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Introduction: Immune checkpoint inhibitors (ICIs) targeting the programmed

death-1/ligand-1 (PD-1/PD-L1) axis have significantly improved treatment

outcomes in non-small cell lung cancer (NSCLC); however, challenges remain

owing to the limited durability of therapeutic responses and the occurrence of

immune-related adverse events (irAEs). This study aimed to characterize dynamic

changes in the circulating autoantibody (CAAB) profile during ICI treatment and

explore their association with treatment outcomes in patients with NSCLC.

Methods: A panel of 59 CAABs showing substantial treatment-related changes

was initially identified using AlphaScreen assays in a primary screening of five

patients who developed ir-pneumonitis. These CAABs were subsequently

profiled in paired pre-and post-treatment plasma samples obtained from 179

patients with NSCLC treated with anti-PD-1/PD-L1 therapy at two Japanese

centers. Associations between CAAB dynamics and clinical parameters—

including baseline characteristics, treatment regimens, and treatment

outcomes (irAEs, ir-pneumonitis, response, progression-free survival [PFS], and

overall survival [OS])—were evaluated using permutational multivariate analysis of

variance and univariate binary logistic and Cox regression, elastic net

regularization regression, and random forest regression.

Results: Using permutational multivariate analysis of variance and univariate

binary logistic/Cox regression, we comprehensively assessed the global

associations between CAAB dynamics and eight clinical parameters, including
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666030/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666030/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666030/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666030/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666030/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1666030/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1666030&domain=pdf&date_stamp=2025-10-03
mailto:tsasada@kcch.jp
mailto:sawasaki.tatsuya.mf@ehime-u.ac.jp
https://doi.org/10.3389/fimmu.2025.1666030
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1666030
https://www.frontiersin.org/journals/immunology


Wei et al. 10.3389/fimmu.2025.1666030

Frontiers in Immunology
background factors (PD-L1 expression and treatment line), treatment regimens

(chemotherapy exposure), and treatment outcomes (irAE occurrence, ir-

pneumonitis development, RECIST-assessed response, PFS, and OS), indicating

that chemotherapy exposure was the only significant and strong factor

influencing CAAB dynamics. In patients receiving ICI monotherapy, univariate

logistic or Cox regression analyses were performed to identify individual CAABs

significantly associated with each outcome, highlighting both shared and distinct

immunological features underlying different clinical endpoints. Throughmachine

learning-based evaluation of the predictive potential of CAAB dynamics for five

treatment outcomes across the overall cohort and six subgroups defined by

three stratification variables, four optimized CAAB signatures with robust

predictive performance for ICI treatment outcomes were established.

Conclusions: These findings suggest the involvement of distinct immune

pathways in therapeutic benefits and toxicity. Collectively, our results provide

mechanistic insights into ICI-induced humoral immune regulation, highlight the

potential utility of CAABs as biomarkers to enhance benefit-to-risk assessment,

and guide the development of personalized immunotherapy strategies

for NSCLC.
KEYWORDS

non-small cell lung cancer, immune checkpoint inhibitor, circulating autoantibody,
immune-related adverse events, immune-related pneumonitis, treatment response,
machine learning
1 Introduction

Although immune checkpoint inhibitors (ICIs) targeting the

programmed death-1/ligand-1 (PD-1/PD-L1) axis have

revolutionized the therapeutic paradigms for non-small cell lung

cancer (NSCLC), two major clinical challenges remain. First,

resistance limits the proportion of patients who are able to

achieve a durable therapeutic response. Second, a spectrum of

organ-specific inflammatory toxicities, known as immune-related

adverse events (irAEs), further complicate treatment management

(1, 2). These issues highlight the urgent need to elucidate the precise

immunomodulatory mechanisms by which ICIs crosstalk with

components involved in the host immune homeostasis.

Comparative analysis of the dynamic alterations in the circulating

autoantibody (CAAB) repertoire, which refers to the diversity and

composition of autoantibodies present in peripheral blood,

preceding and following ICI administration may yield novel

mechanistic insights into treatment-induced immunomodulation.

Thus, elucidating the CAAB repertoire may advance our

understanding of the role of humoral immunity in both

therapeutic efficacy and disruption of immune homeostasis.

Current evidence in cancer immunotherapy indicates that

baseline autoantibody levels and treatment-induced antibody

dynamics are associated with irAE development and therapeutic

efficacy in ICI therapy (3–19). Notably, small-scale clinical studies
02
have revealed that anti-PD-1 monotherapy induces patterns of

circulating antibody/B-cell/plasmablast remodeling that are

different those induced by anti-cytotoxic T-lymphocyte-associated

antigen 4 (CTLA4)-containing ICI regimens, although the

underlying mechanisms remain elusive (15, 20). Critical

unknowns persist regarding (i) the dynamics of CAAB during

PD-1/PD-L1 blockade in a large patient cohort and (ii) the

existence and clinical relevance of associations between temporal

autoantibody profile shifts and treatment options (monotherapy or

combination therapy with chemotherapy), therapeutic response,

irAE incidence, and severe complications such as pneumonitis.

