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Glioblastoma is considered the most common and lethal form of brain cancer.
Despite tremendous progress in glioblastoma therapeutics, the profound intra-
and inter-tumoral heterogeneity of glioblastoma tumors, the difficulty of agents
to cross the blood-brain barrier (BBB), the development of drug resistance as well
as the immunosuppressive tumor microenvironment (TME) predominantly
account for the failure of existing conventional and targeted therapies.
Therefore, there is a growing necessity to decipher the complexity of the TME
that promotes immunosuppression and to discover innovative strategies
targeting both the tumor and its TME to improve patient treatment outcomes.
In this comprehensive review, we present the latest evidence implicating various
components of the TME in regulating the efficacy of immunotherapies. We also
discuss the current challenges and opportunities of immunotherapy in treating
glioblastoma, including ongoing clinical trials using immune checkpoints
inhibitors (ICls), CAR-T cell therapy, vaccines, cytokine therapy and
oncolytic viruses.
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1 Introduction

Glioblastoma, formerly known as glioblastoma multiforme (GBM), is defined as a
WHO Grade 4 adult-type diffuse glioma, indicating that is a fast-growing tumor (1). The
term ‘glioblastoma’ is now used for the Isocitrate dehydrogenase (IDH) wildtype tumors
only, while the IDH-mutant tumors have been renamed to “Astrocytoma, IDH-mutant,
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CNS WHO grade 4”. For simplicity, in this review, the term
‘glioblastoma’ will be used throughout for IDH wildtype tumors,
unless otherwise specified.

Glioblastoma accounts for around half of all the CNS tumors,
making it the most common primary malignancy of the adult brain
(2). Although the causes of glioblastoma are not fully understood,
evidence suggests that age, obesity, exposure to ionizing radiation
and hereditary genetic conditions such as neurofibromatosis (NF),
Li-Fraumeni syndrome, tuberous sclerosis (TSC), Turcot
Syndrome, and Lynch syndrome, are risk factors for developing
the disease (3, 4). The clinical symptoms include cognitive disorder
and seizures, slowly progressive impairments of the CNS (motor
weakness, sensory and memory loss, visual deficits and speech
difficulties), headaches, nausea and vomiting, and changes in
personality (5-7). Further to the presentation of these clinical
symptoms, glioblastoma is diagnosed through radiological exams,
including mostly magnetic resonance imaging (MRI), but also CT
(computed tomography) scans, and positron emission tomography
(PET) (5, 8-12). Finally, a diagnosis of GMB in adults is made if
there is evidence of necrosis, microvascular proliferation, mutation
in the telomerase reverse transcriptase (TERT) promoter, gene
amplification of the epidermal growth factor receptor (EGFR), or
+7/-10 chromosome copy number changes (1). Classification of
glioblastoma is based on histological features, with the three main
histological variants being giant cell glioblastoma, gliosarcoma and
epithelioid glioblastoma, as well as several histological patterns (1).

Glioblastoma is a highly aggressive and lethal tumor, with a
median overall survival of 15-18 months, with only 3% of patients
having a progression-free survival (PFS) of more than 5 years (2, 13,
14). Current glioblastoma standard of care therapies include
surgery, radiation therapy and temozolomide (TMZ)
administration (13). However, TMZ’s efficacy is limited due to
systemic toxicity and development of resistance resulting in lack of
long-term efficacy and cure (15-17). Therefore, alternative
therapeutic strategies are being developed to tackle resistance or
improve immunotherapy for glioblastoma. Immunotherapy,
especially immune checkpoint blockage (ICB) using ICIs, has
revolutionized cancer therapy over the last few years, with
exceptional success in several cancer types (18, 19).
Unfortunately, initial trials in glioblastoma with ICIs have
revealed negative results (20, 21). This therapy failure has mainly
been attributed to the highly complex and immunosuppressive
glioblastoma TME, which comprises glioma and glioma stem cells
(GSCs), immune cells, cells of the nervous system, the brain
vascular system, and extracellular matrix (ECM) components (22,
23). Novel ICIs and immunotherapeutic approaches aiming to
overcome the challenges posed by the limited glioblastoma
immunogenicity are currently in development or being evaluated
in clinical trials. This review summarizes the current state of
immunotherapy in glioblastoma and discusses the underlying
mechanisms by which TME components affect its efficacy or can
be exploited for the identification of alternative immunotherapeutic
targets in the future.
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2 Available therapies for glioblastoma

The current standard of care for newly and recurrent diagnosed
patients of glioblastoma includes the removal of tumor to the
greatest extent that is safe for the patient, followed by
radiotherapy with concomitant chemotherapy (13). Other
therapeutic options include the alkylating agents Carmustine and
Lomustine, the monoclonal antibody Bevacizumab, and Tumor
Treating Fields (TTFiels).

2.1 Surgery

As recently reviewed (24), several neurosurgical strategies are
available, tailored for each patient according to the tumor volume
and location. These include resection of the tumor (supramaximal,
gross total, subtotal or near-total) and biopsy. Surgery not only
helps to minimize tumor volume and improve patients’ overall
survival (OS) but also allows surgeons to biopsy the tumor for
classification and to design the appropriate radiotherapy regime.
Maximal safe resection is recommended as the initial step in
treatment since it alleviates symptoms, enhances OS, and boosts
the effectiveness of adjuvant therapies.

2.2 Radiotherapy

Following surgery, radiotherapy is a cornerstone of
glioblastoma treatment and has been shown to increase OS (3).
Simple 2D and 3D radiotherapy techniques as well as more modern
approaches, such as intensity-modulated radiotherapy (IMRT), can
maximize the levels of radiation that reach the tumor site, while
minimizing off-targeting to non-cancerous areas of the brain, thus
reducing neurotoxicity and other adverse side effects. Following
radiotherapy, patients with favorable prognostic factors or
methylated O6-methylguanine-DNA methyltransferase (MGMT)
promoter, typically receive adjuvant chemotherapy, usually with
TMZ as discussed below. This combined approach is often referred
to as the Stupp regimen and it is considered the standard of care for
newly diagnosed glioblastoma (25).

2.3 Approved drugs and implant-based
therapy

2.3.1 Temozolomide

TMZ, commercially known as Temodar, has received FDA
approval for treating glioblastoma in 2005, based on its
improvement in overall OS (26). It belongs to the new class of
oral alkylating agents with an imidazole ring, with its chemical
designation being 3-methyl-4-oxoimidaz[5,1-d][1,2,3,5]tetrazine-
8-carboxamide (27-29). TMZ is a BBB penetrating pro-drug,
which gets hydrolyzed under physiological pH to its active drug
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form, methyltriazen-1yl imidazole-4-carboxamide (MTIC). The
drug modifies its targets by adding methyl groups in genomic
DNA in guanine and adenine, in N7 and 06, and N3 sites
respectively. Methylation causes DNA replication errors and
disruption of the mismatch repair (MMR) repair system, which
leads to DNA double-strand breaks and eventually programmed
cell death. Therefore, the clinical benefit of TMZ is significantly
influenced by the methylation of MGMT promoter; patients with
methylation on the MGMT promoter show a better response to
TMZ. While TMZ is generally well-tolerated, it is accompanied with
several side effects including hematological and hepatotoxicity and
others (30, 31). Furthermore, glioblastoma has several mechanisms
of resistance to TMZ, as reviewed elsewhere (15-17).

2.3.2 Carmustine (BCNU)

BCNU (Bischloroethyl Nitrosourea Carmustine) belongs to the
class of N-nitrosoureas [1,3-bis(2-chloroethyl)urea], a
monofunctional alkylating agent. It is clinically approved in two
forms for glioblastoma treatment. Firstly, intravenous (IV) BCNU
was approved in 1977 for treating recurrent glioblastoma, however
its use has declined due to the availability of more effective
treatments will less toxicity. Secondly, Carmustine Wafers (CWs)
marketed as Gliadel®, are biodegradable wafers that are implanted
in the surgical site during glioblastoma resection, and they release
carmustine locally. They were approved by the FDA for recurrent
GBM and malignant glioma in 1996 and 2003 respectively (32).
Their use is currently limited and remains a controversial topic
among neurosurgeons due to the potential side effect of pulmonary
fibrosis, and lack of significant evidence on its impact on the quality
of life, infections after surgery and possibility of adjuvant therapy
(33). In a recent meta-analysis study, Ricciardi et al. (2022),
evaluated the OS and progression-free survival (PES) in newly
high-grade glioma patients that received intraoperative
implantation of CWs, and concluded that CWs can significantly
improve OS, but patients must be carefully selected based on their
age and tumor volume to minimize side effects (34).

2.3.3 Lomustine (CCNU)

Lomustine, also known as CCNU (chloroethyl-cyclohexyl-
nitrosourea), is a monofunctional alkylating agent of the
nitrosourea family, that alkylates DNA and RNA, which triggers
cancer cell death through DNA and RNA cross-linking (35). It is
lipid-soluble and thus can successfully cross the BBB. It was FDA-
approved for the treatment of brain tumors in 1976, and it is still
being widely used for recurrent and progressive glioblastoma,
administered orally in 6 to 8 weeks intervals (36, 37). Lomustine
is given as monotherapy or in combination with procarbazine and
vincristine (PCV regime), and it is considered safe with well-
controlled side effects (37, 38). CCNU is increasingly considered
as the standard of care option for recurrent glioblastoma, as no
other treatment has demonstrated superior outcomes in controlled
clinical trials (39).
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2.3.4 Bevacizumab

Bevacizumab, also known as Avastin®, is a human recombinant
monoclonal antibody to vascular endothelial growth factor (VEGF),
a signal protein central to angiogenesis, that has been used for the
treatment of several cancer types, both in monotherapy and in
combination therapies (40). In 2009, bevacizumab was FDA-
approved for recurrent glioblastoma following two Phase II trials,
in which it was given in combination with irinotecan, based on its
safety and improvement of quality of life (41, 42). In a recent
scoping review (43), PES benefits, and well-controlled side effects
were supported for recurrent glioblastoma from bevacizumab, but
no benefits in OS were identified. In fact, the European Medicines
Agency (EMA) has rejected the use of bevacizumab for treating
recurrent GBM, due to the lack of positive benefit-risk (44). It was
suggested that combining bevacizumab with other therapies, like
TTFields, might improve therapeutic outcome, but more studies are
needed (43).

2.3.5 Optune® device

Optune® device, also known as TTFields, made by NovoCure is
a portable wearable device, that was initially approved in 2011 for
treating patients with recurrent glioblastoma and in 2015 for newly
diagnosed glioblastoma (45). TTFields are alternating electric fields
that disrupt cancer cell replication both in vitro and in vivo (46).
TTFields combined with TMZ have shown significantly improved
OS and PFES, however, they have not been adopted as standard care
due to several factors such as high cost and inconvenience (47).

3 The glioblastoma
immunosuppressive tumor
microenviroment

The glioblastoma TME is characterized by significant
heterogeneity and complexity, encompassing glioma and GSCs,
immune and nervous system cells, ECM components and the
brain vascular system. Additionally, TME is highly dynamic,
characterized by extensive cell-to-cell communication and
regulated by factors such as pH and oxygen levels. Glioblastoma
lacks infiltration of immune cells, favoring the development of
tumorigenic properties, with the immunosuppressive TME playing
a crucial role in cancer cell survival and response to
therapy (Figure 1).

3.1 Non-cellular components

3.1.1ECM

In general, the ECM compromises approximately 20% of the
brain mass, and under physiological conditions, it provides
structural and biochemical support, as well as regulation of
various cellular processes (48). The major components of the
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FIGURE 1

Schematic representation of the immunosuppressive glioblastoma TME. The heterogeneous cellular and non-cellular players of glioblastoma TME
are represented. There is an enrichment of immunosuppressive cellular subsets (e.g. Tregs, MDSCs, and GAMs), neural cells, as well as GSCs. Non-
cellular aspects include ECM proteins, and soluble factors (e.g. cytokines, growth factors). The hypoxic and acidic environment affects various TME
components in numerous ways. This highly complex microenvironment contributes to a strong tumour heterogeneity and immunosuppressive
environment, facilitating tumour progression, resistance to therapies, and immune evasion mechanisms. (GAMs, Glioblastoma-associated microglia/
macrophages; Tregs, Regulatory T cells; DCs, Dendritic cells; MDSCs, Myeloid-derived suppressor cells; GSCs, Glioblastoma stem cells; FN,
Fibronectin; TNC, Tenascin-C; HA, Hyaluronic acid; MMPs, Matrix metalloproteases; ECM, Extracellular matrix). Created in BioRender. Papageorgis, P

(2025). https://BioRender.com/qclro4l.

