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Iğdır Üniversitesi, Türkiye
Michele Zanoletti,
National Research Council (CNR), Italy

*CORRESPONDENCE

Junli Gao

gjl_818@zuaa.zju.edu.cn

Zhenyu Wang

wzyxshp@163.com

†These authors have contributed
equally to this work

RECEIVED 14 July 2025

ACCEPTED 24 October 2025
PUBLISHED 06 November 2025

CITATION

Li P, Liu Y, Liu R, Huang Y, Sun K,
Yin K, Lu J, Li L, Zhang S, Tong CY,
Liu J, Gao J and Wang Z (2025)
A dual-modality machine learning precision
diagnostic model integrated radiomics
and proteomics for breast cancer.
Front. Immunol. 16:1665459.
doi: 10.3389/fimmu.2025.1665459

COPYRIGHT

© 2025 Li, Liu, Liu, Huang, Sun, Yin, Lu, Li,
Zhang, Tong, Liu, Gao and Wang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 06 November 2025

DOI 10.3389/fimmu.2025.1665459
A dual-modality machine
learning precision diagnostic
model integrated radiomics and
proteomics for breast cancer
Pengping Li1†, Yuan Liu1†, Ren Liu1,2†, Yuqin Huang1, Ke Sun1,
Kexin Yin1, Jiajia Lu1, Lanqing Li3, Shuirong Zhang3,
Claire Y. Tong4, Jiayi Liu5, Junli Gao3* and Zhenyu Wang1,2*

1The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical
University, Hangzhou, China, 2Zhejiang Chinese Medical University, Hangzhou, China, 3Hangzhou
Cosmos Wisdom Mass Spectrometry Center of Zhejiang University Medical School, Hangzhou, China,
4Phillips Academy Andover, Boston, MA, United States, 5Salisbury School, Salisbury, MD, United States
Background: This study aims to construct a dual-modal machine learning model

that integrates ultrasound radiomics and plasma proteomics for the precise

diagnosis of breast cancer.

Methods: Using a multi-source data integration strategy, 10 protein markers and

14 ultrasound radiomics features were screened from the TCGA, CPTAC

databases, and the clinical cohort (including 60 healthy controls, 60 cases of

benign breast diseases, and 60 cases of breast cancer) based on plasma protein

mass spectrometry and ultrasound data. A dual-modal diagnostic model was

constructed in combination with machine learning algorithms.

Results: The results showed that the protein marker detection model performed

outstandingly in the primary screening of healthy people and breast diseases

(with the highest AUC of 0.974). Still, its diagnostic performance was limited in

differentiating benign and malignant diseases (AUC<0.8 under multiple

algorithms). The bimodal model demonstrated excellent performance

(AUC = 0.938) in differentiating benign and malignant lesions, significantly

outperforming the single proteomics model (AUC = 0.830) and the radiomics

model (AUC = 0.841).

Conclusion: This study confirmed for the synergistic diagnostic value of plasma

proteins and ultrasound images, providing a new strategy with both accuracy and

accessibility for stratified diagnosis of breast cancer.
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1 Introduction

Breast cancer is one of the most common malignant tumors in

women. According to the 2024 China Cancer Report, the incidence

rate (51.7%) of breast cancer is second only to lung cancer among

female cancers, and its mortality rate (10.86%) ranks fifth (1).

Although significant progress has been made in treatment,

precision detection remains a key factor in improving survival

rates. The complexity of breast cancer necessitates the

identification of novel biomarkers and strategies for improved

diagnosis, prognosis, and therapeutic response prediction.

At present, the commonly used clinical diagnostic methods for

breast cancer, such as mammography, ultrasonography, magnetic

resonance imaging, and other imaging methods, as well as

histopathological examination, all have certain limitations.

Although imaging examinations can detect morphological

changes in the breast, they have a relatively high false positive

rate, which easily leads to unnecessary further examinations.

Although histopathological examination is the “gold standard” for

diagnosis, it is an invasive operation that will cause certain pain to

patients and is not suitable for large-scale screening. Therefore,

there is a clinical need to develop noninvasive diagnostic techniques

and methods that are objective, accurate, and highly sensitive to

effectively improve the performance of discriminating early breast

cancer lesions and providing auxiliary diagnosis.

Blood biomarkers are increasingly applied in clinical practice

due to their easy acquisition, non-invasiveness, and low cost. By

detecting common serum markers, they can be used for the

auxiliary diagnosis, early screening, and prognosis monitoring of

cancer (2). The common serum tumor markers widely used in

clinical breast cancer detection include carcinoembryonic antigen

(CEA), carbohydrate antigen 125 (CA125), carbohydrate antigen

153 (CA153) (3). However, many clinical trials have shown that

these conventional tumor markers have insufficient specificity,

limited diagnostic performance between benign breast diseases

and malignant tumors, and there are certain false positives or

false negatives in the diagnosis of breast cancer (4). With the

rapid development of proteomics technology, tumor protein

markers with specific expression have been continuously

discovered (4, 5). By analyzing and comparing the proteomics of

cancer patients and healthy controls, comparing the specific

proteins or peptide segments that are up-regulated or down-

regulated in the plasma proteome profiles of breast cancer

patients, screening out differentially expressed proteins, and

exploring potential new biomarkers (6). Proteomics is an effective

method for mining biomarkers and can provide new strategies and

targets for the discovery of breast cancer biomarkers.

