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CD44 and CLDN3 as immune-
metabolic regulators in acute
pancreatitis: a multi-modal
transcriptomics study and
experimental validation
Xinwei Wang †, Cheng Hu †, Tian Liu, Rui Yang, Yuxin Shen,
Shihang Zhang, Lihui Deng* and Qing Xia

West China Centre of Excellence for Pancreatitis, Institute of Integrated Traditional Chinese and
Western Medicine, West China Hospital, Sichuan University, Chengdu, China
Acute pancreatitis (AP) is an inflammatory disorder of exocrine pancreas

regulated by a complex interaction between injured pancreatic acinar cells and

immune cells. Recent studies indicated the crucial role of glycolysis in regulating

immune cell function and inflammation. Here, we identified 43 glycolysis-related

differentially expressed genes (DEGs) from transcriptomic datasets (GSE65146

and GSE109227). Through three machine learning algorithms,Claudin-3 (CLDN3)

and CD44 were identified as key glycolysis-related DEGs. Their significant

upregulation was further validated in an independent dataset. Then, single-

sample gene set enrichment analysis revealed CLDN3 and CD44 were

significantly correlated with immune-related structural remodeling and

immune infiltration patterns. Single-cell RNA-seq analysis from GSE279876

confirmed that CLDN3 was downregulated in acinar cells, while CD44 was

enriched in ductal and immune cells. To validate these findings, we established

an AP model by 10 hourly intraperitoneal injections of caerulein (100 mg/kg)
combined with one injection of lipopolysaccharide (10mg/kg). We confirmed

that CD44 was upregulated and primarily expressed in inflammatory cells in AP

mice. Interestingly, while CLDN3 mRNA levels were increased, its protein

expression was reduced. Immunohistochemistry further revealed a

redistribution of CLDN3 from the apical membrane to the cytoplasm in the

pancreas of AP mice. Our findings, for the first time, indicated that CD44 and

CLDN3 were crucial biomarkers associated with immune-metabolic

dysregulation between pancreatic acinar cells and immune cells. The results of

this study showed the potential of these two biomarkers as therapeutic targets

for AP.
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1 Introduction

Acute pancreatitis (AP) is one of the most common digestive

disorders worldwide and imposes a growing global health burden (1,

2). Up to 20% of AP patients progress to severe acute pancreatitis,

which is associated with a mortality rate of 25% to 35% (3). As the

molecular mechanisms of AP remain poorly understood, there is a

lack of reliable early biomarkers and targeted therapies.

The crosstalk between pancreatic acinar cells and immune cells

drives the disease progression. Cumulative evidences demonstrate

that AP is primarily initiated by the premature activation of

digestive enzymes within acinar cells (4). The subsequent release

of proinflammatory cytokines and chemokines from the damaged

acinar cells recruits the immune cells to the pancreas (5–8). The

local inflammatory response of the pancreas further drives aberrant

activation of adaptive immune responses (9, 10) to exacerbate the

inflammation, triggering systemic inflammatory response and

multiple organ dysfunction. Recent advances (8, 11–17) in single-

cell RNA sequencing (scRNA-seq) have provided valuable insights

into the cellular heterogeneity and immunopathology of AP. These

studies have identified distinct neutrophil (12, 18, 19) and

macrophage subpopulations (20–22) and uncovered immune–

stromal interactions (18, 19, 23, 24) that drive both local

pancreatic injury and systemic complications, highlighting the

pivotal role of immune remodeling in AP progression.

Glycolysis is a cytosolic metabolic pathway that generates a rapid

source of energy in the form of adenosine 5’-triphosphate (ATP) and

nicotinamide adenine dinucleotide from the conversion of glucose by

a cascade of enzymatic reactions. Beyond its traditional role in the

anaerobic production of ATP, recent studies (25–29) have revealed

that glycolysis also functions as a multifaceted metabolic pathway and

signaling hub, which plays a crucial role in regulating the functions of

immune cells and inflammatory response. Activated immune cells,

including macrophages, B cells, and T cells, undergo a metabolic shift

towards glycolysis to fuel processes of cytokine secretion,

proliferation, and migration (30). However, the roles of glycolysis

in both signaling and metabolic processes in AP have previously

been overlooked.

