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Glioblastoma is considered the most common and lethal form of brain cancer.

Despite tremendous progress in glioblastoma therapeutics, the profound intra-

and inter-tumoral heterogeneity of glioblastoma tumors, the difficulty of agents

to cross the blood-brain barrier (BBB), the development of drug resistance as well

as the immunosuppressive tumor microenvironment (TME) predominantly

account for the failure of existing conventional and targeted therapies.

Therefore, there is a growing necessity to decipher the complexity of the TME

that promotes immunosuppression and to discover innovative strategies

targeting both the tumor and its TME to improve patient treatment outcomes.

In this comprehensive review, we present the latest evidence implicating various

components of the TME in regulating the efficacy of immunotherapies. We also

discuss the current challenges and opportunities of immunotherapy in treating

glioblastoma, including ongoing clinical trials using immune checkpoints

inhibitors (ICIs), CAR-T cell therapy, vaccines, cytokine therapy and

oncolytic viruses.
KEYWORDS

immunotherapy, glioblastoma, immunosuppressive tumor microenvironment, drug
resistance, immune checkpoint inhibitors
1 Introduction

Glioblastoma, formerly known as glioblastoma multiforme (GBM), is defined as a

WHO Grade 4 adult-type diffuse glioma, indicating that is a fast-growing tumor (1). The

term ‘glioblastoma’ is now used for the Isocitrate dehydrogenase (IDH) wildtype tumors

only, while the IDH-mutant tumors have been renamed to “Astrocytoma, IDH-mutant,
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CNS WHO grade 4”. For simplicity, in this review, the term

‘glioblastoma’ will be used throughout for IDH wildtype tumors,

unless otherwise specified.

Glioblastoma accounts for around half of all the CNS tumors,

making it the most common primary malignancy of the adult brain

(2). Although the causes of glioblastoma are not fully understood,

evidence suggests that age, obesity, exposure to ionizing radiation

and hereditary genetic conditions such as neurofibromatosis (NF),

Li-Fraumeni syndrome, tuberous sclerosis (TSC), Turcot

Syndrome, and Lynch syndrome, are risk factors for developing

the disease (3, 4). The clinical symptoms include cognitive disorder

and seizures, slowly progressive impairments of the CNS (motor

weakness, sensory and memory loss, visual deficits and speech

difficulties), headaches, nausea and vomiting, and changes in

personality (5–7). Further to the presentation of these clinical

symptoms, glioblastoma is diagnosed through radiological exams,

including mostly magnetic resonance imaging (MRI), but also CT

(computed tomography) scans, and positron emission tomography

(PET) (5, 8–12). Finally, a diagnosis of GMB in adults is made if

there is evidence of necrosis, microvascular proliferation, mutation

in the telomerase reverse transcriptase (TERT) promoter, gene

amplification of the epidermal growth factor receptor (EGFR), or

+7/−10 chromosome copy number changes (1). Classification of

glioblastoma is based on histological features, with the three main

histological variants being giant cell glioblastoma, gliosarcoma and

epithelioid glioblastoma, as well as several histological patterns (1).

Glioblastoma is a highly aggressive and lethal tumor, with a

median overall survival of 15–18 months, with only 3% of patients

having a progression-free survival (PFS) of more than 5 years (2, 13,

14). Current glioblastoma standard of care therapies include

surgery, radiat ion therapy and temozolomide (TMZ)

administration (13). However, TMZ’s efficacy is limited due to

systemic toxicity and development of resistance resulting in lack of

long-term efficacy and cure (15–17). Therefore, alternative

therapeutic strategies are being developed to tackle resistance or

improve immunotherapy for glioblastoma. Immunotherapy,

especially immune checkpoint blockage (ICB) using ICIs, has

revolutionized cancer therapy over the last few years, with

exceptional success in several cancer types (18, 19).

Unfortunately, initial trials in glioblastoma with ICIs have

revealed negative results (20, 21). This therapy failure has mainly

been attributed to the highly complex and immunosuppressive

glioblastoma TME, which comprises glioma and glioma stem cells

(GSCs), immune cells, cells of the nervous system, the brain

vascular system, and extracellular matrix (ECM) components (22,

23). Novel ICIs and immunotherapeutic approaches aiming to

overcome the challenges posed by the limited glioblastoma

immunogenicity are currently in development or being evaluated

in clinical trials. This review summarizes the current state of

immunotherapy in glioblastoma and discusses the underlying

mechanisms by which TME components affect its efficacy or can

be exploited for the identification of alternative immunotherapeutic

targets in the future.
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2 Available therapies for glioblastoma

The current standard of care for newly and recurrent diagnosed

patients of glioblastoma includes the removal of tumor to the

greatest extent that is safe for the patient, followed by

radiotherapy with concomitant chemotherapy (13). Other

therapeutic options include the alkylating agents Carmustine and

Lomustine, the monoclonal antibody Bevacizumab, and Tumor

Treating Fields (TTFiels).
2.1 Surgery

As recently reviewed (24), several neurosurgical strategies are

available, tailored for each patient according to the tumor volume

and location. These include resection of the tumor (supramaximal,

gross total, subtotal or near-total) and biopsy. Surgery not only

helps to minimize tumor volume and improve patients’ overall

survival (OS) but also allows surgeons to biopsy the tumor for

classification and to design the appropriate radiotherapy regime.

Maximal safe resection is recommended as the initial step in

treatment since it alleviates symptoms, enhances OS, and boosts

the effectiveness of adjuvant therapies.
2.2 Radiotherapy

Following surgery, radiotherapy is a cornerstone of

glioblastoma treatment and has been shown to increase OS (3).

Simple 2D and 3D radiotherapy techniques as well as more modern

approaches, such as intensity-modulated radiotherapy (IMRT), can

maximize the levels of radiation that reach the tumor site, while

minimizing off-targeting to non-cancerous areas of the brain, thus

reducing neurotoxicity and other adverse side effects. Following

radiotherapy, patients with favorable prognostic factors or

methylated O6-methylguanine-DNA methyltransferase (MGMT)

promoter, typically receive adjuvant chemotherapy, usually with

TMZ as discussed below. This combined approach is often referred

to as the Stupp regimen and it is considered the standard of care for

newly diagnosed glioblastoma (25).
2.3 Approved drugs and implant-based
therapy

2.3.1 Temozolomide
TMZ, commercially known as Temodar, has received FDA

approval for treating glioblastoma in 2005, based on its

improvement in overall OS (26). It belongs to the new class of

oral alkylating agents with an imidazole ring, with its chemical

designation being 3-methyl-4-oxoimidaz[5,1-d][1,2,3,5]tetrazine-

8-carboxamide (27–29). TMZ is a BBB penetrating pro-drug,

which gets hydrolyzed under physiological pH to its active drug
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form, methyltriazen-1yl imidazole-4-carboxamide (MTIC). The

drug modifies its targets by adding methyl groups in genomic

DNA in guanine and adenine, in N7 and O6, and N3 sites

respectively. Methylation causes DNA replication errors and

disruption of the mismatch repair (MMR) repair system, which

leads to DNA double-strand breaks and eventually programmed

cell death. Therefore, the clinical benefit of TMZ is significantly

influenced by the methylation of MGMT promoter; patients with

methylation on the MGMT promoter show a better response to

TMZ.While TMZ is generally well-tolerated, it is accompanied with

several side effects including hematological and hepatotoxicity and

others (30, 31). Furthermore, glioblastoma has several mechanisms

of resistance to TMZ, as reviewed elsewhere (15–17).

2.3.2 Carmustine (BCNU)
BCNU (Bischloroethyl Nitrosourea Carmustine) belongs to the

class of N-nitrosoureas [1,3-bis(2-chloroethyl)urea], a

monofunctional alkylating agent. It is clinically approved in two

forms for glioblastoma treatment. Firstly, intravenous (IV) BCNU

was approved in 1977 for treating recurrent glioblastoma, however

its use has declined due to the availability of more effective

treatments will less toxicity. Secondly, Carmustine Wafers (CWs)

marketed as Gliadel®, are biodegradable wafers that are implanted

in the surgical site during glioblastoma resection, and they release

carmustine locally. They were approved by the FDA for recurrent

GBM and malignant glioma in 1996 and 2003 respectively (32).

Their use is currently limited and remains a controversial topic

among neurosurgeons due to the potential side effect of pulmonary

fibrosis, and lack of significant evidence on its impact on the quality

of life, infections after surgery and possibility of adjuvant therapy

(33). In a recent meta-analysis study, Ricciardi et al. (2022),

evaluated the OS and progression-free survival (PFS) in newly

high-grade glioma patients that received intraoperative

implantation of CWs, and concluded that CWs can significantly

improve OS, but patients must be carefully selected based on their

age and tumor volume to minimize side effects (34).
2.3.3 Lomustine (CCNU)
Lomustine, also known as CCNU (chloroethyl-cyclohexyl-

nitrosourea), is a monofunctional alkylating agent of the

nitrosourea family, that alkylates DNA and RNA, which triggers

cancer cell death through DNA and RNA cross-linking (35). It is

lipid-soluble and thus can successfully cross the BBB. It was FDA-

approved for the treatment of brain tumors in 1976, and it is still

being widely used for recurrent and progressive glioblastoma,

administered orally in 6 to 8 weeks intervals (36, 37). Lomustine

is given as monotherapy or in combination with procarbazine and

vincristine (PCV regime), and it is considered safe with well-

controlled side effects (37, 38). CCNU is increasingly considered

as the standard of care option for recurrent glioblastoma, as no

other treatment has demonstrated superior outcomes in controlled

clinical trials (39).
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2.3.4 Bevacizumab
Bevacizumab, also known as Avastin®, is a human recombinant

monoclonal antibody to vascular endothelial growth factor (VEGF),

a signal protein central to angiogenesis, that has been used for the

treatment of several cancer types, both in monotherapy and in

combination therapies (40). In 2009, bevacizumab was FDA-

approved for recurrent glioblastoma following two Phase II trials,

in which it was given in combination with irinotecan, based on its

safety and improvement of quality of life (41, 42). In a recent

scoping review (43), PFS benefits, and well-controlled side effects

were supported for recurrent glioblastoma from bevacizumab, but

no benefits in OS were identified. In fact, the European Medicines

Agency (EMA) has rejected the use of bevacizumab for treating

recurrent GBM, due to the lack of positive benefit-risk (44). It was

suggested that combining bevacizumab with other therapies, like

TTFields, might improve therapeutic outcome, but more studies are

needed (43).

2.3.5 Optune® device
Optune® device, also known as TTFields, made by NovoCure is

a portable wearable device, that was initially approved in 2011 for

treating patients with recurrent glioblastoma and in 2015 for newly

diagnosed glioblastoma (45). TTFields are alternating electric fields

that disrupt cancer cell replication both in vitro and in vivo (46).

TTFields combined with TMZ have shown significantly improved

OS and PFS, however, they have not been adopted as standard care

due to several factors such as high cost and inconvenience (47).
3 The glioblastoma
immunosuppressive tumor
microenviroment

The glioblastoma TME is characterized by significant

heterogeneity and complexity, encompassing glioma and GSCs,

immune and nervous system cells, ECM components and the

brain vascular system. Additionally, TME is highly dynamic,

characterized by extensive cell-to-cell communication and

regulated by factors such as pH and oxygen levels. Glioblastoma

lacks infiltration of immune cells, favoring the development of

tumorigenic properties, with the immunosuppressive TME playing

a crucial role in cancer cell survival and response to

therapy (Figure 1).
3.1 Non-cellular components

3.1.1 ECM
In general, the ECM compromises approximately 20% of the

brain mass, and under physiological conditions, it provides

structural and biochemical support, as well as regulation of

various cellular processes (48). The major components of the
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1665742
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nicolaou et al. 10.3389/fimmu.2025.1665742
ECM, including hyaluronic acid (HA), tenascin-C (TNC),

fibronectin (FN), laminin, and collagen, among others, play a

vital role in the modulation of invasiveness. In glioblastoma,

remodeling, and degrading of the ECM is observed since Matrix

metalloproteinases (MMPs), more specifically MMP-2 andMMP-9,

are released into the extracellular space. Tenascin-C (TNC), another

ECM component, is a matricellular protein (MCP) that is normally

expressed at low levels; however, during development and

pathological conditions it is highly expressed (49, 50).

