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Inflammatory bowel diseases (IBD) are chronic and disabling disorders of the
gastrointestinal tract of unknown aetiology, in which the pathologic process is
triggered by multiple environmental and genetic factors that activate an
excessive innate and adaptive immune response against luminal antigens. In
recent years, great progress has been made in the identification of factors/
mechanisms underlying the amplification of the key immune steps in IBD tissue,
and this has facilitated the development of several immune-related
biotherapeutic compounds that have largely improved the management of the
more severe forms of IBD. However, nearly half of these patients are refractory or
intolerant to novel immunotherapeutics, indicating the need for further
characterization of the IBD-associated detrimental immune response to
develop new therapeutics. In this article, we review the available evidence
about the contribution of innate and adaptive immune cells in the
development of intestinal tissue damage. We also discuss the more recent
findings in the field of IBD-associated immunity, which might help identify
novel pathways to be manipulated for therapeutic purposes.
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Introduction

Inflammatory bowel diseases (IBD) are immune-mediated diseases characterized by a
chronic, relapsing intestinal inflammation with two major subtypes, ulcerative colitis (UC)
and Crohn’s disease (CD). In UC, the inflammation arises in the mucosal layer of the
rectum and can extend proximally and continuously to the whole colon. In the severe cases
of UC, the inflammation can involve the submucosal compartment. In CD, the
inflammation is transmural and segmental and can involve any part of the
gastrointestinal tract (1). The natural history of IBD can be complicated by the
development of local complications (e.g., abscesses, toxic megacolon, colon cancer) and/
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or extraintestinal manifestations, mainly involving the joints, eyes,
and skin (2). Paradoxical manifestations (i.e., cutaneous and/or
articular lesions) can also occur in some IBD patients following the
use of biologics; these manifestations are often reversible after the
discontinuation of the implicated drug (3).

IBD etiology remains unknown, but accumulating evidence
supports the hypothesis that these are multifactorial disorders,
with contributions from host genetics, environment, and
intestinal microbiota, and characterized by the activation of
innate and adaptive immune responses, excessive production of
inflammatory cytokines, and various degrees of tissue
destruction (4).

Dissecting the molecular events that amplify and sustain the
IBD-associated pathological inflammation has facilitated the
development of several biologics and small molecules, which have
improved the management of these disorders. Most of these drugs
target inflammatory cytokines and cytokine-activated intracellular
kinases, or interfere with mechanisms involved in the recruitment
of immune cells to the inflamed gut, further supporting the notion
that CD and UC are immunologically-mediated diseases (5).
However, a considerable proportion of IBD patients are
unresponsive to biologics and/or small molecules, highlighting the
necessity of further studies to advance our understanding of the
mechanisms promoting the IBD-associated mucosal inflammation
and find effective treatments.

In this article, we review the available evidence about the
contribution of innate and adaptive immune cells in the
development of intestinal tissue damage with particular regard to
effector cells. We also discuss the more recent findings in the field of
IBD-associated immunity, which might help identify novel
pathways to be manipulated for therapeutic purposes.

Genetic and experimental studies
support the pathogenic role of innate
immunity dysfunction in IBD

Several pieces of evidence indicate that both CD and UC have a
genetic basis. For instance, it has long been known that patients
with IBD have a positive family history, and the concordance rate
for IBD is significantly higher in monozygotic (identical) twins
compared to dizygotic (fraternal) twins (6). Additionally, more than
240 susceptibility genes and single-nucleotide polymorphisms
(SNPs) have been identified by genome-wide association studies
(GWAS) in IBD, and many of these gene variants are involved in
the innate response to microbes as well as in the regulation of
adaptive immunity (7-9).

Nearly one-third of CD patients bear one or more SNPs situated in
or close to the leucine-rich repeat ligand-binding domain of nucleotide-
binding oligomerization domain-containing 2 (NOD?2), also known as
caspase recruitment domain protein 15 (CARD15). Three coding SNPs
within the gene, designated SNP8, SNP12, and SNP13 have been
associated with CD in Caucasians but not in Asians (10). Specifically,
SNP8 and SNP12 cause amino acid substitutions in the leucine-rich
region (LRR), namely C14772T (Arg702Trp) and G25386C
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(Gly908Arg) (11). SNP13 is a C-insertion 32629insC (1007insC),
which leads to a frameshift that causes a truncated protein missing
the fInal 33 amino acids (10). Although initial studies documented no
association between NOD2 SNPs and UC, a study conducted in a
Portuguese population of UC patients showed that NOD2 variants
correlate with a more aggressive course of the disease (12).
Additionally, a study conducted in Punjab (India) showed that the
3 disease susceptibility variants were rare, but identified two additional
SNPs (SNP5, 268 Pro / Ser and rs2067085, 178 Ser / Ser). The
frequency of SNP5 was higher in both UC and CD patients than in
controls (12%), and SNP5 carriers had elevated risks for UC (13).

NOD2, an intracellular sensor for the muramyl dipeptide of
peptidoglycan, is expressed in many immune cells as well as in
Paneth cells, and positively regulates the production of o-defensin
(14). Indeed, CD patients bearing NOD2 SNPs have a diminished
activation of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-kB) and decreased production of defensins (15). NOD2-
deficient mice develop granulomatous inflammation of the ileum,
characterized by a marked enlargement of the Peyer’s patches and
mesenteric lymph nodes and increased production of T helper type
(Th1)-related cytokines following inoculation with Helicobacter
hepaticus, an opportunistic pathogenic bacterium (16). Notably,
restoring the crypt antimicrobial function of NOD2-deficient mice
by transgenic expression of o.-defensin in Paneth cells rescues the Th1
inflammatory phenotype (16). The mechanisms by which NOD2
SNPs predispose to CD are multiple, probably reflecting the ability of
the protein to regulate various functions in different cell types,
including the production of interleukin (IL)-12 in response to Toll
like receptor (TLR)2 (17), and of IL-10 through a pathway mediated
by the association of NOD2 with active p38 mitogen-activated protein
kinase, and the transcription factor heterogeneous nuclear
ribonucleoprotein A1 (18).

NOD?2 also controls autophagy, a process that is responsible for
the degradation and elimination of damaged organelles or long-lived
proteins and bacterial clearance (19). Specifically, this process relies on
the ability of NOD2 to recruit the autophagy protein ATGI16L1 to the
plasma membrane at the site of bacterial entry (20) (Figure 1). Defects
in autophagy can also be secondary to a SNP in the ATG16L1 gene
(rs2241880; leading to a T300A conversion), which is associated with
risk for developing CD (21, 22). Impairment of the autophagy process
due to the rs2241880 variant leads to an abnormal cellular
accumulation of harmful materials (23) (Figure 1). In both CD
subjects and mice with ATG16L1T300A, cigarette smoking, a major
CD environmental risk factor (24-26), triggers Paneth cell defects,
including enhanced apoptosis and metabolic dysregulation, due to a
selective downregulation of the proliferator-activated receptor-gamma
(PPARY) pathway (27). ATGI6L1 can specifically interact with
murine norovirus (MNV), and there is evidence that hypomorphic
ATGI6L1 mice infected by MNV CR6 exhibit morphological and
granule-packaging abnormalities in Paneth cells (28). Furthermore,
ATGI6LI prevents tumor necrosis factor (TNF)-o-mediated Paneth
cell necroptosis by maintaining mitochondrial homeostasis (29).
ATGI6LI is also expressed in immune cells, such as lymphocytes
and antigen-presenting cells. Macrophages isolated from ATGI6L1-
deficient mice produce high amounts of inflammatory cytokines in
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with recruitment of ATG16L1 to the plasma membrane by NOD?2, followed by autophagosome and autophagolysosome formation and conserved
o-defensine expression and secretion. (B) Altered autophagy pathway due to SNPs in leucine-rich repeat ligand-binding domain of NOD2, resulting
in defective ATG16L1 recruitment, reduced autophagosome and autophagolysosome formation, and diminished intracellular bacterial killing with
accumulation of harmful materials and decreased a.-defensine expression and secretion. NOD2, nucleotide-binding oligomerization domain-
containing 2; LRR, Leucine-Rich Repeat; NBD, nucleotide binding domain; RIP2, Receptor-Interacting Protein 2; MDP, Muramy! dipeptide; NF-kB,

