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CD44 and CLDN3 as immune-
metabolic regulators in acute
pancreatitis: a multi-modal
transcriptomics study and
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Shihang Zhang, Lihui Deng* and Qing Xia

West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and
Western Medicine, West China Hospital, Sichuan University, Chengdu, China

Acute pancreatitis (AP) is an inflammatory disorder of exocrine pancreas
regulated by a complex interaction between injured pancreatic acinar cells and
immune cells. Recent studies indicated the crucial role of glycolysis in regulating
immune cell function and inflammation. Here, we identified 43 glycolysis-related
differentially expressed genes (DEGs) from transcriptomic datasets (GSE65146
and GSE109227). Through three machine learning algorithms,Claudin-3 (CLDN3)
and CD44 were identified as key glycolysis-related DEGs. Their significant
upregulation was further validated in an independent dataset. Then, single-
sample gene set enrichment analysis revealed CLDN3 and CD44 were
significantly correlated with immune-related structural remodeling and
immune infiltration patterns. Single-cell RNA-seq analysis from GSE279876
confirmed that CLDN3 was downregulated in acinar cells, while CD44 was
enriched in ductal and immune cells. To validate these findings, we established
an AP model by 10 hourly intraperitoneal injections of caerulein (100 pg/kg)
combined with one injection of lipopolysaccharide (10mg/kg). We confirmed
that CD44 was upregulated and primarily expressed in inflammatory cells in AP
mice. Interestingly, while CLDN3 mRNA levels were increased, its protein
expression was reduced. Immunohistochemistry further revealed a
redistribution of CLDN3 from the apical membrane to the cytoplasm in the
pancreas of AP mice. Our findings, for the first time, indicated that CD44 and
CLDN3 were crucial biomarkers associated with immune-metabolic
dysregulation between pancreatic acinar cells and immune cells. The results of
this study showed the potential of these two biomarkers as therapeutic targets
for AP.

acute pancreatitis, inflammation, glycolysis, metabolic disorder, immune cell
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1 Introduction

Acute pancreatitis (AP) is one of the most common digestive
disorders worldwide and imposes a growing global health burden (1,
2). Up to 20% of AP patients progress to severe acute pancreatitis,
which is associated with a mortality rate of 25% to 35% (3). As the
molecular mechanisms of AP remain poorly understood, there is a
lack of reliable early biomarkers and targeted therapies.

The crosstalk between pancreatic acinar cells and immune cells
drives the disease progression. Cumulative evidences demonstrate
that AP is primarily initiated by the premature activation of
digestive enzymes within acinar cells (4). The subsequent release
of proinflammatory cytokines and chemokines from the damaged
acinar cells recruits the immune cells to the pancreas (5-8). The
local inflammatory response of the pancreas further drives aberrant
activation of adaptive immune responses (9, 10) to exacerbate the
inflammation, triggering systemic inflammatory response and
multiple organ dysfunction. Recent advances (8, 11-17) in single-
cell RNA sequencing (scRNA-seq) have provided valuable insights
into the cellular heterogeneity and immunopathology of AP. These
studies have identified distinct neutrophil (12, 18, 19) and
macrophage subpopulations (20-22) and uncovered immune-
stromal interactions (18, 19, 23, 24) that drive both local
pancreatic injury and systemic complications, highlighting the
pivotal role of immune remodeling in AP progression.

Glycolysis is a cytosolic metabolic pathway that generates a rapid
source of energy in the form of adenosine 5’-triphosphate (ATP) and
nicotinamide adenine dinucleotide from the conversion of glucose by
a cascade of enzymatic reactions. Beyond its traditional role in the
anaerobic production of ATP, recent studies (25-29) have revealed
that glycolysis also functions as a multifaceted metabolic pathway and
signaling hub, which plays a crucial role in regulating the functions of
immune cells and inflammatory response. Activated immune cells,
including macrophages, B cells, and T cells, undergo a metabolic shift
towards glycolysis to fuel processes of cytokine secretion,
proliferation, and migration (30). However, the roles of glycolysis
in both signaling and metabolic processes in AP have previously
been overlooked.