On the other hand, imaging omics has emerged as a powerful

tool in the field of medical imaging. By extracting and analyzing a

large number of quantitative features from medical images, imaging

omics can provide detailed information about the tumor’s

characteristics, which is helpful for the diagnosis and prognosis of

diseases. Combining imaging omics features with plasma protein

markers may provide a more comprehensive understanding of

breast cancer and improve the accuracy of early diagnosis.
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Current diagnostic models for breast cancer rely on single-

modal data such as imaging or proteomics, which lack robustness.

This study develops a dual-modal model combining plasma

proteins (with a focus on immune-related biomarkers) and

ultrasound radiomics to improve diagnostic accuracy (Figure 1).

Notably, this approach aligns with immunology research priorities

by l inking peripheral molecular signatures to tumor

microenvironment (TME) immune dynamics. We hope that this

model can improve the accuracy and efficiency of breast cancer

diagnosis and provide a new approach and strategy for the clinical

diagnosis of breast cancer.
2 Materials and methods

2.1 Study cohort

A total of 180 participants were enrolled, including 60 healthy

controls (HC), 60 patients with benign breast disease (BBD), and 60

breast cancer (BC) patients. The details of the subjects were shown

in Supplementary Table S1. All subjects were recruited from

Hangzhou Xiaoshan District First People’s Hospital (from June

2022 to October 2023). Inclusion criteria for HC were no history of

breast-related diseases and normal breast imaging and laboratory

examinations. BBD patients were diagnosed via clinical, imaging,

and pathological examinations (Fibroadenoma, Breast hyperplasia,

Adenosis of the breast, Intraductal papilloma and other benign

lesions). BC patients were pathologically confirmed as having

invasive breast cancer. Exclusion criteria included a history of

other malignant tumors, severe systemic diseases, or incomplete

clinical data. This study has been approved by the Medical Ethics

Committee of the First People’s Hospital of Hangzhou Xiaoshan

District (NO. 2022-026), and all data containing patient identity

information have been de-labeled.
2.2 Plasma protein samples

Fasting venous blood (5 mL) was collected from each

participant into EDTA-coated tubes. Blood samples were

centrifuged at 3000 rpm for 10 min at 4°C to separate plasma.

The supernatant was carefully aliquoted and stored at -80°C until

proteomic analysis. Plasma proteins were extracted using a

commercial protein extraction kit optimized for plasma samples.

The protein concentration was quantified by the BCA method. For

digestion, 100 mg of protein was reduced with 5 mM dithiothreitol

at 56°C for 30 min, alkylated with 11 mM iodoacetamide in the dark

at room temperature for 15 min, and then digested with trypsin

(1:50 enzyme-to-protein ratio) at 37°C overnight.
2.3 Proteomic analysis

The digested peptides were analyzed by Orbitrap Astral mass

spectrometer (MS) (Thermo Fisher Scientific) with a C18 column
frontiersin.org
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(2.1×150 mm, 1.9 mm). The mass spectrometer was operated in

data-independent acquisition (DIA) mode. DIA scan range: 350–

1200 m/z; isolation window: 12 m/z (stepped by 1 m/z); resolution:

120,000 (full scan) and 30,000 (MS/MS); max injection time: 50 ms

(full scan) and 30 ms (MS/MS). A self-built spectral library (based

on BC plasma samples from our cohort) was used. Protein

identification/quantification was performed via Spectronaut 16.0

(Biognosys), with the following settings: false discovery rate (FDR)

< 1% at both peptide and protein levels; normalization method:

total ion current.
2.4 Screening for protein biomarkers

Differentially expressed proteins (DEPs) were identified with an

adjusted P-value<0.05 (padj, FDR-corrected via Benjamini-

Hochberg method) and absolute fold-change (abs(FC)) > 1.5. To

screen candidate protein biomarkers, we integrated DEPs from The

Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis

Consortium (CPTAC) breast cancer datasets, and our proteomics

data, taking the intersection of up-regulated proteins across

these datasets.

To ensure the plasma detectability of candidate protein

biomarkers, we validated each protein using annotations from
Frontiers in Immunology 03
authoritative databases (UniProt: https://www.uniprot.org/;

TMHMM: https://services.healthtech.dtu.dk/service.php?

TMHMM-2.0; THPA: https://www.proteinatlas.org/) and our in-

house DIA-MS data. Proteins were categorized based on subcellular

location predictions/supportive evidence (Supplementary Table S2).