Nuclear Factor kappa-light-chain-enhancer of activated B cells.

response to bacterial challenges and are more susceptible to
experimental colitis (30). Another gene linked to CD is immunity-
related GTPase M (IRGM), a negative regulator of the NLRP3
inflammasome activation and pro-inflammatory responses to
microbial stimuli. Consequently, defects in IRGM lead to enhanced
pyroptosis and gut inflammation in mice (31). Overall, these
observations indicate that various SNPs can alter the ability of
innate immune cells to recognize and respond to intracellular
bacteria, thereby leading to a pathological process that eventually
causes gut mucosal damage. Support for this notion comes from the
demonstration that some congenital disorders of innate immunity
(particularly of phagocyte function) are associated with a CD-like
noninfectious bowel inflammation (32). Similarly, some individuals
suffering from various neutropenias (i.e., Hermansky-Pudlak
syndrome, chronic granulomatous disease, leukocyte adhesion
deficiency-1, Chediak-Higashi syndrome, and glycogen storage
disease type 1b) can develop CD-like intestinal inflammation (33).

Excessive innate immune responses
against luminal microorganisms lead
to intestinal inflammation

In IBD, intestinal microbiota provides an abundant source of
immunostimulatory molecules that trigger immune responses.
Consistent with this is the demonstration that the inflamed gut of
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IBD patients contains a high number of antigen-presenting cells
that display an activated phenotype, express high levels of TLRs,
and respond to microbial components by producing huge amounts
of inflammatory cytokines, such as IL-1f, IL-6, IL-18, and TNF, the
expression of which correlates with the severity of inflammation
(34). Such cytokines are mainly produced by CD14+ myeloid cells
(35), suggesting that the major contribution to the inflammatory
cytokine overproduction is given by monocytes recently recruited
from the blood. Antigen-presenting cells also synthesize the
heterodimeric IL-12 and IL-23, which share the p40 subunit, and
Epstein-Barr virus-induced gene 3 (EBI3)-related cytokines such as
IL-27 and IL-35 that, as discussed below, control Th cell
polarization (36, 37). Microbial components signal through TLRs
and activate various intracellular pathways (e.g., MAP kinases) (38).
Indeed, IBD lamina propria immune cells exhibit increased NF-kB
activity, and blockade of this transcription factor reduces the
production of IL-1B, IL-6, and TNF and attenuates disease in
mouse models of intestinal inflammation (39). However, in IBD,
NEF-kB is also expressed by epithelial cells, where it has beneficial
effects on the maintenance of gut homeostasis (40).

Both IL-1f and IL-18 are produced as pro-cytokines and can
then be cleaved into a mature/active form by caspase 1. In this
process, which is induced by harmful stimuli, such as invading
pathogens, dead cells, or environmental irritants, various members
of the LRR-containing proteins (NLR) family can associate with the
NLR adaptor protein, apoptosis-associated speck-like protein
containing a CARD domain (ASC/PYCARD), to recruit
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procaspase 1 and favor the processing of procaspase 1 into active
caspase 1. This complex is referred to as inflammasome, the
activation of which can be induced by two distinct mechanisms.
In the non-canonical pathway, intracellular LPS promotes the
activation of Caspases-11/4/5, which induces the cleavage and
activation of Gasdermin (GSDM)-D, leading to cell swelling and
pyroptosis. In this process, caspase-11 also activates pannexin-1, a
protein channel that releases ATP from the cell. The extracellular
ATP favors the opening of a pore that enhances potassium ion
efflux, thus driving NLRP3 inflammasome assembly and secretion
of the active forms of IL-1f and IL-18 by caspase-1. In the
alternative pathway, activation of the inflammasome is triggered
in myeloid cells by extracellular LPS, and is marked by the
activation of caspase-8 and subsequently NLRP3, and does not
induce pyroptosis. Through an evaluation of seven Gene Expression
Omnibus datasets, Gao and colleagues assessed the correlation
between hub gene expression and anti-TNF therapy outcomes in
IBD patients. Several genes involved in the inflammasome
activation and pyroptosis (i.e., caspases 1,5, GSDM-D, AIM2, and
NLRP3) predicted the response to anti—-TNF therapy, and non-
responders to TNF blockers exhibited elevated AIM2 protein
expression (41). The driving role of the inflammasome in the
early development of gut inflammation is supported by studies in
mice deficient for NLRP3, ASC, or caspase 1. Such animals produce
reduced amounts of IL-1f3 and TNF and are protected from acute,
but not chronic, experimental colitis (42). Guanylate binding
protein 5 (GBP5), an interferon-stimulated gene that is highly up-
regulated in IBD, enhances the expression of pro-inflammatory
cytokines in mononuclear cells as a result of its ability to promote
NLRP3 inflammasome activation through a not yet defined
mechanism (43-46). Strikingly, GBP5-deficient mice are resistant
to dextran sulfate sodium (DSS)-induced colitis, further
corroborating the role of GBP5 in gut inflammation (47).
However, the inflammatory role of GBP5 is not restricted to the
control of inflammasome, as GBP5 can trigger the expression of
numerous pro-inflammatory cytokines and chemokines through an
inflammasome-independent mechanism, which is mediated by
STAT1 and leads to innate lymphoid cell (ILC) proliferation and,
eventually, intestinal inflammation in a DSS mouse model (48).

Factors that amplify the innate
immune response in IBD

Additional factors/mechanisms contribute to sustaining the
excessive innate immune response in IBD. For example, in the
inflamed mucosa of IBD patients, there is over-expression of
OTUDS5, an enzyme that cleaves ubiquitin linkages, thus resulting in
enhanced protein stability and altered signal transduction (49).
OTUD5 protein is highly expressed in IBD mucosa, mainly
by epithelial cells and myeloid cells, and knockdown of OTUD5
with a specific antisense oligonucleotide reduces TNF production
(50). IBD mucosal cells express reduced levels of SIRTI, a class III
NAD-+-dependent deacetylase, which inhibits the expression of various
proteins involved in the control of immune-inflammatory pathways,
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such as STAT3, Smad7, and NF-kB. Notably, in vitro treatment of IBD
mucosal immune cells with Cay10591, a specific SIRT1 activator,
reduces NF-kB activation and inhibits the production of
inflammatory cytokines, as well as Cayl0591 prevents and cures
IBD-like colitis in mice (51). Intestinal antigen-presenting cells in
IBD patients exhibit a defective expression of programmed death
(PD) ligand 1 (PDL1) (52), which is known to engage PDI1 on
T cells thereby promoting the function of T-regulatory cells (Tregs),
a class of T cells expressing CD25 and the transcription factor Foxp3
and known to maintain immune tolerance (53). The promoter
regions of human and mouse Pdcdll (PDL1) and Pdcdl2 (PDL2)
genes contain multiple putative binding sites for Smad3, a transcription
factor that is activated by transforming growth factor (TGF)-B1 (54),
the activity of which is reduced in IBD mucosa due to high levels of
Smad?7, an intracellular inhibitor of TGF-B1/Smad3 signaling (55, 56).
Deletion of Smad7 in dendritic cells (DC) enhances TGF-B1
responsiveness and increases PDL1/2-PD1 signaling and Treg
differentiation, thereby protecting mice from intestinal inflammation
(54). Moreover, several molecules that counter-regulate myeloid
cell function and innate immune responses (e.g., Thymic stromal
lymphopoietin and IL-25) are reduced in IBD tissue (57, 58)
(Figure 2). Another cytokine involved in the activation of inhibitory
pathways in the gut is IL-10. Initial studies in IL-10-deficient
mice showed the role of IL-10 in suppressing antigen-presenting cell
function, given that mutants exhibited excessive bacteria-induced IL-12
production and developed enterocolitis (59). Consistently, germ-line
mutations causing loss of IL-10 signaling can be associated with a very
early-onset IBD (60).