A better understanding of the underlying molecular mechanisms

of glycolysis in AP is essential to identify the promising biomarkers

and therapeutic strategies. This study aims to systematically identify

crucial glycolysis-related differentially expressed genes (DEGs) in AP

through integrative transcriptomic analysis, to explore their

functional roles, regulatory mechanisms, and immunometabolic

relevance, and to validate the findings in the experiments in vivo.
2 Materials and methods

2.1 Data acquisition, differential expression
analysis, and functional enrichment
analysis

All datasets were obtained from the Gene Expression Omnibus

(https://www.ncbi.nlm.nih.gov/geo/). The microarray datasets
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GSE65146 and GSE109227, based on the GPL6246 platform, were

used for transcriptome analysis of pancreatic tissues from AP and

control mice. Batch effects were corrected, and DEGs between AP

and CTRL were identified using the limma package in R (version

4.3.1). Genes were defined as differentially expressed if |(logFC)| > 1

and adjusted P-value < 0.05. Principal component analysis (PCA)

was conducted to assess sample clustering and to evaluate the

effectiveness of batch effect correction. The datasets GSE169076

(GPL23479) and GSE298193 (GPL25947) served as independent

external validation cohorts in this study. The single-cell RNA-seq

dataset GSE279876 (GPL19057) was used for cell-level resolution

analysis. Detailed dataset characteristics and group assignments are

provided in Supplementary Table 1. To explore the biological

functions and pathways associated with the DEGs, Gene

Ontology (GO) enrichment and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analyses were performed using

the clusterProfiler package in R. Terms or pathways with a P-value

< 0.05 were considered significantly enriched.The overall workflow

of this study is illustrated in Figure 1.
2.2 Identification of the key glycolysis-
related DEGs by machine-learning
algorithms

Glycolysis-related genes were compiled from gene sets in the

Molecular Signatures Database (https://www.gsea-msigdb.org/gsea/

msigdb/). After harmonizing gene symbols and removing

duplicates (Supplementary Table 2), Glycolysis-related genes were

intersected with the DEGs identified in our dataset to create a subset

for downstream analysis. Three complementary machine learning

algorithms including LASSO regression, Boruta feature selection,

and SVM-RFE. LASSO logistic regression was performed using the

glmnet R package and 10-fold cross-validation to select features

based on the optimal lambda values (lambda.min and lambda.1se).

Boruta in the Boruta R package was utilized to assess feature

importance over 50 iterations, and tentative features were refined

using TentativeRoughFix(). SVM-RFE was conducted using the

sigFeature package and a custom msvmRFE script with 10-fold

cross-validation to select the most predictive genes iteratively. Final

key genes were defined by the intersection of the results from all

three methods and validated by ROC curve analysis in the

validation dataset.
2.3 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed using the

“HALLMARK_GLYCOLYSIS” gene set obtained from the MSigDB

database to explore the functional relevance of glycolysis-related

phenotypes. The analysis was based on a ranked list of all expressed

genes ordered by their differential expression statistics. GSEA was

conducted using the clusterProfiler R package. Enrichment

significance was evaluated by normalized enrichment scores

(NES) and false discovery rate (FDR) values. To further
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investigate the functional roles of key glycolysis-related DEGs, we

performed GSEA on GO biological process terms for each gene

individually. Genes with an absolute Spearman correlation ≥ 0.8

and p-value < 0.05 were selected for downstream analysis. Based on

NES, the top five significantly enriched upregulated and

downregulated GO biological processes were identified.
2.4 Protein-protein interaction network
construction

Protein-protein interaction (PPI) networks were constructed to

explore potential functional relationships among the glycolysis-

related DEGs. Interaction data were obtained from the STRING

database (https://cn.string-db.org/). Network visualization and

analysis were carried out using Cytoscape (version 3.9.1). Hub

genes were identified using the Maximal Clique Centrality (MCC)

algorithm implemented in the CytoHubba plugin.
2.5 Single-cell RNA-seq analysis

ScRNA-seq data from control and AP samples (GSE298193)

were processed using Scanpy (Python 3.8). Cells with < 200 genes, <

1,000 UMIs, or > 5% mitochondrial reads were excluded to remove
Frontiers in Immunology 03
low-quality or dying cells, and genes detected in fewer than 3 cells

were removed to reduce noise. Putative doublets were identified

using Scrublet (31), which simulates artificial doublets from the

observed data and classifies cells based on transcriptome similarity.