Directly secreted protein or those with plasma detection evidence

were prioritized, while TMHMM-predicted extracellular proteins

were rationalized based on biological secretion potential in cancer

contexts. All candidates showed differential expression in our

plasma cohort, confirming their plasma presence.
2.5 Radiomic feature extraction

Ultrasound images of breast lesions were retrospectively

collected from the hospital’s medical imaging system. Radiomics

features were extracted according to the International Image

Biomarker Standardisation Initiative (IBSI) standards (7). Two

experienced radiologists independently performed manual

segmentation of the region of interest (ROI) on the images. In

cases of segmentation discrepancies, a consensus was reached

through joint review, and the finalized ROI was used for radiomic

feature extraction. Using the segmented ROI from ultrasound

images, radiomic features were extracted with ITK-SNAP 4.0
FIGURE 1

The flowchart of the key steps from data collection to model construction and performance evaluation. It illustrates the integration of ultrasound
(US) radiomics from breast images and plasma proteomics data (The intersection was taken from TCGA + CPTAC + Proteomics) based on a study
cohort (60 healthy controls [HC], 60 benign breast disease [BBD], 60 breast cancer [BC] patients), and the application of machine learning
algorithms to construct a dual-mode diagnostic model.
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software. A total of 93 features were initially extracted, including

first-order statistics, shape features, and texture features.

To reduce dimensionality and select the most relevant features,

we first calculated the correlation coefficient between features.

Features with a correlation coefficient > 0.8 were considered

highly correlated, and one of them was removed. Then, recursive

feature elimination (RFE) combined with a support vector machine

(SVM) was used to further select features, with the number of

features selected optimized based on the mean test accuracy.
2.6 Machine learning model construction

We used multiple machine learning algorithms. Protein-based

model: including Gradient-Boosting Machine (GBM), Generalized

Linear Models with Elastic-Net Regularization (GLMNET), Partial

Least Squares Regression (PLR), Support Vector Machine with

Radial Kernel (SVR), Naive Bayes (NB), and Random Forest

(RF). And radiomics-based model: DecisionTreeclassifier (DT),

SVM, Stochastic Gradient Descent (SGD), K-Nearest Neighbor

(KNN), NearestCentroid (NC), GaussianProcess (GP),

GaussianNB (GNB), AdaBoost (ABC), GradientBoosting (GBC),

Xtreme Gradient Boosting (XGB).

All classifiers were included in scikit-learn (v1.6.1) and used

default parameters. During the data preprocessing stage,

StandardScaler transformer was used. In model select process, the

full dataset was split to train (0.7) and test (0.3) dataset. The same

train dataset and test dataset was inputted to all classifiers. Then 10-

fold cross-validation was also performed to evaluate mean accuracy

of all classifiers for the full dataset. Based on area under the receiver

operating characteristic curve (AUC) and CV mean accuracy, SVM

was selected for next combined analysis. The thresholds for all models

were selected using the Youden Index (J=Sensitivity+Specificity-1).

For the dual-modal model, we combined the selected protein

biomarkers and radiomic features, and the feature combination was

input into the machine learning algorithms for model training and

validation. We employed SHapley Additive exPlanations (SHAP)

analysis, a method rooted in cooperative game theory, to quantify the

contribution of each feature (10 plasma proteins and 14 radiomic

features) to the dual-modal model’s diagnostic decisions, thereby

enhancing model interpretability.
2.7 Statistical analysis

Statistical analyses were performed using SPSS 26. Differences

in protein expression levels between groups were analyzed using the

Mann-Whitney U test. Raw P-values from this test were further

adjusted using the Benjamini-Hochberg method to control the

FDR, with an adjusted P-value (padj) < 0.05 considered

statistically significant. Correlation analysis between protein

biomarkers was conducted using Pearson correlation. For

machine learning model evaluation, the mean and standard

deviation of AUC values across 10-fold cross-validation were

calculated. P-values < 0.05 were considered statistically significant.
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3 Results

3.1 Identification of candidate protein
biomarkers

To screen potential diagnostic targets, we integrated multi-

source common data including TCGA and CPTAC databases,

and proteomics data from our study cohort (60 HC, 60 BBD, 60

BC). As shown in Figures 2A, B, in the TCGA and CPTAC

databases, we first screened for genes/proteins that were up-

regulated in tumor tissues compared to adjacent normal tissues.

The filtering thresholds were set as adjusted P-value (padj) < 0.05

and absolute fold-change (abs(FC)) > 1.5. A large number of genes

showed differential expression. Among them, 3334 genes were up-

regulated in tumor tissues meeting the criteria. 1664 proteins were

up-regulated in tumor tissues. By taking the intersection of these

up-regulated proteins from the two databases, we obtained 624

proteins that were consistently up-regulated in tumor tissues

relative to adjacent normal tissues in both TCGA and CPTAC.

Then, these proteins served as candidate biomarkers for

subsequent proteomics analysis based on the clinical cohort (60

HC, 60 BBD, 60 BC), as shown in Figure 2C. 517 proteins were up-

regulated in BBD (BBD vs HC), 510 proteins were up-regulated in

BC (BC vs HC), and 390 proteins were up-regulated in BC (BC vs

BBD). By extracting the intersection of these up-regulated proteins

from the three cohorts, we obtained 179 proteins which were then

intersected with the 624 proteins mined in the previous public

database, and finally obtained 10 protein markers (CTHRC1,

CXCL10, GPATCH4, ITGB2, LMAN2, NPNT, SFRP2, STRBP,

TRIM36, VCAN), as shown in Figure 2D and Supplementary

Table S2.