In this study, we profiled 59 specific CAABs in pairs before and

after treatment, using plasma samples from 179 patients who

received anti-PD-1/PD-L1 therapy. By examining the antibody

dynamics, we quantitatively assessed the associations between

changes in the CAAB dynamic repertoire and clinical parameters,

including baseline characteristics (PD-L1 expression and treatment

line), treatment regimens (chemotherapy exposure), and treatment

outcomes [irAE occurrence, ir-pneumonitis development, response,

progression-free survival (PFS), and overall survival (OS)]

(Figure 1A). These findings provide novel insights into the

systemic immunomodulatory effects of the PD-1/PD-L1 blockade

and potential autoantibody targets for disentangling therapeutic

benefits from associated risks, thereby informing benefit-to-risk

assessments and development of novel adjunctive strategies.
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FIGURE 1

Overview of (A) the study design; (B) patient demographics, clinical characteristics, and the association between PD-L1 expression and treatment
response; (C) Kaplan-Meier survival curves for progression-free survival (PFS); and (D) overall survival (OS) of the cohort (n = 179). The survival curves
were generated using Cox regression based on different grouping criteria: a treatment option, b best clinical response, c irAE, and d ir-pneumonitis.
ALK, anaplastic lymphoma kinase gene; AUC, area under the receiver operating characteristic curve; BMI, body mass index; Combi, combination
therapy; EGFR, epidermal growth factor receptor gene; HR, hazard ratio in the Cox proportional hazards model; ICI, immune checkpoint inhibitor;
irAE, immune-related adverse event; Mono, monotherapy; ns, not significant (p > 0.05, Chi-square test); OS, overall survival; P, p-value in the Cox
proportional hazards model; PD, progressive disease; PD-L1, programmed death-ligand 1; PFS, progression-free; Pneu, ir-pneumonitis; survival; PR,
partial response; SD, stable disease; WT, wild type.
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2 Materials and methods

2.1 Patients and data collection

This study included patients diagnosed with advanced, recurrent,

or metastatic NSCLC who received anti-PD-1 (nivolumab or

pembrolizumab) or anti-PD-L1 therapy (atezolizumab), either as

monotherapy or in combination with chemotherapy, at Kurume

University Hospital (Kurume, Japan) and Kanagawa Cancer Center

(Yokohama, Japan). The patient cohort partially overlapped with that

of a previous study conducted by our group (21, 22). The cohort

consisted of 179 patients enrolled between February 2016 and August

2019. The clinical course of the enrolled patients was followed until

July 2024. The patient characteristics are summarized in Figures 1B–

D, and Table 1. Tumor PD-L1 expression was assessed via

immunohistochemical staining of paraffin-embedded tumor

sections using anti-PD-L1 monoclonal antibodies (clone E1L3N:

Cell Signaling Technology, Danvers, MA, USA and clone 22C3:

Agilent Technologies/Dako, Carpinteria, CA, USA). For most

patients, PD-L1 expression was evaluated in tumor specimens

collected prior to first-line therapy. This analysis was also done in

patients who received ICIs as second- or subsequent-line treatment.

Clinical response was evaluated based on the Response Evaluation
TABLE 1 Summary of patient characteristics in the study.

Characteristic Value

Age (years), mean (SD) 69.2 (8.0)

Sex, n (%)

Female 44 (24.6)

Male 135 (75.4)

BMI, mean (SD) 21.9 (3.5)

Smoking, n (%)

Former 143 (79.9)

Never 36 (20.1)

Stages, n (%)

Stage III 32 (17.9)

Stage IV 99 (55.3)

Recurrence 48 (26.8)

Histology, n (%)

Non-squamous 127 (71.0)

Squamous 52 (29.0)

Driver mutation, n (%)

Wild type 150 (83.8)

EGFR 22 (12.3)

(Continued)
F
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TABLE 1 Continued

Characteristic Value

ALK 2 (1.1)

Unknown 5 (2.8)

Tumor PD-L1 expression, n (%)

< 1% 41 (22.9)

1% – 49% 38 (21.2)

≥ 50% 77 (43.0)

Unknown 23 (12.8)

ECOG performance status, n (%)

0 76 (42.5)

1 71 (39.7)

2 26 (14.5)

3 6 (3.4)

Treatment line, n (%)

First line 54 (30.2)

Further lines 125 (69.8)

Prior therapy, n (%)

Chemotherapy 107 (59.8)

Chemotherapy and surgery 2 (1.1)

Chemotherapy and radiation 13 (7.3)

Surgery 3 (1.7)

Radiation 6 (3.4)

None 48 (26.8)

Treatment regimen, n (%)

Monotherapy 128 (71.5)

Combination therapy 51 (28.5)

Best clinical response (RECIST), n (%)

Partial response 56 (31.3)

Stable disease 37 (20.7)

Progressive disease 86 (48.0)

Progression-free survival (days), median (95% Cl) 131 (90–182)

Overall survival (days), median (95% CI) 468 (385–676)

Occurrence of irAE, n (%)

None 110 (61.4)

Yes 69 (38.6)

ir-pneumonitis 21 (11.7)
ALK, anaplastic lymphoma kinase; BMI, body mass index; ECOG, Eastern Cooperative
Oncology Group; EGFR, epidermal growth factor receptor; irAE, immune-related adverse
event; RECIST, Response Evaluation Criteria in Solid Tumors.
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Criteria in Solid Tumors (RECIST) version 1.1. IrAEs were defined

according to the Common Terminology Criteria for Adverse Events

(CTCAE) v5.0 grading scale. This study was conducted in accordance

with the principles of the Declaration of Helsinki and was approved

by the Institutional Review Boards of Kurume University Hospital

(approval numbers: 15210 and 19240) and Kanagawa Cancer Center

(approval number: 28-85). Informed consent was obtained from all

enrolled patients after the nature of the study and its possible

consequences were explained.
2.2 Plasma antibody profiling

Peripheral blood samples were collected in heparin-coated tubes

before and 6 weeks after therapy initiation. Plasma was separated from

whole blood via centrifugation and stored at −80 °C until analysis.