ECM, including hyaluronic acid (HA), tenascin-C (TNC),
fibronectin (FN), laminin, and collagen, among others, play a
vital role in the modulation of invasiveness. In glioblastoma,
remodeling, and degrading of the ECM is observed since Matrix
metalloproteinases (MMPs), more specifically MMP-2 and MMP-9,
are released into the extracellular space. Tenascin-C (TNC), another
ECM component, is a matricellular protein (MCP) that is normally
expressed at low levels; however, during development and
pathological conditions it is highly expressed (49, 50).
Glioblastoma cells produce and release TNC and high TNC
expression is associated with poor patient survival and disease
progression. TNC can interact with multiple proteins (e.g.
fibronectin, Toll-like receptors etc.) and thus can promote
neovascularization, proliferation, invasiveness, and
immunomodulation. Additionally, the presence of TNC
stimulates GSCs invasiveness by MMP12 and ADAM
metallopeptidase domain 9 (ADAMY) expression and activity, via
the c-Jun NH2-terminal kinase pathway. Another ECM component
is HA, which activates CD44, a cell surface adhesion protein,
stimulating the synthesis and secretion of additional HA, leading
to upregulation of MT1-MMP, thus promoting glioblastoma cell
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infiltration (48). Moreover, FN glycoprotein, also highly expressed
in glioblastoma, promotes cell adhesion, differentiation of GSCs,
and invasion, and plays a role as a coordinator between ECM and
glioblastoma cells (51). Activation of the adhesion kinase/paxillin/
Akt signaling pathway is responsible for GSCs adherence and
differentiation, while the increase of MMPs activity and
activation of axis Stat3-ODZ1-RhoA/ROCK, could be responsible
for the invasive behavior observed in glioblastoma. Laminin
glycoprotein, more specifically laminin-2, -5, and -8, are also
found to be highly expressed in glioblastoma patients and they
are suspected to have a role in glioblastoma spreading and
infiltration (48). Lastly, collagen type I is normally present at low
levels in brain tissue, but its expression is slightly elevated in
glioblastoma tumors. It is enhanced in the perivascular niche of
GSCs, promoting therefore invasiveness via integrin and
phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways.

3.1.2 Physicochemical properties

Physiological factors, such as pH and oxygen concentrations,
can affect tumor progression, and immunosuppression (48). The
intra-tumoral heterogeneity displayed in glioblastoma alters the
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nutrient supply and availability of oxygen within the tumor,
influencing metabolic properties and energy utilization of
cancer cells.

3.1.2.1 Hypoxia

Hypoxic conditions are fundamental drivers of oncogenesis.
During hypoxic conditions, glioblastoma cells can adapt and persist
due to the high expression of hypoxia-inducible factors (HIFs), a
family of transcription factors that are stabilized under low oxygen
conditions and are regulated by the inhibition of prolyl-4-
hydroxylase 2 (PHD2). This accumulation further activates the
expression of downstream targets, including proangiogenic and
anti-apoptotic genes. The angiogenesis-induced hypoxia in
glioblastoma leads to specific features such as necrotic cores and
microvascular hyperplasia, that drive tumor growth and invasion.
Additionally, under hypoxia, MMP-2 and MMP-9 expression is
increased, and the epithelial-to-mesenchymal transition (EMT)
process is induced mainly by transcription factors that have
hypoxia response elements (HREs) at their gene promoter
regions, such as Twist, Snail, and ZEB. Finally, hypoxia can
amplify the activities of immunosuppressive cells, including the
influx of M2 macrophages and Tregs at the tumor site (52, 53).

3.1.2.2 Acidosis

The TME as well as intrinsic cellular processes of glioblastoma
are affected by acidosis (low pH), which facilitates pro-tumorigenic
processes including survival, proliferation, migration, and
angiogenesis (52, 53). Tumor acidosis further increases the
expression of HIF-lo. and HIF-20. and alters the interactions
among glioblastoma cells and various TME components,
significantly impacting the invasion process (53). It reduces the
infiltration and activity of effector lymphocytes and NK cells,
further promoting glioblastoma persistence. In addition, drug
uptake and efficacy are also affected since acidosis neutralizes
radiation-induced reactive oxygen species (ROS) formation,
inhibiting apoptosis (52, 53). Thereby, acidosis plays a significant
role in fostering a highly immunosuppressive TME.

3.2 Cellular components

3.2.1 Immune components

Immune cells found in glioblastoma TME constitute up to 50%;
glioblastoma-associated macrophages and microglia (GAMs) are
the most prevalent, followed by neutrophils, regulatory T cells
(Tregs), dendritic cells (DCs), and myeloid-derived suppressor
cells (MDSCs) (54). The immune components present in
glioblastoma contribute to the observed immunosuppressive
characteristics of the glioblastoma TME.

3.2.1.1 GAMs

GAMs in glioblastoma are composed of macrophages and
microglia, which are resident macrophages located in the CNS,
both functioning as phagocytic cells. They play a significant and
complex role by interacting with glioblastoma cells in various ways
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that can influence tumor progression (55). While they have the
potential to attack glioblastoma cells, they also support tumor
growth and invasion. Based on their marker expression and
cytokine expression profile, GAMs can be polarized into M1
(anti-tumor) or M2 (pro-tumor) phenotypes. As glioblastoma
progresses, however, GAMs tend to be pro-tumorigenic thus
favoring an M2 phenotype. The presence of GAMs has been
considered to have prognostic value, since higher levels of GAMs
are positively correlated with poor prognosis and worsen OS (52).
They secrete factors that support tumor growth (e.g. insulin-like
growth factor (IGF-1), epidermal growth factor (EGF), platelet-
derived growth factor (PDG-F)), as well as anti-inflammatory
cytokines (e.g. interleukin-6 (IL-6), IL-10, transforming growth
factor beta (TGF-B)), promoting the malignant phenotype of
glioblastoma and contributing to the permeability of the BBB
(52). More specifically, the proliferation of glioblastoma cells is
associated with elevated Ca®* levels in the tumor, which further
stimulate ATP-mediated tumor cells that directly interact with
GAMs, leading to their activation. In addition, the secretion of
IL-6 by GAMs activates the JAK-STAT3 pathway in endothelial
cells (ECs) and downregulates intercellular connexins levels, such as
connexin43 (Cx43). This contributes to the disruption of the BBB
and its increased permeability (56).

3.2.1.2 Neutrophils

In glioblastoma, neutrophils (CD66b" and CD16"), a subset of
myeloid-derived suppressor cells, upregulate the S100A4 protein,
which suppresses the mesenchymal phenotype and facilitates
acquired resistance to anti-VEGF therapy (57). They play a role
in the oncogenic process of tumor initiation, proliferation, and
dissemination via a pro-tumorigenic positive feedback loop.
Neutrophils can induce angiogenesis and hinder the functions of
DCs, macrophages, and NK cells, thus suppressing the immune
system and facilitating in the migration of tumor cells. Neutrophil
Extracellular Traps (NETs) secreted by activated neutrophils are
extracellular fibrous networks consisting of DNA and proteins (58).
Their role in GMB progression is mostly beneficial: they may
enhance tumor growth by activating EGFR or TLR4 signaling in
tumor cells, they support immune evasion by forming physical
barriers for cytotoxic T cells or NK cells and contribute to treatment
resistance by activating survival pathways (59).

3.2.1.3 T-cells (CD4*, CD8*, Tregs)

T lymphocytes, a central component of the adaptive immune
system, are essential for anti-tumor immunity. In glioblastoma,
however, the anti-tumor response is compromised since CD4"/
CD8" T-cells constitute only 2% of infiltrating immune cells. Most
of these cells show upregulation of inhibitory receptors/immune
checkpoints, which signal anergy, exhaustion, and tolerance,
thereby promoting further the immunosuppressive nature of
glioblastoma (59). In contrast, regulatory T-cells (Tregs) are
found to be enriched in glioblastoma infiltrating immune cells.
This enrichment promotes the systemic reduction of CD4" T-cells,
and the inhibition of the cytotoxic responses of CD8" T-cells,
further inducing the effector T-cell anergy and tolerance (60-63).
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Tregs are suppressor cells, mainly characterized by elevated
expression of several transcription factors (e.g. Foxp3, CD25), and
cytotoxic T lymphocyte antigen 4 (CTLA-4). Tregs can further
inhibit T cell activity by binding to CD80/CD86 on antigen
presenting cells (APCs) via CTLA-4. They release
immunosuppressive cytokines such as IL-10, IL-4, IL-13, IDO
and TGF-p, reducing TNFo and INF-y levels in effector CD4+ T
cells, inhibiting APCs function, and downregulating tumor-specific
cytotoxicity within the immune response.

3.2.1.4 NK cells

NK cells (CD56"CD3" cells) mediate antigen-independent
immune surveillance as effector lymphoid cells (64). Despite their
potential for anti-tumor activity, NK cells are found in low levels or
impaired within glioblastoma tumors and thus their cytotoxic
effects are suppressed by factors such as TGF- and IL-10 within
the TME.

3.2.1.5 DCs

As a diverse class of professional APCs, DCs are central to the
activation and regulation of innate and adaptive immunity (61). In
normal conditions, DCs are absent from the brain parenchyma,
however in pathological conditions such as glioblastoma, DCs can
infiltrate brain tissue via afferent lymphatic vessels or endothelial
venules. Although DCs have a pivotal role in antitumor immunity,
in the TME of glioblastoma, the overexpression of nuclear factor
erythroid-related factor (Nef) in DCs results in their suppression
and, consequently, a decrease in the effector T cell activation (61).

3.2.1.6 MDSCs

MDSCs are a heterogeneous population of immature myeloid
cells that activate immunosuppressive cells and inhibit the release of
inflammatory factors thus mediating anti-tumor immunity. In
glioblastoma patients, different MDSC populations are present,
with the major population being polymorphonuclear
CD15"CD33"HLADR™ (PMN-MDSCs) accounting for 82%,
followed by lineage-negative (E-MDSCs) at 15% and monocytic
(CD14*CD33*HLADR-; M-MDSCs) at 3% (61, 65). Signal
transducer and activator of transcription 3 (STAT3) is a hallmark
of MDSCs, and its upregulation regulates MDSCs expansion and
tolerogenicity. Factors including IL-10, IL-6, VEGF, GM-CSF, PGE-
2, and TGF-P2, found upregulated in glioblastoma, also influence
MDSCs expansion. MDSCs are key players in glioblastoma
immunosuppressive TME, exerting their effects via various
mechanisms including amino acid depletion, oxidative stress,
decreased DCs maturation, and the indirect induction of Tregs
induced by IL-10 and TGF-f (59). PMN-MDSCs can suppress the
antigen-presenting capacity of DCs by upregulating
myeloperoxidase (MPO) expression, therefore limiting the ability
of DCs to cross-present tumor-associated antigens (TAAs).
Additional immunosuppressive activities of MDSCs are regulated
by CCAAT/enhancer binding protein  (C/EBPB) which controls
the expression of arginase (ARG1) and inducible nitric oxide
synthase (iNOS). These expressions can inhibit T cell growth and
migration by interfering with the expression of CD3( chain and by
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inducing the nitration of CCL2 chemokine. iNOS further produces
nitric oxide (NO) from amino acid L-arginine, which inhibits the
IL-2 signaling pathway in an IFN-y depended-manner, ultimately
impairing T-cell proliferation (59). Moreover, MDSCs suppress NK
cell cytotoxicity and cytokine release via ROS production. Crosstalk
between GAMs and MDSCs also skews GAMs toward a pro-tumor
M2 phenotype.

3.2.2 GSCs

GSCs possess the ability to self-renew and differentiate,
contributing to intra-tumoral heterogeneity and playing a key role
in tumorigenesis and tumor propagation (48, 54, 66). GSCs activate,
regulate, and recruit pro-tumor immune cells. They inhibit T-cell
proliferation and cytotoxic T-cell activation while suppressing
macrophage-mediated tumor-killing by producing cytokines such
as IL-10 and TGFp. Additionally, GSCs express the TGFJ receptor
(TGF-BRII) on their surface, and binding of its ligand triggers the
secretion of MMP9 by GSCs. GSCs also interact closely with ECs,
creating a perivascular niche, and impacting the glioblastoma
progression. Subsequently, GSCs express high levels of
proangiogenic growth factors such as VEGF, angiopoietin-1 (Ang-
1), bradykinin (BK), IL-8, and stromal cell-derived factor-1 I (SDF-1),
which induce their differentiation into ECs and pericytes, further
enhancing angiogenesis, migratory abilities, and invasiveness.

