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Background: This study aims to construct a dual-modal machine learning model
that integrates ultrasound radiomics and plasma proteomics for the precise
diagnosis of breast cancer.

Methods: Using a multi-source data integration strategy, 10 protein markers and
14 ultrasound radiomics features were screened from the TCGA, CPTAC
databases, and the clinical cohort (including 60 healthy controls, 60 cases of
benign breast diseases, and 60 cases of breast cancer) based on plasma protein
mass spectrometry and ultrasound data. A dual-modal diagnostic model was
constructed in combination with machine learning algorithms.

Results: The results showed that the protein marker detection model performed
outstandingly in the primary screening of healthy people and breast diseases
(with the highest AUC of 0.974). Still, its diagnostic performance was limited in
differentiating benign and malignant diseases (AUC<0.8 under multiple
algorithms). The bimodal model demonstrated excellent performance
(AUC = 0.938) in differentiating benign and malignant lesions, significantly
outperforming the single proteomics model (AUC = 0.830) and the radiomics
model (AUC = 0.841).

Conclusion: This study confirmed for the synergistic diagnostic value of plasma
proteins and ultrasound images, providing a new strategy with both accuracy and
accessibility for stratified diagnosis of breast cancer.
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1 Introduction

Breast cancer is one of the most common malignant tumors in
women. According to the 2024 China Cancer Report, the incidence
rate (51.7%) of breast cancer is second only to lung cancer among
female cancers, and its mortality rate (10.86%) ranks fifth (1).
Although significant progress has been made in treatment,
precision detection remains a key factor in improving survival
rates. The complexity of breast cancer necessitates the
identification of novel biomarkers and strategies for improved
diagnosis, prognosis, and therapeutic response prediction.

At present, the commonly used clinical diagnostic methods for
breast cancer, such as mammography, ultrasonography, magnetic
resonance imaging, and other imaging methods, as well as
histopathological examination, all have certain limitations.
Although imaging examinations can detect morphological
changes in the breast, they have a relatively high false positive
rate, which easily leads to unnecessary further examinations.
Although histopathological examination is the “gold standard” for
diagnosis, it is an invasive operation that will cause certain pain to
patients and is not suitable for large-scale screening. Therefore,
there is a clinical need to develop noninvasive diagnostic techniques
and methods that are objective, accurate, and highly sensitive to
effectively improve the performance of discriminating early breast
cancer lesions and providing auxiliary diagnosis.

Blood biomarkers are increasingly applied in clinical practice
due to their easy acquisition, non-invasiveness, and low cost. By
detecting common serum markers, they can be used for the
auxiliary diagnosis, early screening, and prognosis monitoring of
cancer (2). The common serum tumor markers widely used in
clinical breast cancer detection include carcinoembryonic antigen
(CEA), carbohydrate antigen 125 (CA125), carbohydrate antigen
153 (CA153) (3). However, many clinical trials have shown that
these conventional tumor markers have insufficient specificity,
limited diagnostic performance between benign breast diseases
and malignant tumors, and there are certain false positives or
false negatives in the diagnosis of breast cancer (4). With the
rapid development of proteomics technology, tumor protein
markers with specific expression have been continuously
discovered (4, 5). By analyzing and comparing the proteomics of
cancer patients and healthy controls, comparing the specific
proteins or peptide segments that are up-regulated or down-
regulated in the plasma proteome profiles of breast cancer
patients, screening out differentially expressed proteins, and
exploring potential new biomarkers (6). Proteomics is an effective
method for mining biomarkers and can provide new strategies and
targets for the discovery of breast cancer biomarkers.

On the other hand, imaging omics has emerged as a powerful
tool in the field of medical imaging. By extracting and analyzing a
large number of quantitative features from medical images, imaging
omics can provide detailed information about the tumor’s
characteristics, which is helpful for the diagnosis and prognosis of
diseases. Combining imaging omics features with plasma protein
markers may provide a more comprehensive understanding of
breast cancer and improve the accuracy of early diagnosis.
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Current diagnostic models for breast cancer rely on single-
modal data such as imaging or proteomics, which lack robustness.
This study develops a dual-modal model combining plasma
proteins (with a focus on immune-related biomarkers) and
ultrasound radiomics to improve diagnostic accuracy (Figure 1).
Notably, this approach aligns with immunology research priorities
by linking peripheral molecular signatures to tumor
microenvironment (TME) immune dynamics. We hope that this
model can improve the accuracy and efficiency of breast cancer
diagnosis and provide a new approach and strategy for the clinical
diagnosis of breast cancer.