Glioblastoma cells produce and release TNC and high TNC

expression is associated with poor patient survival and disease

progression. TNC can interact with multiple proteins (e.g.

fibronectin, Toll-like receptors etc.) and thus can promote

neovascu lar i za t ion , pro l i f e ra t ion , invas iveness , and

immunomodulation. Additionally, the presence of TNC

stimulates GSCs invasiveness by MMP12 and ADAM

metallopeptidase domain 9 (ADAM9) expression and activity, via

the c-Jun NH2-terminal kinase pathway. Another ECM component

is HA, which activates CD44, a cell surface adhesion protein,

stimulating the synthesis and secretion of additional HA, leading

to upregulation of MT1-MMP, thus promoting glioblastoma cell
Frontiers in Immunology 04
infiltration (48). Moreover, FN glycoprotein, also highly expressed

in glioblastoma, promotes cell adhesion, differentiation of GSCs,

and invasion, and plays a role as a coordinator between ECM and

glioblastoma cells (51). Activation of the adhesion kinase/paxillin/

Akt signaling pathway is responsible for GSCs adherence and

differentiation, while the increase of MMPs’ activity and

activation of axis Stat3-ODZ1-RhoA/ROCK, could be responsible

for the invasive behavior observed in glioblastoma. Laminin

glycoprotein, more specifically laminin-2, -5, and -8, are also

found to be highly expressed in glioblastoma patients and they

are suspected to have a role in glioblastoma spreading and

infiltration (48). Lastly, collagen type I is normally present at low

levels in brain tissue, but its expression is slightly elevated in

glioblastoma tumors. It is enhanced in the perivascular niche of

GSCs, promoting therefore invasiveness via integrin and

phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways.

3.1.2 Physicochemical properties
Physiological factors, such as pH and oxygen concentrations,

can affect tumor progression, and immunosuppression (48). The

intra-tumoral heterogeneity displayed in glioblastoma alters the
FIGURE 1

Schematic representation of the immunosuppressive glioblastoma TME. The heterogeneous cellular and non-cellular players of glioblastoma TME
are represented. There is an enrichment of immunosuppressive cellular subsets (e.g. Tregs, MDSCs, and GAMs), neural cells, as well as GSCs. Non-
cellular aspects include ECM proteins, and soluble factors (e.g. cytokines, growth factors). The hypoxic and acidic environment affects various TME
components in numerous ways. This highly complex microenvironment contributes to a strong tumour heterogeneity and immunosuppressive
environment, facilitating tumour progression, resistance to therapies, and immune evasion mechanisms. (GAMs, Glioblastoma-associated microglia/
macrophages; Tregs, Regulatory T cells; DCs, Dendritic cells; MDSCs, Myeloid-derived suppressor cells; GSCs, Glioblastoma stem cells; FN,
Fibronectin; TNC, Tenascin-C; HA, Hyaluronic acid; MMPs, Matrix metalloproteases; ECM, Extracellular matrix). Created in BioRender. Papageorgis, P
(2025). https://BioRender.com/qc1ro4l.
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nutrient supply and availability of oxygen within the tumor,

influencing metabolic properties and energy utilization of

cancer cells.

3.1.2.1 Hypoxia

Hypoxic conditions are fundamental drivers of oncogenesis.

During hypoxic conditions, glioblastoma cells can adapt and persist

due to the high expression of hypoxia-inducible factors (HIFs), a

family of transcription factors that are stabilized under low oxygen

conditions and are regulated by the inhibition of prolyl-4-

hydroxylase 2 (PHD2). This accumulation further activates the

expression of downstream targets, including proangiogenic and

anti-apoptotic genes. The angiogenesis-induced hypoxia in

glioblastoma leads to specific features such as necrotic cores and

microvascular hyperplasia, that drive tumor growth and invasion.

Additionally, under hypoxia, MMP-2 and MMP-9 expression is

increased, and the epithelial-to-mesenchymal transition (EMT)

process is induced mainly by transcription factors that have

hypoxia response elements (HREs) at their gene promoter

regions, such as Twist, Snail, and ZEB. Finally, hypoxia can

amplify the activities of immunosuppressive cells, including the

influx of M2 macrophages and Tregs at the tumor site (52, 53).

3.1.2.2 Acidosis

The TME as well as intrinsic cellular processes of glioblastoma

are affected by acidosis (low pH), which facilitates pro-tumorigenic

processes including survival, proliferation, migration, and

angiogenesis (52, 53). Tumor acidosis further increases the

expression of HIF-1a and HIF-2a and alters the interactions

among glioblastoma cells and various TME components,

significantly impacting the invasion process (53). It reduces the

infiltration and activity of effector lymphocytes and NK cells,

further promoting glioblastoma persistence. In addition, drug

uptake and efficacy are also affected since acidosis neutralizes

radiation-induced reactive oxygen species (ROS) formation,

inhibiting apoptosis (52, 53). Thereby, acidosis plays a significant

role in fostering a highly immunosuppressive TME.
3.2 Cellular components

3.2.1 Immune components
Immune cells found in glioblastoma TME constitute up to 50%;

glioblastoma-associated macrophages and microglia (GAMs) are

the most prevalent, followed by neutrophils, regulatory T cells

(Tregs), dendritic cells (DCs), and myeloid-derived suppressor

cells (MDSCs) (54). The immune components present in

glioblastoma contribute to the observed immunosuppressive

characteristics of the glioblastoma TME.

3.2.1.1 GAMs

GAMs in glioblastoma are composed of macrophages and

microglia, which are resident macrophages located in the CNS,

both functioning as phagocytic cells. They play a significant and

complex role by interacting with glioblastoma cells in various ways
Frontiers in Immunology 05
that can influence tumor progression (55). While they have the

potential to attack glioblastoma cells, they also support tumor

growth and invasion. Based on their marker expression and

cytokine expression profile, GAMs can be polarized into M1

(anti-tumor) or M2 (pro-tumor) phenotypes. As glioblastoma

progresses, however, GAMs tend to be pro-tumorigenic thus

favoring an M2 phenotype. The presence of GAMs has been

considered to have prognostic value, since higher levels of GAMs

are positively correlated with poor prognosis and worsen OS (52).

They secrete factors that support tumor growth (e.g. insulin-like

growth factor (IGF-1), epidermal growth factor (EGF), platelet-

derived growth factor (PDG-F)), as well as anti-inflammatory

cytokines (e.g. interleukin-6 (IL-6), IL-10, transforming growth

factor beta (TGF-b)), promoting the malignant phenotype of

glioblastoma and contributing to the permeability of the BBB

(52). More specifically, the proliferation of glioblastoma cells is

associated with elevated Ca2+ levels in the tumor, which further

stimulate ATP-mediated tumor cells that directly interact with

GAMs, leading to their activation. In addition, the secretion of

IL-6 by GAMs activates the JAK-STAT3 pathway in endothelial

cells (ECs) and downregulates intercellular connexins levels, such as

connexin43 (Cx43). This contributes to the disruption of the BBB

and its increased permeability (56).

3.2.1.2 Neutrophils

In glioblastoma, neutrophils (CD66b+ and CD16+), a subset of

myeloid-derived suppressor cells, upregulate the S100A4 protein,

which suppresses the mesenchymal phenotype and facilitates

acquired resistance to anti-VEGF therapy (57). They play a role

in the oncogenic process of tumor initiation, proliferation, and

dissemination via a pro-tumorigenic positive feedback loop.

Neutrophils can induce angiogenesis and hinder the functions of

DCs, macrophages, and NK cells, thus suppressing the immune

system and facilitating in the migration of tumor cells. Neutrophil

Extracellular Traps (NETs) secreted by activated neutrophils are

extracellular fibrous networks consisting of DNA and proteins (58).

Their role in GMB progression is mostly beneficial: they may

enhance tumor growth by activating EGFR or TLR4 signaling in

tumor cells, they support immune evasion by forming physical

barriers for cytotoxic T cells or NK cells and contribute to treatment

resistance by activating survival pathways (59).
3.2.1.3 T-cells (CD4+, CD8+, Tregs)

T lymphocytes, a central component of the adaptive immune

system, are essential for anti-tumor immunity. In glioblastoma,

however, the anti-tumor response is compromised since CD4+/

CD8+ T-cells constitute only 2% of infiltrating immune cells. Most

of these cells show upregulation of inhibitory receptors/immune

checkpoints, which signal anergy, exhaustion, and tolerance,

thereby promoting further the immunosuppressive nature of

glioblastoma (59). In contrast, regulatory T-cells (Tregs) are

found to be enriched in glioblastoma infiltrating immune cells.

This enrichment promotes the systemic reduction of CD4+ T-cells,

and the inhibition of the cytotoxic responses of CD8+ T-cells,

further inducing the effector T-cell anergy and tolerance (60–63).
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Tregs are suppressor cells, mainly characterized by elevated

expression of several transcription factors (e.g. Foxp3, CD25), and

cytotoxic T lymphocyte antigen 4 (CTLA-4). Tregs can further

inhibit T cell activity by binding to CD80/CD86 on antigen

pre sent ing ce l l s (APCs) v i a CTLA-4 . They re l ea se

immunosuppressive cytokines such as IL-10, IL-4, IL-13, IDO

and TGF-b, reducing TNFa and INF-g levels in effector CD4+ T

cells, inhibiting APCs function, and downregulating tumor-specific

cytotoxicity within the immune response.

3.2.1.4 NK cells

NK cells (CD56+CD3- cells) mediate antigen-independent

immune surveillance as effector lymphoid cells (64). Despite their

potential for anti-tumor activity, NK cells are found in low levels or

impaired within glioblastoma tumors and thus their cytotoxic

effects are suppressed by factors such as TGF-b and IL-10 within

the TME.

3.2.1.5 DCs

As a diverse class of professional APCs, DCs are central to the

activation and regulation of innate and adaptive immunity (61). In

normal conditions, DCs are absent from the brain parenchyma,

however in pathological conditions such as glioblastoma, DCs can

infiltrate brain tissue via afferent lymphatic vessels or endothelial

venules. Although DCs have a pivotal role in antitumor immunity,

in the TME of glioblastoma, the overexpression of nuclear factor

erythroid-related factor (Nef) in DCs results in their suppression

and, consequently, a decrease in the effector T cell activation (61).

3.2.1.6 MDSCs

MDSCs are a heterogeneous population of immature myeloid

cells that activate immunosuppressive cells and inhibit the release of

inflammatory factors thus mediating anti-tumor immunity. In

glioblastoma patients, different MDSC populations are present,

with the major population being polymorphonuclear

CD15+CD33+HLADR- (PMN-MDSCs) accounting for 82%,

followed by lineage-negative (E-MDSCs) at 15% and monocytic

(CD14+CD33+HLADR-; M-MDSCs) at 3% (61, 65). Signal

transducer and activator of transcription 3 (STAT3) is a hallmark

of MDSCs, and its upregulation regulates MDSCs expansion and

tolerogenicity. Factors including IL-10, IL-6, VEGF, GM-CSF, PGE-

2, and TGF-b2, found upregulated in glioblastoma, also influence

MDSCs expansion. MDSCs are key players in glioblastoma

immunosuppressive TME, exerting their effects via various

mechanisms including amino acid depletion, oxidative stress,

decreased DCs maturation, and the indirect induction of Tregs

induced by IL-10 and TGF-b (59). PMN-MDSCs can suppress the

ant igen-present ing capaci ty of DCs by upregulat ing

myeloperoxidase (MPO) expression, therefore limiting the ability

of DCs to cross-present tumor-associated antigens (TAAs).