In the inflamed gut of IBD patients, there is also a reduced
expression of aryl hydrocarbon receptor (AHR) (61), the activation
of which in DC leads to a reduced expression of activation markers
(i.e. CD80, CD83, and CD86) and diminished production of
inflammatory cytokines (i.e., IL-1B, IL-23, and IL-12).
Additionally, AHR activation facilitates the differentiation of
regulatory DC and Tregs, thus limiting experimental colitis in
mice (62-64). In IBD, DC also exhibit an altered activation state,
characterized by increased production of pro-inflammatory
cytokines such as IL-12 and IL-6, with reduced IL-10 expression.
This shift promotes pathogenic Thl and Thl7 responses and
contributes to the breakdown of mucosal tolerance. DC also
display enhanced expression of co-stimulatory molecules, further
amplifying the ongoing T cell activation. These changes support the
hypothesis that DC dysregulation plays a central role in initiating
and sustaining intestinal inflammation (65).

Altogether, these observations indicate the existence of a
multitude of factors and mechanisms that either simultaneously
or sequentially contribute to expanding the local innate immune
response against luminal microorganisms, thereby resulting in
excessive production of inflammatory cytokines.

The role of neutrophils in IBD

The active phases of IBD are characterized by a mucosal
accumulation of neutrophils, which correlates with the severity of
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Schematic view of the main innate and adaptive immune cells involved in IBD pathogenesis. As a result of multiple epithelial cell defects that enhance
translocation of luminal microorganisms into the lamina propria, antigen-presenting cells, such as dendritic cells (DC) and macrophages (M@ produce
huge amounts of various cytokines. Such a production is amplified by diminished production of epithelial cell- and regulatory T cells (Tregs)-derived
counter-regulatory molecules [i.e., Thymic stromal lymphopoietin (TSLP) and interleukin (IL)-25]. The inflamed gut of IBD is also heavily infiltrated with
additional innate immune cells, such as neutrophils that secrete reactive oxygen species (ROS), chemokines, and neutrophil extracellular traps (NETSs),
various subsets of cytokine-producing innate lymphoid cells (ILC), and mucosal-associated invariant T (MAIT) cells, the latter being activated by
riboflavin-derived metabolites. T cells are recruited in the gut in response to the action of locally-produced chemokines, and this process is facilitated by
interaction between integrins expressed on the lymphocyte surface (e.g., a4b7) and adhesion molecules expressed by endothelial cells (e.g., MadCam1).
T cells accumulate in the lamina propria as a result of additional mechanisms, and then differentiate into various subsets, which contribute to enhancing

the amount of inflammatory cytokines and to promoting IgG- and Granzyme-B-secreting plasma cell differentiation. Under the stimulus of specific
effector cytokines, the activated T cells can become memory T cells, another subset of cytokine- and perforin and Granzyme B-producing T cells.
ER, Endoplasmic Reticulum; TSLP, Thymic Stromal Lymphopoietin; TLR, Toll-like receptor; DC, Dendridic cell; ROS, Reactive Oxygen Species; MPO,
Myeloperoxidase; ILC1, innate lymphoid cells type 1; ILC3, innate lymphoid cells type 3; TRM, Tissue-Resident Memory T cells; MR1+ cell, major

histocompatibility complex (MHC) class I-related molecule 1 (MR1)-restricted T cell; MAIT cell, Mucosal-associated invariant T cells; TNF, Tumor Necrosis
Factor; TGFB1, Transforming Growth Factor B1; IL-1B, interleukin-; IL-5, interleukin-5; IL-6, interleukin-6; IL-9, interleukin-9; IL-10, interleukin-10; IL-12,
interleukin-12; IL-13, interleukin-13; IL-15, interleukin-15; IL-17, Interleukin-17; IL-18, interleukin-18; IL-22, interleukin-22; IL-23, interleukin-23; IL-25,
interleukin-25; IL-33, interleukin-33; IFNYy, interferon y; TH1, T helper 1 cells; TH2, T helper 2 cells, TH9, T helper 9 cells; TH17, T helper 17 cells; Tregs,
regulatory T cells; Tfh, T follicular helper cells; CCL20, C-C motif chemokine ligand 20; CCR9; MadCam1, Mucosal Addressin Cell Adhesion Molecule 1;

GM-CSF, Granulocyte-Macrophage Colony-Stimulating Factor.

the disease, while the resolution of neutrophil mucosal infiltration is
associated with improved long-term clinical outcomes (i.e. use of
corticosteroids, hospitalization) (66-68). The fecal concentration of
calprotectin, a calcium- and zinc-binding protein mainly produced
by neutrophils, is useful in the diagnosis and management of IBD
and helps predict disease course (69).

Neutrophils are recruited from the bloodstream as a result of
signals activated by molecules largely produced by epithelial cells
(e.g., IL-8, IL-6, IL-33, CXCL5, CXCL7, CXCL10, and CCL20,
leukotriene B4, and hepoxilin A3, and matrix metalloproteinases)
(70). In contrast to blood neutrophils that have a very short half-life
(8-12 hours), mucosal neutrophils can survive for 1-4 days.
Moreover, in the inflamed gut of IBD patients, neutrophils
exhibit defective apoptosis, a process that has been linked to the
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ability of a multitude of cytokines, hypoxia, extracellular acidosis,
and bacterial products (e.g., LPS, lipoproteins, peptidoglycans, and
lipoteichoic acid) to prolong neutrophil survival (71, 72).
Resolution of mucosal inflammation is mediated in part by
members of the superfamily of lipidic specialized proresolving
mediators (SPMs), a class of lipids biosynthesized from omega-6
and omega-3 polyunsaturated fatty acids. SPMs target distinct G
protein-coupled receptors (GPCRs), thus stopping neutrophil
transmigration and triggering their apoptosis (73, 74). Through a
transcriptional analysis of mucosal samples, Trilleaud and
colleagues showed that ChemR23, a GPCR targeted by resolvin
El, was highly expressed in the inflamed gut of IBD patients
unresponsive to biologics (i.e. TNFo. blockers or vedolizumab)
and associated with significant mucosal neutrophil accumulation.
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Moreover, treatment of colitic mice with an anti-ChemR23
antibody promoted the transition of pro-inflammatory
macrophages to an anti-inflammatory phenotype, thereby leading
to neutrophil apoptosis and clearance (75).

Within the gut mucosa, neutrophils secrete a variety of
proteolytic enzymes and reactive oxygen species (ROS), which alter
the epithelial barrier integrity, thereby facilitating their transepithelial
migration and the formation of characteristic pathological lesions
(i.e., cryptitis, crypt abscesses) (76). A recent study reported that, in
IBD patients as well as in patients with chronic granulomatous
disease and mice with experimental colitis, neutrophils express the
NADPH oxidase DUOX2, which stimulates H,0, production.
Notably, DUOX2 enhances and perpetuates intestinal
inflammation, increases tissue damage, and delays restitution,
raising the possibility that DUOX2 may be an emerging therapeutic
target to attenuate gut inflammation (77). A further contribution of
neutrophils to IBD-associated inflammation relies on their ability to
secrete several chemokines and cytokines (e.g., CXCL1, CXCL2, and
CXCL5, IL-8, IL-1B, and IL-17) that promote the recruitment of
other immune cells, such as monocytes, T cells, and NK cells (78). In
this context, it is noteworthy that neutrophils can respond to
microbial components by secreting neutrophil extracellular traps
(NETs), an extracellular network composed of DNA, histones, and
anti-microbial inflammatory proteins and proteases, including
neutrophil elastase and myeloperoxidase, that traps and neutralizes
pathogens, thereby preventing their further spread (79) (Figure 2).