Scrublet was run separately for each sample with automatic

thresholding, and cells predicted as doublets were removed before

downstream analyses. Counts were normalized with a delta-method

shifted log transformation, and the 2,000 most highly variable genes

(HVG) were selected via the Pearson-residual method. PCA was

performed on the scaled HVG matrix (top 50 PCs retained), and

Leiden clustering was applied to the PCA space (resolution = 0.25).

Cluster identities were assigned manually based on marker genes

curated from CellMarker 2.0 (http://117.50.127.228/CellMarker/)

and PanglaoDB (https://panglaodb.se/index.html). For

visualization, a modified distance embedding was computed from

the PCA space.
2.6 Immune cell infiltration analysis

The levels of immune cell infiltration were estimated using

single-sample Gene Set Enrichment Analysis (ssGSEA) based on

immune cell marker gene sets (32)(Supplementary Table 4). The

enrichment scores were normalized to calculate the relative

proportions of immune cells across samples. Differences in
FIGURE 1

Study flowchart. DEGs, differentially expressed genes; AP, acute pancreatitis;GRGs, glycolysis related genes.
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immune infiltration between groups were evaluated using Student’s

t-test with multiple testing correction. Spearman correlation

analysis was conducted to assess relationships among immune

cell types as well as between immune infiltration and the key

glycolysis-related DEGs. The results were visualized using

heatmaps and boxplots to depict patterns of immune cell

infiltration and their associations with core gene expression.
2.7 TFs-mRNA- miRNA regulatory network
construction

NetworkAnalyst (https://www.networkanalyst.ca/) was used to

generate the regulatory networks. TF-gene interactions were

derived from ENCODE ChIP-seq data applying the BETA Minus

algorithm with a peak intensity signal threshold of <500 and a

predicted regulatory potential score of <1. MiRNA–gene

interactions were obtained from miRTarBase v9.0. The integrated

TF–miRNA–mRNA regulatory relationships were visualized

using Cytoscape.
2.8 Experimental model, histological
assessment

C57BL/6 mice (6–8 weeks old, 18–24 g weight) were purchased

from Jiangsu GemPharmatech Co., Ltd. and housed under specific

pathogen-free conditions (22–24 °C, 50–60% humidity, 12 h light/

dark cycle). The APmodel was induced by 10 hourly intraperitoneal

(i.p.) injections of caerulein (100 mg/kg; Tocris, UK, Cat No.6264).
Lipopolysaccharide (LPS; 10mg/kg; Sigma, USA, Cat No.2880) was

administered (i.p.) immediately after the 10th caerulein injection.

Mice were sacrificed 12 h after LPS injection. Amylase and lipase in

serum and myeloperoxidase (MPO) activity in pancreatic and lung

tissues were measured. Specimens of pancreatic and lung tissue

were fixed in 10% formalin at room temperature for 24 hours and

embedded in paraffin. Sections were stained with hematoxylin and

eosin (H&E). Pathological severity was semi-quantitatively scored

based on edema, inflammatory infiltration, and acinar necrosis,

each rated on a 0–3 scale, as previously described (33, 34). Lung

injury assessment was conducted by quantifying edema and the

accumulation of inflammatory cells in 10 randomly selected fields

per section at 100× magnification, as described in previous studies

(33). Whole-slide imaging was performed using the Olympus

SLIDEVIEW VS200 system (Olympus, Japan), and Fiji software

was used for digital image analysis.
2.9 RT-qPCR analysis

Total RNA was extracted from pancreatic tissues using TRIzol

reagent and was reverse transcribed into cDNA. qPCR was

conducted using the Bio-Rad CFX96 Real-Time PCR System

(Bio-Rad, USA) and SYBR Green Master Mix (Vazyme, China).
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Gene expression was quantified by the 2^−DDCt method, normalized

to 18S rRNA. Reagents and primer sequences are provided in the

Supplementary Materials.
2.10 Western blot and
immunohistochemistry

Western blot and immunohistochemistry (IHC) were

performed to detect CLDN3 and CD44 expression in pancreatic

tissues following standard protocols. The detailed methods were

described in the Supplementary Materials.
2.11 Statistical analysis

Statistical analyses were conducted using R software (version

4.3.1) and GraphPad Prism 9.5 (GraphPad Software Inc., USA).