Additional immunosuppressive activities of MDSCs are regulated

by CCAAT/enhancer binding protein b (C/EBPb) which controls

the expression of arginase (ARG1) and inducible nitric oxide

synthase (iNOS). These expressions can inhibit T cell growth and

migration by interfering with the expression of CD3z chain and by
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inducing the nitration of CCL2 chemokine. iNOS further produces

nitric oxide (NO) from amino acid L-arginine, which inhibits the

IL-2 signaling pathway in an IFN-g depended-manner, ultimately

impairing T-cell proliferation (59). Moreover, MDSCs suppress NK

cell cytotoxicity and cytokine release via ROS production. Crosstalk

between GAMs and MDSCs also skews GAMs toward a pro-tumor

M2 phenotype.

3.2.2 GSCs
GSCs possess the ability to self-renew and differentiate,

contributing to intra-tumoral heterogeneity and playing a key role

in tumorigenesis and tumor propagation (48, 54, 66). GSCs activate,

regulate, and recruit pro-tumor immune cells. They inhibit T-cell

proliferation and cytotoxic T-cell activation while suppressing

macrophage-mediated tumor-killing by producing cytokines such

as IL-10 and TGFb. Additionally, GSCs express the TGFb receptor

(TGF-bRII) on their surface, and binding of its ligand triggers the

secretion of MMP9 by GSCs. GSCs also interact closely with ECs,

creating a perivascular niche, and impacting the glioblastoma

progression. Subsequently, GSCs express high levels of

proangiogenic growth factors such as VEGF, angiopoietin-1 (Ang-

1), bradykinin (BK), IL-8, and stromal cell-derived factor-1 I (SDF-1),

which induce their differentiation into ECs and pericytes, further

enhancing angiogenesis, migratory abilities, and invasiveness.

3.2.3 Neural components
3.2.3.1 Astrocytes

Astrocytes make up about half of the total volume of the human

brain and play a key role in brain physiology and disease, as they are

integral components of the BBB. Glioblastoma invasiveness is

modulated by astrocytes (48). Glioblastoma cells release EVs into

the TME, which are internalized by neighboring astrocytes.

Astrocytes then become activated and start secreting elevated

amounts of chemokines (e.g. IL-6), enhancing glioblastoma cell

invasion and tissue infiltration by increased production MMPs,

especially MMP-2 and MMP-9. In addition, glioblastoma

invasiveness and migration are modulated by the release of factors,

such as glial cell line-derived neurotrophic factor (GNDF) and

connective tissue growth factor (CTGF) from astrocytes. GNDF

promotes glioblastoma invasion by triggering the activation of

rearranged during transfection/GNDF family receptor alpha-1

(RET/GFRa1) receptors and pro-tumoral signaling pathways, such

as mitogen-activated protein kinases (MAPK) and PIK3/Akt.

Whereas CTGF, when bound to integrin b1, it activates the nuclear
factor kappa-light-chain-enhancer of the activated B cells (NF-kB)

signaling pathway which secretes additional growth factors, such as

TGF-b, further facilitating glioblastoma invasiveness. Moreover,

glioblastoma-associated astrocytes upregulate the gap junction

protein connexin 43 (Cx43), which facilitates direct communication

between astrocytes and glioblastoma cells, promoting further tumor

invasion and migration.

3.2.3.2 Neurons

Neurons usually interact indirectly with glioblastoma cells in

the TME with different mechanisms, including paracrine
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st imulat ion, synapt ic transmiss ion, and secret ion of

neurotransmitters. Glioblastoma proliferation, invasion, and

resistance to apoptosis are promoted by the binding of TrkB

receptors on glioblastoma cells to molecules released from

neurons such as brain-derived neurotrophic factor (BDNF) and

neuroligin-3 (NLGN3). Additionally, glioblastoma cells form

functional synaptic connections with neurons, enabling

electrochemical signaling that influences tumor progression. One

example is the AMPA (a-amino-3-hydroxy-5-methyl-4-

isoxazolepropionic acid) glutamate receptor, which mediates

excitatory postsynaptic potentials, enhancing intracellular calcium

signaling, further promoting glioblastoma proliferation, survival,

and invasion (67).

3.2.3.3 Oligodendrocytes

Oligodendrocytes are responsible for myelinating axons in the

CNS, therefore playing a role in brain physiology, regulating

neuronal activities, neural plasticity, and metabolic support (52).

In glioblastoma, oligodendrocytes are disrupted leading to

worsened tumor-induced damage to neural circuits. They are

located at the tumor border niches, suggesting their potential

influence in both invasion and recurrence. Oligodendrocytes

release cytokines such as angiopoietin-2, which enhances

glioblastoma cell motility, and are implicated in promoting

angiogenesis contributing to the tumor’s vascular support and

sustenance (53).
4 Current state of glioblastoma
immunotherapy

Cancer immunotherapy works by “re-educating” the patient’s

immune system to eliminate tumors and therefore holds great

promise for cancer therapy (68). The most widely used strategies,

often combined, are ICIs, chimeric antigen receptor (CAR) T cells,

vaccines and oncolytic viruses. Other immunotherapeutic strategies

include other T-cell based therapeutic approaches, cytokine therapy

and other targeted immunomodulatory therapies, including

monoclonal antibodies. Currently, 104 interventional clinical

trials of immunotherapy in glioblastoma have been identified as

active (‘recruiting’, “active not recruiting” and “enrolment with

invitation”), in ClinicalTrials.gov, accessed on 01/06/2025

(Tables 1–3, Figures 2, 3).
4.1 Immune checkpoint inhibitors

Immune checkpoints are the gatekeepers of the immune system,

crucial for preventing autoimmunity under normal physiological

conditions and protecting tissues from damage following response

of the immune system to pathogens (115). In cancer, the expression

of immune-checkpoint proteins is dysregulated and therefore

confers immune resistance. Several inhibitory immunoreceptors,

referred to as “immune checkpoints”, have been identified and

studied in cancer, including, amongst others, programmed death
Frontiers in Immunology 07
ligand 1 (PD-1), cytotoxic T-lymphocyte associated protein 4

(CTLA-4), lymphocyte activation gene 3 protein (LAG3), T cell

immunoglobulin and mucin domain-containing protein 3 (TIM3),

and T-cell immunoreceptor with immunoglobulin G1 (Ig1) and

immunoreceptor tyrosine-based inhibitory motif (ITIM) domains

(TIGIT) (116). Blocking their activity with ICIs has revolutionized

cancer therapy over the past few years and has been successful for

several cancer types (18, 19). Although initial trials with ICIs in

glioblastoma revealed disappointing results (20), glioblastoma

tumors are still considered a promising candidate for

immunotherapy and is therefore being investigated in several

clinical trials (Tables 1-3, Figures 2, 3).

4.1.1 Anti-PD-1/PD-L1
PD-1 receptor, expressed on T- and other immune cells, is a

dominant negative regulator of T-cell response, when activated by

its ligand, PD-L1, which is expressed on tumor cells (117). Anti-PD-

1/PDL-1 therapy has been approved for the treatment of several

cancer types, including metastatic melanoma, non-small cell lung

cancer (NSCLC), head and neck cancers, urothelial carcinoma and

others (118). More specifically, there are 6 FDA-approved PD-1/

PD-L1 inhibitors, including the PD-1 inhibitors Pembrolizumab

(Keytruda), Nivolumab (Opdivo) and Cemiplimab (Libtayo) and

the PD-L1 inhibitor Atezolizumab (Tecentriq). PD-1/PDL-1

therapy has been explored in several clinical studies in

glioblastoma, and although it is safe, it did not prolong OS (18).

Currently, there are no FDA-approved anti-PD-1/PD-L1 inhibitors

for glioblastoma (119), but the PD-1 inhibitors Pembrolizumab,

Nivolumab, Cemiplimab, Retifanlimab by Zynyz (approved under

FDA’s Accelerated Approval Program for Merkel cell carcinoma),

and Balstilimab (currently in Phase II clinical trials for several

cancers), as well as the PD-L1 inhibitor, Atezolizumab, are being

tested in clinical trials for safety, tolerability, feasibility and efficacy

in newly diagnosed, recurrent and progressive glioblastoma, both as

monotherapy and as part of a therapeutic regime (Table 1).

4.1.2 Anti-CTLA-4
CTLA-4 be longs to the superfami ly of CD28–B7

immunoglobulins and it shares its two ligands (B7.1, B7.2) with

its co-stimulatory counterpart CD28, and together these molecules

are functioning at the tip of the immunological cascade (120). In

glioblastoma, CTLA-4 competes with CD28 for binding to

costimulatory molecules (CD80 and CD86) on APCs, thereby

inhibiting the activation of T cells. Anti-CTLA-4 as a single form

of therapy or in combination with other ICIs, enhances endogenous

immune responses to immunogenic tumors. Ipilimumab (MDX-

010 and Yervoy®) is a humanized monoclonal CTLA-4 antibody

that has been approved by the FDA as monotherapy in anti-PD-1

refractory cases or in combination with nivolumab as a first-line

treatment of advanced melanoma (121). In glioblastoma clinical

trials, ipilimumab is administered in combination with nivolumab

(NCT06097975, Table 1). Botensilimab (AGEN1181), is an Fc-

enhanced anti-CTLA-4 antibody, which is considered one of the

most advanced-next generation ICIs currently in clinical trials, due

to its novel FcyR-dependent mechanism to promote superior
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TABLE 1 ICIs in ongoing interventional clinical trials against glioblastoma - R, “Recruiting”; ANR, “Active, not recruiting”; and EBI, “Enrolling by
invitation”.

ICI(s)
Mechanism of

action
Phase

Enrolment
(estimated
or actual)

Status Study aims
Clinical
trial

identifier
Ref.

Pembrolizumab
(anti-PD-1)

+ Stereotactic radiation
+ Surgical resection

Ib/II
n=10

10 ANR

Assessment of safety/tolerability/
feasibility of pembrolizumab and

radiation therapy before surgical resection
in patients with recurrent glioblastoma

NCT04977375 n/a

Monotherapy II 18 ANR
Pharmacodynamic assessment of

pembrolizumab in recurrent glioblastoma
NCT02337686 (69)

Monotherapy I 60 ANR
Evaluation of early immunologic

pharmacodynamics
NCT02852655 (70)

+ Chemoradiation IV 36 R

Evaluation of short-term and long-term
safety, tolerability and effectiveness of

neoadjuvant and adjuvant
Pembrolizumab

NCT05235737 n/a

+ Chemoradiation II 56 ANR
Exploitation of therapy in newly

diagnosed glioblastoma
NCT03899857 n/a

+ surgery +
chemoradiation

II ANR
Assessment of safety and tolerability in

patients with glioblastoma
NCT03197506 n/a

+ Efineptakin alfa II 44 R
Efficacy and safety study in recurrent

glioblastoma
NCT05465954 (71)

+ ATL-DC vaccine +
poly ICLC

I 40 R

Evaluation of safety, tolerability and
efficacy in patients with surgically
accessible recurrent/progressive

glioblastoma

NCT04201873 n/a

+ LITT I/II 34 R
Evaluation of side effects and efficacy in

recurrent glioblastoma
NCT03277638 n/a

+ Optune® + TMZ II 40 ANR
Assessment of safety, efficacy and effect
on PFS of the combinational treatment in

newly diagnosed glioblastoma
NCT03405792 (72)

+ Optune ® + TMZ III 741 ANR
Evaluation of overall survival in newly

diagnosed glioblastoma
NCT06556563 n/a

+ Optune ® + MLA II 20 R
Evaluation of safety and feasibility in
patients with recurrent or progressive

glioblastoma
NCT06558214 n/a

+/- (Opalarib + TMZ) II 78 R

Evaluation of safety and efficacy of
combinational treatment in patients with
recurrent glioblastoma at their first or

second relapse

NCT05463848 n/a

+ M032 (oHSV) I/II 28 R
Assessment of safety and tolerability in

recurrent GBM
NCT05084430 n/a

+ Allogeneic CMV-
specific T cells

I/II 58 R
Assessment of maximum tolerated doses

of combination therapy in newly
diagnosed GBM

NCT06157541 n/a

Nivolumab
(anti-PD-1)

Monotherapy II 61 ANR
Testing the efficacy of nivolumab in

patients with IDH-mutant gliomas with
and without hypermutator phenotype

NCT03718767 (73)

Monotherapy I 20 R

Evaluation of side effects and
improvements in quality of life of

nivolumab administered before and after
surgery in treating children and young
adults with recurrent high-grade gliomas

NCT04323046 n/a

+ TMZ II 103 ANR
Assessment of benefits of giving

nivolumab in together with TMZ versus
NCT04195139 (74)

(Continued)
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TABLE 1 Continued

ICI(s)
Mechanism of

action
Phase

Enrolment
(estimated
or actual)

Status Study aims
Clinical
trial

identifier
Ref.