Functional enrichment analysis of 10 candidate biomarkers was

performed, as shown in Figure 3. These biomarkers were

significantly enriched in processes like osteoblast differentiation,

epithelial tube morphogenesis and ossification, as well as Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways including

Cell adhesion molecules, Cytosolic DNA-sensing pathway,

extracellular matrix (ECM)-receptor interaction, Hippo signaling

pathway and Wnt signaling pathway, and also reactome pathways

including Extracellular matrix organization and Signaling by

Interleukins. The distinct expression patterns and major enriched

pathways of these 10 candidate biomarkers in different groups were

shown in Figure 3B, laying a solid foundation for subsequent

diagnostic model construction. This multi-data-source integration

strategy effectively narrowed down the range of potential

diagnostic targets.
3.2 Diagnostic performance of individual
protein biomarkers

To characterize the diagnostic potential of 10 candidate protein

biomarkers in breast diseases, we analyzed their expression

patterns, inter-relationships, and performance in clinical cohort

plasma, as shown in Figure 4. The 10 biomarkers showed distinct
frontiersin.org
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expression trends across groups, with their levels generally

increasing progressively from HC to BBD and further to BC,

indicating their potential to distinguish malignant from benign or

healthy states, as shown in Figure 4A.

A correlation heatmap revealed strong positive associations among

most biomarkers, such as notable correlations between CXCL10 and

ITGB2, as well as CTHRC1 and NPNT, suggesting these proteins may

participate in coordinated molecular pathways during breast disease
Frontiers in Immunology 05
development and imply shared regulatory mechanisms or functional

synergies in disease progression (Figure 4B).

The diagnostic performance of each biomarker in different

pairwise comparisons (HC + BBD vs BC, BBD vs BC, HC vs

BBD + BC) was presented in Figure 4C. In the comparison between

BC vs HC+BBD, the top 3 markers with the highest AUC are

CTHRC1 (0.886), SFRP2 (0.867), and NPNT (0.863), all with AUC

values over 0.85. In the comparison between BC vs BBD, the top 3
FIGURE 2

The results of biomarker discovery from the dataset (TCGA+CPTAC) and proteomics. (A) The volcano plot of breast tumor (n=1111) and normal
adjacent (n=113) in TCGA. (B) The volcano plot of breast tumor (n=116) and normal adjacent (n=18) in CPTAC. (C) The volcano plot of differential
expression proteins of healthy control (HC, n=60), benign breast disease (BBD, n=60) and breast cancer (BC, n=60) by data-independent acquisition
(DIA) proteomics. (D) Venn diagram of the number of differentially expressed genes and differentially expressed proteins between TCGA, CPTAC and
proteomics data.
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markers with the highest AUC are CTHRC1 (0.775), STRBP

(0.739), and SFRP2 (0.735). In the comparison between BC+BBD

vs HC, the top 3 markers with the highest AUC are NPNT (0.965),

LMAN2 (0.943), and SFRP2 (0.942). It’s demonstrated that

although individual biomarkers had certain diagnostic capabilities

(with relatively high AUC values in specific comparisons), their

single-marker diagnostic efficiency was limited. This analysis

indicated that while individual markers could provide preliminary

clues for breast disease status identification, a combined analysis

approach was necessary to improve diagnostic accuracy.
3.3 Performance of protein-based
multimarker panels

The 180 samples were divided into the training group and the

test group at a ratio of 7:3. Based on the 10 candidate biomarkers,

we constructed multimarker panels using 6 machine learning

algorithms (GBM, GLMNET, PLR, SVR, NB, RF) to optimize the

diagnostic performance, as shown in Figure 5 and Table 1. To

evaluate the diagnostic performance of models integrating 10

candidate biomarkers with 6 machine learning algorithms (GBM,

GLMNET, PLR, SVR, NB, RF), we analyzed three clinical scenarios:

distinguishing HC from BBD and BC (HC vs BBD+BC),

differentiating BBD from BC (BBD vs BC), and separating the

combined non-cancer group (HC+BBD) from BC (HC+BBD

vs BC).

For the HC vs BBD+BC comparison, all algorithms exhibited

strong diagnostic capabilities. The GBMmodel achieved the highest
Frontiers in Immunology 06
AUC of 0.962, coupled with perfect specificity (1.000), high