A better understanding of the underlying molecular mechanisms
of glycolysis in AP is essential to identify the promising biomarkers
and therapeutic strategies. This study aims to systematically identify
crucial glycolysis-related differentially expressed genes (DEGs) in AP
through integrative transcriptomic analysis, to explore their
functional roles, regulatory mechanisms, and immunometabolic
relevance, and to validate the findings in the experiments in vivo.

2 Materials and methods
2.1 Data acquisition, differential expression
analysis, and functional enrichment
analysis

All datasets were obtained from the Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/geo/). The microarray datasets
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GSE65146 and GSE109227, based on the GPL6246 platform, were
used for transcriptome analysis of pancreatic tissues from AP and
control mice. Batch effects were corrected, and DEGs between AP
and CTRL were identified using the limma package in R (version
4.3.1). Genes were defined as differentially expressed if | (logFC)| > 1
and adjusted P-value < 0.05. Principal component analysis (PCA)
was conducted to assess sample clustering and to evaluate the
effectiveness of batch effect correction. The datasets GSE169076
(GPL23479) and GSE298193 (GPL25947) served as independent
external validation cohorts in this study. The single-cell RNA-seq
dataset GSE279876 (GPL19057) was used for cell-level resolution
analysis. Detailed dataset characteristics and group assignments are
provided in Supplementary Table 1. To explore the biological
functions and pathways associated with the DEGs, Gene
Ontology (GO) enrichment and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway analyses were performed using
the clusterProfiler package in R. Terms or pathways with a P-value
< 0.05 were considered significantly enriched.The overall workflow
of this study is illustrated in Figure 1.

2.2 ldentification of the key glycolysis-
related DEGs by machine-learning
algorithms

Glycolysis-related genes were compiled from gene sets in the
Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/
msigdb/). After harmonizing gene symbols and removing
duplicates (Supplementary Table 2), Glycolysis-related genes were
intersected with the DEGs identified in our dataset to create a subset
for downstream analysis. Three complementary machine learning
algorithms including LASSO regression, Boruta feature selection,
and SVM-RFE. LASSO logistic regression was performed using the
glmnet R package and 10-fold cross-validation to select features
based on the optimal lambda values (lambda.min and lambda.1se).
Boruta in the Boruta R package was utilized to assess feature
importance over 50 iterations, and tentative features were refined
using TentativeRoughFix(). SVM-RFE was conducted using the
sigFeature package and a custom msvmRFE script with 10-fold
cross-validation to select the most predictive genes iteratively. Final
key genes were defined by the intersection of the results from all
three methods and validated by ROC curve analysis in the
validation dataset.

2.3 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed using the
“HALLMARK_GLYCOLYSIS” gene set obtained from the MSigDB
database to explore the functional relevance of glycolysis-related
phenotypes. The analysis was based on a ranked list of all expressed
genes ordered by their differential expression statistics. GSEA was
conducted using the clusterProfiler R package. Enrichment
significance was evaluated by normalized enrichment scores
(NES) and false discovery rate (FDR) values. To further
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investigate the functional roles of key glycolysis-related DEGs, we
performed GSEA on GO biological process terms for each gene
individually. Genes with an absolute Spearman correlation > 0.8
and p-value < 0.05 were selected for downstream analysis. Based on
NES, the top five significantly enriched upregulated and
downregulated GO biological processes were identified.

2.4 Protein-protein interaction network
construction

Protein-protein interaction (PPI) networks were constructed to
explore potential functional relationships among the glycolysis-
related DEGs. Interaction data were obtained from the STRING
database (https://cn.string-db.org/). Network visualization and
analysis were carried out using Cytoscape (version 3.9.1). Hub
genes were identified using the Maximal Clique Centrality (MCC)
algorithm implemented in the CytoHubba plugin.