2 Materials and methods

2.1 Study cohort

A total of 180 participants were enrolled, including 60 healthy
controls (HC), 60 patients with benign breast disease (BBD), and 60
breast cancer (BC) patients. The details of the subjects were shown
in Supplementary Table S1. All subjects were recruited from
Hangzhou Xiaoshan District First People’s Hospital (from June
2022 to October 2023). Inclusion criteria for HC were no history of
breast-related diseases and normal breast imaging and laboratory
examinations. BBD patients were diagnosed via clinical, imaging,
and pathological examinations (Fibroadenoma, Breast hyperplasia,
Adenosis of the breast, Intraductal papilloma and other benign
lesions). BC patients were pathologically confirmed as having
invasive breast cancer. Exclusion criteria included a history of
other malignant tumors, severe systemic diseases, or incomplete
clinical data. This study has been approved by the Medical Ethics
Committee of the First People’s Hospital of Hangzhou Xiaoshan
District (NO. 2022-026), and all data containing patient identity
information have been de-labeled.

2.2 Plasma protein samples

Fasting venous blood (5 mL) was collected from each
participant into EDTA-coated tubes. Blood samples were
centrifuged at 3000 rpm for 10 min at 4°C to separate plasma.
The supernatant was carefully aliquoted and stored at -80°C until
proteomic analysis. Plasma proteins were extracted using a
commercial protein extraction kit optimized for plasma samples.
The protein concentration was quantified by the BCA method. For
digestion, 100 pg of protein was reduced with 5 mM dithiothreitol
at 56°C for 30 min, alkylated with 11 mM iodoacetamide in the dark
at room temperature for 15 min, and then digested with trypsin
(1:50 enzyme-to-protein ratio) at 37°C overnight.

2.3 Proteomic analysis

The digested peptides were analyzed by Orbitrap Astral mass
spectrometer (MS) (Thermo Fisher Scientific) with a C18 column
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FIGURE 1

The flowchart of the key steps from data collection to model construction and performance evaluation. It illustrates the integration of ultrasound
(US) radiomics from breast images and plasma proteomics data (The intersection was taken from TCGA + CPTAC + Proteomics) based on a study
cohort (60 healthy controls [HC], 60 benign breast disease [BBD], 60 breast cancer [BC] patients), and the application of machine learning

algorithms to construct a dual-mode diagnostic model.

(2.1x150 mm, 1.9 um). The mass spectrometer was operated in
data-independent acquisition (DIA) mode. DIA scan range: 350-
1200 m/z; isolation window: 12 m/z (stepped by 1 m/z); resolution:
120,000 (full scan) and 30,000 (MS/MS); max injection time: 50 ms
(full scan) and 30 ms (MS/MS). A self-built spectral library (based
on BC plasma samples from our cohort) was used. Protein
identification/quantification was performed via Spectronaut 16.0
(Biognosys), with the following settings: false discovery rate (FDR)
< 1% at both peptide and protein levels; normalization method:
total ion current.

2.4 Screening for protein biomarkers

Differentially expressed proteins (DEPs) were identified with an
adjusted P-value<0.05 (padj, FDR-corrected via Benjamini-
Hochberg method) and absolute fold-change (abs(FC)) > 1.5. To
screen candidate protein biomarkers, we integrated DEPs from The
Cancer Genome Atlas (TCGA), Clinical Proteomic Tumor Analysis
Consortium (CPTAC) breast cancer datasets, and our proteomics
data, taking the intersection of up-regulated proteins across
these datasets.

To ensure the plasma detectability of candidate protein
biomarkers, we validated each protein using annotations from
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authoritative databases (UniProt: https://www.uniprot.org/;
TMHMM: https://services.healthtech.dtu.dk/service.php?
TMHMM-2.0; THPA: https://www.proteinatlas.org/) and our in-
house DIA-MS data. Proteins were categorized based on subcellular
location predictions/supportive evidence (Supplementary Table S2).
Directly secreted protein or those with plasma detection evidence
were prioritized, while TMHMM-predicted extracellular proteins
were rationalized based on biological secretion potential in cancer
contexts. All candidates showed differential expression in our
plasma cohort, confirming their plasma presence.

2.5 Radiomic feature extraction

Ultrasound images of breast lesions were retrospectively
collected from the hospital’s medical imaging system. Radiomics
features were extracted according to the International Image
Biomarker Standardisation Initiative (IBSI) standards (7). Two
experienced radiologists independently performed manual
segmentation of the region of interest (ROI) on the images. In
cases of segmentation discrepancies, a consensus was reached
through joint review, and the finalized ROI was used for radiomic
feature extraction. Using the segmented ROI from ultrasound
images, radiomic features were extracted with ITK-SNAP 4.0
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software. A total of 93 features were initially extracted, including
first-order statistics, shape features, and texture features.