sensitivity (0.886), and accuracy (0.925). The GLMNET and PLR

models also performed well, with AUC values of 0.968 and 0.954,

respectively, and accuracy reaching 0.925. The SVR model showed a

high AUC of 0.969 and perfect specificity (1.000), while the NB and

RF models had AUCs of 0.967 and 0.974, along with high accuracy

and specificity. In the BBD vs BC, which is inherently more

challenging, the overall performance was lower compared to HC

vs BBD+BC. The NB model stood out with an AUC of 0.751, a

sensitivity of 1.000, and an accuracy of 0.824, although its specificity

was relatively low at 0.647. The SVR model achieved an AUC of

0.790 and an accuracy of 0.824, while other models like GBM,

GLMNET, PLR, and RF had lower AUC values, ranging from 0.684

to 0.725, indicating the difficulty in differentiating between benign

and malignant breast conditions. For the HC+BBD vs BC, the

models demonstrated reasonable diagnostic performance. The NB

model achieved the highest AUC of 0.877, with a sensitivity of

1.000, an accuracy of 0.827, and a specificity of 0.743. The GBM

model showed an AUC of 0.921, a sensitivity of 1.000, and an

accuracy of 0.808. Other models, such as GLMNET, PLR, SVR, and

RF, also had moderate AUC values, ranging from 0.844 to 0.905,

suggesting their ability to separate the combined non-cancer group

from the cancer group to some extent.

In summary, integrating 10 candidate biomarkers with machine

learning algorithms showed promising results, particularly for the

HC vs BBD+BC comparison. The GBM and NB algorithms

consistently delivered strong performance across different clinical

scenarios, with high AUC, accuracy, and balanced sensitivity-

specificity. However, the differentiation of BBD from BC remained
FIGURE 3

Functional enrichment analysis of candidate biomarkers. (A) Dot plot of enriched biological processes and pathways. (B) Expression heatmap across
clinical groups.
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a challenge, indicating the need for further refinement of the

biomarker panel, or enriching the feature dimensions and

optimization of the algorithms for this task. These findings

support the potential of biomarker-based machine learning models

in breast disease diagnosis while emphasizing the importance of

tailoring model development to different clinical contexts.
Frontiers in Immunology 07
3.4 Development of ultrasound radiomics-
based models

To further explore the challenges faced by the aforementioned

protein marker panels in differentiating BC from BBD, we

constructed a machine learning model based on ultrasound
FIGURE 4

(A) Distribution of plasma expression levels for 10 candidate biomarkers across three groups (HC, BBD, BC). (B) Expression correlation matrix among
the candidate biomarkers. (C) Performance comparison of individual candidate biomarkers in distinguishing different cohorts.
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radiomics for the BC and BBD populations. In this part, we

conducted a series of analyses based on the ultrasound images of

120 patients, including feature selection, feature correlation

exploration, and model validation to develop ultrasound

radiomics-based models as shown in Figure 5.
Frontiers in Immunology 08
We extracted radiomic features from imaging data. Based on

breast ultrasound images and their corresponding annotations, a total

of 93 image features were initially retrieved. For feature selection, we

employed the RFE method coupled with the Logistic Regression

algorithm. RFE results showed that mean test accuracy stabilized at
FIGURE 5

Performance comparison of multi-marker panels based on 10 candidate biomarkers combined with machine learning algorithms. ROC curves are
shown for different algorithms in distinguishing different groups (HC vs BBD + BC, BBD vs BC, HC + BBD vs BC). Each sub-figure (A-F) corresponds
to the performance of one algorithm.
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~0.7-0.8 as the number of radiomic features increased, indicating an

optimal subset exists without overfitting, as shown in Figure 6A. To

ensure robustness, a 10-fold cross-validation strategy was adopted,

where samples were randomly shuffled and divided into 10 subsets.

Through this process, 14 key features were screened out and retained

for subsequent model construction (Supplementary Table S3).

Correlation analysis revealed strong positive/negative associations

among features (labeled A-N), highlighting potential redundancy that

could be addressed via selection, as shown in Figure 6B.

The ROC curves as shown in Figure 6C and Supplementary

Tables S4, S5, showed varying diagnostic capabilities of multiple

machine learning classifiers (DT, SVM, SGD, KNN, NC, GPC,

GNB, RF, ADA, GDB, XGB). SVM achieved the highest AUC of

0.81, while other classifiers only 0.50-0.77, demonstrating that

different classifiers have varying strengths in leveraging the

selected radiomic features for breast disease diagnosis. For SVM,

as shown in Figure 6D, the results of 10-fold cross-validation

showed that accuracy fluctuated between 0.55-0.80, with a mean

accuracy of around 0.70, reflecting some variability in performance

across different data subsets.
3.5 Construction and validation of dual-
modal diagnostic model

To further improve the diagnostic performance of 10 candidate

biomarkers and 14 ultrasound imaging features in the differential
Frontiers in Immunology 09
diagnosis of BBD and BC patients, we constructed a dual-modal

diagnostic model by integrating 10 protein biomarkers and 14

radiomic features based on SVM, as shown in Figure 7. The

selection of SVM was based on comprehensive performance

evaluation across single modalities. In proteomics modeling, SVM

showed robust performance in distinguishing BBD from BC (ranking

second among tested classifiers), while in radiomics modeling, SVM

achieved the highest performance among all evaluated algorithms.