2.5 Single-cell RNA-seq analysis
ScRNA-seq data from control and AP samples (GSE298193)

were processed using Scanpy (Python 3.8). Cells with < 200 genes, <
1,000 UMIs, or > 5% mitochondrial reads were excluded to remove
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low-quality or dying cells, and genes detected in fewer than 3 cells
were removed to reduce noise. Putative doublets were identified
using Scrublet (31), which simulates artificial doublets from the
observed data and classifies cells based on transcriptome similarity.
Scrublet was run separately for each sample with automatic
thresholding, and cells predicted as doublets were removed before
downstream analyses. Counts were normalized with a delta-method
shifted log transformation, and the 2,000 most highly variable genes
(HVG) were selected via the Pearson-residual method. PCA was
performed on the scaled HVG matrix (top 50 PCs retained), and
Leiden clustering was applied to the PCA space (resolution = 0.25).
Cluster identities were assigned manually based on marker genes
curated from CellMarker 2.0 (http://117.50.127.228/CellMarker/)
and PanglaoDB (https://panglaodb.se/index.html). For
visualization, a modified distance embedding was computed from
the PCA space.

2.6 Immune cell infiltration analysis

The levels of immune cell infiltration were estimated using
single-sample Gene Set Enrichment Analysis (ssGSEA) based on
immune cell marker gene sets (32)(Supplementary Table 4). The
enrichment scores were normalized to calculate the relative
proportions of immune cells across samples. Differences in
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immune infiltration between groups were evaluated using Student’s
t-test with multiple testing correction. Spearman correlation
analysis was conducted to assess relationships among immune
cell types as well as between immune infiltration and the key
glycolysis-related DEGs. The results were visualized using
heatmaps and boxplots to depict patterns of immune cell
infiltration and their associations with core gene expression.

2.7 TFs-mRNA- miRNA regulatory network
construction

NetworkAnalyst (https://www.networkanalyst.ca/) was used to
generate the regulatory networks. TF-gene interactions were
derived from ENCODE ChIP-seq data applying the BETA Minus
algorithm with a peak intensity signal threshold of <500 and a
predicted regulatory potential score of <1. MiRNA-gene
interactions were obtained from miRTarBase v9.0. The integrated
TF-miRNA-mRNA regulatory relationships were visualized
using Cytoscape.

2.8 Experimental model, histological
assessment

C57BL/6 mice (6-8 weeks old, 18-24 g weight) were purchased
from Jiangsu GemPharmatech Co., Ltd. and housed under specific
pathogen-free conditions (22-24 °C, 50-60% humidity, 12 h light/
dark cycle). The AP model was induced by 10 hourly intraperitoneal
(i.p.) injections of caerulein (100 pg/kg; Tocris, UK, Cat No.6264).
Lipopolysaccharide (LPS; 10mg/kg; Sigma, USA, Cat No.2880) was
administered (i.p.) immediately after the 10th caerulein injection.
Mice were sacrificed 12 h after LPS injection. Amylase and lipase in
serum and myeloperoxidase (MPO) activity in pancreatic and lung
tissues were measured. Specimens of pancreatic and lung tissue
were fixed in 10% formalin at room temperature for 24 hours and
embedded in paraffin. Sections were stained with hematoxylin and
eosin (H&E). Pathological severity was semi-quantitatively scored
based on edema, inflammatory infiltration, and acinar necrosis,
each rated on a 0-3 scale, as previously described (33, 34). Lung
injury assessment was conducted by quantifying edema and the
accumulation of inflammatory cells in 10 randomly selected fields
per section at 100x magnification, as described in previous studies
(33). Whole-slide imaging was performed using the Olympus
SLIDEVIEW VS200 system (Olympus, Japan), and Fiji software
was used for digital image analysis.

2.9 RT-gPCR analysis

Total RNA was extracted from pancreatic tissues using TRIzol
reagent and was reverse transcribed into ¢cDNA. qPCR was
conducted using the Bio-Rad CFX96 Real-Time PCR System
(Bio-Rad, USA) and SYBR Green Master Mix (Vazyme, China).
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Gene expression was quantified by the 2/
to 18S rRNA. Reagents and primer sequences are provided in the

Supplementary Materials.

2.10 Western blot and
immunohistochemistry

Western blot and immunohistochemistry (IHC) were
performed to detect CLDN3 and CD44 expression in pancreatic
tissues following standard protocols. The detailed methods were
described in the Supplementary Materials.