Normally distributed data were presented as mean ± standard

deviation and were analyzed using Student’s t-test or one-way

analysis of variance. Continuous data were analyzed using the

Mann–Whitney U test. Correlations between variables were

assessed using Pearson’s or Spearman’s correlation coefficients.

All tests were two-tailed, and p < 0.05 was considered

statistically significant.
3 Results

3.1 Identification of differential expression
of genes of AP

After batch correction, normalized expression values were

evenly distributed across the 10 Ctrl (Control) and 9 AP samples

(Figure 2A; Supplementary Figure 1). Three-dimensional PCA

confirmed a clear separation between AP and Ctrl samples

(Figure 2B). Differential expression analysis using the limma

package (|log2FC| ≥ 1, adjusted P < 0.05) identified 1,943 DEGs,

comprising 1,156 upregulated and 787 downregulated genes

(Figure 2C). Hierarchical clustering of the top 50 DEGs clearly

distinguished AP from Ctrl samples, further supporting the

differential expression patterns (Figure 2D). GO enrichment

revealed that these DEGs are predominantly involved in

biological processes (BP) such as wound healing, actin-filament

organization, and positive regulation of cytokine production;

associated with cellular components (CC) including the cell–

substrate junction, focal adhesion, and actin cytoskeleton; and

exhibited molecular functions (MF) such as cadherin binding,

actin binding, and protein serine/threonine/tyrosine kinase

activity (Figure 2E). KEGG pathway analysis showed significant

enrichment in the PI3K–AKT, and MAPK signaling pathways

(Figure 2F). These pathways reflect key pathophysiological

features of AP, including immune activation, inflammatory

signaling, cellular stress responses, and tissue repair mechanisms.
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3.2 Glycolysis pathway enrichment and
identification of glycolysis-related DEGs in
AP

GSEA revealed significant enrichment of the glycolysis pathway

in AP samples, with the NES of 2.48 and FDR below 0.25

(Figure 3A). By intersecting 1,483 DEGs with 313 glycolysis-

related DEGs using a Venn diagram, 43 glycolysis-related DEGs

were identified (Figure 3B). Boxplots comparing expression levels of

the 43 glycolysis-related DEGs between AP and Ctrl groups showed

distinct expression differences (Figure 3C). The chromosomal

distribution revealed that glycolysis-related DEGs are clustered on
Frontiers in Immunology 05
chromosomes 5 and 6(Figure 3D, Supplementary Figure 2). A PPI

network of the glycolysis-related DEGs was constructed based on

the MCC algorithm to investigate potential interactions (Figure 3E,

Supplementary Figure 3). Node colors represent MCC scores,

highlighting hub genes within the network.
3.3 Identification of CD44 and CLDN3 as
key glycolysis-related DEGs in AP

Glycolysis-related key DEGs of AP were identified by utilizing

machine learning approaches. LASSO regression selected key
E 2FIGUR

Identification and functional annotation of DEGs in AP. (A) Boxplot illustrating the distribution of gene expression values across all samples after
batch effect correction. (B) The three-dimensional Principal Component Analysis plot shows AP and control sample clustering. (C) Volcano plot of
DEGs between AP and control samples (threshold: |log2FC| ≥ 1, P < 0.05). (D) Heatmap of the top 50 DEGs ranked by statistical significance. (E) GO
enrichment analysis of DEGs visualized using bubble plots, covering BP, CC, and MF categories. (F) KEGG pathway enrichment analysis of DEGs,
shown as bubble plots. DEGs, differentially expressed genes; AP, acute pancreatitis; Ctrl, control; GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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features with optimal lambda values determined by cross-

