06 pL
Protein G-conjugated AlphaScreen acceptor beads in reaction
buffer) was added to the reaction plates with a FlexDrop dispenser
(27). After incubation at 25°C for 1 h in the dark, AlphaScreen signals
were detected using an EnVision plate reader (Revvity).

For secondary screening, 358 paired plasma samples from 179
patients with NSCLC (pre- and post-treatment) were tested for the 59
selected proteins, each in quadruplicate. All reactions were performed
on AlphaPlate-1536 plates (Revvity). Three microliters of protein
dilution containing 0.05 uL. FLAG-GST tagged protein was dispensed
into an AlphaPlate 1536 plate (Revvity) via a Multidrop Combi nL
(Thermo Fisher Scientific, Tokyo, Japan). All 358 plasma samples
were diluted 1:40 and dispensed into a 384 well plate. Subsequently,
0.2 pL of the 1:40 diluted plasma from each well of these 384-well
plates was dispensed into the 1536-well reaction plates via a JANUS
workstation with a NanoHead. Finally, 1.8 pL detection mixture
(containing 0.01 pL AlphaScreen GSH Donor Beads and 0.01 pL
Protein G-conjugated AlphaScreen acceptor beads) was added to the
reaction plates via a Multidrop Combi nL. After incubation at 25°C
for 1 h in the dark, AlphaScreen signals were detected with an
EnVision plate reader. The secondary screening minimized inter-
plate variability by ensuring that paired plasma samples (pre- and
post-ICI) from the same patient were analyzed on the same plate. To
further minimize experimental variability, all assays were conducted
on a single 1536-well plate uniformly coated with the same antigen.
Plasma samples from all patients were dispensed in quadruplicate.
This design enabled direct assessment of treatment-induced changes
both within individual patients and across the cohort, while
controlling for inter-plate variability.

2.3 Machine learning and statistical analysis

All analyses were performed using R (version 4.4.1; https://
www.r-project.org). Univariate binary logistic and Cox
proportional hazards regression analyses were performed using
the glm function (R Basic package). P-values were derived using
Wald z-tests and subsequently adjusted for multiple comparisons
using the Benjamini-Hochberg false discovery rate (FDR)
procedure. To mitigate overfitting in multivariate predictive
modeling, we applied elastic net (EN) regularized regression and
random forest (RF) regression for binary outcome variables (irAE,
ir-pneumonitis, and treatment response), and Cox proportional
hazards regression with elastic net regularization (EN-Cox) and
random survival forest (RSF) for survival outcomes (PFS and OS)
within a machine learning framework (21). The cohort was
randomly stratified into training (80%) and validation (20%)
groups. Model development and hyperparameter optimization
were conducted using nested cross-validation (CV) exclusively on
the training set. The final models were subsequently retrained on
the entire training set and independently evaluated on the
validation set, maintaining a strict separation between the
development and evaluation datasets to prevent data leakage. For
EN regression, hyperparameter tuning (o = 0.5 for balanced L1/L2
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regularization) was performed using 10-fold CV via the cv.glmnet
implementation (glmnet package), optimizing the regularization
parameter A to minimize classification error. The A value yielding
minimum CV error was selected for final model training, followed
by external validation on the holdout set. For the RF regression,
feature selection was performed via sequential variable inclusion
based on importance rankings, with variable importance assessed
using the mean Gini index (randomForest package). The optimal
feature subset (important factors) was identified by maximizing
predictive accuracy during stepwise variable addition. Model
performance was assessed using leave-one-out cross-validation
(LOO-CV) of the training set with discriminatory power
quantified by the area under the receiver operating characteristic
curve (AUC). All RF implementations utilized an ensemble of 1,000
decorrelated decision trees with the minimum node purity set to 1,
following established methodologies in high-dimensional
regression (29). Optimization of the model cutoff value was
performed by maximizing Youden’s ] statistic (sensitivity +
specificity - 1), implemented through the coords function in R.
Permutational multivariate analysis of variance (PERMANOVA)
was performed using the Adonis function (vegan package).
Nonparametric comparisons were performed using the Wilcoxon
signed-rank test via the wilcox.test function. Survival analyses
included Kaplan-Meier curve generation with log-rank testing,
alongside Cox proportional hazards modeling, executed using the
survival and survminer packages in R.