We compared the diagnostic capabilities of three models:

protein-only, image-only, and protein+image (dual-mode), as

shown in Figure 7A. The dual-mode model achieved the highest

area under the curve (AUC = 0.938), surpassing the image-only

(AUC = 0.841) and protein-only (AUC = 0.830) models. This

demonstrated that integrating proteomic and radiomic data

significantly enhanced diagnostic accuracy, achieving a better

balance between sensitivity and specificity. Then, we assessed the

stability of the dual-mode model by 10-fold cross-validation. The

AUC values showed relative stability, with a median up to 0.85,

indicating consistent performance in multiple runs, as shown in

Figure 7B. Finally, we analyzed the AUC trend of the dual-mode

model across 10 folds and 5 repeats, as shown in Figure 7C.

Although AUC values fluctuated across folds, they generally

remained at a high level (mostly above 0.7). The mean AUC,

represented by the dashed red line, was relatively stable,

confirming that the dual-mode model maintained good diagnostic

performance across different data partitions in cross-validation. In

summary, the dual-mode model integrating proteomic and
TABLE 1 The performance analysis of protein-based multi-marker panels. .

Name Model type AUC Specificity Sensitivity Accuracy Kappa F1

HC vs BBD+BC

GBM 0.962 1.000 0.886 0.925 0.840 0.939

GLMNET 0.968 0.944 0.914 0.925 0.836 0.941

PLR 0.954 0.944 0.914 0.925 0.836 0.941

SVR 0.969 1.000 0.857 0.906 0.803 0.923

NB 0.967 1.000 0.857 0.906 0.803 0.923

RF 0.974 1.000 0.886 0.925 0.840 0.939

BBD vs BC

GBM 0.725 0.941 0.647 0.794 0.588 0.759

GLMNET 0.715 0.765 0.765 0.765 0.529 0.765

PLR 0.684 0.824 0.647 0.735 0.471 0.710

SVR 0.790 0.647 1.000 0.824 0.647 0.850

NB 0.751 0.647 1.000 0.824 0.647 0.850

RF 0.796 0.588 0.941 0.765 0.529 0.800

HC+BBD vs BC

GBM 0.921 0.714 1.000 0.808 0.620 0.773

GLMNET 0.861 0.743 1.000 0.827 0.654 0.791

PLR 0.844 0.743 1.000 0.827 0.654 0.791

SVR 0.868 0.800 1.000 0.865 0.723 0.829

NB 0.877 0.743 1.000 0.827 0.654 0.791

RF 0.905 0.771 1.000 0.846 0.688 0.810
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radiomic data outperformed single-modality models in benign and

malignant breast disease diagnosis, providing a more effective tool

for breast cancer diagnosis.

To enhance the interpretability of the dual-modal model and

understand the contribution of individual features, we performed

SHAP analysis, as illustrated in Figure 7D. The SHAP summary plot

revealed the mean absolute SHAP values of features, with US-C,

CTHRC1, and US-A being among the top contributors. Positive

SHAP values indicated contributions to predicting BC, while

negative values favored classification as BBD, validating the

biological relevance and discriminative power of key features.

Additionally, we conducted a stratified analysis by BI-RADS

categories to explore the model’s performance in specific subgroups

(BI-RADS 3-4A vs 4B-5). As shown in Figure 7E, the dual-mode

model (AUC = 0.769) still outperformed the protein-only

(AUC = 0.694) and image-only (AUC = 0.546) models in this
Frontiers in Immunology 10
stratified setting, though with slightly reduced overall performance

compared to the general cohort. This indicated the model’s potential

utility across different imaging risk stratifications, even if there is

room for improvement in handling more heterogeneous subgroups.

In summary, the dual-mode model integrating proteomic and

radiomic data outperformed single-modality models in benign and

malignant breast disease diagnosis, provided interpretable insights

via SHAP analysis, and showed promise in stratified BI-RADS

subgroups, offering a more effective and transparent tool for breast

cancer diagnosis.
4 Discussion

In this study, we identified 10 novel plasma protein biomarkers

via multi-source data integration (including TCGA, CPTAC, and
FIGURE 6

Development of ultrasound radiomics-based models. (A) Recursive feature elimination (RFE) plot shows the mean test accuracy as a function of the
number of selected radiomic features. (B) Correlation heatmap of radiomic features (labeled A-N). Red indicates positive correlation, and blue
indicates negative correlation. (C) ROC curves compare the performance of different machine learning classifiers for distinguishing malignant
(label=1) cases. (D) Line plot shows the accuracy of 10-fold cross-validation for SVM across different folds. The red dashed line represents the mean
accuracy.
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clinical proteomics). Subsequently, we constructed protein-based

single-modality models, which showed excellent performance in

distinguishing healthy controls from breast disease patients (benign

and malignant breast diseases combined) with an AUC of up to

0.974. However, these models showed limited performance in

differentiating BBD from BC (AUC 0.684-0.796), prompting the

integration of ultrasound radiomics to form a dual-modal model.

The dual-modality approach significantly improved benign-

malignant discrimination (AUC = 0.938), highlighting a stepwise

strategy to address distinct diagnostic needs across clinical

scenarios. Our work provides evidence that combining circulating
Frontiers in Immunology 11
protein markers with ultrasound radiomics can overcome the

limitations of conventional diagnostic tools in breast

cancer differentiation.