validation (Figures 4A, B). SVM-RFE models were evaluated

through accuracy and error rate analyses across multiple

parameters (Figures 4C, D). Boruta feature selection further

refined candidates by assessing feature importance and Z-scores

over multiple iterations (Figures 4E, F). Integrating results from

these methods identified 2 overlapping key glycolysis-related

DEGs: Claudin-3 (CLDN3) and CD44 molecule (Figure 4G).
Frontiers in Immunology 06
Validation in an independent dataset confirmed significant

upregulation of these genes in the AP samples (Figure 4H). In

the validation datasets, ROC analysis yielded an Area Under the

Curve (AUC) of 1.0 for both Cldn3 and Cd44 (Figure 4I,

Supplementary Figure 4). Rather than indicating diagnostic

applicability, these results primarily serve as evidence that the

differential expression of these genes is robust and consistently

observed across independent datasets.
FIGURE 3

Analysis of glycolysis-related DEGs in AP. (A) GSEA enrichment plot showing the significant enrichment of the glycolysis pathway in AP. (B) Venn
diagram showing the overlap between glycolysis-related genes and DEGs. (C) Boxplot depicting the relative expression levels of glycolysis-related
DEGs between the control and AP samples. (D) Circular plot showing the chromosomal distribution of glycolysis-related DEGs. (E) PPI network of
glycolysis-related DEGs, with node color intensity representing the MCC score. DEGs, differentially expressed genes; GRGs, glycolysis-related genes;
ES, enrichment score; AP, acute pancreatitis; Ctrl, control; MCC, maximal clique centrality.
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3.4 GSEA on GO terms of CD44 and
CLDN3

GSEA was performed on GO terms to explore the biological

roles of CLDN3 and CD44 (Figure 5). The upregulated GO terms of

these two genes were related to cell adhesion, extracellular vesicle

formation, and RNA processing, which were essential for immune

cell communication, migration, and activation. Conversely, the

downregulated GO terms were enriched in sensory perception,

ion transport, and transcription factor activity, which reflected a

suppression of neuronal-like signaling pathways. These results

suggest that CLDN3 and CD44 may contribute to immune-
Frontiers in Immunology 07
mediated structural remodeling and transcriptional regulation

within the inflammatory microenvironment of AP.
3.5 Single-cell transcriptomic profile of
CD44 and CLDN3

Single-cell quality control confirmed high data integrity

(Figure 6A). Unsupervised clustering and marker-gene annotation

identified the main cell populations of the pancreas—acinar, ductal,

endothelial, fibroblast, B-cell, T-cell, NK-cell, macrophage, and

neutrophil clusters (Figures 6B, C). There was an increasing
FIGURE 4

Identification and validation of key glycolysis-related DEGs through machine learning. (A) LASSO coefficient paths with vertical dashed lines marking
lambda. min and lambda. 1se. (B) Mean cross-validation error across lambda values, highlighting the bias-variance trade-off. (C) Plot of SVM accuracy
rates across different models. (D) Plot of SVM error rates across different models. (E) Boruta feature importance across iterations, with green for
confirmed, red for rejected, and blue representing the minimum, average, and maximum Z-scores of shadow attributes. (F) Boruta feature Z-scores, with
green for confirmed, red for rejected, and white boxes representing the minimum, average, and maximum Z-scores of shadow attributes. (G) Venn
diagram showing the overlap of glycolysis-related key genes. (H) Relative mRNA expression of the key glycolysis-related DEGs in the validation set. (I)
ROC curve of the glycolysis-related genes in the GSE169076 validation set. Ctrl, control; AP, acute pancreatitis. *p≤0.05,**p≤0.01.
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number of immune cell populations and a remarkable loss of acinar

cells in AP samples (Figures 6D, E). Cell-type–resolved mapping

revealed the expression changes of glycolysis-related key genes in

AP (Figures 6F-I). CD44 was enriched in both ductal and immune

cells, which is consistent with the enhanced activation and

migration of the immune cells. Notably, CLDN3 was significantly

downregulated in acinar cells, indicating a disruption in epithelial

integrity. This finding was inconsistent with bulk RNA-seq results,

thereby prompting subsequent protein-level validation.
3.6 Immune infiltration and correlation
analysis of CD44 and CLDN3 on ssGSEA