TMZ alone on OS in newly diagnosed
elderly GMB patients

+ Crizanlizumab I/II 33 R

Evaluation of the efficacy, safety and
tolerance monotherapy and combination

therapy in patients with advanced
glioblastoma newly diagnosed
unmethylated glioblastoma

NCT05909618 n/a

+ Bevacizumab (anti-
VEGF)

II 90 ANR

Evaluation of safety, tolerability and
efficacy of nivolumab when given in

combination with low doses of
bevacizumab

NCT03452579 (75)

+ RT + Bevacizumab II 39 ANR

Assessment of effectiveness of nivolumab
added to the radio/anti-VEGF therapy in

recurrent MGMT methylated
glioblastoma

NCT03743662 n/a

+ BMS-986205 (IDO
inhibitor) + RT +/-

TMZ
I 18 ANR

Determination of the safety and
tolerability of combinational treatment in

newly diagnosed MGMT promoter
methylated and unmethylated

glioblastoma.

NCT04047706 (76)

+ ipilimumab + TMZ II 47 ANR
Assessment of overall survival in patients
with newly diagnosed glioblastoma or

gliosarcoma
NCT04817254 n/a

Retifanlimab
(anti-PD-1)

+ anti-GITR + SRS II 39 ANR
Safety, immunogenicity, and therapeutic

efficacy in recurrent glioblastoma
NCT04225039 (77)

Retifanlimab
(anti-PD-1)

+ RT + Bevacizumab
+/- Epacadostat (IDO-1

inhibitor)
II 51 ANR

Safety and efficacy assessment of
combinational treatment in recurrent

glioblastoma
NCT03532295 (78)

+ Personalized
neoantigen DNA

vaccine
I 12 R

Assessment of safety and immunogenicity
in newly diagnosed, MGMT promoter

unmethylated glioblastoma
NCT05743595 n/a

Cemiplimab
(anti-PD-1)

+ INO-5401 + INO-
9012 + RT + TMZ

I/II 52 ANR
Evaluation of treatment safety,

immunogenicity and preliminary efficacy
in newly diagnosed GBM patients

NCT03491683 (79)

+ ASP8374 (Anti-
TIGIT)

Ib 14 ANR
Evaluation of safety and efficacy in

recurrent malignant glioma
NCT04826393 n/a

Balstilimab
(anti-PD-1)

+
Botensilimab
(anti-CTLA-4)

+ DOX + Sonocloud-9
device (SC-9)

IIa 25 R

Establishment of safety and feasibility of
delivering immune modulating drugs in
this manner, and evaluation of treatment

efficacy

NCT05864534 (80)

Atezolizumab
(anti-PD-L1)

+TMZ +/- RT I/II 80 ANR
Evaluation of combining atezolizumab

with standard of care in newly diagnosed
glioblastoma

NCT03174197 (81)

monotherapy II 80 R

Assessment of therapeutic benefit of
neoadjuvant atezolizumab in patients
with recurrent low mutational burden

glioblastoma

NCT06069726 n/a

+ D2C7-IT (anti-
EGFRwt/EGFRvIII)

I 18 ANR
Evaluation of combinational treatment in

recurrent glioblastoma
NCT04160494 n/a

+ FSRT radiation I 12 R
Evaluation of immunogenic effect in

newly diagnosed glioblastoma
NCT05423210 n/a

+ Nivolumab + RT II/III 159 ANR NCT04396860 (82)

(Continued)
F
rontiers in Immuno
logy
 09
 frontier
sin.org

https://doi.org/10.3389/fimmu.2025.1665742
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Nicolaou et al. 10.3389/fimmu.2025.1665742
priming and activation of T cells (121). In glioblastoma,

Botensilimab is being tested in a single clinical trial in

combination with Balstilimab and chemotherapy, given through a

BBB sonication device (NCT05864534, Table 1).

4.1.3 Anti-TIM3
TIM-3 is an immuno-myeloid cell surface marker specific to IFN-g

producing CD4+ and CD8+ T cells, expressed on multiple immune

cells and leukemic stem cells (122). In cancer, elevated TIM-3

expression is associated with poor outcome, therefore TIM-3 has

become an attractive candidate for immunotherapy. Sabatolimab

(MBG453), is a novel high-affinity, humanized, IgG4 antibody

targeting the TIM-3 receptor currently under clinical development

by Novartis for the treatment of both solid tumors and hematological

malignancies (123). Sabatolimab, is tested for safety in a Phase I clinical

trial of recurrent glioblastoma, in which is given in combination with

spartalizumab (anti-PD-1) (NCT03961971, Table 1).

4.1.4 Anti-TIGIT
TIGIT belongs to the Ig superfamily, and it is expressed on

activated CD4+ and CD8+ T cells, as well as NK cells (124–126).

TIGIT interacts with its ligand, CD155, which is expressed mostly

on DCs and macrophages, and upon TIGIT/CD155 interaction,

immune responses are negatively regulated. Specifically, T-cell

receptor expression is reduced, resulting in impairment of the
Frontiers in Immunology 10
function of CD8+ and NK cells, resulting in immunosuppression.

Currently, Domvanalimab, an investigational inhibitor, is being

evaluated in clinical trials in combination Zimberelimab (anti-PD-

1) in recurrent glioblastoma (NCT04656535, Table 1).

Despite extensive research, there is still no ICI approved for the

treatment of glioblastoma, since no significant improvement in OS has

been observed during clinical trials so far. Despite the disappointing

early clinical trial results, the use of ICIs for the treatment of

glioblastoma remains under ongoing clinical investigation, aiming to

reverse the glioblastoma immunosuppressive TME which is mainly

attributed to the upregulation of several immune checkpoint molecules,

such as PD-1, PD-L1, CTLA-4, LAG-3, TIM-3 and TIGIT. A variety of

ICIs are currently being investigated in clinical trials in glioblastoma

(early, aggressive or recurrent), for their safety and effectiveness, often

in combination with other therapies to overcome the limitations of

monotherapy and improve therapeutic outcomes. The use of novel

delivery systems in several trials, like the Optune® device, suggests a

commitment in overcoming delivery limitations especially the BBB.

Furthermore, combining ICIs with personalized neoantigen vaccines

aims to enhance T-cell activation and specificity. In addition, targeting

myeloid cells aims to enhance antigen presentation. Importantly,

discovery of new biomarkers to predict response to ICI therapy is

essential in GMB; for example, in other types of cancer, patients with

low PDL-1 levels also benefit from anti-PD-1 therapy, suggesting other

mechanisms are involved in their action (127). The lack of reliable
TABLE 1 Continued

ICI(s)
Mechanism of

action
Phase

Enrolment
(estimated
or actual)

Status Study aims
Clinical
trial

identifier
Ref.

Assessment of combination therapy on
progression-free survival compared to
standard of care in newly diagnosed
MGMT unmethylated glioblastoma

+ Nivolumab + Surgical
removal

I 63 ANR
Assessment of safety and effectiveness of
combinational treatment in recurrent

glioblastoma
NCT04606316 (82)

Cabozantinib (inhibition
of tyrosine kinases

involved in
angiogenesis, motility &

invasion)

I/II 6 R
Assessment of safety and efficacy of
combinational therapy in recurrent

glioblastoma
NCT05039281 n/a

+ Ipatasertib (Akt
inhibitor)

I/II 87 ANR Assessment of safety and MTD NCT03673787 (83)

Ipilimumab
(anti-CTLA-4)

+ Nivolumab I 18 R

Determination of the safety and feasibility
of the proposed investigational (neo-)
adjuvant treatment regimen in patients
with resectable recurrent glioblastoma

NCT06097975 (84)

Sabatolimab
(anti-TIM-3)

+ Spartalizumab (anti-
PD-1)

I 16 ANR
Assessment of safety of MBG453 given in
combination with spartalizumab and SR

in patients with recurrent GBM
NCT03961971 n/a

Domvanalimab
(anti-TIGIT)

+ Zimberelimab
(anti-PD-1)

0/I 46 ANR
Exploratory study of combination
therapies in recurrent glioblastoma

NCT04656535 n/a
frontier
PD1, Programmed cell death protein 1; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; GITR, Glucocorticoid-Induced Tumor Necrosis Factor-related protein; TIGIT,
T-cell immunoreceptor with immunoglobulin G1 (Ig1) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains; CTLA-4, Cytotoxic T-lymphocyte associated protein 4; TMZ,
Temozolomide; PD-L1, programmed death-ligand 1; LITT, Laser Interstitial Thermotherapy; RT, Radiotherapy; oHSV, oncolytic Herpes simplex virus; SRS, stereotactic radiosurgery; ATL-DC,
autologous tumor lysate pulsed dendritic cell; poly ICLC, Polyinosinic-Polycytidylic acid; MLA, MRI-guided laser ablation; IDO, indoleamine 2, 3-dioxygenase 1; CMV, Cytomegalovirus; FSRT,
fractionated stereotactic radiotherapy; n/a, not applicable.
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TABLE 2 T-cell based therapies in ongoing interventional clinical trials against glioblastoma – R, “Recruiting”; ANR, “Active, not recruiting”; and EBI,
“Enrolling by invitation”.

CAR-T cells

Target (s) Mechanism of action
Enrolment
(estimated
or actual)

Phase Status Study aims
Clinical
trial

identifier
Ref.

CD133 +
CD44

Inverse correlated dual-target,
truncated IL7Ra modified CAR

-expressing autologous T-lymphocytes
(Tris-CAR-T cells)

10 I R

Evaluation of safety, distribution,
tumor progression, and changes in

target expression and tumor
biology over time.

NCT05577091 (85)

CD70

Ex-Vivo expanded autologous IL-8
receptor (CXCR2) modified CD70

CAR (8R-70CAR) T cells
39 I R

Assessment of safety and feasibility
in newly diagnosed CD70 positive
adult GBM patients who have

undergone surgery

NCT05353530 (86)

Ex-Vivo expanded autologous IL-8
receptor (CXCR2) modified CD70

CAR (8R-70CAR) T cells
18 I R

Assessment of safety and feasibility
in CD70+ Adult GBM and

Pediatric High-Grade Gliomas
(pHGG)

NCT06946680 n/a

EphA2 + IL-
13Ra2

E-SYNC T cells (Autologous Anti-
EGFRvIII synNotch Receptor Induced
Anti-EphA2/IL-13Ra2 CAR T Cells) +

20 I R

Evaluation of safety, side effects,
and best dose after

lymphodepleting chemotherapy in
treating patients with EGFRvIII +

glioblastoma.