Plasma autoantibodies were assessed via the AlphaScreen assay using

two human protein arrays generated using a wheat germ cell-free

protein production system (23, 24). The HuPEX protein array,

containing 19,713 human proteins, was purchased from CellFree

Science Co., Ltd. (Yokohama, Japan). The Ehime-Kazusa protein

array, consisting of 4,144 human proteins, was prepared in-house

using a cell-free protein synthesis reagent. Gene resources for the

protein array were provided by the Kazusa DNA Research Institute

(Kisarazu, Japan) (25). Each cDNA clone was subcloned into the pEU-

E01-FLAG-GST-K1–02 vector (26). In vitro transcription and

translation were performed using the WEPRO7240 Expression Kit

(CellFree Science) as previously described (27, 28). Briefly, the DNA

fragments coding for each protein were amplified via PCR and used as

templates for in vitro transcription. The mRNA generated by in vitro

transcription was used as a template for in vitro translation (total

reaction mixture, 5 μL; components, 2.5 μL mRNA; 1.67 μL WEPRO

7240 wheat germ extract; 0.14 μL creatine kinase [20 mg/mL]; and 0.11

μL RNase inhibitor) was layered below 50 μL SUB-AMIX SGC substrate

solution in a 384-well plate and incubated at 20°C for 18 h. The

translated protein arrays were diluted 2-fold with AlphaScreen buffer

(100 mMTris-HCl, pH 8.0; 0.01% Tween 20; 1 mg/mL BSA), aliquoted

into 384-well plates, flash-frozen in liquid nitrogen, and stored at −80°C.

The AlphaScreen assay was performed as previously described,

with minor modifications (27). Specificity was achieved through two

independent high-affinity binding steps (1): glutathione-coated donor

beads that selectively bind GST-tagged recombinant antigens, and (2)

Protein G–conjugated acceptor beads that specifically recognize

human IgG, thereby minimizing nonspecific interactions. For

primary screening, autoantibody reactivity was assessed after

incubating 10 paired plasma samples from patients with NSCLC

(five pre- and post-ICI treatment, respectively) with a library of

23,857 human proteins. Plasma samples were diluted 1:667 in

AlphaScreen reaction buffer (100 mM Tris-HCl, pH 8.0, 0.01% [v/

v] Tween 20, 0.1% [w/v] bovine serum albumin), and 20 μL diluted

plasma was dispensed into each well of OptiPlate-384 plates (Revvity,

Yokohama, Japan) using a Liquidator96 pipetting system. Next, 1 μL

of each FLAG-GST tagged protein was transferred from 384-well

stock plate to the reaction plate using JANUS automated dispensing

workstation equipped with a NanoHead 384-channel microsyringe
Frontiers in Immunology 05
head (Revvity). Subsequently, 9 μL detection mixture (containing

0.06 μL AlphaScreen GSH Donor Beads [Revvity] and 0.06 μL

Protein G-conjugated AlphaScreen acceptor beads in reaction

buffer) was added to the reaction plates with a FlexDrop dispenser

(27). After incubation at 25°C for 1 h in the dark, AlphaScreen signals

were detected using an EnVision plate reader (Revvity).

For secondary screening, 358 paired plasma samples from 179

patients with NSCLC (pre- and post-treatment) were tested for the 59

selected proteins, each in quadruplicate. All reactions were performed

on AlphaPlate-1536 plates (Revvity). Three microliters of protein

dilution containing 0.05 μL FLAG-GST tagged protein was dispensed

into an AlphaPlate 1536 plate (Revvity) via a Multidrop Combi nL

(Thermo Fisher Scientific, Tokyo, Japan). All 358 plasma samples

were diluted 1:40 and dispensed into a 384 well plate. Subsequently,

0.2 μL of the 1:40 diluted plasma from each well of these 384-well

plates was dispensed into the 1536-well reaction plates via a JANUS

workstation with a NanoHead. Finally, 1.8 μL detection mixture

(containing 0.01 μL AlphaScreen GSH Donor Beads and 0.01 μL

Protein G-conjugated AlphaScreen acceptor beads) was added to the

reaction plates via a Multidrop Combi nL. After incubation at 25°C

for 1 h in the dark, AlphaScreen signals were detected with an

EnVision plate reader. The secondary screening minimized inter-

plate variability by ensuring that paired plasma samples (pre- and

post-ICI) from the same patient were analyzed on the same plate. To

further minimize experimental variability, all assays were conducted

on a single 1536-well plate uniformly coated with the same antigen.

Plasma samples from all patients were dispensed in quadruplicate.