3.2.3 Neural components
3.2.3.1 Astrocytes

Astrocytes make up about half of the total volume of the human
brain and play a key role in brain physiology and disease, as they are
integral components of the BBB. Glioblastoma invasiveness is
modulated by astrocytes (48). Glioblastoma cells release EVs into
the TME, which are internalized by neighboring astrocytes.
Astrocytes then become activated and start secreting elevated
amounts of chemokines (e.g. IL-6), enhancing glioblastoma cell
invasion and tissue infiltration by increased production MMPs,
especially MMP-2 and MMP-9. In addition, glioblastoma
invasiveness and migration are modulated by the release of factors,
such as glial cell line-derived neurotrophic factor (GNDF) and
connective tissue growth factor (CTGF) from astrocytes. GNDF
promotes glioblastoma invasion by triggering the activation of
rearranged during transfection/GNDF family receptor alpha-1
(RET/GFRal) receptors and pro-tumoral signaling pathways, such
as mitogen-activated protein kinases (MAPK) and PIK3/Akt.
Whereas CTGF, when bound to integrin 1, it activates the nuclear
factor kappa-light-chain-enhancer of the activated B cells (NF-kB)
signaling pathway which secretes additional growth factors, such as
TGF-B, further facilitating glioblastoma invasiveness. Moreover,
glioblastoma-associated astrocytes upregulate the gap junction
protein connexin 43 (Cx43), which facilitates direct communication
between astrocytes and glioblastoma cells, promoting further tumor

invasion and migration.

3.2.3.2 Neurons
Neurons usually interact indirectly with glioblastoma cells in
the TME with different mechanisms, including paracrine
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stimulation, synaptic transmission, and secretion of
neurotransmitters. Glioblastoma proliferation, invasion, and
resistance to apoptosis are promoted by the binding of TrkB
receptors on glioblastoma cells to molecules released from
neurons such as brain-derived neurotrophic factor (BDNF) and
neuroligin-3 (NLGN3). Additionally, glioblastoma cells form
functional synaptic connections with neurons, enabling
electrochemical signaling that influences tumor progression. One
example is the AMPA (a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid) glutamate receptor, which mediates
excitatory postsynaptic potentials, enhancing intracellular calcium
signaling, further promoting glioblastoma proliferation, survival,
and invasion (67).

3.2.3.3 Oligodendrocytes

Oligodendrocytes are responsible for myelinating axons in the
CNS, therefore playing a role in brain physiology, regulating
neuronal activities, neural plasticity, and metabolic support (52).
In glioblastoma, oligodendrocytes are disrupted leading to
worsened tumor-induced damage to neural circuits. They are
located at the tumor border niches, suggesting their potential
influence in both invasion and recurrence. Oligodendrocytes
release cytokines such as angiopoietin-2, which enhances
glioblastoma cell motility, and are implicated in promoting
angiogenesis contributing to the tumor’s vascular support and
sustenance (53).

4 Current state of glioblastoma
immunotherapy

Cancer immunotherapy works by “re-educating” the patient’s
immune system to eliminate tumors and therefore holds great
promise for cancer therapy (68). The most widely used strategies,
often combined, are ICIs, chimeric antigen receptor (CAR) T cells,
vaccines and oncolytic viruses. Other immunotherapeutic strategies
include other T-cell based therapeutic approaches, cytokine therapy
and other targeted immunomodulatory therapies, including
monoclonal antibodies. Currently, 104 interventional clinical
trials of immunotherapy in glioblastoma have been identified as
active (‘recruiting’, “active not recruiting” and “enrolment with
invitation”), in ClinicalTrials.gov, accessed on 01/06/2025
(Tables 1-3, Figures 2, 3).

4.1 Immune checkpoint inhibitors

Immune checkpoints are the gatekeepers of the immune system,
crucial for preventing autoimmunity under normal physiological
conditions and protecting tissues from damage following response
of the immune system to pathogens (115). In cancer, the expression
of immune-checkpoint proteins is dysregulated and therefore
confers immune resistance. Several inhibitory immunoreceptors,
referred to as “immune checkpoints”, have been identified and
studied in cancer, including, amongst others, programmed death
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ligand 1 (PD-1), cytotoxic T-lymphocyte associated protein 4
(CTLA-4), lymphocyte activation gene 3 protein (LAG3), T cell
immunoglobulin and mucin domain-containing protein 3 (TIM3),
and T-cell immunoreceptor with immunoglobulin G1 (Igl) and
immunoreceptor tyrosine-based inhibitory motif (ITIM) domains
(TIGIT) (116). Blocking their activity with ICIs has revolutionized
cancer therapy over the past few years and has been successful for
several cancer types (18, 19). Although initial trials with ICIs in
glioblastoma revealed disappointing results (20), glioblastoma
tumors are still considered a promising candidate for
immunotherapy and is therefore being investigated in several
clinical trials (Tables 1-3, Figures 2, 3).

4.1.1 Anti-PD-1/PD-L1

PD-1 receptor, expressed on T- and other immune cells, is a
dominant negative regulator of T-cell response, when activated by
its ligand, PD-L1, which is expressed on tumor cells (117). Anti-PD-
1/PDL-1 therapy has been approved for the treatment of several
cancer types, including metastatic melanoma, non-small cell lung
cancer (NSCLC), head and neck cancers, urothelial carcinoma and
others (118). More specifically, there are 6 FDA-approved PD-1/
PD-LI inhibitors, including the PD-1 inhibitors Pembrolizumab
(Keytruda), Nivolumab (Opdivo) and Cemiplimab (Libtayo) and
the PD-L1 inhibitor Atezolizumab (Tecentriq). PD-1/PDL-1
therapy has been explored in several clinical studies in
glioblastoma, and although it is safe, it did not prolong OS (18).
Currently, there are no FDA-approved anti-PD-1/PD-L1 inhibitors
for glioblastoma (119), but the PD-1 inhibitors Pembrolizumab,
Nivolumab, Cemiplimab, Retifanlimab by Zynyz (approved under
FDA’s Accelerated Approval Program for Merkel cell carcinoma),
and Balstilimab (currently in Phase II clinical trials for several
cancers), as well as the PD-L1 inhibitor, Atezolizumab, are being
tested in clinical trials for safety, tolerability, feasibility and efficacy
in newly diagnosed, recurrent and progressive glioblastoma, both as
monotherapy and as part of a therapeutic regime (Table 1).

4.1.2 Anti-CTLA-4

CTLA-4 belongs to the superfamily of CD28-B7
immunoglobulins and it shares its two ligands (B7.1, B7.2) with
its co-stimulatory counterpart CD28, and together these molecules
are functioning at the tip of the immunological cascade (120). In
glioblastoma, CTLA-4 competes with CD28 for binding to
costimulatory molecules (CD80 and CD86) on APCs, thereby
inhibiting the activation of T cells. Anti-CTLA-4 as a single form
of therapy or in combination with other ICIs, enhances endogenous
immune responses to immunogenic tumors. Ipilimumab (MDX-
010 and Yervoy®) is a humanized monoclonal CTLA-4 antibody
that has been approved by the FDA as monotherapy in anti-PD-1
refractory cases or in combination with nivolumab as a first-line
treatment of advanced melanoma (121). In glioblastoma clinical
trials, ipilimumab is administered in combination with nivolumab
(NCT06097975, Table 1). Botensilimab (AGEN1181), is an Fc-
enhanced anti-CTLA-4 antibody, which is considered one of the
most advanced-next generation ICIs currently in clinical trials, due
to its novel FcyR-dependent mechanism to promote superior
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TABLE 1 ICIs in ongoing interventional clinical trials against glioblastoma - R, “Recruiting”; ANR, “Active, not recruiting”; and EBI, “Enrolling by

invitation”.

Mechanism of
action

Phase

Enrolment
(estimated
or actual)

NET

10.3389/fimmu.2025.1665742

Study aims

Assessment of safety/tolerability/

Clinical
trial
identifier

+ Stereotactic radiation Ib/1I feasibility of pembrolizumab and
k . 10 ANR . . . NCT04977375 n/a
+ Surgical resection n=10 radiation therapy before surgical resection
in patients with recurrent glioblastoma
Ph; d; i t of
Monotherapy 1l 18 ANR ArmAcofynamic assessmen’ o NCT02337686  (69)
pembrolizumab in recurrent glioblastoma
Evaluation of early immunologic
Monotherapy 1 60 ANR . NCT02852655 = (70)
pharmacodynamics
Evaluation of short-term and long-term
fety, tolerability and effecti f
+ Chemoradiation I\% 36 R satety, to er:? Hyand e e,c fveness o NCT05235737 n/a
neoadjuvant and adjuvant
Pembrolizumab
Exploitation of th i 1
+ Chemoradiation 1 56 ANR ploliation 0F TAeTapy 1 REWY NCT03899857  nla
diagnosed glioblastoma
+ surger-y + 1 ANR Assessmer‘n of safety a‘nd tolerability in NCT03197506 n/a
chemoradiation patients with glioblastoma
Effi d safety study i t
+ Efineptakin alfa i 44 R cacy and salely sy i recurtrent ' \cTo5465954  (71)
glioblastoma
Evaluation of safety, tolerability and
ATL-DC i ffi in patients with icall
Pembrolizumab * vaceine * 1 40 R ¢ cacy- 1 patients wh surglc‘ v NCT04201873 n/a
. poly ICLC accessible recurrent/progressive
(anti-PD-1) .
glioblastoma
Evaluation of side effects and effi i
+ LITT il 34 R valuation of side €7ects and Ay I NCT03277638  n/a
recurrent glioblastoma
Assessment of safety, efficacy and effect
+ Optune® + TMZ 11 40 ANR on PFS of the combinational treatment in | NCT03405792 = (72)
newly diagnosed glioblastoma
Evaluation of 1l ival i 1
+ Optune ® + TMZ 11 741 ANR valuation of overa’ SUIVA IR REWY 1 NCT06556563  nfa
diagnosed glioblastoma
Evaluation of safety and feasibility in
+ Optune ® 4+ MLA I 20 R patients with recurrent or progressive NCT06558214 n/a
glioblastoma
Evaluation of safety and efficacy of
binational treatment i tients with
+/- (Opalarib + TMZ) 1 78 R combinational treatment in atients With - \orgsys3gas  nja
recurrent glioblastoma at their first or
second relapse
A f saf lerability i
+ M032 (oHSV) il 28 R ssessment of safety and tolerability in G -cogisng  pra
recurrent GBM
+ Allogeneic CMV. Assessment of maximum tolerated doses
ei -
g /1 58 R of combination therapy in newly NCT06157541 n/a
specific T cells .
diagnosed GBM
Testing the efficacy of nivolumab in
Monotherapy I 61 ANR patients with IDH-mutant gliomas with NCT03718767 = (73)
and without hypermutator phenotype
Evaluation of side effects and
Nivolumab improvements in quality of life of
(anti-PD-1) Monotherapy 1 20 R nivolumab administered before and after | NCT04323046  n/a
surgery in treating children and young
adults with recurrent high-grade gliomas
A t of fits of givi
+ TMZ 11 103 ANR  Assessment of benefits of giving NCT04195139  (74)
nivolumab in together with TMZ versus
(Continued)
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TABLE 1 Continued