NCT06186401 n/a

EGFRvIII +
EGFR

CARv3-TEAM-E T Cells
(Autologous T lymphocytes)

21 I R
Evaluation of safety and dose of in
newly diagnosed and recurrent

glioblastoma
NCT05660369 (87)

IL-13Ra2

IL13Ra2-specific CAR Tcm cells
(IL13Ra2-CAR/CD19t+ Tcm)

65 I ANR
Assessment of feasibility & safety

in recurrent gliomas
NCT02208362 (88)

10 I R Safety and feasibility assessment NCT04661384 n/a

IL13Ra2-specific-hinge-optimized-4-
1BB-CAR/truncated CD19-expressing
Autologous TN/MEM Lymphocytes

+/- Nivolumab +/- ipilimumab

60 I R
Assessment of safety and feasibility

in recurrent or refractory
glioblastoma

NCT04003649 n/a

IL13Ra2-targeting CAR-T cells with
TGFbR2 Knockout

(TGFbR2KO/IL13Ra2 CAR T cells)
27 I R

Assessment of safety and side
effects in recurrent or progressive
glioblastoma or IDH-mutant grade

3 or 4 astrocytoma

NCT06815029 n/a

EGFR + IL-
13Ra2

Autologous T cells transduced with a
bicistronic lentiviral vector containing
a murine scFv targeting EGFR and a
humanized scFv targeting IL13Ra2
(CART-EGFR-IL13Ra2 Cells)

66 I R
Safety and feasibility evaluation in
patients with EGFR-amplified

recurrent glioblastoma
NCT05168423

(89,
90)

HER2 HER2(EQ)BBz/CD19t+ T cells 29 I ANR
Assessment of safety and dose in
recurrent or non-responsive

glioblastoma
NCT03389230 n/a

EGFR,
EGFRvIII,
HER2 + IL-

13Ra2

SNC109 CAR-T cells 50 I EBI

Evaluation of safety, tolerance, and
pharmacokinetics of SNC109 in

patients with recurrent
glioblastoma

NCT06616727 n/a

B7-H3-targeting CAR-T

30 I ANR
Evaluation of safety, tolerability,

effectiveness and MTD for phase II
in recurrent glioblastoma

NCT05241392 n/a

48 I R
Evaluation of efficacy of

locoregional delivery of B7-H3
NCT05835687 (91)

52 I R
Evaluation of safety, efficacy and
MTD for phase II for progressive

grade 4 glioma
NCT06482905 n/a

(Continued)
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biomarkers for the use of ICIs in GMB is discussed in recent reviews

(128, 129). The future of ICIs in glioblastoma, depends on the delivery

systems, the drug combination strategies, the tackling of the cold

glioblastoma immune microenvironment, and the identification of

personalized biomarkers based on molecular signatures or immune

profiles that could help tailor ICI therapies to responsive

subpopulations of patients. Another important factor is optimizing

the timing of ICI administration. For instance, recent findings suggest

that administering combination ICI in the neoadjuvant setting can

stimulate the infiltration, activation, and proliferation of tumor-specific

T cells in patients with newly diagnosed glioblastoma (130). In fact, a

clinical trial, based on this, is already ongoing (NCT06816927).
4.2 T-cell based therapies

4.2.1 CAR T-cells
CAR-T cell therapy is at the forefront of T-cell based therapies,

providing a powerful tool for cancer treatment (131–133). It

involves the inducible expression of a chimeric antigen receptor

(CAR), engineered to target a specific antigen of interest on
Frontiers in Immunology 12
autologous T cells, hence bypassing the need for antigen

presentation by Major Histocompatibility Complex (MHC)

otherwise required for the activation of endogenous T cells (131–

134). Since 2017, six CAR-T cell products have been approved for

the treatment of several cancers, including acute lymphoblastic

leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), refractory

follicular lymphoma (FL), recurrent or refractory mantle cell

lymphoma (MCL), and relapsed or refractory multiple myeloma

(133). Currently there are no FDA-approved CAR-T cell therapies

for glioblastoma, but several clinical trials (mostly in Phase I) are

evaluating CAR-T cell therapy in glioblastoma (Table 2; Figure 2B),

including one that is combining CAR-T cell therapy with ICIs

(NCT04003649). The glioblastoma antigens currently targeted in

the clinic, often in combination, are Cluster of Differentiation

proteins (CD133, CD44 & CD70), IL receptors (IL-13Ra2), EGFR

and EGFRvIII, ephrin receptor A2 (EphA2), human epidermal

growth factor receptor 2 (HER2) and B7-H3 (Table 2).

IL-7 is a hematopoietic cytokine that promotes the activation,

differentiation and homeostasis of naïve T-cells, as well as the

survival, expansion and proliferation of memory T-cells (135). It

has been shown that engineered T-cells constitutively expressing
TABLE 2 Continued

CAR-T cells

Target (s) Mechanism of action
Enrolment
(estimated
or actual)

Phase Status Study aims
Clinical
trial

identifier
Ref.

36 I R
Safety evaluation in recurrent or

refractory glioblastoma
NCT05366179 n/a

39 I R

Assessment of manufacturing
feasibility and safety of

locoregional administration of B7-
H3CART into the CNS of adults

with recurrent glioblastoma

NCT05474378 (92)

Membrane-
bound MMP-2

CHM-1101 CAR-T
(Chlorotoxin-CD28-CD3z-CD19t-

expressing CAR T-cells)

42 Ib ANR

Evaluation of safety, best dose and
effectiveness in MMP2+ recurrent,

aggressive and progressive
glioblastoma

NCT05627323 (93)

19 I R

Evaluation of safety, best dose and
effectiveness in MMP2+ recurrent,

aggressive and progressive
glioblastoma

NCT04214392 (94)

(gd)T- cells

Mechanism of action Phase Status Study aims
Clinical
trial

identifier

Gene-modified (gd)T-cells + TMZ 22 I ANR
Evaluation of safety and

tolerability in newly diagnosed
glioblastoma

NCT04165941 (95)

Activated, gene-modified allogeneic or autologous (gd)-T
cells (DeltEx) + maintenance TMZ

4 Ib/II ANR

Determination of safety,
tolerability and ability to delay

recurrency in newly diagnosed or
recurrent glioblastoma

NCT05664243 n/a
frontier
CAR, Chimeric antigen receptor; CD, cluster of differentiation; IL7Ra, Interleukin receptor alpha; IL-8, Interleukin 8; EGFRvIII, endothelial growth factor receptor variant III; EGFR, Epidermal
growth factor receptor; HER2, human epidermal growth factor receptor 2; IL-13Ra2, Interleukin 13; MMP-2, matrix metalloproteinase-2; MTD, maximum tolerated dose; CNS, central nervous
system; EphA2, ephrin type-A receptor 2; scFV, single=chain variable fragment; B7-H3, B7 homolog 3; TMZ, temozolomide; Tcm, central memory T cells; TN/MEM, naive and memory T cells;
n/a, not applicable.
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TABLE 3 Vaccines, oncolytic viruses, cytokine therapy and other targeted immunotherapies in ongoing interventional clinical trials against glioblastoma - R, “Recruiting”; ANR, “Active, not recruiting”; and EBI,
“Enrolling by invitation”.
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TABLE 3 Continued
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identifier

Ref.

essment of efficacy and safety in
rrent/progressive pediatric high-

grade gliomas
NCT04482933 n/a

ety evaluation in children with
rent or refractory cerebellar brain

tumors
NCT03911388 (106)

y & tolerability evaluation of re-
g of virus in recurrent malignant

glioma
NCT06193174 n/a

afety assessment in recurrent
resectable glioblastoma

NCT03657576 n/a

rmination of MTD in recurrent
high-grade gliomas

NCT03896568 n/a

of the effect of multiple repeated
in recurrent high-grade gliomas

NCT05139056 (107)

sment of prolong overall survival
disease-free survival in patients
with recurrent glioblastoma

NCT06757153 n/a

essment of safety and efficacy in
malignant recurrent gliomas

NCT06585527 n/a

aluation of safety & efficacy in
recurrent glioblastoma

NCT02986178 (108)

xploring the safety profile and
ablish a recommended dose in
ewly diagnosed glioblastoma

NCT04443010 n/a

& efficacy evaluation in patients
glioblastoma in first progression

NCT04573192 (109)

luation of safety and efficacy in
nts with GBM and unmethylated

MGMT gene promoter
NCT03866109 (110)

ssessment of efficacy & MTD NCT04729959 (111)

ssessment of safety & efficacy NCT06640582 n/a

NCT04485949 (112)

(Continued)

N
ico

lao
u
e
t
al.

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.16

6
5
74

2

Fro
n
tie

rs
in

Im
m
u
n
o
lo
g
y

fro
n
tie

rsin
.o
rg

15
Type of immunotherapy
action

Phase
or actual)

Status

G207 II 35 R
Ass
recu

G207 I 24 R
Sa

recu

C134 Ib 12 EBI
Safe
dosi

C134 Ib 19 ANR

Adenovirus

DNX-2401 I 36 R
Det

NSC-CRAd-S-pk7 I 36 R
Stud
dose

NRG103 I 15 R
Asse
or

TS-2021 I 30 R
Ass

Polio/
rhinovirus

PVSRIPO II 121 ANR
E

Cytokine therapy

L19TNF +/- TMZ I/II 226 R
E
es

L19TNF + Lomustine I/II 142 R
Safet
with

Tamferon™ I/IIa 27 R
Ev

patie

Tocilizumab
+ Atezolizumab + RT

II 59 ANR A

Other targeted immunomodulatory
therapies including monoclonal

antibodies

Autologous TLI + Pembrolizumab I/II 85 R A

IGV-001 + RT + TMZ IIb 93 ANR
f
r

t
n

S

e

y
s

s

v

t
n

y

a

https://doi.org/10.3389/fimmu.2025.1665742
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


TABLE 3 Continued

Target (s)/mechanism of
Phase

Enrolment (estimated
or actual)

Status Study aims
Clinical trial
identifier

Ref.

Assessment of safety and efficacy in
newly diagnosed glioblastoma patients

that underwent surgical resection

I/II 16 ANR
Assessment of enhanced antitumor

efficacy in glioblastoma
NCT04922723 n/a

I 46 R
Assessment of safety and efficacy in
resected recurrent glioblastoma

NCT06455605 n/a

I/II 50 R
Determination of safety and efficacy in

newly diagnosed glioblastoma
NCT05734560 n/a
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Assessment of efficacy in pediatric

glioblastoma
NCT04049669 (113)

II 20 R
Evaluation of safety and efficacy in
progressive or recurrent glioblastoma

NCT06061809 n/a

I/II 179 ANR
Dose escalation/expansion study in
advanced or metastatic glioblastoma

NCT04913337 (114)

rate dehydrogenase; MGMT, O6-methylguanine-DNA methyltransferase; hTERT, human telomerase reverse transcriptase; TMZ, Temozolomide; pp65, lower matrix
D, maximum tolerated dose; oHSV, oncolytic herpes simplex virus; oAds, oncolytic adenovirus; IDO, indoleamine 2,3-dioxygenase; EphA2, Ephrin type-A receptor 2;
ine phosphatase receptor type Z1; fl, full length; LPs, lipid particles; MTA, Mutated-derived tumor antigen; poly-ICLC, Polyinosinic-Polycytidylic acid; pINF, plasmid
ILT2/4, Immunoglobulin-like transcript 2/4; n/a, not applicable.
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Daratumumab (Darzalex) + RT + TMZ
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Cycliphophamide +/- Etoposide +/-

Lomustine

N-803 + PD-L1 t-haNK + Bevacizumab

NGM707 (anti-ILT2 and ILT4) +/-
Pembrolizumab

DC, Dendritic cell; SOC, Standard of care; CMV, cytomegalovirus; WT1, Wilm’s tumor 1, IDH, Isoci
protein 65; PD-L1, programmed death-ligand 1; t-haNK, targeting high affinity Natural Killer cells; MT
RT, Radiotherapy; NeoAg, Neoantigen; TERT, telomerase reverse transcriptase; PTPRZ1, Protein tyro
interferon; GSCs, glioblastoma stem cells; TTFs, Tumor-treating fields; TNF, Tumor necrosis factor
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the IL-7 receptor alpha (IL-7Ra) have great antitumor efficacies in

both breast cancer (136) and glioblastoma models (137), therefore,

IL-7 and its receptor are great candidates for immunotherapy. For

the clinical trial NCT05577091 (Table 2), autologous T-cells have

been genetically modified to express a CAR targeting CD133 and

CD44, and a truncated form of the IL-7Ra. These CAR-T cells are

believed to have immunostimulating and anti-neoplastic activities

since they target CD133 and CD44, two markers of GSCs,

associated with the proliferative or invasive state of glioblastoma

cells (138). Also, the IL-7Ra-Tris-CAR-T cells induce selective

toxicity to tumor cells, and the IL-7/IL-7Ra-mediated signaling

promotes the proliferation and survival of T cells.