The ssGSEA analysis revealed distinct immune infiltration

patterns of the pancreas in AP (Figure 7A). An increase in the

expression of immune cell subsets was observed, indicating an

alteration from a steady-state immune surveillance in normal
Frontiers in Immunology 08
status to an activated state. Correlation analysis among immune

cells demonstrated the coordinated infiltration patterns, which

indicated synergistic immune responses to the microenvironment

in AP (Figure 7B). Notably, glycolysis-related key DEGs showed

strong correlations with the majority of immune cells (Figure 7C,

Supplementary Table 5), suggesting their broad regulatory roles in

shaping the immune landscape during AP.
3.7 Prediction of TFs and miRNA of CD44
and CLDN3

To elucidate the upstream regulation of the glycolysis-related

key DEGs, TFs, and miRNA networks were assembled from curated

datasets (Figure 8). A total of 33 TFs were predicted to target these

genes. At the post-transcriptional level, 138 miRNAs were identified

to regulate the glycolysis-related key DEGs. Focusing on miRNAs

with a degree of ≥1, 21 miRNAs were shared between CD44 and
FIGURE 5

GSEA enrichment analysis of GO terms for key Genes. (A) Top 5 upregulated GO terms for CLDN3 based on GSEA analysis. (B) Top 5 downregulated
GO terms for CLDN3 based on GSEA analysis. (C) Top 5 upregulated GO terms for CD44 based on GSEA analysis. (D) Top 5 downregulated GO
terms for CD44 based on GSEA analysis.
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CLDN3(Supplementary Figure 6). Notably, SAP30, KDM5B, and

PHF8 were identified as TFs regulating CD44, while TRIM24,

SMARCA5, E2F5, and BCOR were predicted to regulate CLDN3.

The identification of these shared miRNAs suggests post-

transcriptional regulation of CD44 and CLDN3.
Frontiers in Immunology 09
3.8 Validation of CD44 and CLDN3 in
experimental AP model

To validate the bioinformatic findings, we established a mouse

AP model by the combination of caerulein and LPS, as confirmed
FIGURE 6

Single-cell characteristics of the pancreas in AP and features of glycolysis-related key DEGs. (A) Distribution of log-transformed UMI counts, gene
counts, and mitochondrial gene expression percentage across cells, providing insights into the cellular quality of the dataset. (B) Major cell types
in the pancreas. (C) Marker genes for different cell types. (D) Major cell types in the pancreas of the AP mice model. (E) Major cell types in the
pancreas of healthy mice. (F, H) Spatial distribution of CLDN3 and CD44 in the pancreas from control and AP mice within the single-cell atlas.
(G, I) Expression of CLDN3 and CD44 across major pancreatic cell types between AP and control.AP, acute pancreatitis; Ctrl, control.
**p ≤ 0.01, ****p ≤ 0.0001.
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by serum amylase, lipase, and trypsin activity, and MPO activity in

pancreatic tissue (Figures 9A-D), as well as H&E histopathological

assessment (Figures 9F, G). The elevation of lung MPO activity and

H&E scores indicated the involvement of the lungs (Figure 9E, H, I).

We next assessed Cd44 and Cldn3 expression at both mRNA and

protein levels by qPCR and western blotting (Figures 9J, K). Cd44

was upregulated at both transcriptional and protein levels in AP

mice. Correspondingly, IHC staining showed that CD44 was
Frontiers in Immunology 10
predominantly expressed in inflammatory cells within pancreatic

tissues of AP mice (Figure 9L). Interestingly, bulk qPCR indicated

increased Cldn3 mRNA, whereas Western blotting revealed a

marked protein reduction. This discrepancy likely reflects cell-

type compositional shifts in AP, whereby increased Cldn3

expression in infiltrating immune and ductal cells masks its

downregulation in acinar cells(p<0.0001), as revealed by single-

cell transcriptomics (Figure 6G). IHC further showed a
FIGURE 7

Immune infiltration analysis based on ssGSEA. (A) Proportions of immune cell types among different samples. (B) Heatmap depicting the correlation
analysis of immune cells. (C) Heatmap showing the relationship between glycolysis-related key DEGs and immune cell infiltration. *p≤0.05,**p≤0.01,
***p≤0.001.
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redistribution of CLDN3 from acinar membranes in controls to