3 Results
3.1 Patient characteristics

As shown in Figure 1 and Table 1, of the 179 patients with
NSCLC included in this study, 128 (71.5%) received anti-PD-1/PD-
L1 monotherapy and 51 (28.5%) received combination therapy with
chemotherapy. The best overall response was partial response (PR)
in 56 patients (31.3%), stable disease (SD) in 37 patients (20.7%),
and progressive disease (PD) in 86 patients (48.0%). IrAEs occurred
in 69 patients (38.6%) and ir-pneumonitis was observed in 21
patients (11.7%). The median PFS in the cohort was 131 days and
the median OS was 468 days. Figure 1C illustrates PFS across the
clinical subgroups. No significant differences in PFS were observed
between patients who received combination therapy and those who
received monotherapy (hazard ratio [HR] = 0.95, p = 0.786).
Patients in the responder group (PR + SD) demonstrated
significantly prolonged PFS compared to those in the PD group
(HR =0.12, p < 0.001). Similarly, patients who developed irAEs had
a longer PFS than those who did not (HR = 0.52, p < 0.001).
However, patients with ir-pneumonitis did not show a significant
difference in PFS compared to those without ir-pneumonitis (HR =
0.74, p = 0.225). Figure 1D shows OS data across the same
subgroups. Consistent with the PFS results, the OS did not differ
significantly between the ICI monotherapy and combination
therapy (HR = 0.92, p = 0.683) groups. The responder group
exhibited significantly improved OS compared with the PD group
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(HR = 0.27, p < 0.001). Additionally, patients with irAEs had a
longer OS than those without irAEs (HR = 0.69, p = 0.0377). In
contrast, patients who developed ir-pneumonitis showed no OS
benefit from treatment (HR = 1.19, p = 0.498).

3.2 Circulating autoantibody titers exhibit a
predominant decrease during PD-1/PD-L1
blockade

For primary screening, we used AlphaScreen to quantify plasma
IgG antibodies against approximately 24,000 biotinylated proteins
in pre- and post-treatment plasma from five patients with NSCLC
who developed ir-pneumonitis during ICI treatment. Based on pre/
post signal ratios, 37 antibodies showed significant changes (p <
0.05, Student’s t-test; fold changes < 0.7 or > 1.4). To offset the
limited sample size, 22 additional antibodies were included due to
notable fold changes and prior associations with immune-related
pathways, cancer biology, or ICI responses reported in the
literature. In total, 59 antibodies were selected for further analysis
(Supplementary Table S1).

In secondary screening, these 59 candidates were quantified in
pre- and post-treatment plasma from a formal cohort of 179 patients.
A volcano plot (Figure 2A) illustrates changes in CAAB levels before
and after anti-PD-1/PD-L1 therapy: 53 decreased (average log,-
transformed fold-change < 0), 30 significantly (p < 0.05), including
BASP1, ITGAE, CPBI, and CD200 autoantibodies. Six increased
(average log,-transformed fold-change > 0), with two autoantibodies
against CASP10 and SCGN reached statistical significance.