NET formation (the process is also termed NETosis) is
controlled by various factors, including ROS and transcription
factors, which are triggered by microorganisms and several
cytokines. Citrullination of histones H1, H3, and H4 by the
enzyme peptidyl arginine deiminase 4 (PAD4) is crucial in the
decondensation and expulsion of nuclear chromatin (80). The
formation of NETs is increased in IBD mucosa (81) and
correlates with disease activity (82). Notably, serum samples of
IBD patients can enhance the formation of NETs in blood
neutrophils of healthy individuals (83), suggesting that, in IBD,
NETs can be induced by locally secreted factors. This hypothesis is
supported by the demonstration that the formation of NET's can be
stimulated by IL-1B through an autophagy-dependent mechanism
(84). Indirect evidence also supports the hypothesis that the
abundance of NETs in IBD mucosa reflects their defective
clearance, primarily due to a reduction in the activity of
deoxyribonuclease I (DNase I) (85).

A large body of evidence supports the pathogenic role of NET's in
IBD. For instance, NETs can trigger epithelial cell apoptosis, thereby
perturbing the intestinal barrier integrity and, hence, amplifying the
ongoing inflammation in DSS- or 2,4,6-trinitrobenzene sulfonic acid
(TNBS)-induced models of colitis. Treatment of colitic mice with
intravenous DNase I, an enzyme that dissolves the web-like DNA
filaments of NETs, restores the mucosal barrier integrity and
attenuates intestinal inflammation (86). Consistently, PAD4-
deficient mice are less susceptible to DSS-colitis (87).

We also showed that culturing UC lamina propria mononuclear
cells (LPMCs) with NETs resulted in enhanced production of TNF-o.
and IL-1P, and inhibition of NET release attenuated DSS-colitis in mice
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(81). Moreover, NET formation was reduced in colons of UC patients
who responded to treatment with TNF antagonists (81), further
supporting the notion that NET generation is driven by cytokines
produced within the inflammatory environment associated with the
disease. NETs can adhere to the surface of vascular endothelial cells and
promote apoptosis, a phenomenon that was linked mainly to the action
of NET-related proteins (88). Finally, the therapeutic effect of various
compounds in colitic mice has been associated with an inhibitory effect
on NET formation (89, 90).

NETs could also act as a powerful fibrogenetic stimulus in CD, as
in the inflamed ileum of CD patients, they colocalize with activated
fibroblasts and stimulate fibroblasts to upregulate pro-fibrotic genes
and increase collagen production. Moreover, mice with PAD4-
deficient neutrophils exhibit a significant reduction in collagen
content following repeat DSS exposure (91). Additional studies
have linked NETs to the increased thrombotic tendency in IBD,
due to the promoting effects of NETs on primary and secondary
hemostasis (83, 92). However, a study published by Leppkes and
colleagues showed that neutrophils induce PAD4-dependent
immunothrombosis in UC, and NET-associated immunothrombi
prevent rectal bleeding in DSS-colitis. Indeed, loss of PAD4 was
associated with a failure to remodel blood clots on the mucosal
surface, delayed colonic wound healing, and worsening of the
ongoing colitis with a failure to control rectal bleeding (93).

Taken together these findings suggest that an unrestrained
translocation of microbial antigens to the lamina propria induces
a massive recruitment of neutrophils, which contribute to the
mucosal damage through a variety of mechanisms (i.e.,
impairment of epithelial barrier function, mucosal injury through
oxidative and proteolytic damage, and the amplification of the
ongoing inflammatory reaction through the release of
inflammatory mediators).

The role of eosinophils in IBD

Eosinophils are increasingly recognized as active players in the
pathogenesis of IBD (94, 95), as these cells could contribute to
mucosal damage through the release of cytotoxic granules,
cytokines (e.g., IL-5, IL-13), and ROS (95, 96). In IBD tissue, IL-5
receptor-0. subunit expression on eosinophils is markedly increased
and correlates with disease activity and endoscopic severity, especially
in CD (95). Moreover, there is evidence that eosinophil accumulation
is predictive of poor response to therapy and increased risk of relapse
(97). Animal models show that eosinophil depletion reduces
intestinal inflammation (98). Altogether, eosinophils emerge as
both biomarkers and potential therapeutic targets in IBD (97).

The role of innate lymphoid cells in
the control of IBD-associated
inflammation

ILCs contribute to organ development and play important roles in
the first line of antimicrobial defense, and can respond very quickly to
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signals or cytokines produced by other cells (99, 100). ILCs originate
from the same common lymphoid progenitor as lymphocytes and their
development relies strictly on the function of the transcription factor
inhibitor of DNA binding-2 (Id2), other than Notch and IL-7 signaling
(101, 102). However, ILCs lack some cell lineage markers associated
with T and B lymphocytes, myeloid cells, and neutrophils, and express
CD90, CD25, and IL-7 receptor o. (CD127).

In the gut, ILCs are tissue-resident cells that are maintained and
expanded locally under physiologic conditions, upon systemic
perturbation of immune homeostasis, and during acute
infection (103).

Three main subgroups of ILCs can be considered according to
their developmental pathways, specific key transcription factors,
and cytokine expression. The type 1 ILCs, including the natural
killer (NK) cells and ILCls, type 2 ILCs, and type 3 ILCs, which
include lymphoid tissue-inducers (LTis), natural cytotoxicity
receptor (NCR)+ ILC3s, which express NKp46 and T-bet, and
double-negative ILC3s, which are CCR6 and NCR negative, and
are the mixed precursors of CCR6+ LTi cells and NCR+ ILC3s.
These 3 ILC subgroups share functional similarities with CD4+
Thl, Th2, and Thl7 cells, respectively, whereas NK cells have
similar roles to CD8+ cytotoxic T cells. ILCls and NK cells
express T-bet and produce IFNy and TNFo. However, NK cells
differ from ILCls because their development is dependent on the
transcription factor Eomesodermin (Eomes) and independent of
1d2 (101).

ILC2s express high levels of GATA-3 and produce type 2
cytokines, while ILC3s express RORYt and produce IL-22 and IL-
17 (100, 104-106). In addition to ILC1s and NCR+ ILC3s, T-bet can
be induced in ILC2s (107, 108). Therefore, ILCs can secrete a variety
of molecules by which they interact with many other cells within the
mucosal environment, thus contributing to maintaining the
mucosal homeostasis or perpetuating detrimental responses.