IL-8 is another important chemokine, that coupled with its

receptor, IL-8R, play a role in tumor invasion, proliferation, survival
Frontiers in Immunology 17
and angiogenesis, as well as in the promotion of the malignant

properties of the glioblastoma stem cells (139–142). CD70, is an

antigen that is overexpressed in glioblastoma and is associated with

poor survival (143). It was also hypothesized that it correlates with a

mesenchymal phenotype and immunosuppression via recruitment

of macrophages and CD8+ T-cell death. This information on IL-8

and CD70, let to the generation of CD70-targeting CAR with a

modified IL-8 receptor (called 8R-70CAR) that let to complete

tumor regression of advance cancers in pre-clinical studies,

i n c l u d i n g g l i o b l a s t oma ( 1 4 4 ) . (NCT0 5 3 5 3 5 3 0 &

NCT06946680, Table 2).

IL-13Ra2 is a high affinity membrane receptor that is

overexpressed in glioblastoma, and is associated with poor

outcome, mesenchymal gene profile, immunity, and the tumor
FIGURE 2

Schematic representation of immune checkpoint inhibitors, CAR-T cells, and (gd)T-cells in ongoing interventional clinical trials against glioblastoma.
(A) Immune Checkpoint Inhibitors; Several ICIs and their targets are being investigated in clinical trials to enhance the anti-tumor response.
Exhaustion markers (e.g. PD-1, CTLA-4, TIGIT), which are upregulated on the surface of T cells, interact with immune checkpoint molecules (e.g.
PD-L1, CD80/86, CD155) expressed on glioblastoma cells and APCs. (B) CAR-T cells; Several targetable tumour-associated antigens for glioblastoma
CAR T-cell therapy. CAR T-cells are engineered to recognize tumor-associated antigens (e.g. IL13Ra2, HER2, B7-H3, etc) via corresponding CAR
constructs, enabling selective tumor cell recognition and cytotoxicity. (C) gdT-cells; Gene-modified gdT-cells exhibit direct cytotoxicity against
glioblastoma cells and enhance the anti-tumor activity of other immune cells through FasL/TRAIL-mediated apoptosis, antigen presentation, and
cytokine secretion. Several antigens and receptors are represented in the same cell for the graphic. (PD1, Programmed cell death protein 1; PD-L1,
programmed death-ligand 1; TIM-3, T cell immunoglobulin and mucin domain-containing protein 3; TIGIT, T-cell immunoreceptor with
immunoglobulin G1 (Ig1) and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains; CTLA-4, Cytotoxic T-lymphocyte associated protein
4; Gal-9, Galectin-9; MCH, Major histocompatibility complex; APC, Antigen presenting cell; CAR, Chimeric antigen receptor; IL13Ra2, interleukin 13
receptor subunit alpha 2; HER2, human epidermal growth factor receptor 2; mbMMP2, membrane-bound metalloproteinases 2; B7-H3, B7 homolog
3; EphA2, Ephrin type-A receptor 2; EGFR, Epidermal growth factor receptor; TCR, T cell receptor; TMZ, Temozolomide; NKG2D-R, Natural killer
group 2 member D receptor; NKG2D-L, NKG2D ligand; TNFa, Tumour necrosis factor 2a; INFg, Interferon g; TRAIL, Tumour necrosis factor-related
apoptosis-inducing ligand; TRAIL-R, TRAIL receptors). Created in BioRender. Papageorgis, P (2025). https://BioRender.com/mz964iy.
frontiersin.org
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FIGURE 3

Schematic representation of cancer vaccines, oncolytic viruses, and cytokine therapies in ongoing interventional clinical trials against glioblastoma. (A) Cancer
Vaccines; Tumour-immune cycle induced by cancer vaccines. After the administration of cancer vaccines (peptide, nucleic acid-based, DC vaccines), the
DCs uptake and process the antigens and then present them to MHC II or MHC I via cross-presentation. Antigen-loaded DCs migrate into lymph nodes to
prime and activate T-cells. Activated T-cells, proliferate and differentiate into recognizing tumour antigens and targeting glioblastoma cells. Immunogenic
dead glioblastoma cells can release additional antigens, leading to the initiation of a subsequent cycle. (B) Oncolytic viruses; Genetically engineered OVs
selectively replicate within glioblastoma cells while sparing normal cells. This process leads to oncolysis, which not only releases virus progeny to infect
neighbouring tumour cells but also exposes DAMPs and TAAs, triggering a robust anti-tumour immune response. (C) Cytokine therapies; Cytokine therapies
modulate the glioblastoma TME. For example, L19TNF delivers TNF to the TME, reducing tumour growth. Tocilizumab binds to IL-6, decreasing the body’s
immune response and inflammation. Tamferon-mediated delivery of INFa via genetically modified CD34+ HSPCs promotes systemic and tumour-localized
immune activation. (DC, Dendritic cell; EphA2, Ephrin type-A receptor 2; CMV, Cytomegalovirus; MTA, Mutated-derived tumour antigen; NeoAg, Neoantigen;
fl, full length; LPs, lipid particles; TERT, telomerase reverse transcriptase; PTPRZ1, Protein tyrosine phosphatase receptor type Z1; WT1, Wilms; tumour 1; PFN,
Perforin; GzmB, Granzyme B; OV, Oncolytic virus; oHSV-1, oncolytic herpes simplex virus-1; oAds, oncolytic adenovirus; INF-I, Interferon Type I; IL-12,
Interleukin-12; DAMPs, Damage-associated molecular patterns; TAAs, Tumor-associated antigens; TNF, Tumour-necrosis factor; FN, Fibronectin; EDB, Extra-
domain B; GAM, Glioblastoma associated macrophage; IL-6, interleukin 6; TEM, Tie2-expressing macrophages; HSPC, Hematopoietic stem and progenitor
cells). Created in BioRender. Papageorgis, P. (2025) https://BioRender.com/n35gcht.
Frontiers in Immunology frontiersin.org18
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microenvironment, which make it an important therapeutic target

(145, 146). First-generation of IL-13Ra2-targeted CAR-T cells

showed evidence of antitumor efficacy, but limited persistence of

T-cells (147), therefore new approaches were explored in the design

and production of IL-13Ra2-targeted CAR-T cells. Brown et al.

(2018) (148), designed a second-generation of IL-13Ra2-targeted
CAR, by engineering memory-enriched T cells to express IL-13Ra2
and 41BB-constimulatory CAR, a member of the tumor necrosis

factor (TNF) receptor superfamily that enhances CAR-T survival

and persistence (149, 150). Furthermore, the engineered T-cells

expressed a truncated form of CD19, a pan B-cell marker (151) that

has been targeted for the treatment of several hematological

malignancies (152), and was shown to be highly expressed in

brain and endothelial cells causing increased BBB permeability

and neurotoxicity after targeted CAR-T immunotherapy (153,

154). These second-generation CAR-T cells not only improved

anti-tumor activity but also T-cell persistence. Furthermore, it

was shown that when delivered intracranially, they had a greater

anti-tumor effect compared to intravenous delivery in orthotopic

glioblastoma mouse models. This study, led to the protocol design

for the NCT02208362 trial (Table 2), in which multiple intracranial

infusions of these CAR-T cells, were not only proven to be safe, but

also let to the regression of glioblastoma, increased levels of immune

cells and cytokines, and persistence of response for up to 7.5 months

after treatment initiation (155). Results from this trial,

demonstrated that locoregional therapy with IL-13Ra2-targeted
CAR-T is safe with promising clinical activity in a subpopulation

of patients (88). Later, Chang Xu et al. (2022) (156), developed the

first humanized third-generation CAR-targeting IL-13Ra2 that

showed great anti-tumor efficacy and reduced expression of

immunosuppressive cytokines such as IL-6 (88, 157) Like second

and third generation IL-13Ra2-targeted CAR-T cells, HER2-

specific, 41BB-costimulatory CAR with a truncated CD19 have

been engineered and are being assessed in recurrent or non-

responsive glioblastoma (NCT03389230, Table 2). HER2 is

another important target, since it was found to be overexpressed

in glioblastoma and is associated with poor prognosis (158).

EGFRs are transmembrane receptors, part of the ErbB family of

receptor tyrosine kinases (RTKs), activated by several ligands (e.g.

TGFa) binding to the extracellular domain (ECD) (159). Ligand-

receptor formation of homo- or hetero-dimers, leads to the

activation of several downstream pathways (e.g. MAPK, STAT3

and PI3K) that regulate cell survival, proliferation, angiogenesis and

migration. When EGFRs are overexpressed or mutated, they stay

constitutively active, which leads to uncontrolled cell proliferation

and therefore tumor progression. EGFR is overexpressed in ~60% of

primary glioblastoma and 10% of secondary glioblastomas (160).

Furthermore, several mutants have been found in glioblastoma,

with the most common being EGRvIII (159, 160). Overexpression

and mutations in EGFR lead to a more aggressive glioblastoma

phenotype and increased tumor heterogeneity, therefore several

strategies have been developed to target EGFR (Table 2) (87, 89,

161, 162) B7-H3 (also known as CD276) is a type I transmembrane

protein, that expressed in >70% of glioblastoma patients (163, 164),

and is associated with progression, metastasis, poor outcome and
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immune evasion (165), as it is an immune checkpoint molecule

expressed on antigen-presenting cells. The antitumor efficacy of B7-

H3 CAR-T cells in glioblastoma in vitro and in vivomodels was first

reported in Xing Tang et al. (2019) (166). Several clinical trials,

currently in recruiting phase, in refractory or recurrent

glioblastoma, are evaluating the safety, feasibility, dose and

efficacy of B7-H3 CAR-T cells (NCT05835687, NCT06482905,

NCT05366179 & NCT05474378 Table 2). In NCT05241392

(Table 2), the preliminary data were recently published and

showed that the use of B7-H3 CAR-T cells is safe and tolerated

and holds great promise toward improving patients’ overall survival

(167). Regarding the pharmacokinetic profile of B7-H3 CAR-T

cells, a study reported that local delivery led to cerebrospinal fluid

(CSF) persistence and localized immune activation rather than

systemic effects (168). It is worth noting, that in a recent pre-

clinical study, B7-H3 CAR-T cells consisting of IL-7Ra, have been
shown to suppress tumor growth and prolong overall survival in

glioblastoma mouse models (169), suggesting the potential

implication of B7-H3-IL-7Ra CAR-T cells in the clinic.

Finally, chlorotoxin (CLTX) is a small 36-amino-acid peptide

purified from the venom of the scorpion Leiurus quinquestriatus

(170). CLTX was initially characterized based on its inhibition of

glioma-specific chloride ion channels (GCC), however recent

studies identified MMP-2 as the principal receptor for CLTX on

the surface of glioblastoma cells. As mentioned above, MMP-2

expression is increased in glioblastoma TME, contributing

significantly to the tumor invasiveness. CLTX has demonstrated

specific and selective binding to membrane-bound MMP-2 and

minimal binding to normal brain tissue, therefore CAR-T cells

engineered to incorporate CTLX as an antigen recognition domain

are considered a promising approach for MMP-2 positive

glioblastoma treatment, redirecting cytotoxic T cells towards

glioblastoma cells (171).