3.3 Chemotherapy exposure as the
predominant determinant of circulating
autoantibody repertoire changes

We calculated the log,-transformed fold-change for each
CAAB, designating this dataset as the dynamic repertoire. Clinical
relevance of the CAAB dynamic repertoire by computing
multivariate effect sizes for treatment regimen, treatment line,
PD-L1 expression, occurrence of irAE and ir-pneumonitis,
therapeutic response, PFS, and OS using PERMANOVA (30). As
shown in Figure 2B, the CAAB dynamic repertoire exhibited a
significant association only with chemotherapy exposure among all
clinical factors assessed (highest R* = 2.5%, p < 0.05), indicating
marked sensitivity to anticancer agent administration. Regarding
clinical baseline characteristics, CAAB dynamics demonstrated a
stronger effect size with PD-L1 expression than with the line of
therapy, although without significance. In the present cohort, the
therapeutic decisions (monotherapy versus combination therapy)
were directly influenced by PD-L1 expression (Figure 2C) (31).
Among the five treatment outcome measures—irAEs, ir-
pneumonitis, RECIST-assessed response, PFS, and OS—the effect
size of the association with CAAB dynamics decreased in the
following order: irAEs, ir-pneumonitis, response, PFS, and OS,
although none reached statistical significance (Figure 2B). To
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Dynamics of 59 protein-specific circulating autoantibodies (CAABs) before and after ICI therapy (n = 179). (A) Volcano plot illustrating differential
antibody responses: Wilcoxon signed-rank test p-values; p.adj indicates false discovery rate (FDR) correction using the Benjamini-Hochberg method.
(B) PERMANOVA analysis quantifying inter-individual variation in CAAB dynamics explained by background factors (PD-L1 expression and treatment
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assessed response, PFS, and OS). Chemotherapy exposure emerged as the only significant (p < 0.05) modulator of CAAB dynamics among ICI-
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further elucidate which CAABs exhibited the strongest association
with concomitant anticancer agent administration during ICI
therapy, we performed univariate logistic regression analyses
stratified by anticancer agent use. CAABs with a significance
threshold of p < 0.05 in the regression analyses are summarized
in Figure 2D. Nine CAABs retained statistical significance after
FDR correction: antibodies against ZNF551, S100A7A, KRTS,
CASP10, IRF4, CCDC3, DBX1, SCGN, and KLHL18. Several
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other CAABs exhibited notable associations, including PKDCC,
SOX1, UBTF, BIRC3, WDR24, IL7, BASP1, CPB1, IL4, FBXL6,
LAMA4, CXCL1, CSF2, GATAD2B, PFKFB4, and F13B. Plasma
levels of these autoantibodies were significantly modulated by
anticancer agent coadministration. Violin plots (Figure 2D)
illustrate distinct expression patterns. ZNF551-targeting CAABs
decreased after monotherapy but increased with combination
therapy. Similarly, SI00A7A and KRT8 CAABs decreased with
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monotherapy, but remained stable before and after combination
therapy. CASP10 autoantibody levels increased in both groups,
albeit less markedly in monotherapy.

3.4 Circulating autoantibody dynamics
associated with treatment outcomes under
anti-PD-1/PD-L1 monotherapy

Through the above analyses, we identified that the treatment
regimen was the primary significant factor influencing the dynamic
repertoire of CAAB during ICI therapy. Given the non-negligible
influence of anticancer agents, we further examined the association
between CAAB fluctuation patterns and treatment outcomes in a
subgroup of patients receiving ICI monotherapy. To identify the
autoantibodies specifically associated with each treatment outcome
(irAEs, ir-pneumonitis, treatment response, PFES, and OS), we

10.3389/fimmu.2025.1666030

performed individual univariate logistic/Cox regression analyses for
each factor. Figure 3A shows that in patients receiving ICI
monotherapy, CAABs targeting DBX1, BIRC3, BASP1, STAT4, and
SPATCIL were significantly associated with the occurrence of irAEs.
The irAE-positive subgroup exhibited more pronounced post-
treatment reductions in autoantibody titers than the controls.
Figure 3B presents the univariate regression analyses of
pneumonitis-associated CAABs, revealing significant correlations
for autoantibodies targeting CXCL2, ROPN1, SPATCIL, FURIN,
and DBXI1. Consistent with the irAE pattern, patients with ir-
pneumonitis showed greater treatment-related decreases in CAABs,
with CXCL2 showing the greatest reduction. Regarding the
therapeutic efficacy, response-associated CAABs included
autoantibodies against SNCA, CCDC3, ECSCR, STAT4, and
BIRC3 (Figure 3C). The treatment responders displayed a
significantly greater absolute reduction in CAAB levels after ICI
administration. PFS- and OS-associated CAABs included
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FIGURE 3

Dynamics of 59 protein-specific circulating autoantibodies (CAABs) during ICI therapy in patients receiving monotherapy (n = 128). Univariate logistic
regression was used to evaluate (A) irAE-, (B) ir-pneumonitis-, and (C) RECIST-assessed response-associated CAABs; univariate Cox regression was
used to evaluate (D) PFS- and (E) OS-associated CAABs. All significant CAABs (p < 0.05, Wald test) are displayed; no CAABs showed. p.adj < 0.05
after Benjamini-Hochberg FDR adjustment. Violin plots demonstrate group-wise comparisons using Wilcoxon rank-sum test significance levels: **p
< 0.01; *p < 0.05. (F) Summary Venn diagram of CAABs significantly associated with irAE, ir-pneumonitis, response, PFS, and OS. FDR, false discovery