Changes in the number of ILCs, particularly ILC1s and ILC3s,
have been documented in IBD and are associated with alterations of
epithelial barrier integrity and production of cytokines. Particularly,
the intraepithelial IFN-y-producing CD127-expressing, NKp44-
negative, c-kit-low ILC1 population is expanded in CD patients in
response to IL-12 and IL-18 (109). This ILC1 population is not seen
in the gut of alymphoid mice reconstituted with a human immune
system, but it appears in the colons of mice with DSS-induced colitis
(109). Despite this ILC subset is classified as ILCI, it also expresses
low levels RORYt, raising the possibility that ILC1s can derive from
RORft-expressing ILC3s in inflamed tissues. Another ILCI-like
subset, characterized by the expression of NKp44, NKp46, CD56,
CD103, granzyme, and perforin, is located in the intestinal
epithelial compartment and termed intraepithelial ILC1-like cells.
In contrast to ILCls, intraepithelial ILC1-like cells do not express
IL-7Ro. and do not rely on IL-15 for development and/or
maintenance, even though they are functionally able to respond
to IL-12 and IL-15 with enhanced secretion of IFN-y (110).
Intraepithelial ILCls are increased in the inflamed gut of CD
patients and are pathogenic in a murine model of colitis induced
in Ragl-/- mice by anti-CD40 (110).
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The contribution of ILC2s in IBD pathogenesis remains to be
determined, though there is evidence that their frequency is elevated
in the inflamed colons of UC patients and mice with the UC-like
oxazolone-induced colitis (111, 112). It has also been shown that
human IL-13-producing ILC2s can acquire the capacity to produce
IFN-y in response to IL-12, and ILC2s co-expressing IL-13 and IFN-y
are detectable in the inflamed gut of CD patients (108). Although
these data support their inflammatory role, under specific
circumstances, ILC2s may exert protective effects. For example, the
number of IL-33-activated ILC2s producing the growth factor
amphiregulin (AREG) increases in mice with acute colitis. Genetic
loss of AREG exacerbates the ongoing colitis, while both the
administration of exogenous AREG to mice and the transfer of
ILC2s limit intestinal inflammation (113). The reason for such a
discrepancy remains unclear, though it could reflect differences in the
experimental models used.

ILC3s predominantly reside within the intestinal mucosal tissue,
where they produce a series of effector molecules (e.g., RegIII B and
ReglII v, IL-17A, IL-22, and GM-CSF). The protective role of ILC3s is
mainly mediated by IL-22. This is well evident in mice colonized with
either segmented filamentous bacteria (SFB) or the invasive
Escherichia coli (SFB) strain or treated with acetate and propionate,
two ligands of free fatty acid receptor 2, in which production of IL-22
by ILC3s leads to intestinal epithelial cell repair and inhibition of the
gut inflammation (114-116). The protective effects of IL-22 in
epithelial cells are dependent on activation of AHR (117). AHR-
null mice exhibit enhanced susceptibility to colitis and Citrobacter
rodentium infection due to a reduction of ILC3s-derived IL-22
production in the intestine (118-120). Moreover, mice colonized
with Lactobacillus reuteri D8 produce elevated levels of the
metabolite indole-3-aldehyde, an AHR ligand, which enhances
ILC3s-derived IL-22 production and attenuates DSS-colitis (121).
Analysis of the mechanisms underlying the ILC3s-derived cytokine
production suggests that distinct intracellular pathways are needed
for the optimal activation of regulatory ILC3s in the gut. For example,
RORyt-deficient mice do not exhibit defects in ILC3s-derived IL-22
production, which maintains gut health and prevents pathogen
invasion. In contrast, such mice exhibit a diminished production of
heparin-binding epidermal growth factor by activated ILC3s, which is
needed for alleviating DSS-induced colitis (122). The production of
effector cytokines by ILC3s is also regulated at the post-
transcriptional level by a p38o.-eIF6-Nsun2 axis, and defects in this
pathway alter the production of protective cytokines, thus leading to
increased susceptibility to colitis (123). A negative regulator of
intestinal ILC3s-derived IL-22 production is SIRT6, a nicotinamide
adenine dinucleotide-dependent deacetylase. Specific deletion of
SIRT6 in ILC3s enhances IL-22 production without affecting the
number of ILC3s, thus resulting in enhanced protection of DSS-
induced colitis (124).

More recently, it was shown that the colons of mice with anti-
CD40-induced inflammation contain RORYt-positive ILCs sharing
markers of both ILC2s and ILC3s and producing IL-10. Deletion of
the IL-10 gene specifically in such ILCs exacerbates both innate and
adaptive immune-mediated experimental colitis (125).
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Depending on the context where they are induced and
activated, ILC3s can amplify rather than suppress intestinal
mucosal inflammation. In the anti-CD40 induced colitis model,
which is IL-23 dependent (126), ILC3s are a major source of GM-
CSF, which is needed for these cells to move from cryptopatches to
the intestinal tissue where they produce IL-22 and initiate an
inflammatory immune cascade that results in intestinal
inflammation (127). A somehow different scenario emerges from
studies in Rag-deficient mice after infection with Helicobacter
hepaticus, in which the development of IL-23-dependent colitis is
associated with enhanced production of pathogenic IL-17A and
IFN-y by NKp46-negative ILC3s (128). Tbx21/Rag2 double-
knockout mice develop spontaneously a UC-like intestinal
inflammation, which is characterized by elevated production of
IL-17A by ILC3s. Depletion of all ILCs or neutralization of IL-17A
improves colitis in such a model (129).

The frequency of IL-17-producing ILC3s in the gut is positively
regulated by the transmembrane protein neuropilin-1 (NRP1), the
expression of which is increased in IBD tissue. Genetic deficiency of
NRP1 reduces the frequency of intestinal ILC3s and impairs their
ability to synthesize IL-17A, with the downstream effect of altering
the composition of the microbiota and attenuating DSS-induced
colitis (130). The proportion of ILC3s is increased in the inflamed
colon of UC patients compared to healthy controls, and emerging
evidence supports the view that the distribution and function of
intestinal ILC3s are regulated by ferroptosis, a form of cell death
characterized primarily by accumulation of reactive oxygen species
and iron (131). Specifically, it was shown that induction of colitis is
accompanied by upregulation of lipocalin-2 (LCN2) in ILC3s,
particularly within the NKp46+ILC3 subpopulation. LCN2
triggers a p-p38-ATF4-xCT axis, which increases the expression
of GPX4, thereby culminating in a block of ferroptosis and
expansion of IL-22 and IL-17A-producing ILC3s (132). IL-23 and
IL-1P trigger the IRE10//XBP1 stress pathway in ILC3s through
mitochondrial ROS production and, hence, enhance IL-17A and IL-
22 production. The frequency of IRE10//XBP1-expressing ILC3s is
increased in the colons of mice with experimental colitis, as well as
in the inflamed tissue of IBD patients, where it positively correlates
with the response to treatment with ustekinumab, an IL-12/IL-
23p40 blocker (133). Taken together, these results indicate that, in
both acute and chronic models of innate immune-mediated colitis,
ILC3s produce distinct patterns of cytokines, perhaps in response to
specific environmental factors, thereby contributing to regulating
gut pathology.

MAIT cells in IBD

IBD patients exhibit significant changes in the frequency of
mucosal-associated invariant T (MAIT) cells, a population of
innate-like T cells that, unlike classical T cells, have a semi-
invariant T cell receptor (TCR) composed of an invariant TCR Vo
and Jo segment (TRAV1-2-TRAJ33/12/20), paired with a limited set
of TCRP chains, predominantly TRBV20 or TRBV6 in humans
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(134). Nearly two-thirds of human blood MAIT cells are CD4-CD8
+ cells, 10- 15% are CD4/CD8 double negative, and the remaining are
either CD4CD8 double positive or CD4+CD8- (135).

MAIT cells mediate rapid antimicrobial immune responses
through either a TCR-dependent or TCR-independent mechanism.
In the TCR-dependent pathway, MAIT cells recognize metabolites
presented by the nonpolymorphic major histocompatibility complex
class I-related protein (MR1), such as microbial metabolites derived
from riboflavin biosynthesis. The most potent stimulatory MRI-
binding ligands derived from riboflavin biosynthesis are 5-OP-RU [5-
(2-oxopropylideneamino)-5-d-ribitylaminouracil] and 5-OE-RU [5-
(2-oxoethylideneamino)-5-d-ribitylaminouracil] (134). This pathway
activates specific transcription factors [e.g. T-box transcription factor
TBX21 (T-bet), Eomes, RORyt, STAT3, and B lymphocyte-induced
maturation protein 1 (BLIMP-1)], thus stimulating the production of
various cytokines (e.g., IFN-y, IL-17 and TNF), and cytotoxic
molecules (e.g., perforin, granulysin, granzymes), which are needed
in the host response to bacteria and fungi (136, 137) (Figure 2). The
TCR-independent pathway is triggered by cytokines (e.g., IL-12 and
IL-18) and enables MAIT cells to respond even in the absence of
riboflavin metabolites and is crucial in the response to viruses and
non-riboflavin-producing microbes (138). These two pathways often
act either simultaneously or sequentially, thereby resulting in stronger
effector responses.