diffuse cytoplasmic staining in AP mice(Figure 9M).
4 Discussion

To the best of our knowledge, this is the first study to investigate

glycolysis and its immunoregulatory role in AP by integrating bulk

and single-cell transcriptomic analyses, machine learning, and

experimental validation. The results identify new insights of

CD44 and CLDN3 into glycolysis-driven metabolic-immune

mechanisms, and provide potential biomarkers and therapeutic

targets for AP.

The cellular landscape in immunoregulation in AP is

systematically constructed. Upregulation of glycolysis-related

genes is consistent with immune and inflammatory mediators,

highlighting the metabolic-immune interaction relationship in

AP. Functional enrichment analyses of the DEGs and single-cell

analysis reveal a complex interaction of immune cells infiltration

and the loss of pancreatic acinar cells in AP, indicating tissue injury

and immune activation during disease progression. Two immune

cell clusters are shown in AP immune landscape: one cluster

includes memory T cells, dendritic cells, and regulatory cells,

which reflect a microenvironment in alleviating inflammation by

immune regulation and suppression; the other cluster is consisted of
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activated B cells, natural killer cells, and effector cells, which

represent a state of upregulated inflammatory response and

innate immune activation. These findings underscore the complex

immune regulatory mechanisms of the immune microenvironment

in AP and suggest the potential of distinct immune cells as

therapeutic strategies for AP. Significant enrichment of glycolytic

pathways in AP tissues is confirmed by GSEA analysis. Key

adhesion molecules and nuclear pore complex components are

identified as central hubs, indicating the critical roles in immune

cell adhesion and nuclear transport. Notably, CD44 and CLDN3 are

identified via a combination of deep learning algorithms and

validated in the experimental AP model.

CD44 is a cell surface adhesion molecule that plays extensive

roles in the activation, recirculation, and homing of immune cells

(35–39). It has been reported as a biomarker of cancer stem cells

and facilitates metastasis, immune evasion, and therapeutic

resistance (40–42). Recent studies demonstrate the role of CD44

in metabolic regulation, particularly in shifting glycolysis and

oxidative phosphorylation (OXPHOS). CD44 modulates glycolytic

metabolism by regulating key enzymes LDHA, LDHB, and PFKFB4

via HIF-1a and AMPK/mTOR signaling (43–47). In our study,

CD44 is enriched in AP samples within pathways related to cell–

matrix adhesion and RNA processing. In contrast, pathways

associated with sensory perception and transcription factor

activity are downregulated. These findings suggest that CD44 may
FIGURE 8

The TFs and miRNA regulatory network of CLDN3 and CD44.
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FIGURE 9

Validation of the AP model and expression of CLDN3 and CD44. (n = 6 biologically independent samples). Serum amylase levels. (B) Serum lipase
levels. (C) Trypsin activity. (D) MPO activity in pancreatic tissue. (E) MPO activity in lung tissue. (F) Quantitative histopathological scores of the
pancreas. (G) Representative H&E-stained images of pancreatic tissue from control and AP mice (200x). (H) Histopathological scores of the lung. (I)
Representative H&E-stained images of lung tissue from control and AP mice (200x). (J) Relative mRNA expression levels of Cldn3 and Cd44 in
pancreatic tissues. (K) Western blot analysis of CD44 and CLDN3 with quantification of band intensity normalized to b-actin. (L, M) IHC staining and
semi-quantitative analysis of CLDN3 and CD44 in pancreatic tissues from control and AP mice (100x,400x). MPO, myeloperoxidase. **p≤0.01,
***p≤0.001,****p≤0.0001.
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contribute to immune cell infiltration, post-transcriptional

regulation, and cellular adaptation to inflammatory stress in AP.

We identify CD44 as a crucial glycolysis-related DEG and validate

its upregulated expression among a series of cells, including

neutrophils, acinar cells, and ductal epithelial cells in AP samples.