Mechanism of Enrolment Clinical
. Phase (estimated NEWN Study aims trial Ref.
action q g
or actual) identifier
TMZ alone on OS in newly diagnosed
elderly GMB patients
Evaluation of the efficacy, safety and
tolerance monotherapy and combination
+ Crizanlizumab /1 33 R therapy in patients with advanced NCT05909618 n/a
glioblastoma newly diagnosed
unmethylated glioblastoma
Evaluation of safety, tolerability and
+ Bevacizumab (anti- efficacy of nivolumab when given in
11 90 ANR NCT03452579 75
VEGF) combination with low doses of %)
bevacizumab
Assessment of effectiveness of nivolumab
h i i-VEGF th i
+ RT + Bevacizumab I 39 ANR added to the radio/anti-VEGF therapy in |\ pos7pa660
recurrent MGMT methylated
glioblastoma
Determination of the safety and
+ BMS-986205 (IDO tolerability of combinational treatment in
inhibitor) + RT +/- I 18 ANR newly diagnosed MGMT promoter NCT04047706 (76)
T™Z methylated and unmethylated
glioblastoma.
Assessment of overall survival in patients
+ ipilimumab + TMZ I 47 ANR with newly diagnosed glioblastoma or NCT04817254  n/a
gliosarcoma
Retlf.anhmab + anti-GITR + SRS I 39 ANR Safety, 1mm‘unogen1c1ty, ax.ld therapeutic NCT04225039  (77)
(anti-PD-1) efficacy in recurrent glioblastoma
+ RT + Bevacizumab Safety and efficacy assessment of
+/- Epacadostat (IDO-1 11 51 ANR combinational treatment in recurrent NCT03532295 (78)
Retifanlimab inhibitor) glioblastoma
(anti-PD-1) . . .
+ Personalized Assessment of safety and immunogenicity
neoantigen DNA 1 12 R in newly diagnosed, MGMT promoter NCT05743595 | n/a
vaccine unmethylated glioblastoma
Evaluation of treatment safety,
INO-5401 + INO-
* * /1l 52 ANR immunogenicity and preliminary efficacy | NCT03491683 = (79)
0 9012 + RT + TMZ . . .
Cemiplimab in newly diagnosed GBM patients
(anti-PD-1)
+ ASP8374 (Anti- b 14 ANR Evaluation of safe.ty and ef'ﬁcacy in NCT04826393 | n/a
TIGIT) recurrent malignant glioma
Balstili
als imab Establishment of safety and feasibility of
(anti-PD-1) + DOX + Sonocloud-9 delivering immune modulating drugs in
+ , Tla 25 R civering ating qrig NCT05864534  (80)
- device (SC-9) this manner, and evaluation of treatment
Botensilimab effica
(anti-CTLA-4) cy
Evaluation of combining atezolizumab
+TMZ +/- RT i 80 ANR with standard of care in newly diagnosed | NCT03174197  (81)
glioblastoma
Assessment of therapeutic benefit of
monotherapy I 50 R n.eoadjuvant atezohzuma? in patients NCT06069726 | n/a
with recurrent low mutational burden
Atezolizumab glioblastoma
(anti-PD-L1)
+ D2C7-IT (anti- Evaluation of combinational treatment in
1 18 ANR NCT04160494
EGFRwt/EGFRVIII) recurrent glioblastoma n/a
Evaluation of i ic effect i
+ FSRT radiation I 12 R vauation of Imunogenic €Tectil 1 NCT05423210  n/a
newly diagnosed glioblastoma
+ Nivolumab + RT TI/1II 159 ANR NCT04396860 (82)

(Continued)
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TABLE 1 Continued

10.3389/fimmu.2025.1665742

Mechanism of Enrolment Clinical
. Phase (estimated Status Study aims trial Ref.
action . it
or actual) identifier
Assessment of combination therapy on
progression-free survival compared to
standard of care in newly diagnosed
MGMT unmethylated glioblastoma
Assessment of safety and effectiveness of
ol .
+ Nivolumab + Surgical 1 63 ANR combinational treatment in recurrent NCT04606316  (82)
removal i
glioblastoma
Cabozantinib (inhibition
of tyrosine kinases Assessment of safety and efficacy of
involved in /I 6 R combinational therapy in recurrent NCT05039281 n/a
angiogenesis, motility & glioblastoma
invasion)
I ib (Akf
+ Ipatasertib (Akt 11 87 ANR Assessment of safety and MTD NCT03673787 = (83)
inhibitor)
Determination of the safety and feasibility
Ipl‘hmumab + Nivolumab 1 18 R of the proposed mvest‘lgatloflal (n‘eo—) NCT06097975  (34)
(anti-CTLA-4) adjuvant treatment regimen in patients
with resectable recurrent glioblastoma
A t of safe f MBG453 gi i
Sabatolimab + Spartalizumab (anti- ssess'mel? © S,a ety o . given 1
. 1 16 ANR combination with spartalizumab and SR ' NCT03961971 n/a
(anti-TIM-3) PD-1) i K K
in patients with recurrent GBM
Domvanalimab + Zimberelimab Exploratory study of combination
1 4 ANR NCTO04
(anti-TIGIT) (anti-PD-1) o 6 therapies in recurrent glioblastoma 104656535 nfa

PD1, Programmed cell death protein 1; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; GITR, Glucocorticoid-Induced Tumor Necrosis Factor-related protein; TIGIT,
T-cell immunoreceptor with immunoglobulin G1 (Igl) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains; CTLA-4, Cytotoxic T-lymphocyte associated protein 4; TMZ,
Temozolomide; PD-L1, programmed death-ligand 1; LITT, Laser Interstitial Thermotherapy; RT, Radiotherapy; oHSV, oncolytic Herpes simplex virus; SRS, stereotactic radiosurgery; ATL-DC,
autologous tumor lysate pulsed dendritic cell; poly ICLC, Polyinosinic-Polycytidylic acid; MLA, MRI-guided laser ablation; IDO, indoleamine 2, 3-dioxygenase 1; CMV, Cytomegalovirus; FSRT,

fractionated stereotactic radiotherapy; n/a, not applicable.

priming and activation of T cells (121). In glioblastoma,
Botensilimab is being tested in a single clinical trial in
combination with Balstilimab and chemotherapy, given through a
BBB sonication device (NCT05864534, Table 1).

4.1.3 Anti-TIM3

TIM-3 is an immuno-myeloid cell surface marker specific to IFN-y
producing CD4+ and CD8+ T cells, expressed on multiple immune
cells and leukemic stem cells (122). In cancer, elevated TIM-3
expression is associated with poor outcome, therefore TIM-3 has
become an attractive candidate for immunotherapy. Sabatolimab
(MBG453), is a novel high-affinity, humanized, I1gG4 antibody
targeting the TIM-3 receptor currently under clinical development
by Novartis for the treatment of both solid tumors and hematological
malignancies (123). Sabatolimab, is tested for safety in a Phase I clinical
trial of recurrent glioblastoma, in which is given in combination with
spartalizumab (anti-PD-1) (NCT03961971, Table 1).

4.1.4 Anti-TIGIT

TIGIT belongs to the Ig superfamily, and it is expressed on
activated CD4+ and CD8+ T cells, as well as NK cells (124-126).
TIGIT interacts with its ligand, CD155, which is expressed mostly
on DCs and macrophages, and upon TIGIT/CDI155 interaction,
immune responses are negatively regulated. Specifically, T-cell
receptor expression is reduced, resulting in impairment of the
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function of CD8+ and NK cells, resulting in immunosuppression.
Currently, Domvanalimab, an investigational inhibitor, is being
evaluated in clinical trials in combination Zimberelimab (anti-PD-
1) in recurrent glioblastoma (NCT04656535, Table 1).

Despite extensive research, there is still no ICI approved for the
treatment of glioblastoma, since no significant improvement in OS has
been observed during clinical trials so far. Despite the disappointing
early clinical trial results, the use of ICIs for the treatment of
glioblastoma remains under ongoing clinical investigation, aiming to
reverse the glioblastoma immunosuppressive TME which is mainly
attributed to the upregulation of several immune checkpoint molecules,
such as PD-1, PD-L1, CTLA-4, LAG-3, TIM-3 and TIGIT. A variety of
ICIs are currently being investigated in clinical trials in glioblastoma
(early, aggressive or recurrent), for their safety and effectiveness, often
in combination with other therapies to overcome the limitations of
monotherapy and improve therapeutic outcomes. The use of novel
delivery systems in several trials, like the Optune® device, suggests a
commitment in overcoming delivery limitations especially the BBB.
Furthermore, combining ICIs with personalized neoantigen vaccines
aims to enhance T-cell activation and specificity. In addition, targeting
myeloid cells aims to enhance antigen presentation. Importantly,
discovery of new biomarkers to predict response to ICI therapy is
essential in GMB; for example, in other types of cancer, patients with
low PDL-1 levels also benefit from anti-PD-1 therapy, suggesting other
mechanisms are involved in their action (127). The lack of reliable
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TABLE 2 T-cell based therapies in ongoing interventional clinical trials against glioblastoma — R, “Recruiting”; ANR, “Active, not recruiting”; and EBI,
“Enrolling by invitation”.

CAR-T cells

Target (s)

Mechanism of action

Inverse correlated dual-target,

Enrolment
(estimated
or actual)

Phase

Status

Study aims

Evaluation of safety, distribution,

Clinical
trial
identifier

CD133 + truncated IL7Ra modified CAR tumor progression, and changes in
. 10 I R . NCT05577091 (85)
CD44 -expressing autologous T-lymphocytes target expression and tumor
(Tris-CAR-T cells) biology over time.
A t of safc d feasibili
Ex-Vivo expanded autologous IL-8 ;SSZSITH;,: nS:see(tiY Ca][;mea:lsitl.ltey
in newly di: v
receptor (CXCR2) modified CD70 39 I R B e bt NCT05353530  (86)
CAR (8R-70CAR) T cells adu patients who fave
undergone surgery
CD70
A t of safc d feasibili
Ex-Vivo expanded autologous IL-8 sse'ssmen of safety and feasibility
R in CD70+ Adult GBM and
receptor (CXCR2) modified CD70 18 1 R Pediatric High-Grade Gliomas NCT06946680 n/a
AR (8R-70CAR) T cell .
CAR ( CAR) T cells (PHGG)
Evaluation of safety, side effects,
EohA2 + 1L E-SYNC T cells (Autologous Anti- and best dose after
P 13Ra2 EGFRVIII synNotch Receptor Induced 20 I R lymphodepleting chemotherapy in = NCT06186401 n/a
Anti-EphA2/IL-13Ra2 CAR T Cells) + treating patients with EGFRVIII +
glioblastoma.
Evaluation of saf fi
EGFRVIII + CARV3-TEAM-E T Cells valuation of safety and dose of in
EGER (Autol T1 h ) 21 1 R newly diagnosed and recurrent NCT05660369 (87)
utologous ocytes
8 ymphocyt glioblastoma
Assessment of feasibility & safety
IL13Ra2-specific CAR Tem cells 65 I ANR in recurrent gliomas NCT02208362  (88)
(IL13Ra2-CAR/CD19t+ Tcm)
10 I R Safety and feasibility assessment NCT04661384 n/a
IL13Ra2- ific-hinge-optimized-4-
aZ-specihc-ilnge-optimize . Assessment of safety and feasibility
1BB-CAR/truncated CDI19-expressing 60 1 R in recurrent or refracto NCT04003649 n/a
IL-13R02 Autologous TN/MEM Lymphocytes . R
. o glioblastoma
+/- Nivolumab +/- ipilimumab
A t of saft d sid
IL13Ra2-targeting CAR-T cells with f stsesi;mren 1: :: eiy in :l ;c
TGFBR2 Knockout 27 I R Tio‘:lsstomzcir IeDHOmP t‘;i tessr:;e NCT06815029  n/a
-mu
(TGFBR2KO/IL13Ra2 CAR T cells) g g
3 or 4 astrocytoma
Autologous T cells transduced with a
EGER + IL bicistronic lentiviral vector containing Safety and feasibility evaluation in (89
13Ra2 a murine scFv targeting EGFR and a 66 I R patients with EGFR-amplified NCT05168423 90)’
humanized scFv targeting IL13Ra2 recurrent glioblastoma
(CART-EGFR-IL13Ra2 Cells)
Assessment of safety and dose in
HER2 HER2(EQ)BBL/CD19t+ T cells 29 I ANR recurrent or non-responsive NCT03389230 n/a
glioblastoma
EGFR, Evaluation of safety, tolerance, and
EGFRVIII, h: kinetics of SNC109 i
v SNC109 CAR-T cells 50 1 EBI PRATMAcoRInencs o M NCT06616727  n/a
HER2 + IL- patients with recurrent
13Ro2 glioblastoma
Evaluation of safety, tolerability,
30 I ANR effectiveness and MTD for phase II | NCT05241392 n/a
in recurrent glioblastoma
Evaluation of effi f
B7-H3-targeting CAR-T 48 I R va'uation ot etficacy o NCT05835687  (91)
locoregional delivery of B7-H3
Evaluation of safety, efficacy and
52 I R MTD for phase II for progressive = NCT06482905 n/a
grade 4 glioma
(Continued)
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TABLE 2 Continued

10.3389/fimmu.2025.1665742

CAR-T cells
Enrolment Clinical
Target (s) Mechanism of action (estimated Study aims trial
or actual) identifier
f -
36 . R Safety evaluatlon'm recurrent or NCT05366179 | n/a
refractory glioblastoma
Assessment of manufacturing
feasibility and safety of
39 I R locoregional administration of B7- | NCT05474378  (92)
H3CART into the CNS of adults
with recurrent glioblastoma
Evaluation of safety, best dose and
flecti in MMP2 t,
2 b ANR | Cecivenessin et | NCT05627323 | (93)
aggressive and progressive
Membrane- CHM-1101 CAR-T glioblastoma
bound MMP-2 (Chlorotoxin-CD28-CD3z-CD19t-
oun . expressing CAR T-cells) Evaluation of safety, best dose and
ffecti in MMP2 t,
19 . R e ectlveness in + recurren NCT04214392 | (94)
aggressive and progressive
glioblastoma
(YO)T- cells
Clinical
Mechanism of action Phase Status Study aims trial
identifier
Evaluation of safety and
Gene-modified (y3)T-cells + TMZ 22 I ANR tolerability in newly diagnosed NCT04165941  (95)
glioblastoma
Determination of safety,
Activated, gene-mot'ilﬁed allogeneic or autologous (y3)-T 4 Ib/II ANR tolerablht}.l and ablht.y to delay NCT05664243 na
cells (DeltEx) + maintenance TMZ recurrency in newly diagnosed or
recurrent glioblastoma