This design enabled direct assessment of treatment-induced changes

both within individual patients and across the cohort, while

controlling for inter-plate variability.
2.3 Machine learning and statistical analysis

All analyses were performed using R (version 4.4.1; https://

www.r-project.org). Univariate binary logistic and Cox

proportional hazards regression analyses were performed using

the glm function (R Basic package). P-values were derived using

Wald z-tests and subsequently adjusted for multiple comparisons

using the Benjamini–Hochberg false discovery rate (FDR)

procedure. To mitigate overfitting in multivariate predictive

modeling, we applied elastic net (EN) regularized regression and

random forest (RF) regression for binary outcome variables (irAE,

ir-pneumonitis, and treatment response), and Cox proportional

hazards regression with elastic net regularization (EN-Cox) and

random survival forest (RSF) for survival outcomes (PFS and OS)

within a machine learning framework (21). The cohort was

randomly stratified into training (80%) and validation (20%)

groups. Model development and hyperparameter optimization

were conducted using nested cross-validation (CV) exclusively on

the training set. The final models were subsequently retrained on

the entire training set and independently evaluated on the

validation set, maintaining a strict separation between the

development and evaluation datasets to prevent data leakage. For

EN regression, hyperparameter tuning (a = 0.5 for balanced L1/L2
frontiersin.org
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regularization) was performed using 10-fold CV via the cv.glmnet

implementation (glmnet package), optimizing the regularization

parameter l to minimize classification error. The l value yielding

minimum CV error was selected for final model training, followed

by external validation on the holdout set. For the RF regression,

feature selection was performed via sequential variable inclusion

based on importance rankings, with variable importance assessed

using the mean Gini index (randomForest package). The optimal

feature subset (important factors) was identified by maximizing

predictive accuracy during stepwise variable addition. Model

performance was assessed using leave-one-out cross-validation

(LOO-CV) of the training set with discriminatory power

quantified by the area under the receiver operating characteristic

curve (AUC). All RF implementations utilized an ensemble of 1,000

decorrelated decision trees with the minimum node purity set to 1,

following established methodologies in high-dimensional

regression (29). Optimization of the model cutoff value was

performed by maximizing Youden’s J statistic (sensitivity +

specificity - 1), implemented through the coords function in R.

Permutational multivariate analysis of variance (PERMANOVA)

was performed using the Adonis function (vegan package).

Nonparametric comparisons were performed using the Wilcoxon

signed-rank test via the wilcox.test function. Survival analyses

included Kaplan–Meier curve generation with log-rank testing,

alongside Cox proportional hazards modeling, executed using the

survival and survminer packages in R.
3 Results

3.1 Patient characteristics

As shown in Figure 1 and Table 1, of the 179 patients with

NSCLC included in this study, 128 (71.5%) received anti-PD-1/PD-

L1 monotherapy and 51 (28.5%) received combination therapy with

chemotherapy. The best overall response was partial response (PR)

in 56 patients (31.3%), stable disease (SD) in 37 patients (20.7%),

and progressive disease (PD) in 86 patients (48.0%). IrAEs occurred

in 69 patients (38.6%) and ir-pneumonitis was observed in 21

patients (11.7%). The median PFS in the cohort was 131 days and

the median OS was 468 days. Figure 1C illustrates PFS across the

clinical subgroups. No significant differences in PFS were observed

between patients who received combination therapy and those who

received monotherapy (hazard ratio [HR] = 0.95, p = 0.786).

Patients in the responder group (PR + SD) demonstrated

significantly prolonged PFS compared to those in the PD group

(HR = 0.12, p < 0.001). Similarly, patients who developed irAEs had

a longer PFS than those who did not (HR = 0.52, p < 0.001).

However, patients with ir-pneumonitis did not show a significant

difference in PFS compared to those without ir-pneumonitis (HR =

0.74, p = 0.225). Figure 1D shows OS data across the same

subgroups. Consistent with the PFS results, the OS did not differ

significantly between the ICI monotherapy and combination

therapy (HR = 0.92, p = 0.683) groups. The responder group

exhibited significantly improved OS compared with the PD group
Frontiers in Immunology 06
(HR = 0.27, p < 0.001). Additionally, patients with irAEs had a

longer OS than those without irAEs (HR = 0.69, p = 0.0377). In

contrast, patients who developed ir-pneumonitis showed no OS

benefit from treatment (HR = 1.19, p = 0.498).
3.2 Circulating autoantibody titers exhibit a
predominant decrease during PD-1/PD-L1
blockade

For primary screening, we used AlphaScreen to quantify plasma

IgG antibodies against approximately 24,000 biotinylated proteins

in pre- and post-treatment plasma from five patients with NSCLC

who developed ir-pneumonitis during ICI treatment. Based on pre/

post signal ratios, 37 antibodies showed significant changes (p <

0.05, Student’s t-test; fold changes < 0.7 or > 1.4). To offset the

limited sample size, 22 additional antibodies were included due to

notable fold changes and prior associations with immune-related

pathways, cancer biology, or ICI responses reported in the

literature. In total, 59 antibodies were selected for further analysis

(Supplementary Table S1).

In secondary screening, these 59 candidates were quantified in

pre- and post-treatment plasma from a formal cohort of 179 patients.