The single-modality models exhibit significant performance

differences across various diagnostic scenarios, which stem from

the biological characteristics of the markers. Enrichment analysis

revealed that the 10-protein panel (CTHRC1, CXCL10, GPATCH4,

ITGB2, LMAN2, NPNT, SFRP2, STRBP, TRIM36, VCAN)

primarily regulates processes activated early in breast

pathogenesis. SFRP2 shows progressive overexpression during the

process from healthy individuals to benign individuals and then to
FIGURE 7

Construction of the dual-modal diagnostic model combining 10 protein biomarkers and 14 radiomic features. (A) ROC curves compare the
diagnostic performance of protein-only (AUC = 0.830), image-only (AUC = 0.841), and protein+image (AUC = 0.938) models based on SVM.
(B) Boxplots show the AUC distribution of the protein+image model across 5 repeats. (C) The line graph depicts the AUC trend of the protein +
image model for 10 folds and 5 repeats. Each color represents a different repeat, and the red dashed line represents the average AUC. (D) SHAP
summary plot illustrating the mean absolute SHAP values of features in the dual-modal model. (E) ROC curves comparing the diagnostic
performance of protein-only (AUC = 0.694), image-only (AUC = 0.546), and protein+image (AUC = 0.769) models in a stratified analysis by
BI-RADS categories (BI-RADS 3-4A vs 4B-5).
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cancer individuals. This phenomenon indicates that the

dysregulation of the Wnt signaling pathway plays an important

role in the development of BC. Studies have shown that SFRP2, as

an antagonist of the Wnt signaling pathway, has significantly

decreased expression in a variety of cancers (8, 9). In breast

cancer, high-frequency methylation of the promoter of the SFRP2

gene leads to its expression silencing. This epigenetic alteration may

provide a potential biomarker for the early detection of breast

cancer (10). Furthermore, the decreased expression of SFRP2 is

associated with the poor prognosis of breast cancer patients, and its

tumor suppressor function in breast cancer has been supported

(11). CTHRC1 is a soluble protein released by mature osteoclasts,

targeting stromal cells to induce osteoblast differentiation (12). In

breast cancer, CTHRC1’s involvement in these processes suggests

that it could facilitate the structural changes necessary for cancer

cells to invade surrounding tissues and form metastatic sites (13).

NPNT, VAN, and ITGB2 drive ECM organization, while CXCL10-

ITGB2 coordination modulates immune cell recruitment. The

biological roles of these 10 biomarkers in the occurrence and

development of BC should be further explored in the future.

These changes manifest early in breast disease, explaining the

panel’s high sensitivity in detecting BBD and BC patients.

However, these molecular alterations lack specificity for

malignancy, as benign lesions such as fibroadenomas often

exhibit similar pathway activation. Consequently, protein

biomarkers alone struggled to resolve the BBD vs BC challenge.

Ultrasound radiomics addressed this limitation by capturing

malignancy-specific structural consequences (14). Radiomic

features such as GLCM entropy, reflecting texture heterogeneity

are sensitive to invasive growth patterns absent in benign lesions

(15). While radiomics has shown promise in MRI/mammography,

ultrasound-based models, which are more cost-effective, have not

been promoted (16). In this study, our results showed that the

image-only model achieved moderate BBD vs BC discrimination

(SVM AUC = 0.81), outperforming the protein panel

(AUC = 0.751) by quantifying architectural distortions from

stromal desmoplasia or microcalcifications-features directly linked

to NPNT-mediated osteoblast differentiation and VCAN-driven

ECM stiffening. However, the imaging features of some benign

lesions, such as complex hyperplasia, overlap with those of early

breast cancer, which affects the diagnostic efficacy of a single

imaging modality.

To improve the accuracy of breast cancer diagnosis, researchers

are actively exploring the combined application of multimodal

markers. Imaging techniques play an important role in the

diagnosis of breast cancer. Especially by integrating multiple

imaging parameters and molecular biomarkers, the accuracy of

diagnosis can be significantly improved (17). Li et al. combined

multimodal ultrasound (conventional ultrasound combined with

elastography) and tumor marker detection. The results showed that

when ultrasound alone diagnosed BC, the AUC was 0.845. When

these tumor markers were combined for diagnosis, the AUC

increased to 0.928. The AUC of multimodal ultrasound combined

with tumor markers for diagnosing BC reached 0.971, significantly
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improving the accuracy of diagnosing benign and malignant breast

lesions (18). Unlike their reliance on less accessible elastography

and conventional markers, our model uses widely available

conventional ultrasound radiomics plus 10 novel plasma

biomarkers, focusing on a stratified workflow (screening via

protein model+confirmation via dual-modal model) to balance

accuracy and clinical accessibility. In another study, Qiu et al.

combined ultrasound imaging with molecular biomarkers to

predict the risk of lymph node metastasis in breast cancer

patients (19). The results showed that the AUC of the model

based on 19 ultrasound features for differentiating non-

lymphocytic metastasis from lymph node metastasis was 0.744,

and after adding tumor molecular markers, the AUC was 0.793. The

AUC, which was significantly higher than that of the clinical risk

factor combination, was 0.588. In addition, the dual-modality

diagnostic model of ultrasound-biomarkers has also been used to

predict the risk of postoperative recurrence and molecular subtype

of breast cancer. Song et al. constructed a prediction model for

postoperative recurrence risk with an AUC value of 0.8491 (20).