CAR, Chimeric antigen receptor; CD, cluster of differentiation; IL7Ra, Interleukin receptor alpha; IL-8, Interleukin 8; EGFRVIIL, endothelial growth factor receptor variant III; EGFR, Epidermal
growth factor receptor; HER2, human epidermal growth factor receptor 2; IL-13R02, Interleukin 13; MMP-2, matrix metalloproteinase-2; MTD, maximum tolerated dose; CNS, central nervous
system; EphA2, ephrin type-A receptor 2; scFV, single=chain variable fragment; B7-H3, B7 homolog 3; TMZ, temozolomide; Tcm, central memory T cells; TN/MEM, naive and memory T cells;

n/a, not applicable.

biomarkers for the use of ICIs in GMB is discussed in recent reviews
(128, 129). The future of ICIs in glioblastoma, depends on the delivery
systems, the drug combination strategies, the tackling of the cold
glioblastoma immune microenvironment, and the identification of
personalized biomarkers based on molecular signatures or immune
profiles that could help tailor ICI therapies to responsive
subpopulations of patients. Another important factor is optimizing
the timing of ICI administration. For instance, recent findings suggest
that administering combination ICI in the neoadjuvant setting can
stimulate the infiltration, activation, and proliferation of tumor-specific
T cells in patients with newly diagnosed glioblastoma (130). In fact, a
clinical trial, based on this, is already ongoing (NCT06816927).

4.2 T-cell based therapies

4.2.1 CAR T-cells

CAR-T cell therapy is at the forefront of T-cell based therapies,
providing a powerful tool for cancer treatment (131-133). It
involves the inducible expression of a chimeric antigen receptor
(CAR), engineered to target a specific antigen of interest on
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autologous T cells, hence bypassing the need for antigen
presentation by Major Histocompatibility Complex (MHC)
otherwise required for the activation of endogenous T cells (131-
134). Since 2017, six CAR-T cell products have been approved for
the treatment of several cancers, including acute lymphoblastic
leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), refractory
follicular lymphoma (FL), recurrent or refractory mantle cell
lymphoma (MCL), and relapsed or refractory multiple myeloma
(133). Currently there are no FDA-approved CAR-T cell therapies
for glioblastoma, but several clinical trials (mostly in Phase I) are
evaluating CAR-T cell therapy in glioblastoma (Table 2; Figure 2B),
including one that is combining CAR-T cell therapy with ICIs
(NCT04003649). The glioblastoma antigens currently targeted in
the clinic, often in combination, are Cluster of Differentiation
proteins (CD133, CD44 & CD70), IL receptors (IL-13Ra2), EGFR
and EGFRVIII, ephrin receptor A2 (EphA2), human epidermal
growth factor receptor 2 (HER2) and B7-H3 (Table 2).

IL-7 is a hematopoietic cytokine that promotes the activation,
differentiation and homeostasis of naive T-cells, as well as the
survival, expansion and proliferation of memory T-cells (135). It
has been shown that engineered T-cells constitutively expressing
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TABLE 3 Vaccines, oncolytic viruses, cytokine therapy and other targeted immunotherapies in ongoing interventional clinical trials against glioblastoma - R, “Recruiting”; ANR, “Active, not recruiting”; and EBI,

“Enrolling by invitation”.

Target (s)/mechanism of
action

Type of immunotherapy

Survivin peptide vaccine (SurVaxM) +

Phase

Enrolment (estimated
or actual)

NEITS

Study aims

Evaluation of side effects in newly

Clinical trial
identifier

1I 66 ANR NCT02455557 96
T™Z diagnosed glioblastoma patients (%6)
Determination of whether adding
SurVaxM to standard of care TMZ
SurVaxM + TMZ I 247 ANR chemotherapy is better than TMZ NCT05163080 (97)
treatment alone for patients with
newly diagnosed glioblastoma
MTA-based vacci'ne' + TTFs + I 13 ANR Assessment of' safety & tolerability in NCT03223103 98)
chemoradiation glioblastoma
Peptide vaccines
TERT/PTPRZI peptide vaccine (with Assessment of safety and
synthetic melanin + TLR9 agonist) + I/lla 35 R immunological efficacy in newly NCT06622434 n/a
radio chemotherapy diagnosed glioblastoma patients
P, lized NeoA; ly-ICL
ersonatized NeoAg + PO_Y cLe Safety evaluation of the personalized
(NeoVax) + RT +/- pembrolizumab +/- I 56 R e ) NCT02287428 (99)
vaccine in newly diagnosed GBM
T™Z
. Safety evaluation in newly diagnosed,
P30-linked EphA2, CM N
30-lin ed P . CMV ppo5, and b 24 ANR unmethylated & untreated NCT05283109 n/a
survivin vaccine (ETAPA 1) X i
glioblastoma patients
Assessment of overall survival in
DC loaded with autologous tumor lysate I 136 ANR newly diagnosed glioblastoma patients NCT03395587 (100)
with confirmed gross-total resection
Assessment of safety and progression-
DC vaccine loaded with autologous tumor I 28 R free survival in glioblastoma patients NCT04523688 n/a
lysate + TMZ after surgery and standard
radiochemotherapy treatment
Determination of safety & preliminary
DCs loaded with multiple t NeoA;
DC vaccines s foaded wi . muitipe tumor Teong I 11 ANR efficacy in adult postoperative newly NCT04968366 (101)
peptides + TMZ . . .
diagnosed glioblastoma patients
DCs ith multipl E ion of safety, tolerabili
Cs loaded \A'flt mul tl'p e tumor . 2 R va.luatlor.l of safety, tol ?rabl ity and NCT06253234 n/a
neoantigen peptides efficacy in recurrent glioblastoma
Evaluation of the safety of DOC1021
+ pINF and survival when treated
DOCI1021 + pINF + SOC I 180 R alongside with SOC in newly NCT06805305 n/a
diagnosed glioblastoma patients (IDH-
wt)
(Continued)
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TABLE 3 Continued

Target (s)/mechanism of

Enrolment (estimated

Clinical trial

Type of immunothera : Phase Status Study aims : o
yp 24 action or actual) y identifier
Comparison of DC therapy against
t 1ls and standard th
DCs loaded with Survivin/hTERT mRNA cancer steffl cetls ac Sancarc: erapy
R /11 60 R in primary treated patients with IDH NCT03548571 n/a
derived from autologous GSCs K
wild-type, MGMT-promotor
methylated glioblastoma
DCs loaded with CMV pp65-LAMP .Evaluatlon of safety, fea51l?ﬂ1ty, flnd
. . I 43 ANR immune response efficacy in patients NCT03688178 n/a
mRNA + chemoradiation +-varlilumab i i i
with newly diagnosed glioblastoma
Evaluation of treatment tolerability,
efficacy and effect on the immune
DCs loaded with autologous tumor lysate /11 76 R response & identification of possible NCT04801147 n/a
correlation between methylation status
of MGMT and tumor response.
Determination of overall and
D ine I ith WT1 mRNA
 vaccine oade§£ Wit m N /1L 20 ANR progression-free survival of patients NCT02649582 (102)
with newly diagnosed glioblastoma
ITI-1001 DNA vaccine + maintenance E‘valuanon 0? ﬂ-1e safety, tol-erefbjhty,
TMZ I 10 ANR immunogenicity, and preliminary NCT05698199 n/a
efficacy in newly diagnosed GBM
A f safety, feasibility,
Personalized neoantigen DNA vaccine + . ssessment .0_ sa' ety eaSIb_l ity, and
I 9 ANR immunogenicity in newly diagnosed, NCT04015700 n/a
INO-9012 . .
unmethylated glioblastoma patients
Evaluation of safety and tolerability in
i ith icall t
o _ CV09050101 mRNA vaccine 1 37 ANR patients with surgically resected NCT05938387 (103)
Nucleic acid-based vaccines unmethylated glioblastoma or
astrocytoma
Demonstration of manufacturing
Autologous total tumor mRNA and pp65 feasibility and safety, and
fl LAMP mRNA loaded DOTAP liposome I/ 28 R determination of the MTD in adult NCT04573140 n/a
vaccine (RNA-LPs) patients with newly diagnosed GBM
(MGMT unmethylated)
Investigation of MTD in recurrent
Pp65 RNA-LPs I 37 R . NCT06389591 n/a
glioblastoma
Determination of safety, tolerability
MO032 (express IL-12) I 29 ANR and MTD in glioblastoma patients not NCT02062827 (104)
Onecolytic viruses oHSV-1 eligible for surgical resection
Nesti ICP4) +/-
rQNestin (express . )+ I 62 R Safety assessment in recurrent glioma NCT03152318 (105)
cyclophosphamide
(Continued)
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TABLE 3 Continued

Target (s)/mechanism of

Type of immunotherapy action

Phase

Enrolment (estimated
or actual)

Status

Study aims

Assessment of efficacy and safety in

Clinical trial
identifier

G207 I 35 R recurrent/progressive pediatric high- NCT04482933 n/a
grade gliomas
Safety evaluation in children with
G207 I 24 R recurrent or refractory cerebellar brain NCT03911388 (106)
tumors
Safety & tolerability evaluation of re-
C134 Ib 12 EBI dosing of virus in recurrent malignant NCT06193174 n/a
glioma
P .
C134 Ib 19 ANR Safety assessment in recurrent NCT03657576 n/a
resectable glioblastoma
Determination of MTD in recurrent
DNX-2401 I 36 R . . NCT03896568 n/a
high-grade gliomas
Study of the effect of multipl ted
NSC-CRAd-$-pk7 I 36 R udy ot the ellect of multip'e repeate NCT05139056 (107)
doses in recurrent high-grade gliomas
Adenovirus Assessment of prolong overall survival
NRG103 I 15 R or disease-free survival in patients NCT06757153 n/a
with recurrent glioblastoma
TS-2021 I 30 R Assessment of safety and efficacy in NCT06585527 n/a
malignant recurrent gliomas
Poli Evaluation of safety & effi i
Polio/ PVSRIPO 1 121 ANR valuation of satety S ethcacy in NCT02986178 (108)
rhinovirus recurrent glioblastoma
Exploring the safety profile and
L19TNF +/- TMZ I/ 226 R establish a recommended dose in NCT04443010 n/a
newly diagnosed glioblastoma
Safety & effi luation in patient
LI9TNF + Lomustine it 142 R ety & cllicacy evaiuation In patients NCT04573192 (109)
with glioblastoma in first progression
Cytokine therapy
Evaluation of safety and efficacy in
Tamferon™ I/lla 27 R patients with GBM and unmethylated NCT03866109 (110)
MGMT gene promoter
Tocilizumab
. 11 59 ANR Assessment of efficacy & MTD NCT04729959 (111)
+ Atezolizumab + RT
Other targeted immunomodulatory Autologous TLI + Pembrolizumab %1 85 R Assessment of safety & efficacy NCT06640582 n/a
therapies including monoclonal
antibodies IGV-001 + RT + TMZ IIb 93 ANR NCT04485949 (112)
(Continued)
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TABLE 3 Continued

Type of immunotherapy

Target (s)/mechanism of

Enrolment (estimated

Clinical trial

: Phase Status Study aims . o
action or actual) y identifier
Assessment of safety and efficacy in
newly diagnosed glioblastoma patients
that underwent surgical resection
Daratumumab (Darzalex) + RT + TMZ it 16 ANR Assessment of enhanced antitumor NCT04922723 n/a
efficacy in glioblastoma
A f saf ffi i
D2C7-IT + 2141-V11 I 46 R ssessment of safety and efficacy in NCT06455605 n/a
resected recurrent glioblastoma
Determination of safe d effi i
D2C7-IT & 2141-V11 i 50 R ctermination of sa‘ety and efficacy in NCT05734560 n/a
newly diagnosed glioblastoma
Indoximod +/- TMZ +/- RT +/- Assessment of efficacy in pediatric
Cycliphophamide +/- Etoposide +/- 1 140 R : yinp NCT04049669 (113)
i glioblastoma
Lomustine
Evaluation of safé it i
N-803 + PD-L1 t-haNK + Bevacizumab i 20 R valuation of safety and efficacy in NCT06061809 n/a
progressive or recurrent glioblastoma
NGM707 (anti—ILTZ and TLT4) +/- vil 179 ANR Dose esca.lation/expa'nsio'n study in NCT04913337 (114)
Pembrolizumab advanced or metastatic glioblastoma