rate; ICl, immune checkpoint inhibitor; irAE, immune-related adverse event.
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Predictive modeling of irAE occurrence using dynamic profiles of circulating autoantibodies (CAABs) in the high PD-L1 subgroup (n = 77). In the
elastic-net (EN) regression-based models: (A) the penalty hyperparameter (A) was determined through 10-fold cross-validation (CV) across a range
of A values; the optimal A (A..min) corresponding to the minimum CV classification error was selected. (B) CAABs selected by EN at A.min. (C) ROC
curves derived from the training and test sets, with AUCs of 0.81 and 0.68, respectively; the model threshold (C*) was optimized using the maximum
Youden's J statistic, yielding a sensitivity of 0.86 and specificity of 0.72. AUC, area under the receiver operating characteristic curve; CV, cross-
validation; EN, elastic-net; ROC, receiver operating characteristic curve; Sens, sensitivity; Spec, specificity.

4 Discussion

Characterizing the dynamic changes in CAAB profiles during
ICI therapy provides critical insights into the immunomodulatory
effects of ICIs on host immunity. In this study, we initially identified
59 autoantibodies that exhibited substantial alterations during anti-
PD-1/PD-LI treatment in a primary screening of peripheral blood
samples from five patients with NSCLC who developed ir-
pneumonitis following ICI therapy. These candidate CAABs were
subsequently quantified in plasma samples from an expanded
cohort of 179 patients. PERMANOVA was applied to
comprehensively assess the global associations between CAAB
dynamics and eight clinical parameters, including background
factors (PD-L1 expression and treatment line), treatment
regimens (chemotherapy exposure), and treatment outcomes
(irAE occurrence, ir-pneumonitis development, RECIST-assessed
response, PFS, and OS). For patients receiving ICI monotherapy,
univariate logistic or Cox regression analyses were performed to
identify individual CAABs significantly associated with each
treatment outcome factor. Finally, within a machine learning
framework incorporating rigorous robustness evaluations, we
examined the predictive potential of CAAB dynamics for five
treatment outcomes in the overall cohort and across six
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subgroups defined by three stratification variables, and established
four optimized CAAB signatures relevant to ICI treatment
outcomes. Among all clinical factors assessed, the CAAB dynamic
repertoire showed a significant association solely with
chemotherapy exposure, highlighting its pronounced sensitivity to
anticancer drug administration. Several mechanisms may explain
this phenomenon. For example, cytotoxic anticancer agents can
induce immunogenic cell death, such as apoptosis and necrosis, in
both tumor and healthy cells, resulting in the release of self-
antigens. This antigen release may enhance antigen presentation
by antigen-presenting cells and promote a pro-inflammatory
environment, ultimately contributing to the breakdown of
immune tolerance and activation of autoreactive lymphocytes. In
addition, some anticancer agents have been reported to reduce
immunosuppressive cell populations, including regulatory T cells
and myeloid-derived suppressor cells (MDSCs), thereby facilitating
the production of autoantibodies (32). CAAB dynamics also
demonstrated a relatively strong, albeit non-significant,
correlation with PD-L1 expression. Considering the substantial
influence of PD-L1 status on treatment options in the present
study cohort, further investigations are warranted to clarify the
potential association between PD-L1 expression and CAAB
dynamics during ICI therapy.
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Predictive modeling of ir-pneumonitis occurrence using dynamic profiles of circulating autoantibodies (CAABs) in the monotherapy subgroup

(n = 128). In the random forest (RF)-based models: (A) predictive accuracy during stepwise addition of CAABs according to their importance ranked
by the Gini index; the RF model using the top three CAABs achieved the highest predictive accuracy. (B) CAABs selected by the RF model. (C) ROC
curves derived from the training and test sets, with AUCs of 0.83 and 0.88, respectively; the model threshold (C*) was optimized using the maximum
Youden's J statistic, yielding a sensitivity of 0.86 and a specificity of 0.75. AUC, area under the receiver operating characteristic curve; RF, random
forest; ROC, receiver operating characteristic curve; Sens, sensitivity; Spec, specificity.