A volcano plot (Figure 2A) illustrates changes in CAAB levels before

and after anti-PD-1/PD-L1 therapy: 53 decreased (average log2-

transformed fold-change < 0), 30 significantly (p < 0.05), including

BASP1, ITGAE, CPB1, and CD200 autoantibodies. Six increased

(average log2-transformed fold-change > 0), with two autoantibodies

against CASP10 and SCGN reached statistical significance.
3.3 Chemotherapy exposure as the
predominant determinant of circulating
autoantibody repertoire changes

We calculated the log2-transformed fold-change for each

CAAB, designating this dataset as the dynamic repertoire. Clinical

relevance of the CAAB dynamic repertoire by computing

multivariate effect sizes for treatment regimen, treatment line,

PD-L1 expression, occurrence of irAE and ir-pneumonitis,

therapeutic response, PFS, and OS using PERMANOVA (30). As

shown in Figure 2B, the CAAB dynamic repertoire exhibited a

significant association only with chemotherapy exposure among all

clinical factors assessed (highest R² = 2.5%, p < 0.05), indicating

marked sensitivity to anticancer agent administration. Regarding

clinical baseline characteristics, CAAB dynamics demonstrated a

stronger effect size with PD-L1 expression than with the line of

therapy, although without significance. In the present cohort, the

therapeutic decisions (monotherapy versus combination therapy)

were directly influenced by PD-L1 expression (Figure 2C) (31).

Among the five treatment outcome measures—irAEs, ir-

pneumonitis, RECIST-assessed response, PFS, and OS—the effect

size of the association with CAAB dynamics decreased in the

following order: irAEs, ir-pneumonitis, response, PFS, and OS,

although none reached statistical significance (Figure 2B). To
frontiersin.org
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further elucidate which CAABs exhibited the strongest association

with concomitant anticancer agent administration during ICI

therapy, we performed univariate logistic regression analyses

stratified by anticancer agent use. CAABs with a significance

threshold of p < 0.05 in the regression analyses are summarized

in Figure 2D. Nine CAABs retained statistical significance after

FDR correction: antibodies against ZNF551, S100A7A, KRT8,

CASP10, IRF4, CCDC3, DBX1, SCGN, and KLHL18. Several
Frontiers in Immunology 07
other CAABs exhibited notable associations, including PKDCC,

SOX1, UBTF, BIRC3, WDR24, IL7, BASP1, CPB1, IL4, FBXL6,

LAMA4, CXCL1, CSF2, GATAD2B, PFKFB4, and F13B. Plasma

levels of these autoantibodies were significantly modulated by

anticancer agent coadministration. Violin plots (Figure 2D)

illustrate distinct expression patterns. ZNF551-targeting CAABs

decreased after monotherapy but increased with combination

therapy. Similarly, S100A7A and KRT8 CAABs decreased with
FIGURE 2

Dynamics of 59 protein-specific circulating autoantibodies (CAABs) before and after ICI therapy (n = 179). (A) Volcano plot illustrating differential
antibody responses: Wilcoxon signed-rank test p-values; p.adj indicates false discovery rate (FDR) correction using the Benjamini-Hochberg method.
(B) PERMANOVA analysis quantifying inter-individual variation in CAAB dynamics explained by background factors (PD-L1 expression and treatment
line), treatment regimens (monotherapy vs. combination therapy), and treatment outcomes (irAE occurrence, ir-pneumonitis development, RECIST-
assessed response, PFS, and OS). Chemotherapy exposure emerged as the only significant (p < 0.05) modulator of CAAB dynamics among ICI-
related clinical parameters; no factor showed p.adj < 0.05. (C) Association between PD-L1 expression (≥ 50%: High; < 50%: Low) and treatment
options in the present cohort: Chi-square test p-values; ***p < 0.001. (D) Univariate logistic regression evaluating chemotherapy-associated CAABs:
Wald test p-values; all significant CAABs (p < 0.05) are displayed; p.adj indicates Benjamini-Hochberg-adjusted FDR. Violin plots demonstrate group-
wise comparisons using Wilcoxon rank-sum test significance levels: ****p < 0.0001; ***p < 0.001; **p < 0.01; *p < 0.05. ACA, anticancer agent;
Combi, combination therapy; FDR, false discovery rate; ICI, immune checkpoint inhibitor; irAE, immune-related adverse event; Mono, monotherapy;
NA, not available; ns, not significant; OS, overall survival; PERMANOVA, permutational multivariate analysis of variance; PFS, progression-free survival;
Pneu, ir-pneumonitis; TL, treatment line.
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monotherapy, but remained stable before and after combination

therapy. CASP10 autoantibody levels increased in both groups,

albeit less markedly in monotherapy.
3.4 Circulating autoantibody dynamics
associated with treatment outcomes under
anti-PD-1/PD-L1 monotherapy

Through the above analyses, we identified that the treatment

regimen was the primary significant factor influencing the dynamic

repertoire of CAAB during ICI therapy. Given the non-negligible

influence of anticancer agents, we further examined the association

between CAAB fluctuation patterns and treatment outcomes in a

subgroup of patients receiving ICI monotherapy. To identify the

autoantibodies specifically associated with each treatment outcome

(irAEs, ir-pneumonitis, treatment response, PFS, and OS), we
Frontiers in Immunology 08
performed individual univariate logistic/Cox regression analyses for

each factor. Figure 3A shows that in patients receiving ICI

monotherapy, CAABs targeting DBX1, BIRC3, BASP1, STAT4, and

SPATC1L were significantly associated with the occurrence of irAEs.

The irAE-positive subgroup exhibited more pronounced post-

treatment reductions in autoantibody titers than the controls.