2.11 Statistical analysis

Statistical analyses were conducted using R software (version
4.3.1) and GraphPad Prism 9.5 (GraphPad Software Inc., USA).
Normally distributed data were presented as mean + standard
deviation and were analyzed using Student’s t-test or one-way
analysis of variance. Continuous data were analyzed using the
Mann-Whitney U test. Correlations between variables were
assessed using Pearson’s or Spearman’s correlation coefficients.
All tests were two-tailed, and p <0.05 was considered
statistically significant.

3 Results

3.1 Identification of differential expression
of genes of AP

After batch correction, normalized expression values were
evenly distributed across the 10 Ctrl (Control) and 9 AP samples
(Figure 2A; Supplementary Figure 1). Three-dimensional PCA
confirmed a clear separation between AP and Ctrl samples
(Figure 2B). Differential expression analysis using the limma
package (|log,FC| = 1, adjusted P < 0.05) identified 1,943 DEGs,
comprising 1,156 upregulated and 787 downregulated genes
(Figure 2C). Hierarchical clustering of the top 50 DEGs clearly
distinguished AP from Ctrl samples, further supporting the
differential expression patterns (Figure 2D). GO enrichment
revealed that these DEGs are predominantly involved in
biological processes (BP) such as wound healing, actin-filament
organization, and positive regulation of cytokine production;
associated with cellular components (CC) including the cell-
substrate junction, focal adhesion, and actin cytoskeleton; and
exhibited molecular functions (MF) such as cadherin binding,
actin binding, and protein serine/threonine/tyrosine kinase
activity (Figure 2E). KEGG pathway analysis showed significant
enrichment in the PI3K-AKT, and MAPK signaling pathways
(Figure 2F). These pathways reflect key pathophysiological
features of AP, including immune activation, inflammatory
signaling, cellular stress responses, and tissue repair mechanisms.
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FIGURE 2
Identification and functional annotation of DEGs in AP. (A) Boxplot illustrating the distribution of gene expression values across all samples after
batch effect correction. (B) The three-dimensional Principal Component Analysis plot shows AP and control sample clustering. (C) Volcano plot of
DEGs between AP and control samples (threshold: |log,FC| > 1, P < 0.05). (D) Heatmap of the top 50 DEGs ranked by statistical significance. (E) GO
enrichment analysis of DEGs visualized using bubble plots, covering BP, CC, and MF categories. (F) KEGG pathway enrichment analysis of DEGs,
shown as bubble plots. DEGs, differentially expressed genes; AP, acute pancreatitis; Ctrl, control; GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.

3.2 Glycolysis pathway enrichment and
identification of glycolysis-related DEGs in
AP

GSEA revealed significant enrichment of the glycolysis pathway
in AP samples, with the NES of 2.48 and FDR below 0.25
(Figure 3A). By intersecting 1,483 DEGs with 313 glycolysis-
related DEGs using a Venn diagram, 43 glycolysis-related DEGs
were identified (Figure 3B). Boxplots comparing expression levels of
the 43 glycolysis-related DEGs between AP and Ctrl groups showed
distinct expression differences (Figure 3C). The chromosomal
distribution revealed that glycolysis-related DEGs are clustered on
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chromosomes 5 and 6(Figure 3D, Supplementary Figure 2). A PPI
network of the glycolysis-related DEGs was constructed based on
the MCC algorithm to investigate potential interactions (Figure 3E,
Supplementary Figure 3). Node colors represent MCC scores,
highlighting hub genes within the network.

3.3 ldentification of CD44 and CLDN3 as
key glycolysis-related DEGs in AP

Glycolysis-related key DEGs of AP were identified by utilizing
machine learning approaches. LASSO regression selected key
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FIGURE 3

Analysis of glycolysis-related DEGs in AP. (A) GSEA enrichment plot showing the significant enrichment of the glycolysis pathway in AP. (B) Venn

diagram showing the overlap between glycolysis-related genes and DEGs.