In IBD, the frequency of MAIT cells is reduced in the blood and
increased in the inflamed gut as compared to healthy donors (139),
raising the possibility that, during the active phases of the disease,
MAIT cells are recruited from the blood to inflamed tissues, as a
result of the action of several factors (i.e. chemokines, chemokine
receptors, and tissue adhesion molecules) (140-142).

Studies in the mouse Collaborative-Cross CC011/Unc strain,
which spontaneously develops chronic colitis, have recently shown
that MAIT cells accumulate in the colon. Such an expansion, which is
driven by microbiota in an MRI-dependent manner, coincides with a
loss of intestinal barrier permeability and induction of colonic
inflammation. MAIT cells from colitic CCO11 mice express IL-23R
and produce high levels of IL-17A and IFNy under the stimulus of TL-1
and IL-23, thus supporting the pathogenic role of MAIT cells.
Consistently, deletion of the Traj33 gene, which is essential for
MAIT development, attenuates colonic inflammation in this model
(143). These data are in line with those produced in mice with
oxazolone-induced colitis (113), in which both MR1 gene loss and
orally administered isobutyl 6-formyl pterin, an antagonistic MRI
ligand, to wild-type mice attenuate colitis (144). In contrast, El Morr
and colleagues showed that DSS-colitis led to a luminal expansion
of riboflavin-producing bacteria, which was accompanied by enhanced
production of MAIT ligands. MAIT ligands rapidly crossed
the intestinal barrier and activated MAIT cells, thereby inducing
tissue-repair genes. Specifically, MAIT cells spontaneously produced
IFN-y, which promoted mucus secretion by goblet cells, and IL-17A
and IL-22, which stimulated the secretion of antimicrobial peptides and
expression of tight-junction proteins in epithelial cells, thereby
reinforcing the epithelial barrier. Finally, mice lacking MAIT cells
were more susceptible to DSS-colitis and colitis-driven colorectal
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cancer (145). These observations support the view that MAIT cells are
plastic and can adopt different programs during antigen recognition to
cytokine challenges, and exert both inflammatory and anti-
inflammatory roles (146).

Ongoing inflammation in IBD is driven
by various subsets of T cells

The IBD-associated mucosal lesions occur in areas that are
massively infiltrated with several adaptive immune cells (i.e., T and
B lymphocytes, memory T cells, T Follicular cells, stem-like CD4+T
cells). These cells are mainly recruited from the blood circulation as
a result of the action of several chemokines produced in the
inflamed tissue. T cell trafficking to the intestine also relies on
interactions between integrins (e.g., 047) and ligands expressed by
endothelial cells (e.g., mucosal addressin cell adhesion molecule-1,
intercellular adhesion molecule-1, vascular cell adhesion molecule-
1) (Figure 2). The accumulation of lymphocytes in the intestinal
mucosa has also been linked to the enhanced resistance of T cells to
apoptotic stimuli, a phenomenon that appears to be more relevant
in CD and dependent on the action of locally-produced cytokines
(e.g., IL-6, IL-15, and IL-21) (147, 148). Mucosal T cells exhibit
features of activated cells, express various transcription factors, and
produce a vast array of effector cytokines. Specific subsets of T cells
can be detected in the inflamed tissues of IBD patients, depending
on the phases of the disease, the segment of the intestine involved,
and the current treatment. Initially, it was believed that CD was a
typical Thl-mediated pathology characterized by high production
of IL-12 and TFN-y (149), and elevated expression of Th1-associated
transcription factors (i.e. Stat4 and T-bet) (150, 151), while UC was
a Th2-mediated IL-4/IL-13-associated disease (152). More recent
studies have shown that the inflamed gut of both CD and UC
patients contains additional polarized Th cell subsets (e.g., Th17,
Th9 cells, T follicular cells), which are supposed to contribute to
expanding the pathological process (Figure 2). While the
predominant accumulation of Thl cells in CD and Th2 cells in
UC reflects likely differences in the driving forces of the aberrant
immune response in these two diseases, it remains unclear whether
it could somewhat influence the course of the IBD as well as the
responsiveness to current therapy. In this context, it is noteworthy
that no benefit was documented in either patients with CD or
patients with UC following treatment with drugs blocking the main
effector cytokines produced by T cells, namely IFN-y and IL-13,
respectively (153, 154).

Additionally, in IBD mucosa, some subsets of T cells can co-
express transcription factors that have been traditionally associated
with the activation of different polarized T cells (e.g., co-expression of
RORyt and Foxp3 or T-bet and RORYt). How naive T cells polarize
along specific subsets in the inflamed tissue of IBD patients is not
fully understood, even though circumstantial evidence suggests that
their commitment is largely influenced by cytokines produced within
the inflammatory microenvironment. As pointed out above, in CD
mucosa, there is high production of IL-12, the master inducer of Thl
cells, while IL-4 could play a major role in the differentiation of Th2
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cells (155). In contrast, the induction of Th9 cells and Th17 (the latter
expressing the transcription factors ROR-yt and RORo. and producing
various members of the IL-17 cytokine family, IL-21, and IL-22) is
more complex and requires the concomitant presence/absence of
various factors. For example, the differentiation of Th17 cells requires
the concomitant action of TGF-B1 (the activity of which is also needed
for the generation of peripheral Foxp3-expressing Tregs) and various
cytokines that inhibit Foxp3 expression through the activation of the
transcription factor Stat3 (ie., IL-6, IL-21, IL-23) (156, 157).

Which cells produce the Th17-polarizing cytokines and which
stimuli are needed for such production are unsolved questions,
though it is known that resident microbiota and microbiota
metabolites (e.g., short-chain fatty acids, polyamines, secondary
bile acids, and indole derivatives) can influence the differentiation
and stabilization of Th17 cells in the gut. Indeed, germ-free mice
have reduced numbers of T cells in the gut but their colonization
with commensal bacteria restores the number and function of both
Th17 cells and Tregs (158).

Notably, the transfer of IBD microbiotas into germ-free mice
increases the numbers of intestinal Th17 cells while it decreases the
frequency of Tregs, and exacerbates T cell-dependent colitis (159),
indicating that IBD microbiotas contain strains that preferentially
induce Th17 cell responses and exacerbate the ongoing
inflammation (115). This is in line with the demonstration that
some specific microbial populations, such as SFB, or bacterial
components (i.e. SFB-derived flagellins), are powerful inducers of
intestinal Th17 cells (160).

Molecularly, SFB enhances the epithelial cell-derived
production of serum amyloid A (SAA), the latter being able to
substitute for TGF-PB1 in the induction of Th17 cells (161, 162).

The accumulation of Th17 cells in the gut can also be induced
by Propionibacterium, Prevotella, and Lactobacillus casei (163-
165). Altogether, these data confirm and expand on previous
studies showing that, in IBD and colitic mice, there is a loss of T
cell tolerance towards normal components of the gut microbiota
(166-169).

Analysis of T cells isolated from human colon samples has
revealed the presence of some CD4+ and CD8+ T lymphocyte
subsets characterized by gene expression profiles (i.e., TCF1 and
BCL6) resembling stem-like progenitors and clonally related to
pathogenic TH17 cells. These cells, termed stem-like T cells, are
increased in the inflamed colon of UC patients and are pathogenic
in the T cell-transfer model of colitis (170). It is thus conceivable
that stem-like T cells might be the source for pathogenic Th17 cells
(and perhaps pathogenic CD8+ T cells).