The AUC values of TNBC, HER-2, luminal A, and luminal B

subtypes were 0.74, 0.92, 0.97, and 0.89, respectively.

In our research, the dual-modal model demonstrated a 10.8%

(AUC: 0.938 vs 0.830) performance improvement in the diagnosis of

benign and malignant breast diseases compared to the single-modal

model, with its diagnostic efficacy far higher than the reported

performance of the traditional clinical biomarker CA153 (AUC:

0.6-0.7) (21, 22). Compared to the model in Ishak et al. reported,

our dual-modal approach combining protein biomarkers and

radiomic features offers a distinct way of multimodal integration

(23). While that model focuses on deep learning-based feature

extraction from imaging, our approach captures a more

comprehensive representation by leveraging both proteomics and

radiomics, enhancing diagnostic precision for breast lesions.

Regarding deep learning models for breast cancer detection in

ultrasound imaging (24), our use of protein biomarkers along with

radiomic features provides a more holistic assessment. These models

rely solely on ultrasound image patterns, but our approach considers

molecular changes in the tumor microenvironment, potentially

improving accuracy and providing additional insights. This

validates the complementary value of proteomics and imaging data.

The combination of ultrasound radiomics and proteomics achieves

higher accuracy while reducing costs and intrusiveness, which is a key

advantage of scalable screening. Our integration model may created a

biological-imaging feedback loop. Proteomics detects early molecular

deviations (ideal for screening HC vs BBD+BC). Ultrasound

radiomics identifies structural hallmarks of invasion (critical for

BBD vs BC). Dual-modality synergistically maps molecular-

structural correlations, such as ITGB2-induced ECM degradation is

ultimately reflected by irregular ultrasound boundaries. A key

strength of this study is its ability to non-invasively capture TME

immune dynamics via plasma proteins and ultrasound radiomics.

Among the 10 proteins, CXCL10 and TRIM36 stand out as key pro-

immune mediators: CXCL10’s upregulation in BC plasma reflects

enhanced recruitment of CD8+ T cells and NK cells to the TME,
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while TRIM36’s upregulation further amplifies anti-tumor immunity

by ubiquitinating PD-L1-reducing its surface expression on tumor

cells and relieving T cell exhaustion (25, 26). This synergy between

immune cell recruitment (CXCL10) and checkpoint inhibition

(TRIM36) highlights a coordinated pro-immune signature in BC.

In contrast, CTHRC1, VCAN, and NPNT drive immunosuppression:

CTHRC1 promotes M2macrophage polarization to weaken cytotoxic

immunity, VCAN blocks T cell penetration via ECM remodeling, and

NPNT induces M2 infiltration via avb3 integrin (27–29). These three
proteins counteract the pro-immune effects of CXCL10 and TRIM36,

thereby explaining the TME immune heterogeneity observed in BC.

Together, these findings bridge peripheral protein signatures, imaging

phenotypes, and TME immunity-offering a tool to infer

immunological states of breast lesions without invasive biopsies,

which could inform future immunotherapy stratification for BC

patients. However, there is currently a lack of direct TME

immunoassays to confirm these protein-radiomics-immune links,

and we can integrate these data in multi-center collaborations to

validate this axis in the future. Additionally, we conducted a stratified

analysis by BI-RADS categories. The dual-modal model still

outperformed single-modality counterparts in these subgroups,

though with slightly reduced AUC compared to the overall cohort.

This suggests the model’s utility across different imaging risk

stratifications, though further refinement may be needed for more

heterogeneous subgroups.

This study still has some limitations. The single-center queue

(n=180) may affect the extrapolation of the results and needs to be

verified in a multivariate population in the future. In addition, there

are observer differences in the manual delineation of ultrasound

ROI, and it is necessary to develop an automatic segmentation

algorithm based on deep learning. In the future, it is necessary to

verify it in multi-center populations and develop automatic

segmentation algorithms based on deep learning. Furthermore,

the model can be further explored in differentiating benign and

malignant conditions and predicting therapeutic effects for different

BI-RADS graded populations. The “protein screening to dual-mode

diagnosis” approach can be gradually deployed to construct an

efficient hierarchical diagnostic system. In addition, the integration

of genomic variation and metabolome data is expected to construct

a new multi-omics standard for breast cancer molecular typing.
5 Conclusion

This study presents a layered diagnostic framework where

protein-based models show potential in primary screening,

radiomics aids in lesion characterization, and dual-modality

integration improves definitive diagnosis. This approach

addresses certain limitations of single modalities and offers

preliminary insights for precision oncology diagnostics, where

different tools could be deployed based on clinical context and

diagnostic needs. Further validation with larger sample sizes and

external cohorts is warranted to confirm these findings and support

broader clinical application.
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