To reduce dimensionality and select the most relevant features,
we first calculated the correlation coefficient between features.
Features with a correlation coefficient > 0.8 were considered
highly correlated, and one of them was removed. Then, recursive
feature elimination (RFE) combined with a support vector machine
(SVM) was used to further select features, with the number of
features selected optimized based on the mean test accuracy.

2.6 Machine learning model construction

We used multiple machine learning algorithms. Protein-based
model: including Gradient-Boosting Machine (GBM), Generalized
Linear Models with Elastic-Net Regularization (GLMNET), Partial
Least Squares Regression (PLR), Support Vector Machine with
Radial Kernel (SVR), Naive Bayes (NB), and Random Forest
(RF). And radiomics-based model: DecisionTreeclassifier (DT),
SVM, Stochastic Gradient Descent (SGD), K-Nearest Neighbor
(KNN), NearestCentroid (NC), GaussianProcess (GP),
GaussianNB (GNB), AdaBoost (ABC), GradientBoosting (GBC),
Xtreme Gradient Boosting (XGB).

All classifiers were included in scikit-learn (v1.6.1) and used
default parameters. During the data preprocessing stage,
StandardScaler transformer was used. In model select process, the
full dataset was split to train (0.7) and test (0.3) dataset. The same
train dataset and test dataset was inputted to all classifiers. Then 10-
fold cross-validation was also performed to evaluate mean accuracy
of all classifiers for the full dataset. Based on area under the receiver
operating characteristic curve (AUC) and CV mean accuracy, SVM
was selected for next combined analysis. The thresholds for all models
were selected using the Youden Index (J=Sensitivity+Specificity-1).
For the dual-modal model, we combined the selected protein
biomarkers and radiomic features, and the feature combination was
input into the machine learning algorithms for model training and
validation. We employed SHapley Additive exPlanations (SHAP)
analysis, a method rooted in cooperative game theory, to quantify the
contribution of each feature (10 plasma proteins and 14 radiomic
features) to the dual-modal model’s diagnostic decisions, thereby
enhancing model interpretability.

2.7 Statistical analysis

Statistical analyses were performed using SPSS 26. Differences
in protein expression levels between groups were analyzed using the
Mann-Whitney U test. Raw P-values from this test were further
adjusted using the Benjamini-Hochberg method to control the
FDR, with an adjusted P-value (padj) < 0.05 considered
statistically significant. Correlation analysis between protein
biomarkers was conducted using Pearson correlation. For
machine learning model evaluation, the mean and standard
deviation of AUC values across 10-fold cross-validation were
calculated. P-values < 0.05 were considered statistically significant.
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3 Results

3.1 Identification of candidate protein
biomarkers

To screen potential diagnostic targets, we integrated multi-
source common data including TCGA and CPTAC databases,
and proteomics data from our study cohort (60 HC, 60 BBD, 60
BC). As shown in Figures 2A, B, in the TCGA and CPTAC
databases, we first screened for genes/proteins that were up-
regulated in tumor tissues compared to adjacent normal tissues.
The filtering thresholds were set as adjusted P-value (padj) < 0.05
and absolute fold-change (abs(FC)) > 1.5. A large number of genes
showed differential expression. Among them, 3334 genes were up-
regulated in tumor tissues meeting the criteria. 1664 proteins were
up-regulated in tumor tissues. By taking the intersection of these
up-regulated proteins from the two databases, we obtained 624
proteins that were consistently up-regulated in tumor tissues
relative to adjacent normal tissues in both TCGA and CPTAC.

Then, these proteins served as candidate biomarkers for
subsequent proteomics analysis based on the clinical cohort (60
HC, 60 BBD, 60 BC), as shown in Figure 2C. 517 proteins were up-
regulated in BBD (BBD vs HC), 510 proteins were up-regulated in
BC (BC vs HC), and 390 proteins were up-regulated in BC (BC vs
BBD). By extracting the intersection of these up-regulated proteins
from the three cohorts, we obtained 179 proteins which were then
intersected with the 624 proteins mined in the previous public
database, and finally obtained 10 protein markers (CTHRCI,
CXCL10, GPATCH4, ITGB2, LMAN2, NPNT, SFRP2, STRBP,
TRIM36, VCAN), as shown in Figure 2D and Supplementary
Table S2.

Functional enrichment analysis of 10 candidate biomarkers was
performed, as shown in Figure 3. These biomarkers were
significantly enriched in processes like osteoblast differentiation,
epithelial tube morphogenesis and ossification, as well as Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathways including
Cell adhesion molecules, Cytosolic DNA-sensing pathway,
extracellular matrix (ECM)-receptor interaction, Hippo signaling
pathway and Wnt signaling pathway, and also reactome pathways
including Extracellular matrix organization and Signaling by
Interleukins. The distinct expression patterns and major enriched
pathways of these 10 candidate biomarkers in different groups were
shown in Figure 3B, laying a solid foundation for subsequent
diagnostic model construction. This multi-data-source integration
strategy effectively narrowed down the range of potential
diagnostic targets.