(C) Boxplot depicting the relative expression levels of glycolysis-related

DEGs between the control and AP samples. (D) Circular plot showing the chromosomal distribution of glycolysis-related DEGs. (E) PPl network of
glycolysis-related DEGs, with node color intensity representing the MCC score. DEGs, differentially expressed genes; GRGs, glycolysis-related genes;
ES, enrichment score; AP, acute pancreatitis; Ctrl, control; MCC, maximal clique centrality.

features with optimal lambda values determined by cross-
validation (Figures 4A, B). SVM-RFE models were evaluated
through accuracy and error rate analyses across multiple
parameters (Figures 4C, D). Boruta feature selection further
refined candidates by assessing feature importance and Z-scores
over multiple iterations (Figures 4E, F). Integrating results from
these methods identified 2 overlapping key glycolysis-related
DEGs: Claudin-3 (CLDN3) and CD44 molecule (Figure 4G).
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Validation in an independent dataset confirmed significant
upregulation of these genes in the AP samples (Figure 4H). In
the validation datasets, ROC analysis yielded an Area Under the
Curve (AUC) of 1.0 for both Cldn3 and Cd44 (Figure 4I,
Supplementary Figure 4). Rather than indicating diagnostic
applicability, these results primarily serve as evidence that the
differential expression of these genes is robust and consistently
observed across independent datasets.
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3.4 GSEA on GO terms of CD44 and
CLDN3

GSEA was performed on GO terms to explore the biological
roles of CLDN3 and CD44 (Figure 5). The upregulated GO terms of
these two genes were related to cell adhesion, extracellular vesicle
formation, and RNA processing, which were essential for immune
cell communication, migration, and activation. Conversely, the
downregulated GO terms were enriched in sensory perception,
ion transport, and transcription factor activity, which reflected a
suppression of neuronal-like signaling pathways. These results
suggest that CLDN3 and CD44 may contribute to immune-
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mediated structural remodeling and transcriptional regulation
within the inflammatory microenvironment of AP.

3.5 Single-cell transcriptomic profile of
CD44 and CLDN3

Single-cell quality control confirmed high data integrity
(Figure 6A). Unsupervised clustering and marker-gene annotation
identified the main cell populations of the pancreas—acinar, ductal,
endothelial, fibroblast, B-cell, T-cell, NK-cell, macrophage, and
neutrophil clusters (Figures 6B, C). There was an increasing
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number of immune cell populations and a remarkable loss of acinar
cells in AP samples (Figures 6D, E). Cell-type-resolved mapping
revealed the expression changes of glycolysis-related key genes in
AP (Figures 6F-I). CD44 was enriched in both ductal and immune
cells, which is consistent with the enhanced activation and
migration of the immune cells. Notably, CLDN3 was significantly
downregulated in acinar cells, indicating a disruption in epithelial
integrity. This finding was inconsistent with bulk RNA-seq results,
thereby prompting subsequent protein-level validation.

3.6 Immune infiltration and correlation
analysis of CD44 and CLDN3 on ssGSEA

The ssGSEA analysis revealed distinct immune infiltration
patterns of the pancreas in AP (Figure 7A). An increase in the
expression of immune cell subsets was observed, indicating an
alteration from a steady-state immune surveillance in normal
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status to an activated state. Correlation analysis among immune
cells demonstrated the coordinated infiltration patterns, which
indicated synergistic immune responses to the microenvironment
in AP (Figure 7B). Notably, glycolysis-related key DEGs showed
strong correlations with the majority of immune cells (Figure 7C,
Supplementary Table 5), suggesting their broad regulatory roles in
shaping the immune landscape during AP.

3.7 Prediction of TFs and miRNA of CD44
and CLDN3

To elucidate the upstream regulation of the glycolysis-related
key DEGs, TFs, and miRNA networks were assembled from curated
datasets (Figure 8). A total of 33 TFs were predicted to target these
genes. At the post-transcriptional level, 138 miRNAs were identified
to regulate the glycolysis-related key DEGs. Focusing on miRNAs
with a degree of 21, 21 miRNAs were shared between CD44 and
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CLDN3(Supplementary Figure 6). Notably, SAP30, KDM5B, and
PHF8 were identified as TFs regulating CD44, while TRIM24,

SMARCAS5, E2F5, and BCOR were predicted to regulate CLDN3.
The identification of these shared miRNAs suggests post-

transcriptional regulation of CD44 and CLDN3.
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3.8 Validation of CD44 and CLDN3 in
experimental AP model