Hegazy and colleagues showed that microbiota-reactive CD4+ T
cells are normal constituents of the human gut, even though such cells
are more abundant in IBD tissue and produce predominantly IL-17A
as compared with responses of T cells from blood or intestinal samples
of normal controls (171). Such cells represent an example of CD4+
memory T (TRM) cells, which are generated from effector T cells, and
have a long lifespan and the ability to self-proliferate and produce
effector molecules, including inflammatory cytokines (Figure 2). In
addition to CD4+ TRM cells, the gut contains CD8+ TRM cells, which
are mainly located in the epithelial layer. TRM cells express surface
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markers, such as CD49a, CD69, and CD103, but lack chemokine
receptor 7 and L-selectin (CD62L), which ensure the long-term
presence of TRM cells within tissues (172). It is, however,
noteworthy that, like effector T cells, TRM cells are heterogeneous,
and some subtypes do not express CD69 and CD103 (173).

Several cytokines regulate the differentiation of intestinal TRM
cells. TGF-B1 appears to be a master inducer of TRM differentiation
and retention in the gut due to its ability to induce CD103 and
downregulate KLF2 (174, 175). Differentiation of TRM cells is also
promoted by TNF-q, IL-6, and IL-33, all of which cooperate with
TGF-B1, while IL-12 and IFN-B are inhibitors (176). Many
researchers have assessed the distribution and role of TRM cells
in IBD. In an elegant study, Neurath’s group showed that CD69
+CD103+ TRM cells accumulated in the mucosa of patients with
IBD and produced high levels of inflammatory cytokines (i.e., IFN-
Y, IL-13, IL-17A, and TNF-a), and the presence of CD4+CD69
+CD103+ TRM cells was predictive of IBD exacerbations.
Furthermore, these authors documented attenuated colitis in both
mice with functional impairment of TRM cells due to a double
knockout of the TRM-cell-associated transcription factors Hobit
and Blimp-1 and following depletion of TRM cells (177). Along the
same line is the demonstration that induction of DSS colitis is
associated with an increase in the number of T-cell
immunoreceptor with immunoglobulin and ITIM (TIGIT)-
expressing CD4 + TRM cells producing IL-17A and IFN-y and
TIGIT deficiency inhibits IL-17A production by such cells, resulting
in attenuation of colitis (178). Bishu and colleagues confirmed the
abundance of CD4+ TRM cells in CD and showed that such cells
are major producers of TNF-o and IL-17A, a finding that was at
least in part dependent on the expression of PRDMI1 (179). By
assessing the expression of CD103 and KLRG1, two receptors of E-
cadherin expressed by intestinal epithelial cells, Bottois and
colleagues documented high numbers of CD103+ CD8+ T cells in
the CD mucosa and showed that such cells express high levels of
Ki67 and NKG2A4, indicating that they are more responsive to TCR
triggering. In contrast, KLRG1+ CD8+ T cells have increased
cytotoxic and proliferative potential (179).

Further analysis showed that a subset of CD103+CD4+TRM
cells expressing CD161 and CCRS5 are specific for CD but not UC.
These cells exert cytotoxic activity and produce high levels of
inflammatory cytokines (180). Other authors have documented a
reduced number of both CD103+CD4+ and CD103+CD8+T-cell
subsets in CD, probably reflecting both differences in the IBD
patient backgrounds and heterogeneity of TRM cells (181).

By single-cell RNA and antigen receptor sequencing, Boland and
colleagues documented different states of differentiation of CD8+ TRM
cells in the human colon, with a predominance of inflammatory cells
expressing T-bet and Eomes in UC mucosa (182).

Less is known about the contribution of Th9 cells, a subset of Th
cells that produce IL-9 but not Thl, Th2, and Thl7-related
cytokines, in IBD. Th9 cells are abundant in the inflamed mucosa
of UC patients, and the presence of IL-9 in such a condition is
associated with significant changes in the expression of proteins that
regulate epithelial barrier integrity (183, 184). Since, IL-9 belongs to
the common 7 chain family of cytokines, and like other cytokines of
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this family can control the function of many immune (e.g., T cells, B
cells, ILCs, mast cells) other than epithelial cells (185), Th9 cells
likely exert pathogenic cells by modulating the function of many
mucosal cell types.

In UC, Th9 cells exhibit high expression of oEf7, which is
supposed to mediate the homing of Th9 cells to the intestine and
retention. Consequently, treatment of UC patients with
Etrolizumab, a blocker of the B7 subunit, reduces the colonic
numbers of Th9 cells (186).

The frequency of Th9 cells is increased in mice with various
forms of IBD-like colitis (i.e., DSS- and TNBS-colitis and T cell
transfer colitis), and neutralization of IL-9 in such models
attenuates the ongoing inflammation (184, 187).

Induction of IL-9 in Th9 cells is mediated by PU.1, an ETS family
transcription factor, which directly binds to the IL-9 gene locus (188).
The factors that promote Th9 cell differentiation in IBD are not fully
characterized. Initial studies showed that the differentiation of Th9 cells
is promoted by the concurrent action of TGF-B1 and IL-4 or IL-4 and
IL-1P (189, 190). Recent studies in the ileitis-prone SAMP mice have
convincingly shown that Th9 cell induction can be promoted by the
death receptor 3 (DR3), a member of the TNFR superfamily 25, which
is preferentially expressed on activated T cells and acts as the functional
receptor for TNF-like cytokine 1A (191). IL-36 family members can
also promote Th9 cell differentiation and inhibit Foxp3-expressing
Tregs induction, as shown by studies in mice deficient in IL-36
signaling, in which the increased numbers of colonic Tregs, and
reduced frequencies of Thl and Th9 cells were associated with
protection from T cell-derived intestinal inflammation (192, 193).
Another positive regulator of Th9 cell development is IL-33,
an epithelial cell-derived cytokine, which is upregulated in UC
patients (194, 195).

Together, these findings indicate that the active phases of IBD
patients are marked by the presence of various subsets of effector
CD4+ T cells, which can secrete a vast array of cytokines and
chemokines, thus contributing to expanding the mucosal
immune response.

Regulatory T cells

As mentioned above, Tregs are a subset of Foxp3-expressing T
cells involved in the induction and maintenance of immune
homeostasis and tolerance (196). Although the majority of Tregs
are generated in the thymus (tTregs) under the stimulus of multiple
signals (e.g., TCR activation, CD28 costimulation, cytokines), they
can also be differentiated in the periphery (pTregs), including the
gut, from mature CD4+ T cells through a process mainly involving
TGF-B1 (56, 197). Induction of pTregs in the gut relies on the
intestinal microbiota because both germ-free and wild-type mice
receiving a broad-spectrum antibiotic cocktail have a diminished
frequency of colonic Tregs and, hence, become more susceptible to
colitis (198, 199). These findings are in line with the demonstration
that either non-pathogenic Clostridia strains and short-chain fatty
acids generated from fiber-fermenting bacteria stimulate TGF-f1-
mediated pTreg differentiation with the downstream effect of
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limiting colitis (200, 201). The development and regulatory
functions of Tregs rely on Foxp3, and in patients with Foxp3
mutations, Tregs are absent in number or function, and this
defect is associated with the development of intestinal
inflammation (202).