3.2 Diagnostic performance of individual
protein biomarkers

To characterize the diagnostic potential of 10 candidate protein
biomarkers in breast diseases, we analyzed their expression
patterns, inter-relationships, and performance in clinical cohort
plasma, as shown in Figure 4. The 10 biomarkers showed distinct
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FIGURE 2

ID

The results of biomarker discovery from the dataset (TCGA+CPTAC) and proteomics. (A) The volcano plot of breast tumor (n=1111) and normal
adjacent (n=113) in TCGA. (B) The volcano plot of breast tumor (n=116) and normal adjacent (n=18) in CPTAC. (C) The volcano plot of differential
expression proteins of healthy control (HC, n=60), benign breast disease (BBD, n=60) and breast cancer (BC, n=60) by data-independent acquisition
(DIA) proteomics. (D) Venn diagram of the number of differentially expressed genes and differentially expressed proteins between TCGA, CPTAC and

proteomics data.

expression trends across groups, with their levels generally
increasing progressively from HC to BBD and further to BC,
indicating their potential to distinguish malignant from benign or
healthy states, as shown in Figure 4A.

A correlation heatmap revealed strong positive associations among
most biomarkers, such as notable correlations between CXCL10 and
ITGB2, as well as CTHRC1 and NPNT, suggesting these proteins may
participate in coordinated molecular pathways during breast disease
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development and imply shared regulatory mechanisms or functional
synergies in disease progression (Figure 4B).

The diagnostic performance of each biomarker in different
pairwise comparisons (HC + BBD vs BC, BBD vs BC, HC vs
BBD + BC) was presented in Figure 4C. In the comparison between
BC vs HC+BBD, the top 3 markers with the highest AUC are
CTHRCI1 (0.886), SERP2 (0.867), and NPNT (0.863), all with AUC
values over 0.85. In the comparison between BC vs BBD, the top 3
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Functional enrichment analysis of candidate biomarkers. (A) Dot plot of enriched biological processes and pathways. (B) Expression heatmap across

clinical groups.

markers with the highest AUC are CTHRCI (0.775), STRBP
(0.739), and SFRP2 (0.735). In the comparison between BC+BBD
vs HC, the top 3 markers with the highest AUC are NPNT (0.965),
LMAN2 (0.943), and SFRP2 (0.942). It’s demonstrated that
although individual biomarkers had certain diagnostic capabilities
(with relatively high AUC values in specific comparisons), their
single-marker diagnostic efficiency was limited. This analysis
indicated that while individual markers could provide preliminary
clues for breast disease status identification, a combined analysis
approach was necessary to improve diagnostic accuracy.

3.3 Performance of protein-based
multimarker panels

The 180 samples were divided into the training group and the
test group at a ratio of 7:3. Based on the 10 candidate biomarkers,
we constructed multimarker panels using 6 machine learning
algorithms (GBM, GLMNET, PLR, SVR, NB, RF) to optimize the
diagnostic performance, as shown in Figure 5 and Table 1. To
evaluate the diagnostic performance of models integrating 10
candidate biomarkers with 6 machine learning algorithms (GBM,
GLMNET, PLR, SVR, NB, RF), we analyzed three clinical scenarios:
distinguishing HC from BBD and BC (HC vs BBD+BC),
differentiating BBD from BC (BBD vs BC), and separating the
combined non-cancer group (HC+BBD) from BC (HC+BBD
vs BC).

For the HC vs BBD+BC comparison, all algorithms exhibited
strong diagnostic capabilities. The GBM model achieved the highest
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AUC of 0.962, coupled with perfect specificity (1.000), high
sensitivity (0.886), and accuracy (0.925). The GLMNET and PLR
models also performed well, with AUC values of 0.968 and 0.954,
respectively, and accuracy reaching 0.925. The SVR model showed a
high AUC of 0.969 and perfect specificity (1.000), while the NB and
RF models had AUCs of 0.967 and 0.974, along with high accuracy
and specificity. In the BBD vs BC, which is inherently more
challenging, the overall performance was lower compared to HC
vs BBD+BC. The NB model stood out with an AUC of 0.751, a
sensitivity of 1.000, and an accuracy of 0.824, although its specificity
was relatively low at 0.647. The SVR model achieved an AUC of
0.790 and an accuracy of 0.824, while other models like GBM,
GLMNET, PLR, and RF had lower AUC values, ranging from 0.684
to 0.725, indicating the difficulty in differentiating between benign
and malignant breast conditions. For the HC+BBD vs BC, the
models demonstrated reasonable diagnostic performance. The NB
model achieved the highest AUC of 0.877, with a sensitivity of
1.000, an accuracy of 0.827, and a specificity of 0.743. The GBM
model showed an AUC of 0.921, a sensitivity of 1.000, and an
accuracy of 0.808. Other models, such as GLMNET, PLR, SVR, and
RF, also had moderate AUC values, ranging from 0.844 to 0.905,
suggesting their ability to separate the combined non-cancer group
from the cancer group to some extent.