Figure 3B presents the univariate regression analyses of

pneumonitis-associated CAABs, revealing significant correlations

for autoantibodies targeting CXCL2, ROPN1, SPATC1L, FURIN,

and DBX1. Consistent with the irAE pattern, patients with ir-

pneumonitis showed greater treatment-related decreases in CAABs,

with CXCL2 showing the greatest reduction. Regarding the

therapeutic efficacy, response-associated CAABs included

autoantibodies against SNCA, CCDC3, ECSCR, STAT4, and

BIRC3 (Figure 3C). The treatment responders displayed a

significantly greater absolute reduction in CAAB levels after ICI

administration. PFS- and OS-associated CAABs included
FIGURE 3

Dynamics of 59 protein-specific circulating autoantibodies (CAABs) during ICI therapy in patients receiving monotherapy (n = 128). Univariate logistic
regression was used to evaluate (A) irAE-, (B) ir-pneumonitis-, and (C) RECIST-assessed response-associated CAABs; univariate Cox regression was
used to evaluate (D) PFS- and (E) OS-associated CAABs. All significant CAABs (p < 0.05, Wald test) are displayed; no CAABs showed. p.adj < 0.05
after Benjamini-Hochberg FDR adjustment. Violin plots demonstrate group-wise comparisons using Wilcoxon rank-sum test significance levels: **p
< 0.01; *p < 0.05. (F) Summary Venn diagram of CAABs significantly associated with irAE, ir-pneumonitis, response, PFS, and OS. FDR, false discovery
rate; ICI, immune checkpoint inhibitor; irAE, immune-related adverse event.
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autoantibodies against F13B, ECSCR, and CXCL1 (Figures 3D, E).

The Venn diagram in Figure 3F illustrates both shared and unique

CAABs across different treatment outcomes. Autoantibodies against

BIRC3 and STAT4 were common to irAEs and treatment responses,

whereas SPATC1L andDBX1were associated with both irAEs and ir-

pneumonitis. Treatment response was characterized by distinct

autoantibodies targeting SNCA, CCDC3, and ECSCR, with ECSCR

additionally shared with PFS. Autoantibodies against CXCL1 were

specifically associated with OS, while ir-pneumonitis showed unique

associations with CXCL2, ROPN1, and FURIN, highlighting the

differential CAAB dynamics underlying these outcomes.
3.5 Machine learning for prediction of
treatment outcomes using circulating
autoantibody dynamics

Next, we assessed the potential of CAAB as a predictive

biomarker for treatment outcomes associated with anti-PD-1/PD-

L1–based ICI therapy. The predictive performance of CAAB

dynamics for five treatment outcomes across the overall cohort

and six subgroups defined by three stratification variables is

summarized in Table 2. As shown, models using the entire cohort

without stratification demonstrated limited predictive accuracy. In

contrast, stratified analyses revealed notable performance: for irAE

prediction, the EN model in the high PD-L1 subgroup attained

AUCs of 0.81 and 0.68 for the training and test sets, respectively

(Figure 4); for ir-pneumonitis prediction, the RF model in the

monotherapy subgroup achieved AUCs of 0.83 and 0.88 (Figure 5);

for response prediction, the EN model in the combination therapy

subgroup exhibited AUCs of 0.90 and 0.79; and in the first-line

treatment subgroup, the RF model achieved AUCs of 0.79 and 0.89

(Figure 6). By contrast, the predictive capacity of CAAB dynamics

for PFS and OS remained limited.

In the high PD-L1 subgroup, the EN model selected five CAABs

(RNASE2, FGFR3, PKDCC, DBX1, and CD40). The optimized

cutoff value of 0.35 yielded a specificity of 0.86 and a sensitivity of

0.72 for predicting irAEs (Figure 4). the RF model with the top three

features (PARK2, KLHL18, CXCL2) achieved the best performance,

with a cutoff of 0.09 (specificity 0.86, sensitivity 0.75) for predicting

ir-pneumonitis (Figure 5). For treatment response in the

combination therapy subgroup, the EN model highlighted nine

CAABs (HTATSF1, NKIRAS1, IL17A, ITGBL1, LAMA4, IRF4,

BACH2, HES1, PKDCC), with a cutoff of 0.49 (specificity 0.79,

sensitivity 0.91) (Figures 6A–C). In the first-line treatment

subgroup, the RF model selected seven CAABs (CCDC3, STAT4,

ECSCR, PFKFB4, F13B, SNCA, FURIN), with a cutoff of 0.55

(specificity 0.92, sensitivity 0.65) (Figures 6D–F). Both models

demonstrated favorable predictive performance for treatment

response within their respective subgroups.

These results indicate that patient background and treatment

options distinctly shape CAAB dynamics, and that capturing

subset-specific dynamic signatures may enable effective prediction

of treatment outcomes across different clinical contexts or

therapeutic regimens.
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4 Discussion

Characterizing the dynamic changes in CAAB profiles during

ICI therapy provides critical insights into the immunomodulatory

effects of ICIs on host immunity. In this study, we initially identified

59 autoantibodies that exhibited substantial alterations during anti-

PD-1/PD-L1 treatment in a primary screening of peripheral blood

samples from five patients with NSCLC who developed ir-

pneumonitis following ICI therapy. These candidate CAABs were

subsequently quantified in plasma samples from an expanded

cohort of 179 patients. PERMANOVA was applied to

comprehensively assess the global associations between CAAB

dynamics and eight clinical parameters, including background

factors (PD-L1 expression and treatment line), treatment

regimens (chemotherapy exposure), and treatment outcomes

(irAE occurrence, ir-pneumonitis development, RECIST-assessed

response, PFS, and OS). For patients receiving ICI monotherapy,

univariate logistic or Cox regression analyses were performed to

identify individual CAABs significantly associated with each

treatment outcome factor. Finally, within a machine learning

framework incorporating rigorous robustness evaluations, we

examined the predictive potential of CAAB dynamics for five

treatment outcomes in the overall cohort and across six
Frontiers in Immunology 10
subgroups defined by three stratification variables, and established