DC, Dendritic cell; SOC, Standard of care; CMV, cytomegalovirus; WT1, Wilm’s tumor 1, IDH, Isocitrate dehydrogenase; MGMT, O°-methylguanine-DNA methyltransferase; hTERT, human telomerase reverse transcriptase; TMZ, Temozolomide; pp65, lower matrix
protein 65; PD-L1, programmed death-ligand 1; t-haNK, targeting high affinity Natural Killer cells; MTD, maximum tolerated dose; 0HSV, oncolytic herpes simplex virus; oAds, oncolytic adenovirus; IDO, indoleamine 2,3-dioxygenase; EphA2, Ephrin type-A receptor 2;
RT, Radiotherapy; NeoAg, Neoantigen; TERT, telomerase reverse transcriptase; PTPRZI, Protein tyrosine phosphatase receptor type Z1; fl, full length; LPs, lipid particles; MTA, Mutated-derived tumor antigen; poly-ICLC, Polyinosinic-Polycytidylic acid; pINF, plasmid
interferon; GSCs, glioblastoma stem cells; TTFs, Tumor-treating fields; TNF, Tumor necrosis factor; ILT2/4, Immunoglobulin-like transcript 2/4; n/a, not applicable.
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FIGURE 2

Schematic representation of immune checkpoint inhibitors, CAR-T cells, and (y3)T-cells in ongoing interventional clinical trials against glioblastoma.
(A) Immune Checkpoint Inhibitors; Several ICls and their targets are being investigated in clinical trials to enhance the anti-tumor response.
Exhaustion markers (e.g. PD-1, CTLA-4, TIGIT), which are upregulated on the surface of T cells, interact with immune checkpoint molecules (e.g.
PD-L1, CD80/86, CD155) expressed on glioblastoma cells and APCs. (B) CAR-T cells; Several targetable tumour-associated antigens for glioblastoma
CAR T-cell therapy. CAR T-cells are engineered to recognize tumor-associated antigens (e.g. IL13Ra2, HER2, B7-H3, etc) via corresponding CAR
constructs, enabling selective tumor cell recognition and cytotoxicity. (C) ydT-cells; Gene-modified y3T-cells exhibit direct cytotoxicity against
glioblastoma cells and enhance the anti-tumor activity of other immune cells through FasL/TRAIL-mediated apoptosis, antigen presentation, and
cytokine secretion. Several antigens and receptors are represented in the same cell for the graphic. (PD1, Programmed cell death protein 1; PD-L1,
programmed death-ligand 1; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; TIGIT, T-cell immunoreceptor with

immunoglobulin G1 (Igl) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains; CTLA-4, Cytotoxic T-lymphocyte associated protein
4; Gal-9, Galectin-9; MCH, Major histocompatibility complex; APC, Antigen presenting cell; CAR, Chimeric antigen receptor; IL13Ra2, interleukin 13
receptor subunit alpha 2; HER2, human epidermal growth factor receptor 2; mbMMP2, membrane-bound metalloproteinases 2; B7-H3, B7 homolog
3; EphA2, Ephrin type-A receptor 2; EGFR, Epidermal growth factor receptor; TCR, T cell receptor; TMZ, Temozolomide; NKG2D-R, Natural killer
group 2 member D receptor; NKG2D-L, NKG2D ligand; TNFa, Tumour necrosis factor 2a; INFy, Interferon y; TRAIL, Tumour necrosis factor-related

apoptosis-inducing ligand; TRAIL-R, TRAIL receptors). Created in BioRender.

Papageorgis, P (2025). https://BioRender.com/mz964iy.

the IL-7 receptor alpha (IL-7Ror) have great antitumor efficacies in
both breast cancer (136) and glioblastoma models (137), therefore,
IL-7 and its receptor are great candidates for immunotherapy. For
the clinical trial NCT05577091 (Table 2), autologous T-cells have
been genetically modified to express a CAR targeting CD133 and
CD44, and a truncated form of the IL-7Ro.. These CAR-T cells are
believed to have immunostimulating and anti-neoplastic activities
since they target CD133 and CD44, two markers of GSCs,
associated with the proliferative or invasive state of glioblastoma
cells (138). Also, the IL-7Ro-Tris-CAR-T cells induce selective
toxicity to tumor cells, and the IL-7/IL-7Ra-mediated signaling
promotes the proliferation and survival of T cells.

IL-8 is another important chemokine, that coupled with its
receptor, IL-8R, play a role in tumor invasion, proliferation, survival

Frontiers in Immunology 17

and angiogenesis, as well as in the promotion of the malignant
properties of the glioblastoma stem cells (139-142). CD70, is an
antigen that is overexpressed in glioblastoma and is associated with
poor survival (143). It was also hypothesized that it correlates with a
mesenchymal phenotype and immunosuppression via recruitment
of macrophages and CD8+ T-cell death. This information on IL-8
and CD70, let to the generation of CD70-targeting CAR with a
modified IL-8 receptor (called 8R-70CAR) that let to complete
tumor regression of advance cancers in pre-clinical studies,
including glioblastoma (144). (NCT05353530 &
NCT06946680, Table 2).

IL-13R02 is a high affinity membrane receptor that is
overexpressed in glioblastoma, and is associated with poor
outcome, mesenchymal gene profile, immunity, and the tumor
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FIGURE 3

Schematic representation of cancer vaccines, oncolytic viruses, and cytokine therapies in ongoing interventional clinical trials against glioblastoma. (A) Cancer
Vaccines; Tumour-immune cycle induced by cancer vaccines. After the administration of cancer vaccines (peptide, nucleic acid-based, DC vaccines), the
DCs uptake and process the antigens and then present them to MHC Il or MHC | via cross-presentation. Antigen-loaded DCs migrate into lymph nodes to
prime and activate T-cells. Activated T-cells, proliferate and differentiate into recognizing tumour antigens and targeting glioblastoma cells. Immunogenic
dead glioblastoma cells can release additional antigens, leading to the initiation of a subsequent cycle. (B) Oncolytic viruses; Genetically engineered OVs
selectively replicate within glioblastoma cells while sparing normal cells. This process leads to oncolysis, which not only releases virus progeny to infect
neighbouring tumour cells but also exposes DAMPs and TAAs, triggering a robust anti-tumour immune response. (C) Cytokine therapies; Cytokine therapies
modulate the glioblastoma TME. For example, LI9TNF delivers TNF to the TME, reducing tumour growth. Tocilizumab binds to IL-6, decreasing the body’s
immune response and inflammation. Tamferon-mediated delivery of INFo via genetically modified CD34+ HSPCs promotes systemic and tumour-localized
immune activation. (DC, Dendritic cell; EphA2, Ephrin type-A receptor 2; CMV, Cytomegalovirus; MTA, Mutated-derived tumour antigen; NeoAg, Neoantigen;
fl, full length; LPs, lipid particles; TERT, telomerase reverse transcriptase; PTPRZ1, Protein tyrosine phosphatase receptor type Z1; WT1, Wilms; tumour 1; PFN,
Perforin; GzmB, Granzyme B; OV, Oncolytic virus; oHSV-1, oncolytic herpes simplex virus-1; oAds, oncolytic adenovirus; INF-I, Interferon Type I; IL-12,
Interleukin-12; DAMPs, Damage-associated molecular patterns; TAAs, Tumor-associated antigens; TNF, Tumour-necrosis factor; FN, Fibronectin; EDB, Extra-
domain B; GAM, Glioblastoma associated macrophage; IL-6, interleukin 6; TEM, Tie2-expressing macrophages; HSPC, Hematopoietic stem and progenitor
cells). Created in BioRender. Papageorgis, P. (2025) https://BioRender.com/n35gcht.
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microenvironment, which make it an important therapeutic target
(145, 146). First-generation of IL-13Ro2-targeted CAR-T cells
showed evidence of antitumor efficacy, but limited persistence of
T-cells (147), therefore new approaches were explored in the design
and production of IL-13Ro2-targeted CAR-T cells. Brown et al.
(2018) (148), designed a second-generation of IL-13R02-targeted
CAR, by engineering memory-enriched T cells to express IL-13Roi2
and 41BB-constimulatory CAR, a member of the tumor necrosis
factor (TNF) receptor superfamily that enhances CAR-T survival
and persistence (149, 150). Furthermore, the engineered T-cells
expressed a truncated form of CD19, a pan B-cell marker (151) that
has been targeted for the treatment of several hematological
malignancies (152), and was shown to be highly expressed in
brain and endothelial cells causing increased BBB permeability
and neurotoxicity after targeted CAR-T immunotherapy (153,
154). These second-generation CAR-T cells not only improved
anti-tumor activity but also T-cell persistence. Furthermore, it
was shown that when delivered intracranially, they had a greater
anti-tumor effect compared to intravenous delivery in orthotopic
glioblastoma mouse models. This study, led to the protocol design
for the NCT02208362 trial (Table 2), in which multiple intracranial
infusions of these CAR-T cells, were not only proven to be safe, but
also let to the regression of glioblastoma, increased levels of immune
cells and cytokines, and persistence of response for up to 7.5 months
after treatment initiation (155). Results from this trial,
demonstrated that locoregional therapy with IL-13Ro2-targeted
CAR-T is safe with promising clinical activity in a subpopulation
of patients (88). Later, Chang Xu et al. (2022) (156), developed the
first humanized third-generation CAR-targeting IL-13Ro2 that
showed great anti-tumor efficacy and reduced expression of
immunosuppressive cytokines such as IL-6 (88, 157) Like second
and third generation IL-13Ro2-targeted CAR-T cells, HER2-
specific, 41BB-costimulatory CAR with a truncated CD19 have
been engineered and are being assessed in recurrent or non-
responsive glioblastoma (NCT03389230, Table 2). HER2 is
another important target, since it was found to be overexpressed
in glioblastoma and is associated with poor prognosis (158).
EGFRs are transmembrane receptors, part of the ErbB family of
receptor tyrosine kinases (RTKs), activated by several ligands (e.g.
TGFa) binding to the extracellular domain (ECD) (159). Ligand-
receptor formation of homo- or hetero-dimers, leads to the
activation of several downstream pathways (e.g. MAPK, STAT3
and PI3K) that regulate cell survival, proliferation, angiogenesis and
migration. When EGFRs are overexpressed or mutated, they stay
constitutively active, which leads to uncontrolled cell proliferation
and therefore tumor progression. EGFR is overexpressed in ~60% of
primary glioblastoma and 10% of secondary glioblastomas (160).
Furthermore, several mutants have been found in glioblastoma,
with the most common being EGRVIII (159, 160). Overexpression
and mutations in EGFR lead to a more aggressive glioblastoma
phenotype and increased tumor heterogeneity, therefore several
strategies have been developed to target EGFR (Table 2) (87, 89,
161, 162) B7-H3 (also known as CD276) is a type I transmembrane
protein, that expressed in >70% of glioblastoma patients (163, 164),
and is associated with progression, metastasis, poor outcome and
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immune evasion (165), as it is an immune checkpoint molecule
expressed on antigen-presenting cells. The antitumor efficacy of B7-
H3 CAR-T cells in glioblastoma in vitro and in vivo models was first
reported in Xing Tang et al. (2019) (166). Several clinical trials,
currently in recruiting phase, in refractory or recurrent
glioblastoma, are evaluating the safety, feasibility, dose and
efficacy of B7-H3 CAR-T cells (NCT05835687, NCT06482905,
NCT05366179 & NCT05474378 Table 2). In NCT05241392
(Table 2), the preliminary data were recently published and
showed that the use of B7-H3 CAR-T cells is safe and tolerated
and holds great promise toward improving patients’ overall survival
(167). Regarding the pharmacokinetic profile of B7-H3 CAR-T
cells, a study reported that local delivery led to cerebrospinal fluid
(CSF) persistence and localized immune activation rather than
systemic effects (168). It is worth noting, that in a recent pre-
clinical study, B7-H3 CAR-T cells consisting of IL-7Ra, have been
shown to suppress tumor growth and prolong overall survival in
glioblastoma mouse models (169), suggesting the potential
implication of B7-H3-IL-7Ro. CAR-T cells in the clinic.