In summary, integrating 10 candidate biomarkers with machine
learning algorithms showed promising results, particularly for the
HC vs BBD+BC comparison. The GBM and NB algorithms
consistently delivered strong performance across different clinical
scenarios, with high AUC, accuracy, and balanced sensitivity-
specificity. However, the differentiation of BBD from BC remained
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FIGURE 4
(A) Distribution of plasma expression levels for 10 candidate biomarkers across three groups (HC, BBD, BC). (B) Expression correlation matrix among
the candidate biomarkers. (C) Performance comparison of individual candidate biomarkers in distinguishing different cohorts.

a challenge, indicating the need for further refinement of the
biomarker panel, or enriching the feature dimensions and
optimization of the algorithms for this task. These findings
support the potential of biomarker-based machine learning models
in breast disease diagnosis while emphasizing the importance of
tailoring model development to different clinical contexts.
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3.4 Development of ultrasound radiomics-
based models

To further explore the challenges faced by the aforementioned
protein marker panels in differentiating BC from BBD, we
constructed a machine learning model based on ultrasound
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FIGURE 5
Performance comparison of multi-marker panels based on 10 candidate biomarkers combined with machine learning algorithms. ROC curves are

shown for different algorithms in distinguishing different groups (HC vs BBD + BC, BBD vs BC, HC + BBD vs BC). Each sub-figure (A-F) corresponds
to the performance of one algorithm.

radiomics for the BC and BBD populations. In this part, we We extracted radiomic features from imaging data. Based on
conducted a series of analyses based on the ultrasound images of  breast ultrasound images and their corresponding annotations, a total
120 patients, including feature selection, feature correlation  of 93 image features were initially retrieved. For feature selection, we
exploration, and model validation to develop ultrasound employed the RFE method coupled with the Logistic Regression
radiomics-based models as shown in Figure 5. algorithm. RFE results showed that mean test accuracy stabilized at
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TABLE 1 The performance analysis of protein-based multi-marker panels. .

10.3389/fimmu.2025.1665459

Name Model type Specificity Sensitivity Accuracy Kappa

GBM 0.962 1.000 0.886 0.925 0.840 0.939

GLMNET 0.968 0.944 0.914 0.925 0.836 0.941

PLR 0.954 0.944 0.914 0.925 0.836 0.941

HC vs BBD+BC

SVR 0.969 1.000 0.857 0.906 0.803 0.923

NB 0.967 1.000 0.857 0.906 0.803 0.923

RF 0.974 1.000 0.886 0.925 0.840 0.939

GBM 0.725 0.941 0.647 0.794 0.588 0.759

GLMNET 0715 0.765 0.765 0.765 0.529 0.765

PLR 0.684 0.824 0.647 0.735 0471 0.710

BBD vs BC

SVR 0.790 0.647 1.000 0.824 0.647 0.850

NB 0.751 0.647 1.000 0.824 0.647 0.850

RF 0.796 0.588 0.941 0.765 0529 0.800

GBM 0.921 0.714 1.000 0.808 0.620 0.773

GLMNET 0.861 0.743 1.000 0.827 0.654 0.791

PLR 0.844 0.743 1.000 0.827 0.654 0.791

HC+BBD vs BC

SVR 0.868 0.800 1.000 0.865 0.723 0.829

NB 0.877 0.743 1.000 0.827 0.654 0.791

RF 0.905 0.771 1.000 0.846 0.688 0.810

~0.7-0.8 as the number of radiomic features increased, indicating an
optimal subset exists without overfitting, as shown in Figure 6A. To
ensure robustness, a 10-fold cross-validation strategy was adopted,
where samples were randomly shuffled and divided into 10 subsets.
Through this process, 14 key features were screened out and retained
for subsequent model construction (Supplementary Table S3).
Correlation analysis revealed strong positive/negative associations
among features (labeled A-N), highlighting potential redundancy that
could be addressed via selection, as shown in Figure 6B.

The ROC curves as shown in Figure 6C and Supplementary
Tables S4, S5, showed varying diagnostic capabilities of multiple
machine learning classifiers (DT, SVM, SGD, KNN, NC, GPC,
GNB, RF, ADA, GDB, XGB). SVM achieved the highest AUC of
0.81, while other classifiers only 0.50-0.77, demonstrating that
different classifiers have varying strengths in leveraging the
selected radiomic features for breast disease diagnosis. For SVM,
as shown in Figure 6D, the results of 10-fold cross-validation
showed that accuracy fluctuated between 0.55-0.80, with a mean
accuracy of around 0.70, reflecting some variability in performance
across different data subsets.