4.2.2 (gd)T-cells
(gd)T-cells comprise a unique type of innate immune T cells

that express a gd T cell receptor (TCR), and are found abundant in

several tissues, including lymphocytes that infiltrate solid tumors

(172, 173). They can directly kill tumor cells through (a) cytokine-

mediated cytotoxicity (e.g. TNFa and IFNg), (b) perforin (PFN) &

granzyme (GzmB) and FasL & TRAILR mediated target cell

apoptosis, (c) antibody-dependent cell-mediated cytotoxicity, and

(d) antigen processing and presentation. They can also have indirect

anti-tumor effects through interaction with immune cells (e.g. NK

cells and ab T-cells). In addition, they have no autologous

limitations, can be derived from healthy donors, and can be easily

expanded. These properties make them a powerful tool in

immunotherapy. The first therapeutic mechanism involves the

selective amplification of (gd)T-cells in vivo using antibodies or

bisphosphonate antigens. In the second mechanism, which is

adoptive cell therapy, tumors are treated with allogeneic (gd)T-
cells (natural or genetically engineered) or (gd)T-cells that have

been expanded in vitro. The first-in-human Phase I clinical trial

(NCT04165941, Table 2) involves the intracranial infusion of TMZ-

resistant (gd)T-cells in newly diagnosed glioblastoma patients.
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During TMZ treatment, the natural killer group 2, member D

(NKG2D) receptor ligands (NDG2DL), the master activators of NK

cells (174), are upregulated, but this immune response is impaired

due to lymphodepletion (172, 175). Therefore, genetic modification

of (gd)T-cells, naturally expressing the NKG2D receptor, were

genetically modified and expanded ex vivo with an MGMT-

expressing lentivector that provided resistance to TMZ, allowing

therefore the simultaneous infusion of (gd)T-cell with

chemotherapy, and targeting therefore the tumor when NKG2DL

are maximally expressed (Figure 2C). Modifying the cells to be

resistant to TMZ is crucial, as they need to be able to resist the

cytotoxic effects of TMZ and be able to survive and function on the

presence of chemotherapy. In another trial, gene modified

allogeneic or autologous (gd)T-Cells (DeltEx), again conferring

TMZ resistance, are evaluated for safety, tolerance and ability to

delay recurrence in newly or recurrent gl ioblastoma

(NCT05664243, Table 2; Figure 2C).

The use of CAR-T cells in glioblastoma is based on targeting the

tumor-specific or tumor-enriched antigens like IL-13Ra2, EGFR/
EGFRvIII, HER2, CD70, B7-H3, and CD133/CD44. Apart from

antigen-specificity, the use of innovative constructs in active clinical

trials, such as next-generation CAR-T that integrate co-stimulatory

domains, can improve T-cell persistence, activation, and tumor

selectivity. In some trials, locoregional delivery of CAR-T cells

through intracranial administration aims to enhance the efficacy

and reduce systemic toxicity, although is more invasive and

complex. Since glioblastoma is characterized by profound

heterogeneity that limits the durability of response due to

downregulation of target antigens, CAR-T cells that target

multiple antigens have been developed that aim to reduce escape

via antigen heterogeneity. (gd)T-cells use a different strategy from

CAR-T, exploiting innate-like immune response. Based on their

recognition of ligands independently of MHC, they are ideal for

glioblastoma that is immune-evasive. Another advantage is that

they are multifunctional, since use different mechanisms for killing

tumor cells. On the other hand, the safety and efficacy of (gd)T-cells
is still not well established and they also require complex genetic

engineering. Although highly innovative, both CAR-T and (gd)T-
cells need to overcome antigen escape, and the suppressive

microenvironment. Moving forward, further clinical exploration

is needed, and their success will depend on effectively reshaping

the TME.
4.3 Vaccines

As recently reviewed, cancer vaccines are another promising

form of immunotherapy in glioblastoma (176). Briefly, anti-cancer

vaccines aim to provoke an immune response within the body

against tumor-specific antigen(s) and are generally composed of the

antigen (neoantigen, tumor-associated antigen or pathogen

derived-antigen) and the platform/carrier type (DC vaccine,

peptide vaccine, nucleic acid vaccine or viral vector vaccine).

Several vaccines are in active clinical trials in glioblastoma

(Table 2, Figure 3A).
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4.3.1 Peptide vaccines
Peptide vaccines are composed of 8–30 amino acid including

tumor-specific or tumor-associated antigens that elicit an anti-

tumor T cell response (177, 178). As they are not highly

immunogenic, they can be combined with other forms of

immunotherapy or chemoradiation. They can be individualized,

single-targeted or multi-targeted. One target of peptide vaccines is

the survivin protein; a member of the inhibitor of apoptosis (IAPs)

family, that is overexpressed in glioblastoma and is associated with

poor prognosis (179). The survivin peptide vaccine, SurVaxM, is

currently being evaluated in two clinical trials in combination with

TMZ (NCT02455557 & NCT05163080, Table 3). Preliminary

results showed that SurVaxM is safe and well-tolerated and its

combination with TMZ is very promising (96). pp65 and survivin

are also being targeted together with EphA2 through a multi-

peptide vaccine (ETAPA I) in HLA-A*0201 positive patients with

a newly diagnosed, unmethylated, and untreated glioblastoma

(NCT05283109, Table 3). pp65 is overexpressed in high grade

gliomas and medulloblastomas, but not in adjacent brain, and

plays a significant role in glioblastoma progression. When tested

in children and young adults, it was proven to be well-tolerated and

promoted antigen-specific immune responses (180). Other targets

include Telomerase Reverse Transcriptase (TERT), Protein tyrosine

phosphatase receptor type Z1 (PTPRZ1) and Toll-like receptors

(TLRs), that are being targeted in combination in NCT06622434

(Table 3). PTPRZ1 is a clinically relevant antibody in glioblastoma

associated with stemness (181), and telomerase (TRT) is a major

oncogene, whose promoter is mutated in approximately 80% of

glioblastoma patients and is associated with tumor progression (96,

182, 183). TLRs are ubiquitously expressed receptors that recognize

pathogens and lie at the first line of defense in the innate immune

system (184). In several tumor types, upon ligand recognition, TLRs

activate downstream intracellular signaling pathways either

supporting or suppressing tumor growth, thus they are a great

candidate for immunotherapy. Finally, several autologous or

allogeneic multipartite vaccines, designed to induce a variety of

neoantigen-specific immune responses, are tested in clinical trials in

combination with other therapies, such as ICIs and nucleic acid

vaccines (NCT03223103 & NCT02287428, Table 3).

4.3.2 DC vaccines
DC are the most superior APC cells of the immune system, thus

playing a vital role in presenting antigens in the lymph nodes

eliciting T-cell priming and distant anti-tumor response (185, 186).

DC vaccines are generated by culturing hematopoietic progenitor

cells or monocytes ex vivo in the presentation of a cytokine cocktail

to induce their maturation. Following maturation, DCs are loaded

into tumor antigens and subsequently injected into patients. Not

only they can achieve priming of CD4+ T cells by peptide-MHCII

complex, but also, they elicit CD8+ T-cell antitumor responses.

Several clinical trials are underway in glioblastoma investigating the

safety and efficacy of DC vaccines in newly diagnosed or recurrent

glioblastoma (Table 3). Some are loaded with autologous tumor

lysates (NCT03395587, NCT04523688 & NCT04801147, Table 3),

and even “double-loaded” (NCT06805305), and others are loaded
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with multiple tumor neoantigens (NCT04968366 & NCT06253234,

Table 3). They are administered either alone or in combination with

chemoradiation or ICIs. Finally, other DC vaccines are loaded with

mRNAs for specific proteins, including Survivin/hTERT derived

from autologous GSCs (NCT03548571, Table 3), the tumor-

associated antigen Wilm’s tumor 1 (WT1) (NCT02649582,

Table 3) and the human CMV immunodominant protein pp65-

LAMP (NCT03688178, Table 3).

4.3.3 Nucleic acid-based vaccines
Other than the DC and peptide vaccines, a few other vaccines

are being exploited in glioblastoma immunotherapy trials based on

the delivery of nucleic acids (Table 3). Nucleic acid-based vaccines

introduce a segment of DNA or RNA that encodes a specific or

multiple tumor antigens, to elicit and immune response (176). The

current vaccines clinical trials include DNA vaccines

(NCT05698199, & NCT04015700), an mRNA vaccine

(NCT05938387), and two vaccines that use lipid nanoparticle

technology (187) to de l iver RNA (NCT04573140 &

NCT06389591). Apart from the mRNA vaccine that encodes

several GBM peptides (188), all the others are targeting the

immunogenic and viral antigens of CMV.

Cancer vaccines are a growing field in glioblastoma

immunotherapy, and they hold a great promise, since they aim to

evoke tumor-specific immune response through tumor associated

or neoantigen presentation. In addition, they have shown great

tolerability and minimal toxicity in early-phase trials (e.g.

SurVaxM). Furthermore, they allow personalized and/or multi-

antigen targeting to address the heterogeneity present in

glioblastoma. Especially DC vaccines, that are loaded with

autologous tumor lysates, offer T-cell priming, overcoming the

limitations of peptide vaccines (priming of weak immune

response). The efficacy of vaccines might be limited the high

infiltration of Tregs, and antigenic heterogeneity, therefore

combining vaccines with other immunotherapies (CAR-T cells,

ICIs and oncolytic viruses) may further improve immunogenicity

and efficacy. Future progress hinges on optimizing vaccine

formulations for better delivery, refining antigen targets, and

leveraging synergies with other immunotherapies.
4.4 Oncolytic viruses

The development, use and clinical relevance of oncolytic virus

in cancer immunotherapy have been extensively reviewed elsewhere

(189–192). Briefly, oncolytic viruses (Ovs) are genetically

engineered viruses that selectively attack and lyse tumor cells

without disrupting normal cells via different biological

mechanisms. They are manipulated in such way to enhance

tumor selectivity, promote replication competence, limit

pathogenicity and increase immunogenic cell death (ICD). In

glioblastomas, treatment with OVs is very suitable due to their

alignment to the brain environment, the fact that they do not form

distant metastases, and finally that they are fast growing tumor cells

that attract virus replication. OVs are classified into two major
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groups: (1) replication-competent OVs that selectively replicate in

cancer cells e.g. Herpes Simplex Virus (oHSV) and adenoviruses

(oAds) and (2) replication-deficient viral vectors used as vehicles for

other therapeutic genes e.g. polioviruses.

Most ongoing clinical trials in glioblastoma are using oHSVs

(Table 3, Figure 3B) (193–197).

Apart from oHSVs, trials utilizing oAds are currently ongoing

in glioblastoma (Table 3, Figure 3B). DNX-2401 oAds has two

stable genetic changes the dsDNA adenovirus genome that allows

the selective and efficient replication in current cells (197). When

combined with pembrolizumab, DNX-2401 not only was proven

safe, but it also induced durable cell death by direct oncolytic

activity and immune response in high-grade glioma patients. The

drug is now in Phase I clinical trials in patients with recurrent

glioblastoma (NCT03896568, Table 3). However, DNX-2401 is not

intended for systemic BBB penetration due to its viral nature and

size (195). NSC-CRAd-S-pk7, is another very promising adenovirus

developed against glioblastoma (198). It has several features

including: (1) a survivin promoter for enhancing specific

replication in tumor cells, since survivin is found to be

overexpressed in glioblastoma, (2) a modified Ad5 protein

through insertion of polylysine sequence (pk7), which binds to

heparin sulfate proteoglycans also overexpressed in glioblastoma

and (3) neural stem cells (NSCs) as its carrier, also contributing to

selectivity. In Phase I trials, NSC-CRAd-S-pk7 was shown to be safe,

improve OS and result in an increase of cytotoxic T-cells (105). A

clinical trial against recurrent high-grade glioma is currently

underway (NCT05139056, Table 3). NRG-103 is a novel gene

therapy agent engineered to enhance the tumor-specific

recognition and cytolytic activity of an oncolytic virus, while

simultaneously eliciting a robust anti-tumor immune response. It

leverages in situ transdifferentiation technology, incorporating

multiple engineered mutations within the adenoviral genome.

Notably, NRG-103 expresses two transcription factors capable of

efficiently reprogramming residual glioblastoma cells into neuronal-

like cells, thereby aiming to delay tumor recurrence and improve

long-term survival. In preclinical models it exhibited significant

anti-tumor activity, and its overall or disease-free survival is being

evaluated in patients with recurrent glioblastoma (NCT06757153,

Table 3). Lastly, the safety and efficacy of the oncolytic virus TS-

2021, is evaluated in the clinical trial NCT06585527 (Table 3). TS-

2021 is a third-generation oncolytic adenovirus that can efficiently

target glioblastoma cells overexpressing Ki67 (proliferation marker)

and TGF-b2 and can inhibit invasiveness through targeting of the

MKK4/JNK/MMP3 pathway (199).