Finally, chlorotoxin (CLTX) is a small 36-amino-acid peptide
purified from the venom of the scorpion Leiurus quinquestriatus
(170). CLTX was initially characterized based on its inhibition of
glioma-specific chloride ion channels (GCC), however recent
studies identified MMP-2 as the principal receptor for CLTX on
the surface of glioblastoma cells. As mentioned above, MMP-2
expression is increased in glioblastoma TME, contributing
significantly to the tumor invasiveness. CLTX has demonstrated
specific and selective binding to membrane-bound MMP-2 and
minimal binding to normal brain tissue, therefore CAR-T cells
engineered to incorporate CTLX as an antigen recognition domain
are considered a promising approach for MMP-2 positive
glioblastoma treatment, redirecting cytotoxic T cells towards
glioblastoma cells (171).

4.2.2 (y5)T-cells

(y8)T-cells comprise a unique type of innate immune T cells
that express a Y0 T cell receptor (TCR), and are found abundant in
several tissues, including lymphocytes that infiltrate solid tumors
(172, 173). They can directly kill tumor cells through (a) cytokine-
mediated cytotoxicity (e.g. TNFo. and IFNY), (b) perforin (PFN) &
granzyme (GzmB) and FasL & TRAILR mediated target cell
apoptosis, (c) antibody-dependent cell-mediated cytotoxicity, and
(d) antigen processing and presentation. They can also have indirect
anti-tumor effects through interaction with immune cells (e.g. NK
cells and off T-cells). In addition, they have no autologous
limitations, can be derived from healthy donors, and can be easily
expanded. These properties make them a powerful tool in
immunotherapy. The first therapeutic mechanism involves the
selective amplification of (Y9)T-cells in vivo using antibodies or
bisphosphonate antigens. In the second mechanism, which is
adoptive cell therapy, tumors are treated with allogeneic (Y5)T-
cells (natural or genetically engineered) or (Y3)T-cells that have
been expanded in vitro. The first-in-human Phase I clinical trial
(NCT04165941, Table 2) involves the intracranial infusion of TMZ-
resistant (y0)T-cells in newly diagnosed glioblastoma patients.
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During TMZ treatment, the natural killer group 2, member D
(NKG2D) receptor ligands (NDG2DL), the master activators of NK
cells (174), are upregulated, but this immune response is impaired
due to lymphodepletion (172, 175). Therefore, genetic modification
of (y8)T-cells, naturally expressing the NKG2D receptor, were
genetically modified and expanded ex vivo with an MGMT-
expressing lentivector that provided resistance to TMZ, allowing
therefore the simultaneous infusion of (y§)T-cell with
chemotherapy, and targeting therefore the tumor when NKG2DL
are maximally expressed (Figure 2C). Modifying the cells to be
resistant to TMZ is crucial, as they need to be able to resist the
cytotoxic effects of TMZ and be able to survive and function on the
presence of chemotherapy. In another trial, gene modified
allogeneic or autologous (y3)T-Cells (DeltEx), again conferring
TMZ resistance, are evaluated for safety, tolerance and ability to
delay recurrence in newly or recurrent glioblastoma
(NCT05664243, Table 2; Figure 2C).

The use of CAR-T cells in glioblastoma is based on targeting the
tumor-specific or tumor-enriched antigens like IL-13R0:2, EGFR/
EGFRvIII, HER2, CD70, B7-H3, and CD133/CD44. Apart from
antigen-specificity, the use of innovative constructs in active clinical
trials, such as next-generation CAR-T that integrate co-stimulatory
domains, can improve T-cell persistence, activation, and tumor
selectivity. In some trials, locoregional delivery of CAR-T cells
through intracranial administration aims to enhance the efficacy
and reduce systemic toxicity, although is more invasive and
complex. Since glioblastoma is characterized by profound
heterogeneity that limits the durability of response due to
downregulation of target antigens, CAR-T cells that target
multiple antigens have been developed that aim to reduce escape
via antigen heterogeneity. (y3)T-cells use a different strategy from
CAR-T, exploiting innate-like immune response. Based on their
recognition of ligands independently of MHC, they are ideal for
glioblastoma that is immune-evasive. Another advantage is that
they are multifunctional, since use different mechanisms for killing
tumor cells. On the other hand, the safety and efficacy of (y9)T-cells
is still not well established and they also require complex genetic
engineering. Although highly innovative, both CAR-T and (y9)T-
cells need to overcome antigen escape, and the suppressive
microenvironment. Moving forward, further clinical exploration
is needed, and their success will depend on effectively reshaping
the TME.

4.3 Vaccines

As recently reviewed, cancer vaccines are another promising
form of immunotherapy in glioblastoma (176). Briefly, anti-cancer
vaccines aim to provoke an immune response within the body
against tumor-specific antigen(s) and are generally composed of the
antigen (neoantigen, tumor-associated antigen or pathogen
derived-antigen) and the platform/carrier type (DC vaccine,
peptide vaccine, nucleic acid vaccine or viral vector vaccine).
Several vaccines are in active clinical trials in glioblastoma

(Table 2, Figure 3A).
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4.3.1 Peptide vaccines

Peptide vaccines are composed of 8-30 amino acid including
tumor-specific or tumor-associated antigens that elicit an anti-
tumor T cell response (177, 178). As they are not highly
immunogenic, they can be combined with other forms of
immunotherapy or chemoradiation. They can be individualized,
single-targeted or multi-targeted. One target of peptide vaccines is
the survivin protein; a member of the inhibitor of apoptosis (IAPs)
family, that is overexpressed in glioblastoma and is associated with
poor prognosis (179). The survivin peptide vaccine, SurVaxM, is
currently being evaluated in two clinical trials in combination with
TMZ (NCT02455557 & NCT05163080, Table 3). Preliminary
results showed that SurVaxM is safe and well-tolerated and its
combination with TMZ is very promising (96). pp65 and survivin
are also being targeted together with EphA2 through a multi-
peptide vaccine (ETAPA I) in HLA-A*0201 positive patients with
a newly diagnosed, unmethylated, and untreated glioblastoma
(NCT05283109, Table 3). pp65 is overexpressed in high grade
gliomas and medulloblastomas, but not in adjacent brain, and
plays a significant role in glioblastoma progression. When tested
in children and young adults, it was proven to be well-tolerated and
promoted antigen-specific immune responses (180). Other targets
include Telomerase Reverse Transcriptase (TERT), Protein tyrosine
phosphatase receptor type Z1 (PTPRZ1) and Toll-like receptors
(TLRs), that are being targeted in combination in NCT06622434
(Table 3). PTPRZI is a clinically relevant antibody in glioblastoma
associated with stemness (181), and telomerase (TRT) is a major
oncogene, whose promoter is mutated in approximately 80% of
glioblastoma patients and is associated with tumor progression (96,
182, 183). TLRs are ubiquitously expressed receptors that recognize
pathogens and lie at the first line of defense in the innate immune
system (184). In several tumor types, upon ligand recognition, TLRs
activate downstream intracellular signaling pathways either
supporting or suppressing tumor growth, thus they are a great
candidate for immunotherapy. Finally, several autologous or
allogeneic multipartite vaccines, designed to induce a variety of
neoantigen-specific inmune responses, are tested in clinical trials in
combination with other therapies, such as ICIs and nucleic acid
vaccines (NCT03223103 & NCT02287428, Table 3).

4.3.2 DC vaccines

DC are the most superior APC cells of the immune system, thus
playing a vital role in presenting antigens in the lymph nodes
eliciting T-cell priming and distant anti-tumor response (185, 186).
DC vaccines are generated by culturing hematopoietic progenitor
cells or monocytes ex vivo in the presentation of a cytokine cocktail
to induce their maturation. Following maturation, DCs are loaded
into tumor antigens and subsequently injected into patients. Not
only they can achieve priming of CD4+ T cells by peptide-MHCII
complex, but also, they elicit CD8+ T-cell antitumor responses.
Several clinical trials are underway in glioblastoma investigating the
safety and efficacy of DC vaccines in newly diagnosed or recurrent
glioblastoma (Table 3). Some are loaded with autologous tumor
lysates (NCT03395587, NCT04523688 & NCT04801147, Table 3),
and even “double-loaded” (NCT06805305), and others are loaded
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with multiple tumor neoantigens (NCT04968366 & NCT 06253234,
Table 3). They are administered either alone or in combination with
chemoradiation or ICIs. Finally, other DC vaccines are loaded with
mRNAs for specific proteins, including Survivin/hTERT derived
from autologous GSCs (NCT03548571, Table 3), the tumor-
associated antigen Wilm’s tumor 1 (WT1) (NCT02649582,
Table 3) and the human CMV immunodominant protein pp65-
LAMP (NCT03688178, Table 3).

4.3.3 Nucleic acid-based vaccines

Other than the DC and peptide vaccines, a few other vaccines
are being exploited in glioblastoma immunotherapy trials based on
the delivery of nucleic acids (Table 3). Nucleic acid-based vaccines
introduce a segment of DNA or RNA that encodes a specific or
multiple tumor antigens, to elicit and immune response (176). The
current vaccines clinical trials include DNA vaccines
(NCT05698199, & NCT04015700), an mRNA vaccine
(NCT05938387), and two vaccines that use lipid nanoparticle
technology (187) to deliver RNA (NCT04573140 &
NCT06389591). Apart from the mRNA vaccine that encodes
several GBM peptides (188), all the others are targeting the
immunogenic and viral antigens of CMV.

Cancer vaccines are a growing field in glioblastoma
immunotherapy, and they hold a great promise, since they aim to
evoke tumor-specific immune response through tumor associated
or neoantigen presentation. In addition, they have shown great
tolerability and minimal toxicity in early-phase trials (e.g.
SurVaxM). Furthermore, they allow personalized and/or multi-
antigen targeting to address the heterogeneity present in
glioblastoma. Especially DC vaccines, that are loaded with
autologous tumor lysates, offer T-cell priming, overcoming the
limitations of peptide vaccines (priming of weak immune
response). The efficacy of vaccines might be limited the high
infiltration of Tregs, and antigenic heterogeneity, therefore
combining vaccines with other immunotherapies (CAR-T cells,
ICIs and oncolytic viruses) may further improve immunogenicity
and efficacy. Future progress hinges on optimizing vaccine
formulations for better delivery, refining antigen targets, and
leveraging synergies with other immunotherapies.

4.4 Oncolytic viruses

The development, use and clinical relevance of oncolytic virus
in cancer immunotherapy have been extensively reviewed elsewhere
(189-192). Briefly, oncolytic viruses (Ovs) are genetically
engineered viruses that selectively attack and lyse tumor cells
without disrupting normal cells via different biological
mechanisms. They are manipulated in such way to enhance
tumor selectivity, promote replication competence, limit
pathogenicity and increase immunogenic cell death (ICD). In
glioblastomas, treatment with OVs is very suitable due to their
alignment to the brain environment, the fact that they do not form
distant metastases, and finally that they are fast growing tumor cells
that attract virus replication. OVs are classified into two major
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groups: (1) replication-competent OV that selectively replicate in
cancer cells e.g. Herpes Simplex Virus (oHSV) and adenoviruses
(0Ads) and (2) replication-deficient viral vectors used as vehicles for
other therapeutic genes e.g. polioviruses.

Most ongoing clinical trials in glioblastoma are using oHSVs
(Table 3, Figure 3B) (193-197).

Apart from oHSVs, trials utilizing 0Ads are currently ongoing
in glioblastoma (Table 3, Figure 3B). DNX-2401 oAds has two
stable genetic changes the dsDNA adenovirus genome that allows
the selective and efficient replication in current cells (197). When
combined with pembrolizumab, DNX-2401 not only was proven
safe, but it also induced durable cell death by direct oncolytic
activity and immune response in high-grade glioma patients. The
drug is now in Phase I clinical trials in patients with recurrent
glioblastoma (NCT03896568, Table 3). However, DNX-2401 is not
intended for systemic BBB penetration due to its viral nature and
size (195). NSC-CRAd-S-pk7, is another very promising adenovirus
developed against glioblastoma (198). It has several features
including: (1) a survivin promoter for enhancing specific
replication in tumor cells, since survivin is found to be
overexpressed in glioblastoma, (2) a modified Ad5 protein
through insertion of polylysine sequence (pk7), which binds to
heparin sulfate proteoglycans also overexpressed in glioblastoma
and (3) neural stem cells (NSCs) as its carrier, also contributing to
selectivity. In Phase I trials, NSC-CRAd-S-pk7 was shown to be safe,
improve OS and result in an increase of cytotoxic T-cells (105). A
clinical trial against recurrent high-grade glioma is currently
underway (NCT05139056, Table 3). NRG-103 is a novel gene
therapy agent engineered to enhance the tumor-specific
recognition and cytolytic activity of an oncolytic virus, while
simultaneously eliciting a robust anti-tumor immune response. It
leverages in situ transdifferentiation technology, incorporating
multiple engineered mutations within the adenoviral genome.
Notably, NRG-103 expresses two transcription factors capable of
efficiently reprogramming residual glioblastoma cells into neuronal-
like cells, thereby aiming to delay tumor recurrence and improve
long-term survival. In preclinical models it exhibited significant
anti-tumor activity, and its overall or disease-free survival is being
evaluated in patients with recurrent glioblastoma (NCT06757153,
Table 3). Lastly, the safety and efficacy of the oncolytic virus TS-
2021, is evaluated in the clinical trial NCT06585527 (Table 3). TS-
2021 is a third-generation oncolytic adenovirus that can efficiently
target glioblastoma cells overexpressing Ki67 (proliferation marker)
and TGF-B2 and can inhibit invasiveness through targeting of the
MKK4/JNK/MMP3 pathway (199).