3.5 Construction and validation of dual-
modal diagnhostic model

To further improve the diagnostic performance of 10 candidate
biomarkers and 14 ultrasound imaging features in the differential
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diagnosis of BBD and BC patients, we constructed a dual-modal
diagnostic model by integrating 10 protein biomarkers and 14
radiomic features based on SVM, as shown in Figure 7. The
selection of SVM was based on comprehensive performance
evaluation across single modalities. In proteomics modeling, SVM
showed robust performance in distinguishing BBD from BC (ranking
second among tested classifiers), while in radiomics modeling, SVM
achieved the highest performance among all evaluated algorithms.
We compared the diagnostic capabilities of three models:
protein-only, image-only, and protein+image (dual-mode), as
shown in Figure 7A. The dual-mode model achieved the highest
area under the curve (AUC = 0.938), surpassing the image-only
(AUC = 0.841) and protein-only (AUC = 0.830) models. This
demonstrated that integrating proteomic and radiomic data
significantly enhanced diagnostic accuracy, achieving a better
balance between sensitivity and specificity. Then, we assessed the
stability of the dual-mode model by 10-fold cross-validation. The
AUC values showed relative stability, with a median up to 0.85,
indicating consistent performance in multiple runs, as shown in
Figure 7B. Finally, we analyzed the AUC trend of the dual-mode
model across 10 folds and 5 repeats, as shown in Figure 7C.
Although AUC values fluctuated across folds, they generally
remained at a high level (mostly above 0.7). The mean AUC,
represented by the dashed red line, was relatively stable,
confirming that the dual-mode model maintained good diagnostic
performance across different data partitions in cross-validation. In
summary, the dual-mode model integrating proteomic and
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radiomic data outperformed single-modality models in benign and
malignant breast disease diagnosis, providing a more effective tool
for breast cancer diagnosis.

To enhance the interpretability of the dual-modal model and
understand the contribution of individual features, we performed
SHAP analysis, as illustrated in Figure 7D. The SHAP summary plot
revealed the mean absolute SHAP values of features, with US-C,
CTHRCI, and US-A being among the top contributors. Positive
SHAP values indicated contributions to predicting BC, while
negative values favored classification as BBD, validating the
biological relevance and discriminative power of key features.

Additionally, we conducted a stratified analysis by BI-RADS
categories to explore the model’s performance in specific subgroups
(BI-RADS 3-4A vs 4B-5). As shown in Figure 7E, the dual-mode
model (AUC = 0.769) still outperformed the protein-only
(AUC = 0.694) and image-only (AUC = 0.546) models in this

Frontiers in Immunology

stratified setting, though with slightly reduced overall performance
compared to the general cohort. This indicated the model’s potential
utility across different imaging risk stratifications, even if there is
room for improvement in handling more heterogeneous subgroups.

In summary, the dual-mode model integrating proteomic and
radiomic data outperformed single-modality models in benign and
malignant breast disease diagnosis, provided interpretable insights
via SHAP analysis, and showed promise in stratified BI-RADS
subgroups, offering a more effective and transparent tool for breast
cancer diagnosis.

4 Discussion

In this study, we identified 10 novel plasma protein biomarkers
via multi-source data integration (including TCGA, CPTAC, and
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FIGURE 7

Construction of the dual-modal diagnostic model combining 10 protein biomarkers and 14 radiomic features. (A) ROC curves compare the
diagnostic performance of protein-only (AUC = 0.830), image-only (AUC = 0.841), and protein+image (AUC = 0.938) models based on SVM.
(B) Boxplots show the AUC distribution of the protein+image model across 5 repeats. (C) The line graph depicts the AUC trend of the protein +
image model for 10 folds and 5 repeats. Each color represents a different repeat, and the red dashed line represents the average AUC. (D) SHAP
summary plot illustrating the mean absolute SHAP values of features in the dual-modal model. (E) ROC curves comparing the diagnostic
performance of protein-only (AUC = 0.694), image-only (AUC = 0.546), and protein+image (AUC = 0.769) models in a stratified analysis by

BI-RADS categories (BI-RADS 3-4A vs 4B-5).

clinical proteomics). Subsequently, we constructed protein-based
single-modality models, which showed excellent performance in
distinguishing healthy controls from breast disease patients (benign
and malignant breast diseases combined) with an AUC of up to
0.974. However, these models showed limited performance in
differentiating BBD from BC (AUC 0.684-0.796), prompting the
integration of ultrasound radiomics to form a dual-modal model.
The dual-modality approach significantly improved benign-
malignant discrimination (AUC = 0.938), highlighting a stepwise
strategy to address distinct diagnostic needs across clinical
scenarios. Our work provides evidence that combining circulating

Frontiers in Immunology

protein markers with ultrasound radiomics can overcome the
limitations of conventional diagnostic tools in breast
cancer differentiation.