To validate the bioinformatic findings, we established a mouse
AP model by the combination of caerulein and LPS, as confirmed
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by serum amylase, lipase, and trypsin activity, and MPO activity in
pancreatic tissue (Figures 9A-D), as well as H&E histopathological
assessment (Figures 9F, G). The elevation of lung MPO activity and
H&E scores indicated the involvement of the lungs (Figure 9E, H, I).
We next assessed Cd44 and Cldn3 expression at both mRNA and
protein levels by gPCR and western blotting (Figures 9], K). Cd44
was upregulated at both transcriptional and protein levels in AP
mice. Correspondingly, THC staining showed that CD44 was
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predominantly expressed in inflammatory cells within pancreatic
tissues of AP mice (Figure 9L). Interestingly, bulk qPCR indicated
increased Cldn3 mRNA, whereas Western blotting revealed a
marked protein reduction. This discrepancy likely reflects cell-
type compositional shifts in AP, whereby increased Cldn3
expression in infiltrating immune and ductal cells masks its
downregulation in acinar cells(p<0.0001), as revealed by single-
cell transcriptomics (Figure 6G). IHC further showed a
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FIGURE 8
The TFs and miRNA regulatory network of CLDN3 and CD44.

redistribution of CLDN3 from acinar membranes in controls to
diffuse cytoplasmic staining in AP mice(Figure 9M).

4 Discussion

To the best of our knowledge, this is the first study to investigate
glycolysis and its immunoregulatory role in AP by integrating bulk
and single-cell transcriptomic analyses, machine learning, and
experimental validation. The results identify new insights of
CD44 and CLDN3 into glycolysis-driven metabolic-immune
mechanisms, and provide potential biomarkers and therapeutic
targets for AP.

The cellular landscape in immunoregulation in AP is
systematically constructed. Upregulation of glycolysis-related
genes is consistent with immune and inflammatory mediators,
highlighting the metabolic-immune interaction relationship in
AP. Functional enrichment analyses of the DEGs and single-cell
analysis reveal a complex interaction of immune cells infiltration
and the loss of pancreatic acinar cells in AP, indicating tissue injury
and immune activation during disease progression. Two immune
cell clusters are shown in AP immune landscape: one cluster
includes memory T cells, dendritic cells, and regulatory cells,
which reflect a microenvironment in alleviating inflammation by
immune regulation and suppression; the other cluster is consisted of
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activated B cells, natural killer cells, and effector cells, which
represent a state of upregulated inflammatory response and
innate immune activation. These findings underscore the complex
immune regulatory mechanisms of the immune microenvironment
in AP and suggest the potential of distinct immune cells as
therapeutic strategies for AP. Significant enrichment of glycolytic
pathways in AP tissues is confirmed by GSEA analysis. Key
adhesion molecules and nuclear pore complex components are
identified as central hubs, indicating the critical roles in immune
cell adhesion and nuclear transport. Notably, CD44 and CLDN3 are
identified via a combination of deep learning algorithms and
validated in the experimental AP model.

CD44 is a cell surface adhesion molecule that plays extensive
roles in the activation, recirculation, and homing of immune cells
(35-39). It has been reported as a biomarker of cancer stem cells
and facilitates metastasis, immune evasion, and therapeutic
resistance (40-42). Recent studies demonstrate the role of CD44
in metabolic regulation, particularly in shifting glycolysis and
oxidative phosphorylation (OXPHOS). CD44 modulates glycolytic
metabolism by regulating key enzymes LDHA, LDHB, and PFKFB4
via HIF-loo and AMPK/mTOR signaling (43-47). In our study,
CD44 is enriched in AP samples within pathways related to cell-
matrix adhesion and RNA processing. In contrast, pathways
associated with sensory perception and transcription factor
activity are downregulated. These findings suggest that CD44 may
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contribute to immune cell infiltration, post-transcriptional
regulation, and cellular adaptation to inflammatory stress in AP.
We identify CD44 as a crucial glycolysis-related DEG and validate
its upregulated expression among a series of cells, including
neutrophils, acinar cells, and ductal epithelial cells in AP samples.
Correlation analysis between CLDN3 and CD44 with immune cell
infiltration reveals significant associations with multiple immune
cell types. These findings suggest that glycolysis-related key genes
not only contribute to metabolic reprogramming but may also
modulate immune cell infiltration, thereby influencing the immune
microenvironment and pathological progression of AP.