Tregs are a major source of TGF-B1 and a large body of
evidence indicates that this cytokine plays a key role in the Tregs-
induced suppressive action (203, 204). However, not all the
regulatory effects of Tregs would seem to rely on TGF-B1. For
example, TGF-f signalling is dispensable for Tregs-induced
suppression of Thl cell differentiation, while it is needed for
Tregs to suppress Th17 cells and regulate responses in the
gastrointestinal tract, as a result of the promoting effect of TGF-
B1 on molecules that retain Tregs in the colon (i.e.,, CD103, GPR15)
(205). The reader is directed towards recent reviews on the role of
Tregs in maintaining intestinal homeostasis and dampening
intestinal inflammatory responses (206-208). In this context, it is,
however, noteworthy that the frequency of Tregs in the inflamed
IBD tissue is increased (209), raising the possibility that the inability
of Tregs to control the IBD-associated inflammation is secondary to
their reduced function rather than an insufficient number. Indeed,
effector T cells isolated from the inflamed gut of CD patients are
resistant to Tregs-mediated immunosuppression, a finding that
has been associated with Smad7-dependent block of TGF-B1
function (210). Additionally, Foxp3-expressing Tregs are plastic
and they can acquire the functional properties of effector T cells.
For instance, Th17-like Tregs are enriched in the inflamed colon of
IBD patients, express higher Thl17-related cytokines and lower
immunosuppressive cytokines compared with typical Tregs (211).
Finally, Tregs isolated from patients with CD express lower levels of
047 than Treg cells isolated from control individuals, a defect that
hampers Tregs recruitment and suppressive function (212).

B-cell and plasma cell responses in
IBD

B cells and IgA+ and IgG+ plasma cells accumulate in the
inflamed tissue of IBD patients (Figure 2), but their exact
contribution to the pathogenesis of these disorders is not yet well-
known. Treatment of UC patients with rituximab, a monoclonal
antibody depleting CD20-positive B cells, had no significant effect
on inducing remission in steroid-unresponsive, moderately active
UC, supporting the view that B cell responses are not pathogenic in
this disease (213). In UG, there is also production of IgG antibodies
against tropomyosin 5, an antigen expressed by epithelial cells in the
colon and other sites (e.g. eyes and biliary tract) (214, 215) as well as
IgG antibodies anti-neutrophil cytoplasmic antibody (ANCA) and
against the colonic epithelial integrin owf36, the latter being
correlated with disease severity and associated with adverse UC-
related outcomes (216-219).

In contrast, CD patients have increased levels of IgG and IgA
against Saccharomyces cervisiae, flagellin, and E. coli (220-222).

In the inflamed tissue of IBD patients, there is a high number of
granzyme B-expressing CD19(+) and IgA(+) cells, which co-express
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CD27 and CD38, and can kill in vitro intestinal epithelial cells,
raising the possibility that such cells could contribute to IBD-
associated epithelial damage (223). By single-cell RNA
sequencing, single-cell IgH gene sequencing, and protein-level
validation of blood and mucosal samples, Uzzan and colleagues
documented in the inflamed UC colon the existence of an auto-
reactive plasma cell clone targeting o6 integrin and identified a
subset of intestinal CXCL13-expressing T Follicular cells that were
associated with the pathogenic B cell response. Such changes in
intestinal humoral immunity are reflected in circulation by the
expansion of gut-homing plasmablasts that correlate with disease
activity and predict the development of complications (224). In UC
mucosa, there is induction of anti-commensal IgG, and commensal-
IgG immune complexes target FcyR-expressing macrophages,
thereby stimulating ROS-dependent production of IL-1p, type 17
immunity, and eventually exacerbating DSS-colitis (225).

On the other hand, there is evidence that some subsets of B
cells/plasma cells could be anti-inflammatory in IBD. For example,
CD11b-positive B cells expressing high levels of CD21, CD23, IgD,
and IgA accumulate in the inflamed colon of mice with DSS-colitis
and UC patients, and their adoptive transfer to DSS-treated mice
attenuates colitis through a mechanism, which relies on CD11b and
appears to be independent on the ability of such cells to influence
the gut microbiota (226).

Moreover, in the peripheral blood and colon of UC patients,
there is a reduced frequency of CD24 "&" CD38 M¢" and CD5-
expressing regulatory B cells (Bregs), which correlates with the
clinical activity of the disease and inflammatory biomarkers (227).

Conclusions

In recent years, the advent of sophisticated molecular
techniques has advanced our knowledge of the pathogenesis of
IBD. There is now sufficient evidence to believe that many innate
and adaptive immune cells make a valid contribution to the IBD-
associated pathological process, even though the exact sequence of
molecular events that drive the tissue-damaging immune response
remains to be determined, as well as whether the main immune
alterations described in this article occur simultaneously or
sequentially in individual patients. Nonetheless, there is a large
consensus in believing that, during the active phases of the disease,
the various immune cell types secrete a vast array of effector
cytokines, which can target both immune cells and non-immune
cells (e.g., epithelial cells, stromal cells), thus triggering signals that
amplify the mucosal inflammation. Indeed, clinical trials and real-
life studies show that monoclonal antibodies targeting TNF, the IL-
12/IL-23p40 subunit, or the specific IL-23p19 subunit are effective
in IBD. Consistently, blocking the recruitment of immune cells into
the gut of IBD patients with antibodies targeting integrins is helpful.
The fact that such antibodies promote the resolution/attenuation of
the clinical manifestations and endoscopic/histological signs in both
UC and CD supports the view that the targeted cytokine/integrin
plays an active role in the mucosa-damaging immune response in
both diseases (228-232). However, not all patients respond to the
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available therapeutic compounds, highlighting the heterogeneity of
the IBD population. Indeed, patients with similar symptoms and
endoscopic alterations may exhibit different immune-mediated
transcriptomic signatures in the colon (233) and, even in the
same patient, it is possible to document changes in the mucosal
immune response and production of effector cytokines over time,
which could account for the responsiveness to biologics (234).
During the exacerbations of both CD and UC, multiple cytokines
produced by distinct subsets of effector immune cells can contribute
to triggering inflammatory signals that culminate in the same tissue
damage. This has facilitated new therapeutic strategies based on the
use of either a single drug inhibiting intracellular pathways
activated by many cytokines (e.g., JAK/STAT inhibitors) or two
different compounds with complementary actions (235).

Future directions

Despite the promising results obtained with these novel
approaches, additional studies are needed to identify better
candidates for specific therapies. Some demographic, clinical, and
molecular features seem to predict responsiveness to biologics and
small molecules (236-238). Nonetheless, we do not yet know
whether such features correspond to the expression/function of
specific mediators in the damaged intestinal mucosa. Several
biomarkers have been explored to predict response to therapy in
IBD, aiming to support a more personalized approach to treatment
(94). The development of biomarkers to predict therapeutic
response or disease severity, although not yet applicable in
clinical practice, has only been made possible by a deeper
understanding of the molecular events occurring in the affected
tissue of IBD patients. Among these, elevated baseline levels of
oncostatin M and its receptor have emerged as one of the most
consistent predictors of non-response to anti-TNF therapy.
Moreover, genetic and pharmacogenetic studies have identified
variants such as IL23R polymorphisms, which correlate with
infliximab response, and HLA-DQA1*05, which is associated with
increased risk of immunogenicity. Similarly, transcriptomic and
proteomic analyses have highlighted the predictive potential of
specific mucosal gene expression profiles, though reproducibility
across independent cohorts has been challenging. The gut
microbiome has also been implicated in treatment outcomes, with
higher baseline microbial diversity and the presence of short-chain
fatty acid-producing species being associated with better response
to anti-TNF agents, vedolizumab, and ustekinumab (237).

Advanced endoscopic techniques have enabled in vivo or ex
vivo quantification of mucosal target cell populations. For example,
a higher density of membrane-bound TNF-expressing cells in the
intestinal mucosa has been linked to infliximab responsiveness,
while increased expression of 04f7 integrin has predicted better
outcomes with vedolizumab (94). Despite this growing body of
evidence, no single biomarker has yet demonstrated sufficient
accuracy, reproducibility, and feasibility to guide clinical decision-
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making. The integration of multi-omics data, combining genetic,
microbial, transcriptomic, proteomic, and cellular insights,
represents the most promising strategy to stratify patients and
implement true precision medicine in IBD (239).
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