four optimized CAAB signatures relevant to ICI treatment

outcomes. Among all clinical factors assessed, the CAAB dynamic

repertoire showed a significant association solely with

chemotherapy exposure, highlighting its pronounced sensitivity to

anticancer drug administration. Several mechanisms may explain

this phenomenon. For example, cytotoxic anticancer agents can

induce immunogenic cell death, such as apoptosis and necrosis, in

both tumor and healthy cells, resulting in the release of self-

antigens. This antigen release may enhance antigen presentation

by antigen-presenting cells and promote a pro-inflammatory

environment, ultimately contributing to the breakdown of

immune tolerance and activation of autoreactive lymphocytes. In

addition, some anticancer agents have been reported to reduce

immunosuppressive cell populations, including regulatory T cells

and myeloid-derived suppressor cells (MDSCs), thereby facilitating

the production of autoantibodies (32). CAAB dynamics also

demonstrated a relatively strong, albeit non-significant,

correlation with PD-L1 expression. Considering the substantial

influence of PD-L1 status on treatment options in the present

study cohort, further investigations are warranted to clarify the

potential association between PD-L1 expression and CAAB

dynamics during ICI therapy.
FIGURE 4

Predictive modeling of irAE occurrence using dynamic profiles of circulating autoantibodies (CAABs) in the high PD-L1 subgroup (n = 77). In the
elastic-net (EN) regression-based models: (A) the penalty hyperparameter (l) was determined through 10-fold cross-validation (CV) across a range
of l values; the optimal l (l.min) corresponding to the minimum CV classification error was selected. (B) CAABs selected by EN at l.min. (C) ROC
curves derived from the training and test sets, with AUCs of 0.81 and 0.68, respectively; the model threshold (C*) was optimized using the maximum
Youden’s J statistic, yielding a sensitivity of 0.86 and specificity of 0.72. AUC, area under the receiver operating characteristic curve; CV, cross-
validation; EN, elastic-net; ROC, receiver operating characteristic curve; Sens, sensitivity; Spec, specificity.
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In the monotherapy group, univariate logistic and Cox

regression analysis revealed associations between CAAB dynamics

and treatment outcomes during ICI therapy, highlighting both

shared and distinct immunological features underlying different

clinical endpoints. Although irAEs have been proposed as a

potential clinical marker of ICI responsiveness, the exact nature

and extent of this relationship remain incompletely understood (1,

33–36). This biological distinction underscores the importance of

methodologically separating irAE-related signals from those linked

to therapeutic efficacy, and highlighting the need for comprehensive

benefit-to-risk assessment to guide clinical decision-making (37).

Notably, CAABs against BIRC3 and STAT4 were associated with

both treatment response and irAE occurrence, suggesting that the

underlying immune mechanisms linked to these antibodies may

contribute to therapeutic efficacy, while also driving adverse

immune activation. In contrast, CAABs against SNCA, CCDC3,

and ECSCR were significantly associated only with treatment

response, indicating the possible existence of tumor-specific

immune regulatory pathways independent of irAEs. These

findings offer a novel perspective for disentangling treatment

efficacy from immune-related toxicity, thereby supporting

optimized benefit-to-risk assessments in clinical practice.
Frontiers in Immunology 11
In addition, we observed that the majority of selected CAABs

showed decreased plasma concentrations following ICI treatment.

Previous studies have reported that blocking PD-1/PD-L1 enhances

the maturation of PD-1-expressing T follicular helper (Tfh) cells on

B cells, thereby augmenting antibody production against exogenous

antigens (38, 39). However, clinical data suggest divergent effects

depending on the ICI class. In a cohort of 39 patients, anti-CTLA-4

monotherapy or CTLA-4–containing combinations were associated

with increased circulating plasmablasts (CD38+CD27+), whereas

anti-PD-1 monotherapy was linked to reduced plasmablast

numbers (20). Similarly, a study involving 48 patients reported

that anti-CTLA-4 treatment generally led to increased CAAB levels,

whereas anti-PD-L1 treatment tended to reduce them (15). More

recently, statistical analyses of CAABs in 102 patients corroborated

these trends (16). Although the mechanisms underlying these

observations are poorly understood, these divergent outcomes

may partly reflect the distinct sites and timing of immune

modulation. CTLA-4 inhibition acts primarily during the priming

phase within secondary lymphoid organs, promoting polyclonal B-

cell activation, including autoreactive clones, and sustaining

plasmablast output and survival (9, 20). In contrast, PD-1/PD-L1

blockade acts mainly within germinal centers and peripheral tissues,
frontiersin.o
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FIGURE 6