Finally, PVSRIPO is under clinical investigation for safety and
efficacy in recurrent glioblastoma (NCT02986178, Table 3).
PVSRIPO is a type 1 (Sabin) live-attenuated poliovirus vaccine
that carries a heterologous internal ribosomal entry site (IRES) of
human rhinovirus type 2 (HRV2) (200). Its synthesis allows
selective expression in tumor cells after coupled with its receptor,
CDI155, expressed in several tumors including glioblastoma,
exerting antitumor effects.

Opvs are an innovative class of immunotherapies that offer direct
tumor cells lysis as well as indirect stimulation of anti-tumor
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immune response. They exhibit several advantages including their
selective replication in tumor cells minimizing the damage to
normal brain tissue (e.g. oHSV G207 and C134 are designed with
deletions in neurovirulence genes to limit replication in healthy
neural tissue while enhancing tumor-specific lysis) (201). They can
induce ICD, reprogram the immunosuppressive microenvironment
(e.g. CAN-3110) and improve T-cell activation (e.g. NSC-CRAd-S-
pk7). On the other hand, glioblastoma heterogeneity and pre-
existing immunity against viral vectors, can limit OV spread and
propagation. Furthermore, and tumor cells can develop resistance
through interferon signaling or downregulation of viral receptors
(e.g., CD155 for PVSRIPO). Even though promising results have
been demonstrated in early-phase trials, their benefit on PFS and
OS must be demonstrated in Phase II/III trials. Ongoing advances
in vector engineering, biomarker-guided patient selection, and
combinations with other immunotherapies (e.g. with ICIs) are
expected to shape the next generation of OV-based therapies.

4.5 Cytokine therapies

Another form of immunotherapy are the cytokine-based
therapies that are very promising, as they can potentially alter the
immunosuppressive microenvironment and trigger anti-tumor
immunity (195). However, the systemic administration of
therapeutic doses of pro-inflammatory cytokines can cause
toxicity. To tackle this systemic toxicity, LI9TNF was generated.
Composed of TNF fused to the L19 antibody, LI9TNF is a fully
human antibody-cytokine fusion designed to selectively deliver
TNF to tumors by binding a fibronectin epitope uniquely
expressed in the tumor extracellular matrix, where it induces cell
death, and at the same time the reduction of toxicity to healthy
organs (202) (Figure 3C). Ongoing trials are investigating the safety,
efficacy and recommended dose of intravenous administration of
L19TNF in newly diagnosed (NCT04443010, Table 3) and
recurrent glioblastoma (NCT04573192, Table 3), in combination
with TMZ-based chemoradiation or lomustine accordingly. In
another ongoing clinical trial in recurrent glioblastoma
(NCT04729957, Table 3), the efficacy and MTD of tocilizumab in
combination with atezolizumab and stereotactic RT is being
investigated. Tocilizumab is an anti-IL-6 monoclonal antibody
that reduces the body’s immune response and inflammation
(Figure 3C). Therefore, it suppresses the inhibitory effect of
immune cells surrounding glioblastoma and consequently allow
atezolizumab, an anti-PD-L1 treatment, to activate the immune
response against glioblastoma. Finally, Tamferon' ", was designed
to increase the production of IFNo to cause immune activation
(203). More specific, CD34+ HSPCS are isolated from the patient
and are transduced ex-vivo with a lentivirus expressing IFNo.
downstream a Tie2 promoter, so that IFNo expression is
confined to Tie-2 expressing macrophages (TEMs) (Figure 3C).
The safety and efficacy of Tamferon' ", is evaluated in patients with
MGMT-unmethylated glioblastoma (NCT03866109, Table 3).

Cytokine therapy is a highly promising but still evolving
frontier. It has an immunomodulation potential, since it aims to
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reprogram the TME through cytokines such as TNF and IFNa,
enabling a more effective anti-tumor response. Innovations like
L19TNF and Tamferon' " help to overcome the systemic toxicity by
directing cytokine action to the tumor site. Furthermore, the latter
utilizes patient-specific, gene-modified immune cells, showing a
shift towards personalized immunotherapy. Cytokine therapy is
often combined with other therapies, including the standard of care,
Like other
immunotherapeutic approaches, immune evasion and tumor

to address other resistance mechanisms.

heterogeneity are still a concern. Furthermore, delivery is still an
issue, especially since cytokines have a limited therapeutic window,
and local overexpression can cause neurotoxicity or inflammation.
The issues need to be addressed, and success in clinical trials
remains to be proven.

4.6 Other targeted immunomodulatory
therapies

Finally, a few other strategies that do not explicitly fall into the
categories already discussed, have been developed to induce
immune-specific responses and are under clinical evaluation in
glioblastoma (Table 3). For example, Tumor-infiltrating
lymphocytes (TILs) therapy, an innovative form of adoptive cell
therapy that utilizes the patient’s own immune cells to target and
destroy cancer cells, is given in combination with pembrolizumab in
patients with advanced gliomas (NCT06640582, Table 3). In
addition, IGV-001 that is being evaluated in NCT04485949
(Table 3), is a first-in-class autologous immunotherapeutic
product from GoldspireTM, that combines personalized whole
tumor-derived cells with an insulin-like growth factor receptor 1
(IGF-1R) antisense oligonucleotide (IMV-001) in an implantable
biodiffusion chambers (204). It has been reported that inhibiting
IGF-1R can effectively suppress the growth of GBM cells directly or
indirectly through suppression of cell proliferation or angiogenesis
respectively (205-208). In addition, the N-803 from Anktiva, a
modified IL-15-based fusion protein (IL-15Ra-Fc), functions as an
immunostimulatory agent that drives the expansion and activation
of NK cells and CD8" T lymphocytes (209), is being evaluated in
progressive or recurrent glioblastoma (NCT06061809). It is given in
combination with PD-L1 targeting high-affinity NK (t-haNK) cells
(210) and the anti-VEGF antibody, Bevacizumab. While N-803
generally demonstrate improved tolerability, long-term exposure
may still carry immunological risks. Sustained stimulation of NK
and CD8+ T cells can lead to chronic immune activation, increasing
the risk of cytokine release syndrome (CRS), immune-mediated
tissue damage and inflammatory toxicities such as fever, and
hypotension. Finally, the drug NGM707 is being evaluated as
monotherapy and in combination with pembrolizumab in
advanced or metastatic glioblastoma in NCT04913337 (Table 3).
NGM707, is a dual humanized monoclonal antibody that targets
Immunoglobulin-like transcript (ILT)2 and ILT4 resulting in early
efficacy and biomarker signals in advanced or metastatic solid
tumors (113), probably through the generation of immune niche
and immune-checkpoint blockage (211).
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These novel immunomodulatory therapies for glioblastoma are
conceptually sound and mechanistically diverse, representing a
hopeful direction. TILs and the IGV-001 personalized vaccine
provide tumor-specific cytotoxicity since the former are isolated
from patient’s tumor and the latter combines patient-specific tumor
cells with IGF-1R antisense oligonucleotide. Combination of TLIs
with pembrolizumab maximizes activity by preventing T-cell
exhaustion. Daratumumab and other monoclonal antibodies are
designed against tumor-specific antigens, aiming to enhance DC
priming and T-cell activation, boosting anti-tumor immunity.
Indoximod and N-803 both enhance NK function, and finally
NGM707 aims checkpoint inhibition beyond PD-1/PD-L1, as
ILT2/ILT4 target innate immune checkpoints, potentially reviving
exhausted myeloid cells and enhancing antigen presentation.
However, despite their innovative approach, common hurdles
persist including tumor heterogeneity leading to immune escape,
impaired delivery due to the BBB and complex trial designs. Most
evidence remains preclinical or Phase I, making long-term
benefit speculative.

5 Conclusions & future prospectives

Glioblastoma remains among the most aggressive and
therapeutically challenging malignancies due to its complex,
heterogeneous, and profoundly immunosuppressive tumor
microenvironment (TME). Despite the significant progress in
cancer immunotherapy in some tumor types, mainly using ICIs
and CAR-T cell therapies, these approaches have not yet
demonstrated substantial clinical benefits in glioblastoma patients,
primarily due to intrinsic resistance mechanisms facilitated by the
glioblastoma TME. The etiology of this phenomenon is clearly
multifactorial and is largely attributed to the highly
immunosuppressive nature and heterogeneity of GBM tumors.
Immunosuppression in the TME is mediated via a multitude of
underlying mechanisms, including the secretion of
immunosuppressive cytokines, the abundance of Tregs, MDSCs
and GAMs in the TME, the insufficient infiltration and elimination
of antigen-specific T cells, the sequestration of T-cells in the bone
marrow leading to their dysfunction, T-cell exhaustion, antigen
escape as well as upregulation of multiple immune checkpoint
molecules. In addition, the low TMB present in the majority of
GBM tumors leads to limited number of produced neoantigens,
which are needed to elicit durable T-cell responses, and contributes
to the limited efficacy of immunotherapy. Moreover, physiological
barriers like the blood-brain barrier (BBB), along with hypoxic and
acidic conditions within the TME, significantly hinder therapeutic
efficacy and immune response.

This review provides a comprehensive description of
immunotherapy clinical trials. However, interpretations based on
these trials are limited due to mixed treatment regimens
(monotherapy vs. combinations) and ethnic bias, as many cited
studies were conducted in predominantly Japanese cohorts,
reducing generalizability across broader populations. To enhance
the success of glioblastoma immunotherapies, future strategies must
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involve a comprehensive and functional understanding of distinct
components of the TME at the single-cell level, such as tumor
profiling using spatial transcriptomics and proteomics as well as
patient-specific neoantigen identification, that will enable
personalized and precision targeting to improve immunotherapy
efficacy and patient outcomes. In addition, advancing glioblastoma
therapy requires overcoming simultaneously both the biological
and physical barriers that influence the therapeutic efficacy, such as
the immunosuppressive TME, ECM composition and BBB
permeability. Therefore, technological advancements in BBB
penetration and targeted drug delivery (e.g., advanced
nanomedicine, ultrasound-mediated BBB disruption) hold
substantial promise and should be further explored.

In addition, combining immunotherapeutic agents with
strategies that modulate the non-cellular components of the TME,
such as agents targeting hypoxia, acidosis, and ECM constituents,
could also enhance therapeutic outcomes. Further exploration of
combination therapies integrating ICIs, CAR-T cells, vaccines, and
oncolytic viruses with standard therapies (chemotherapy,
radiotherapy) and novel targeted treatments is critical. However,
mitigating short- and long-term side-effects in patients, especially in
combination treatments likely remains one of the major challenges
that need to be addressed.

To advance the field of glioblastoma immunotherapy, future
efforts should move beyond incremental improvements. One
promising direction is the application of artificial intelligence (AI)
and machine learning (ML) to optimize clinical trial design,
enabling real-time patient stratification and prediction of
therapeutic response based on multi-omics data. Subsequently,
spatial mapping of the TME through spatial transcriptomics and
multiplexed imaging can uncover regional immune niches and
patterns of immune suppression within glioblastoma, guiding the
localization of targeted therapies. Coupling these insights with
biomarker-driven patient stratification could personalize
immunotherapy approaches and increase clinical efficacy.

Finally, integrating novel biomarkers and robust pre-clinical
models using state-of-the art humanized patient-derived xenograft
models into clinical trial designs will facilitate better patient
stratification, treatment personalization, and evaluation of
immunotherapy efficacy. Future interdisciplinary research efforts
must focus on refining patient selection criteria and developing
multimodal therapies that target both the tumor and its
immunosuppressive milieu. These will be crucial in overcoming
existing barriers, emphasizing on exploiting glioblastoma-specific
vulnerabilities to ultimately transform the treatment landscape for
glioblastoma. Despite numerous challenges, immunotherapy
remains one of the most promising treatment strategies

for glioblastoma.
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