Correlation analysis between CLDN3 and CD44 with immune cell

infiltration reveals significant associations with multiple immune

cell types. These findings suggest that glycolysis–related key genes

not only contribute to metabolic reprogramming but may also

modulate immune cell infiltration, thereby influencing the immune

microenvironment and pathological progression of AP.

CLDN3, which is highly expressed in epithelial and endothelial

tissues (48, 49), is a crucial tight junction protein for maintaining

epithelial barrier integrity. The dysregulation of CLDN3 has been

implicated in cancer (50–55) and inflammatory diseases (56–58).

Recent evidence (59–63) further suggests that CLDN3 expression is

altered with elevated glycolytic activity in metabolic stress and

tumors. In this study, we identified a discrepancy between the

elevation of Cldn3 mRNA in bulk transcriptomic/qPCR data and

the reduction of protein-level measurements by western blotting.

Our ScRNA-seq transcriptomic data can help to resolve this

paradox by revealing marked Cldn3 downregulation in acinar

cells, alongside upregulation in ductal cells and T cells. During

AP, massive immune cell infiltration and possible ductal

hyperplasia can elevate the bulk mRNA signals despite acinar-

specific suppression. However, because non-acinar cells contribute

minimally to the total pancreatic protein pool, and inflammatory

stress may promote CLDN3 internalization and degradation, the

overall protein abundance still declines. IHC further revealed

CLDN3 redistribution from the apical membrane to the

cytoplasm in AP, a pattern consistent with tight junction

disassembly and loss of epithelial polarity (64). Inflammatory

cytokines such as TNF-a can trigger internalization of tight

junction proteins, causing their removal from the membrane and

cytoplasmic accumulation (65). In addition, disruption of polarity

complexes such as PAR3/aPKC can facilitate endocytic uptake and

lysosomal degradation of tight junction components (64, 66, 67).

These inflammation-driven processes provide a mechanistic basis

for the CLDN3 relocalization observed in AP. Collectively, these

findings suggest that CLDN3, beyond its classical barrier role,

participates in epithelial remodeling and immune modulation

during AP.

Upstream regulators of glycolysis–related key genes are studied

by constructing the TFs–mRNA–miRNA regulatory network.

SAP30, KDM5B, and PHF8 are primarily epigenetic modifiers

that may regulate CD44 expression via epigenetic regulation.

TRIM24, SMARCA5, E2F5, and BCOR potentially regulate

CLDN3 expression as transcriptional regulators and chromatin

remode le r s . Add i t i ona l l y , 21 shared miRNAs were

computationally identified that may be involved in the post-

transcriptional regulation of both CD44 and CLDN3, potentially

linking these genes to immune modulation and metabolic processes

in AP. These findings suggest a possible multilayered regulatory

mechanism governing key glycolysis-related genes in AP.
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This study explores the role of glycolysis in immune regulation

in AP by using bulk transcriptomic, ScRNA-seq data, and

experimental validation. However, there are several limitations.

Firstly, it is limited by the exclusive use of a homogeneous mouse

model and the absence of human patient data, which may introduce

confounding factors and restrict the direct translational relevance of

our findings. Future studies need to integrate the data frommultiple

animal models and clinical samples to validate the generalizability

and clinical applicability of these observations. Secondly, the

validation datasets yielded perfect AUC values for Cd44 and

Cldn3. This phenomenon likely arises from intrinsic features of

animal models, including controlled experimental conditions,

synchronized sample collection, uniform disease induction, and

inflammation-driven transcriptional changes, all of which can

exaggerate group differences. Future validation in diverse clinical

cohorts remains essential. Thirdly, although we systemically use

GSEA, ScRNA-seq analysis, immune infiltration, and TFs-mRNA-

miRNA analyses to explore potential regulatory mechanisms, this

study remains preliminary. In-depth mechanistic studies are needed

to elucidate the molecular mechanisms of glycolysis in regulating

immune responses in AP.
5 Conclusion

This study identifies that CD44 and CLDN3 play crucial roles in

metabolic regulation and immune modulation in AP, offering novel

insights for biomarkers and therapeutic targets of the disease.

Future researches are required to investigate the mechanisms

underlying glycolysis-immune interactions of these genes in AP.
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