CLDN3, which is highly expressed in epithelial and endothelial
tissues (48, 49), is a crucial tight junction protein for maintaining
epithelial barrier integrity. The dysregulation of CLDN3 has been
implicated in cancer (50-55) and inflammatory diseases (56-58).
Recent evidence (59-63) further suggests that CLDN3 expression is
altered with elevated glycolytic activity in metabolic stress and
tumors. In this study, we identified a discrepancy between the
elevation of Cldn3 mRNA in bulk transcriptomic/qPCR data and
the reduction of protein-level measurements by western blotting.
Our ScRNA-seq transcriptomic data can help to resolve this
paradox by revealing marked Cldn3 downregulation in acinar
cells, alongside upregulation in ductal cells and T cells. During
AP, massive immune cell infiltration and possible ductal
hyperplasia can elevate the bulk mRNA signals despite acinar-
specific suppression. However, because non-acinar cells contribute
minimally to the total pancreatic protein pool, and inflammatory
stress may promote CLDN3 internalization and degradation, the
overall protein abundance still declines. IHC further revealed
CLDN3 redistribution from the apical membrane to the
cytoplasm in AP, a pattern consistent with tight junction
disassembly and loss of epithelial polarity (64). Inflammatory
cytokines such as TNF-ou can trigger internalization of tight
junction proteins, causing their removal from the membrane and
cytoplasmic accumulation (65). In addition, disruption of polarity
complexes such as PAR3/aPKC can facilitate endocytic uptake and
lysosomal degradation of tight junction components (64, 66, 67).
These inflammation-driven processes provide a mechanistic basis
for the CLDN3 relocalization observed in AP. Collectively, these
findings suggest that CLDN3, beyond its classical barrier role,
participates in epithelial remodeling and immune modulation
during AP.

Upstream regulators of glycolysis-related key genes are studied
by constructing the TFs-mRNA-miRNA regulatory network.
SAP30, KDM5B, and PHF8 are primarily epigenetic modifiers
that may regulate CD44 expression via epigenetic regulation.
TRIM24, SMARCA5, E2F5, and BCOR potentially regulate
CLDN3 expression as transcriptional regulators and chromatin
remodelers. Additionally, 21 shared miRNAs were
computationally identified that may be involved in the post-
transcriptional regulation of both CD44 and CLDNS3, potentially
linking these genes to immune modulation and metabolic processes
in AP. These findings suggest a possible multilayered regulatory
mechanism governing key glycolysis-related genes in AP.
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This study explores the role of glycolysis in immune regulation
in AP by using bulk transcriptomic, SCRNA-seq data, and
experimental validation. However, there are several limitations.
Firstly, it is limited by the exclusive use of a homogeneous mouse
model and the absence of human patient data, which may introduce
confounding factors and restrict the direct translational relevance of
our findings. Future studies need to integrate the data from multiple
animal models and clinical samples to validate the generalizability
and clinical applicability of these observations. Secondly, the
validation datasets yielded perfect AUC values for Cd44 and
Cldn3. This phenomenon likely arises from intrinsic features of
animal models, including controlled experimental conditions,
synchronized sample collection, uniform disease induction, and
inflammation-driven transcriptional changes, all of which can
exaggerate group differences. Future validation in diverse clinical
cohorts remains essential. Thirdly, although we systemically use
GSEA, ScRNA-seq analysis, immune infiltration, and TFs-mRNA-
miRNA analyses to explore potential regulatory mechanisms, this
study remains preliminary. In-depth mechanistic studies are needed
to elucidate the molecular mechanisms of glycolysis in regulating
immune responses in AP.

5 Conclusion

This study identifies that CD44 and CLDN3 play crucial roles in
metabolic regulation and immune modulation in AP, offering novel
insights for biomarkers and therapeutic targets of the disease.
Future researches are required to investigate the mechanisms
underlying glycolysis-immune interactions of these genes in AP.
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