Predictive modeling of treatment response using dynamic profiles of circulating autoantibodies (CAABs) in the (A–C) combination therapy subgroup
(n = 51) and (D–F) first line subgroup (n = 54). In the elastic-net (EN) regression-based models of combination therapy subgroup: (A) the penalty
hyperparameter (l) was determined through 10-fold cross-validation (CV) across a range of l values; the optimal l (l.min) corresponding to the
minimum CV classification error was selected. (B) CAABs selected by EN at l.min. (C) ROC curves derived from the training and test sets, with AUCs
of 0.90 and 0.79, respectively; the model threshold (C*) was optimized using the maximum Youden’s J statistic, yielding a sensitivity of 0.79 and
specificity of 0.91. In the random forest (RF)-based models of first line subgroup: (D) predictive accuracy during stepwise addition of CAABs
according to their importance ranked by the Gini index; the RF model using the top seven CAABs achieved the highest predictive accuracy.
(E) CAABs selected by the RF model. (F) ROC curves derived from the training and test sets, with AUCs of 0.79 and 0.89, respectively; the model
threshold (C*) was optimized using the maximum Youden’s J statistic, yielding a sensitivity of 0.92 and a specificity of 0.65. AUC, area under the
receiver operating characteristic curve; CV, cross-validation; EN, elastic-net; RF, random forest; ROC, receiver operating characteristic curve; Sens,
sensitivity; Spec, specificity.
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enhancing the quality of Tfh–mediated B-cell help rather than

inducing global plasmablast expansion, and favoring transient

expansion of high-affinity, antigen-specific clones (38). Such

responses may wane once the antigenic stimulus declines.

Another speculative mechanism is local immune-complex

formation within tumor or inflamed tissues, which could promote

antibody sequestration or consumption, thereby lowering

circulating titers despite ongoing local humoral activity. However,

these tissue-level antibody dynamics have not been directly

demonstrated in the context of PD-1 versus CTLA-4 blockade,

meriting further mechanistic investigation.

The best-performing model for predicting ir-pneumonitis was

the RF model in the monotherapy subgroup. Identified CAABs

targeting CXCL2, PARK2, and KLHL18 may contribute to

pathogenic immune hyperactivation, thus warranting further

investigation. Our previous findings indicated that decreased

plasma CXCL2 levels after ICI treatment are associated with irAE

occurrence in patients with NSCLC (40). CXCL2 promotes the

recruitment of MDSCs via CXCR2-mediated signaling, thereby

contributing to the establishment of an immunosuppressive

microenvironment (41, 42). In contrast, reduced CXCL2 levels

may reflect a shift toward a pro-inflammatory milieu. Among

patients who developed ir-pneumonitis, we observed lower levels

of CXCL2-specific CAABs. This reduction may reflect diminished

antigen-driven antibody production or sequestration within

CXCL2–antibody complexes, resulting in lower detectable plasma

levels. Further work is required to test these hypotheses and clarify

their relevance to irAE pathogenesis.

The overlapping associations of BIRC3 and STAT4 with both

therapeutic efficacy and the occurrence of irAEs, together with the

selective link of CXCL2 with pneumonitis, suggest the existence of a

shared yet bi-directional immunoregulatory axis. BIRC3, a

regulator of nuclear factor kappa-light-chain-enhancer of

activated B cell (NF-kB)-dependent transcription, and STAT4, a

mediator of IL-12-driven type 1 helper T cell (Th1) polarization and

type II interferon (IFN-g) production, can amplify systemic pro-

inflammatory signaling that enhances anti-tumor immunity while

heightening susceptibility to multi-organ irAEs (43, 44). In contrast,

CXCL2 recruits CXCR2+ MDSCs, providing a counter-regulatory

brake on inflammation, with pulmonary tissue particularly

dependent on this chemokine axis (45). In our cohort, reductions

in BIRC3- and STAT4-specific autoantibodies were associated both

with enhanced therapeutic efficacy and increased irAEs. One

plausible explanation is that early activation of NF-kB/Th1
programs transiently augments antigen presentation and

autoantibody production, followed by antigen clearance or a shift

toward cell-mediated immunity, leading to lower autoantibody

titers despite sustained pathway activity. By contrast, decreases in

CXCL2-specific autoantibodies were unrelated to efficacy but

correlated with pneumonitis, consistent with the idea that

disrupting the CXCL2–CXCR2 axis removes a local anti-

inflammatory safeguard in the lung, creating a predisposition to

organ-restricted toxicity without broadly influencing systemic anti-
Frontiers in Immunology 13
tumor immunity (45). These findings are hypothesis-generating

and highlight the need for prospective validation through

longitudinal protein measurements, immune cell phenotyping,

and pathway-level analyses.

For clinical translation of the high-performance predictive

models identified in this study, peripheral blood samples should

be collected prior to and six weeks following the initiation of ICI

therapy. Titers of the CAABs selected by each model are then

quantified, fold changes calculated, and incorporated into the model

to generate a predictive score. Patients with scores exceeding the

model-specific optimal threshold would be classified as at risk for

adverse events or as potential responders. Future studies aimed at

optimizing blood sampling intervals may further improve the

timeliness and accuracy of these predictions.

This study has several limitations. The initial screening phase

was restricted to five patients due to practical and financial

constraints, which inevitably narrows the scope of this analysis.

Identifying approximately 60 CAABs from a proteome-wide panel

encompassing over 20,000 potential targets posed a substantial

methodological challenge. Given the limited sample size, the

presence of variability and possibility of overlooking relevant

antigens cannot be excluded. As a result, the present findings

provide a partial snapshot of the broader treatment-induced

alterations in the antibody repertoire. The specificity of the

autoantibody detection platform and selection strategy precluded

the use of suitable publicly available datasets, preventing evaluation

of model performance across independent or multi-ethnic

populations. To achieve a more comprehensive understanding of

CAAB dynamics in the context of ICI therapy, future investigations

should involve larger and more diverse patient populations and

employ unbiased, high-throughput proteomic profiling strategies.
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