Finally, PVSRIPO is under clinical investigation for safety and

efficacy in recurrent glioblastoma (NCT02986178, Table 3).

PVSRIPO is a type 1 (Sabin) live-attenuated poliovirus vaccine

that carries a heterologous internal ribosomal entry site (IRES) of

human rhinovirus type 2 (HRV2) (200). Its synthesis allows

selective expression in tumor cells after coupled with its receptor,

CD155, expressed in several tumors including glioblastoma,

exerting antitumor effects.

Ovs are an innovative class of immunotherapies that offer direct

tumor cells lysis as well as indirect stimulation of anti-tumor
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immune response. They exhibit several advantages including their

selective replication in tumor cells minimizing the damage to

normal brain tissue (e.g. oHSV G207 and C134 are designed with

deletions in neurovirulence genes to limit replication in healthy

neural tissue while enhancing tumor-specific lysis) (201). They can

induce ICD, reprogram the immunosuppressive microenvironment

(e.g. CAN-3110) and improve T-cell activation (e.g. NSC-CRAd-S-

pk7). On the other hand, glioblastoma heterogeneity and pre-

existing immunity against viral vectors, can limit OV spread and

propagation. Furthermore, and tumor cells can develop resistance

through interferon signaling or downregulation of viral receptors

(e.g., CD155 for PVSRIPO). Even though promising results have

been demonstrated in early-phase trials, their benefit on PFS and

OS must be demonstrated in Phase II/III trials. Ongoing advances

in vector engineering, biomarker-guided patient selection, and

combinations with other immunotherapies (e.g. with ICIs) are

expected to shape the next generation of OV-based therapies.
4.5 Cytokine therapies

Another form of immunotherapy are the cytokine-based

therapies that are very promising, as they can potentially alter the

immunosuppressive microenvironment and trigger anti-tumor

immunity (195). However, the systemic administration of

therapeutic doses of pro-inflammatory cytokines can cause

toxicity. To tackle this systemic toxicity, L19TNF was generated.

Composed of TNF fused to the L19 antibody, L19TNF is a fully

human antibody–cytokine fusion designed to selectively deliver

TNF to tumors by binding a fibronectin epitope uniquely

expressed in the tumor extracellular matrix, where it induces cell

death, and at the same time the reduction of toxicity to healthy

organs (202) (Figure 3C). Ongoing trials are investigating the safety,

efficacy and recommended dose of intravenous administration of

L19TNF in newly diagnosed (NCT04443010, Table 3) and

recurrent glioblastoma (NCT04573192, Table 3), in combination

with TMZ-based chemoradiation or lomustine accordingly. In

another ongoing clinical trial in recurrent glioblastoma

(NCT04729957, Table 3), the efficacy and MTD of tocilizumab in

combination with atezolizumab and stereotactic RT is being

investigated. Tocilizumab is an anti-IL-6 monoclonal antibody

that reduces the body’s immune response and inflammation

(Figure 3C). Therefore, it suppresses the inhibitory effect of

immune cells surrounding glioblastoma and consequently allow

atezolizumab, an anti-PD-L1 treatment, to activate the immune

response against glioblastoma. Finally, Tamferon™, was designed

to increase the production of IFNa to cause immune activation

(203). More specific, CD34+ HSPCS are isolated from the patient

and are transduced ex-vivo with a lentivirus expressing IFNa
downstream a Tie2 promoter, so that IFNa expression is

confined to Tie-2 expressing macrophages (TEMs) (Figure 3C).

The safety and efficacy of Tamferon™, is evaluated in patients with

MGMT-unmethylated glioblastoma (NCT03866109, Table 3).

Cytokine therapy is a highly promising but still evolving

frontier. It has an immunomodulation potential, since it aims to
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reprogram the TME through cytokines such as TNF and IFNa,
enabling a more effective anti-tumor response. Innovations like

L19TNF and Tamferon™ help to overcome the systemic toxicity by

directing cytokine action to the tumor site. Furthermore, the latter

utilizes patient-specific, gene-modified immune cells, showing a

shift towards personalized immunotherapy. Cytokine therapy is

often combined with other therapies, including the standard of care,

to address other res is tance mechanisms. L ike other

immunotherapeutic approaches, immune evasion and tumor

heterogeneity are still a concern. Furthermore, delivery is still an

issue, especially since cytokines have a limited therapeutic window,

and local overexpression can cause neurotoxicity or inflammation.

The issues need to be addressed, and success in clinical trials

remains to be proven.
4.6 Other targeted immunomodulatory
therapies

Finally, a few other strategies that do not explicitly fall into the

categories already discussed, have been developed to induce

immune-specific responses and are under clinical evaluation in

glioblastoma (Table 3). For example, Tumor-infiltrating

lymphocytes (TILs) therapy, an innovative form of adoptive cell

therapy that utilizes the patient’s own immune cells to target and

destroy cancer cells, is given in combination with pembrolizumab in

patients with advanced gliomas (NCT06640582, Table 3). In

addition, IGV-001 that is being evaluated in NCT04485949

(Table 3), is a first-in-class autologous immunotherapeutic

product from Goldspire™, that combines personalized whole

tumor-derived cells with an insulin-like growth factor receptor 1

(IGF-1R) antisense oligonucleotide (IMV-001) in an implantable

biodiffusion chambers (204). It has been reported that inhibiting

IGF-1R can effectively suppress the growth of GBM cells directly or

indirectly through suppression of cell proliferation or angiogenesis

respectively (205–208). In addition, the N-803 from Anktiva, a

modified IL-15-based fusion protein (IL-15Ra-Fc), functions as an
immunostimulatory agent that drives the expansion and activation

of NK cells and CD8+ T lymphocytes (209), is being evaluated in

progressive or recurrent glioblastoma (NCT06061809). It is given in

combination with PD-L1 targeting high-affinity NK (t-haNK) cells

(210) and the anti-VEGF antibody, Bevacizumab. While N-803

generally demonstrate improved tolerability, long-term exposure

may still carry immunological risks. Sustained stimulation of NK

and CD8+ T cells can lead to chronic immune activation, increasing

the risk of cytokine release syndrome (CRS), immune-mediated

tissue damage and inflammatory toxicities such as fever, and

hypotension. Finally, the drug NGM707 is being evaluated as

monotherapy and in combination with pembrolizumab in

advanced or metastatic glioblastoma in NCT04913337 (Table 3).

NGM707, is a dual humanized monoclonal antibody that targets

Immunoglobulin-like transcript (ILT)2 and ILT4 resulting in early

efficacy and biomarker signals in advanced or metastatic solid

tumors (113), probably through the generation of immune niche

and immune-checkpoint blockage (211).
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These novel immunomodulatory therapies for glioblastoma are

conceptually sound and mechanistically diverse, representing a

hopeful direction. TILs and the IGV-001 personalized vaccine

provide tumor-specific cytotoxicity since the former are isolated

from patient’s tumor and the latter combines patient-specific tumor

cells with IGF-1R antisense oligonucleotide. Combination of TLIs

with pembrolizumab maximizes activity by preventing T-cell

exhaustion. Daratumumab and other monoclonal antibodies are

designed against tumor-specific antigens, aiming to enhance DC

priming and T-cell activation, boosting anti-tumor immunity.

Indoximod and N-803 both enhance NK function, and finally

NGM707 aims checkpoint inhibition beyond PD-1/PD-L1, as

ILT2/ILT4 target innate immune checkpoints, potentially reviving

exhausted myeloid cells and enhancing antigen presentation.

However, despite their innovative approach, common hurdles

persist including tumor heterogeneity leading to immune escape,

impaired delivery due to the BBB and complex trial designs. Most

evidence remains preclinical or Phase I, making long-term

benefit speculative.
5 Conclusions & future prospectives

Glioblastoma remains among the most aggressive and

therapeutically challenging malignancies due to its complex,

heterogeneous, and profoundly immunosuppressive tumor

microenvironment (TME). Despite the significant progress in

cancer immunotherapy in some tumor types, mainly using ICIs

and CAR-T cell therapies, these approaches have not yet

demonstrated substantial clinical benefits in glioblastoma patients,

primarily due to intrinsic resistance mechanisms facilitated by the

glioblastoma TME. The etiology of this phenomenon is clearly

multifactorial and is largely attributed to the highly

immunosuppressive nature and heterogeneity of GBM tumors.

Immunosuppression in the TME is mediated via a multitude of

under ly ing mechani sms , inc lud ing the secre t ion of

immunosuppressive cytokines, the abundance of Tregs, MDSCs

and GAMs in the TME, the insufficient infiltration and elimination

of antigen-specific T cells, the sequestration of T-cells in the bone

marrow leading to their dysfunction, T-cell exhaustion, antigen

escape as well as upregulation of multiple immune checkpoint

molecules. In addition, the low TMB present in the majority of

GBM tumors leads to limited number of produced neoantigens,

which are needed to elicit durable T-cell responses, and contributes

to the limited efficacy of immunotherapy. Moreover, physiological

barriers like the blood-brain barrier (BBB), along with hypoxic and

acidic conditions within the TME, significantly hinder therapeutic

efficacy and immune response.

This review provides a comprehensive description of

immunotherapy clinical trials. However, interpretations based on

these trials are limited due to mixed treatment regimens

(monotherapy vs. combinations) and ethnic bias, as many cited

studies were conducted in predominantly Japanese cohorts,

reducing generalizability across broader populations. To enhance

the success of glioblastoma immunotherapies, future strategies must
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involve a comprehensive and functional understanding of distinct

components of the TME at the single-cell level, such as tumor

profiling using spatial transcriptomics and proteomics as well as

patient-specific neoantigen identification, that will enable

personalized and precision targeting to improve immunotherapy

efficacy and patient outcomes. In addition, advancing glioblastoma

therapy requires overcoming simultaneously both the biological

and physical barriers that influence the therapeutic efficacy, such as

the immunosuppressive TME, ECM composition and BBB

permeability. Therefore, technological advancements in BBB

penetration and targeted drug delivery (e.g., advanced

nanomedicine, ultrasound-mediated BBB disruption) hold

substantial promise and should be further explored.

In addition, combining immunotherapeutic agents with

strategies that modulate the non-cellular components of the TME,

such as agents targeting hypoxia, acidosis, and ECM constituents,

could also enhance therapeutic outcomes. Further exploration of

combination therapies integrating ICIs, CAR-T cells, vaccines, and

oncolytic viruses with standard therapies (chemotherapy,

radiotherapy) and novel targeted treatments is critical. However,

mitigating short- and long-term side-effects in patients, especially in

combination treatments likely remains one of the major challenges

that need to be addressed.

To advance the field of glioblastoma immunotherapy, future

efforts should move beyond incremental improvements. One

promising direction is the application of artificial intelligence (AI)

and machine learning (ML) to optimize clinical trial design,

enabling real-time patient stratification and prediction of

therapeutic response based on multi-omics data. Subsequently,

spatial mapping of the TME through spatial transcriptomics and

multiplexed imaging can uncover regional immune niches and

patterns of immune suppression within glioblastoma, guiding the

localization of targeted therapies. Coupling these insights with

biomarker-driven patient stratification could personalize

immunotherapy approaches and increase clinical efficacy.

Finally, integrating novel biomarkers and robust pre-clinical

models using state-of-the art humanized patient-derived xenograft

models into clinical trial designs will facilitate better patient

stratification, treatment personalization, and evaluation of

immunotherapy efficacy. Future interdisciplinary research efforts

must focus on refining patient selection criteria and developing

multimodal therapies that target both the tumor and its

immunosuppressive milieu. These will be crucial in overcoming

existing barriers, emphasizing on exploiting glioblastoma-specific

vulnerabilities to ultimately transform the treatment landscape for

glioblastoma. Despite numerous challenges, immunotherapy

remains one of the most promising treatment strategies

for glioblastoma.
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