In the monotherapy group, univariate logistic and Cox
regression analysis revealed associations between CAAB dynamics
and treatment outcomes during ICI therapy, highlighting both
shared and distinct immunological features underlying different
clinical endpoints. Although irAEs have been proposed as a
potential clinical marker of ICI responsiveness, the exact nature
and extent of this relationship remain incompletely understood (1,
33-36). This biological distinction underscores the importance of
methodologically separating irAE-related signals from those linked
to therapeutic efficacy, and highlighting the need for comprehensive
benefit-to-risk assessment to guide clinical decision-making (37).
Notably, CAABs against BIRC3 and STAT4 were associated with
both treatment response and irAE occurrence, suggesting that the
underlying immune mechanisms linked to these antibodies may
contribute to therapeutic efficacy, while also driving adverse
immune activation. In contrast, CAABs against SNCA, CCDC3,
and ECSCR were significantly associated only with treatment
response, indicating the possible existence of tumor-specific
immune regulatory pathways independent of irAEs. These
findings offer a novel perspective for disentangling treatment
efficacy from immune-related toxicity, thereby supporting
optimized benefit-to-risk assessments in clinical practice.
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In addition, we observed that the majority of selected CAABs
showed decreased plasma concentrations following ICI treatment.
Previous studies have reported that blocking PD-1/PD-L1 enhances
the maturation of PD-1-expressing T follicular helper (Tth) cells on
B cells, thereby augmenting antibody production against exogenous
antigens (38, 39). However, clinical data suggest divergent effects
depending on the ICI class. In a cohort of 39 patients, anti-CTLA-4
monotherapy or CTLA-4-containing combinations were associated
with increased circulating plasmablasts (CD387CD27"), whereas
anti-PD-1 monotherapy was linked to reduced plasmablast
numbers (20). Similarly, a study involving 48 patients reported
that anti-CTLA-4 treatment generally led to increased CAAB levels,
whereas anti-PD-L1 treatment tended to reduce them (15). More
recently, statistical analyses of CAABs in 102 patients corroborated
these trends (16). Although the mechanisms underlying these
observations are poorly understood, these divergent outcomes
may partly reflect the distinct sites and timing of immune
modulation. CTLA-4 inhibition acts primarily during the priming
phase within secondary lymphoid organs, promoting polyclonal B-
cell activation, including autoreactive clones, and sustaining
plasmablast output and survival (9, 20). In contrast, PD-1/PD-L1
blockade acts mainly within germinal centers and peripheral tissues,
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Predictive modeling of treatment response using dynamic profiles of circulating autoantibodies (CAABs) in the (A—C) combination therapy subgroup
(n = 51) and (D—F) first line subgroup (n = 54). In the elastic-net (EN) regression-based models of combination therapy subgroup: (A) the penalty
hyperparameter (A) was determined through 10-fold cross-validation (CV) across a range of A values; the optimal A (A.min) corresponding to the
minimum CV classification error was selected. (B) CAABs selected by EN at A.min. (C) ROC curves derived from the training and test sets, with AUCs
of 0.90 and 0.79, respectively; the model threshold (C*) was optimized using the maximum Youden'’s J statistic, yielding a sensitivity of 0.79 and
specificity of 0.91. In the random forest (RF)-based models of first line subgroup: (D) predictive accuracy during stepwise addition of CAABs
according to their importance ranked by the Gini index; the RF model using the top seven CAABs achieved the highest predictive accuracy.

(E) CAABs selected by the RF model. (F) ROC curves derived from the training and test sets, with AUCs of 0.79 and 0.89, respectively; the model
threshold (C*) was optimized using the maximum Youden's J statistic, yielding a sensitivity of 0.92 and a specificity of 0.65. AUC, area under the
receiver operating characteristic curve; CV, cross-validation; EN, elastic-net; RF, random forest; ROC, receiver operating characteristic curve; Sens,

sensitivity; Spec, specificity.
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enhancing the quality of Tth-mediated B-cell help rather than
inducing global plasmablast expansion, and favoring transient
expansion of high-affinity, antigen-specific clones (38). Such
responses may wane once the antigenic stimulus declines.
Another speculative mechanism is local immune-complex
formation within tumor or inflamed tissues, which could promote
antibody sequestration or consumption, thereby lowering
circulating titers despite ongoing local humoral activity. However,
these tissue-level antibody dynamics have not been directly
demonstrated in the context of PD-1 versus CTLA-4 blockade,
meriting further mechanistic investigation.