The single-modality models exhibit significant performance
differences across various diagnostic scenarios, which stem from
the biological characteristics of the markers. Enrichment analysis
revealed that the 10-protein panel (CTHRC1, CXCL10, GPATCH4,
ITGB2, LMAN2, NPNT, SFRP2, STRBP, TRIM36, VCAN)
primarily regulates processes activated early in breast
pathogenesis. SFRP2 shows progressive overexpression during the
process from healthy individuals to benign individuals and then to
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cancer individuals. This phenomenon indicates that the
dysregulation of the Wnt signaling pathway plays an important
role in the development of BC. Studies have shown that SFRP2, as
an antagonist of the Wnt signaling pathway, has significantly
decreased expression in a variety of cancers (8, 9). In breast
cancer, high-frequency methylation of the promoter of the SFRP2
gene leads to its expression silencing. This epigenetic alteration may
provide a potential biomarker for the early detection of breast
cancer (10). Furthermore, the decreased expression of SFRP2 is
associated with the poor prognosis of breast cancer patients, and its
tumor suppressor function in breast cancer has been supported
(11). CTHRCI is a soluble protein released by mature osteoclasts,
targeting stromal cells to induce osteoblast differentiation (12). In
breast cancer, CTHRCI’s involvement in these processes suggests
that it could facilitate the structural changes necessary for cancer
cells to invade surrounding tissues and form metastatic sites (13).
NPNT, VAN, and ITGB2 drive ECM organization, while CXCL10-
ITGB2 coordination modulates immune cell recruitment. The
biological roles of these 10 biomarkers in the occurrence and
development of BC should be further explored in the future.
These changes manifest early in breast disease, explaining the
panel’s high sensitivity in detecting BBD and BC patients.
However, these molecular alterations lack specificity for
malignancy, as benign lesions such as fibroadenomas often
exhibit similar pathway activation. Consequently, protein
biomarkers alone struggled to resolve the BBD vs BC challenge.

Ultrasound radiomics addressed this limitation by capturing
malignancy-specific structural consequences (14). Radiomic
features such as GLCM entropy, reflecting texture heterogeneity
are sensitive to invasive growth patterns absent in benign lesions
(15). While radiomics has shown promise in MRI/mammography,
ultrasound-based models, which are more cost-effective, have not
been promoted (16). In this study, our results showed that the
image-only model achieved moderate BBD vs BC discrimination
(SVM AUC = 0.81), outperforming the protein panel
(AUC = 0.751) by quantifying architectural distortions from
stromal desmoplasia or microcalcifications-features directly linked
to NPNT-mediated osteoblast differentiation and VCAN-driven
ECM stiffening. However, the imaging features of some benign
lesions, such as complex hyperplasia, overlap with those of early
breast cancer, which affects the diagnostic efficacy of a single
imaging modality.

To improve the accuracy of breast cancer diagnosis, researchers
are actively exploring the combined application of multimodal
markers. Imaging techniques play an important role in the
diagnosis of breast cancer. Especially by integrating multiple
imaging parameters and molecular biomarkers, the accuracy of
diagnosis can be significantly improved (17). Li et al. combined
multimodal ultrasound (conventional ultrasound combined with
elastography) and tumor marker detection. The results showed that
when ultrasound alone diagnosed BC, the AUC was 0.845. When
these tumor markers were combined for diagnosis, the AUC
increased to 0.928. The AUC of multimodal ultrasound combined
with tumor markers for diagnosing BC reached 0.971, significantly
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improving the accuracy of diagnosing benign and malignant breast
lesions (18). Unlike their reliance on less accessible elastography
and conventional markers, our model uses widely available
conventional ultrasound radiomics plus 10 novel plasma
biomarkers, focusing on a stratified workflow (screening via
protein model+confirmation via dual-modal model) to balance
accuracy and clinical accessibility. In another study, Qiu et al.
combined ultrasound imaging with molecular biomarkers to
predict the risk of lymph node metastasis in breast cancer
patients (19). The results showed that the AUC of the model
based on 19 ultrasound features for differentiating non-
lymphocytic metastasis from lymph node metastasis was 0.744,
and after adding tumor molecular markers, the AUC was 0.793. The
AUC, which was significantly higher than that of the clinical risk
factor combination, was 0.588. In addition, the dual-modality
diagnostic model of ultrasound-biomarkers has also been used to
predict the risk of postoperative recurrence and molecular subtype
of breast cancer. Song et al. constructed a prediction model for
postoperative recurrence risk with an AUC value of 0.8491 (20).
The AUC values of TNBC, HER-2, luminal A, and luminal B
subtypes were 0.74, 0.92, 0.97, and 0.89, respectively.

In our research, the dual-modal model demonstrated a 10.8%
(AUC: 0.938 vs 0.830) performance improvement in the diagnosis of
benign and malignant breast diseases compared to the single-modal
model, with its diagnostic efficacy far higher than the reported
performance of the traditional clinical biomarker CA153 (AUC:
0.6-0.7) (21, 22). Compared to the model in Ishak et al. reported,
our dual-modal approach combining protein biomarkers and
radiomic features offers a distinct way of multimodal integration
(23). While that model focuses on deep learning-based feature
extraction from imaging, our approach captures a more
comprehensive representation by leveraging both proteomics and
radiomics, enhancing diagnostic precision for breast lesions.
Regarding deep learning models for breast cancer detection in
ultrasound imaging (24), our use of protein biomarkers along with
radiomic features provides a more holistic assessment. These models
rely solely on ultrasound image patterns, but our approach considers
molecular changes in the tumor microenvironment, potentially
improving accuracy and providing additional insights. This
validates the complementary value of proteomics and imaging data.
The combination of ultrasound radiomics and proteomics achieves
higher accuracy while reducing costs and intrusiveness, which is a key
advantage of scalable screening. Our integration model may created a
biological-imaging feedback loop. Proteomics detects early molecular
deviations (ideal for screening HC vs BBD+BC). Ultrasound
radiomics identifies structural hallmarks of invasion (critical for
BBD vs BC). Dual-modality synergistically maps molecular-
structural correlations, such as ITGB2-induced ECM degradation is
ultimately reflected by irregular ultrasound boundaries. A key
strength of this study is its ability to non-invasively capture TME
immune dynamics via plasma proteins and ultrasound radiomics.
Among the 10 proteins, CXCL10 and TRIM36 stand out as key pro-
immune mediators: CXCL10’s upregulation in BC plasma reflects
enhanced recruitment of CD8+ T cells and NK cells to the TME,
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while TRIM36’s upregulation further amplifies anti-tumor immunity
by ubiquitinating PD-L1-reducing its surface expression on tumor
cells and relieving T cell exhaustion (25, 26). This synergy between
immune cell recruitment (CXCL10) and checkpoint inhibition
(TRIM36) highlights a coordinated pro-immune signature in BC.
In contrast, CTHRCI, VCAN, and NPNT drive immunosuppression:
CTHRCI promotes M2 macrophage polarization to weaken cytotoxic
immunity, VCAN blocks T cell penetration via ECM remodeling, and
NPNT induces M2 infiltration via av33 integrin (27-29). These three
proteins counteract the pro-immune effects of CXCL10 and TRIM36,
thereby explaining the TME immune heterogeneity observed in BC.
Together, these findings bridge peripheral protein signatures, imaging
phenotypes, and TME immunity-offering a tool to infer
immunological states of breast lesions without invasive biopsies,
which could inform future immunotherapy stratification for BC
patients. However, there is currently a lack of direct TME
immunoassays to confirm these protein-radiomics-immune links,
and we can integrate these data in multi-center collaborations to
validate this axis in the future. Additionally, we conducted a stratified
analysis by BI-RADS categories. The dual-modal model still
outperformed single-modality counterparts in these subgroups,
though with slightly reduced AUC compared to the overall cohort.
This suggests the model’s utility across different imaging risk
stratifications, though further refinement may be needed for more
heterogeneous subgroups.

This study still has some limitations. The single-center queue
(n=180) may affect the extrapolation of the results and needs to be
verified in a multivariate population in the future. In addition, there
are observer differences in the manual delineation of ultrasound
ROIL, and it is necessary to develop an automatic segmentation
algorithm based on deep learning. In the future, it is necessary to
verify it in multi-center populations and develop automatic
segmentation algorithms based on deep learning. Furthermore,
the model can be further explored in differentiating benign and
malignant conditions and predicting therapeutic effects for different
BI-RADS graded populations. The “protein screening to dual-mode
diagnosis” approach can be gradually deployed to construct an
efficient hierarchical diagnostic system. In addition, the integration
of genomic variation and metabolome data is expected to construct
a new multi-omics standard for breast cancer molecular typing.

5 Conclusion

This study presents a layered diagnostic framework where
protein-based models show potential in primary screening,
radiomics aids in lesion characterization, and dual-modality
integration improves definitive diagnosis. This approach
addresses certain limitations of single modalities and offers
preliminary insights for precision oncology diagnostics, where
different tools could be deployed based on clinical context and
diagnostic needs. Further validation with larger sample sizes and
external cohorts is warranted to confirm these findings and support
broader clinical application.
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