The best-performing model for predicting ir-pneumonitis was
the RF model in the monotherapy subgroup. Identified CAABs
targeting CXCL2, PARK2, and KLHLI8 may contribute to
pathogenic immune hyperactivation, thus warranting further
investigation. Our previous findings indicated that decreased
plasma CXCL2 levels after ICI treatment are associated with irAE
occurrence in patients with NSCLC (40). CXCL2 promotes the
recruitment of MDSCs via CXCR2-mediated signaling, thereby
contributing to the establishment of an immunosuppressive
microenvironment (41, 42). In contrast, reduced CXCL2 levels
may reflect a shift toward a pro-inflammatory milieu. Among
patients who developed ir-pneumonitis, we observed lower levels
of CXCL2-specific CAABs. This reduction may reflect diminished
antigen-driven antibody production or sequestration within
CXCL2-antibody complexes, resulting in lower detectable plasma
levels. Further work is required to test these hypotheses and clarify
their relevance to irAE pathogenesis.

The overlapping associations of BIRC3 and STAT4 with both
therapeutic efficacy and the occurrence of irAEs, together with the
selective link of CXCL2 with pneumonitis, suggest the existence of a
shared yet bi-directional immunoregulatory axis. BIRC3, a
regulator of nuclear factor kappa-light-chain-enhancer of
activated B cell (NF-xB)-dependent transcription, and STAT4, a
mediator of IL-12-driven type 1 helper T cell (Th1) polarization and
type II interferon (IFN-y) production, can amplify systemic pro-
inflammatory signaling that enhances anti-tumor immunity while
heightening susceptibility to multi-organ irAEs (43, 44). In contrast,
CXCL2 recruits CXCR2" MDSCs, providing a counter-regulatory
brake on inflammation, with pulmonary tissue particularly
dependent on this chemokine axis (45). In our cohort, reductions
in BIRC3- and STAT4-specific autoantibodies were associated both
with enhanced therapeutic efficacy and increased irAEs. One
plausible explanation is that early activation of NF-kB/Thl
programs transiently augments antigen presentation and
autoantibody production, followed by antigen clearance or a shift
toward cell-mediated immunity, leading to lower autoantibody
titers despite sustained pathway activity. By contrast, decreases in
CXCL2-specific autoantibodies were unrelated to efficacy but
correlated with pneumonitis, consistent with the idea that
disrupting the CXCL2-CXCR2 axis removes a local anti-
inflammatory safeguard in the lung, creating a predisposition to
organ-restricted toxicity without broadly influencing systemic anti-
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tumor immunity (45). These findings are hypothesis-generating
and highlight the need for prospective validation through
longitudinal protein measurements, immune cell phenotyping,
and pathway-level analyses.

For clinical translation of the high-performance predictive
models identified in this study, peripheral blood samples should
be collected prior to and six weeks following the initiation of ICI
therapy. Titers of the CAABs selected by each model are then
quantified, fold changes calculated, and incorporated into the model
to generate a predictive score. Patients with scores exceeding the
model-specific optimal threshold would be classified as at risk for
adverse events or as potential responders. Future studies aimed at
optimizing blood sampling intervals may further improve the
timeliness and accuracy of these predictions.

This study has several limitations. The initial screening phase
was restricted to five patients due to practical and financial
constraints, which inevitably narrows the scope of this analysis.
Identifying approximately 60 CAABs from a proteome-wide panel
encompassing over 20,000 potential targets posed a substantial
methodological challenge. Given the limited sample size, the
presence of variability and possibility of overlooking relevant
antigens cannot be excluded. As a result, the present findings
provide a partial snapshot of the broader treatment-induced
alterations in the antibody repertoire. The specificity of the
autoantibody detection platform and selection strategy precluded
the use of suitable publicly available datasets, preventing evaluation
of model performance across independent or multi-ethnic
populations. To achieve a more comprehensive understanding of
CAAB dynamics in the context of ICI therapy, future investigations
should involve larger and more diverse patient populations and
employ unbiased, high-throughput proteomic profiling strategies.
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