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AI-based non-invasive profiling
of the tumor immune
microenvironment using
longitudinal CT radiomics
predicts immunotherapy
response in lung cancer
Guangjie Liu1, Xiaoyan Zhang1, Yutong He2, Di Liang2,
Shaonan Xie1, Ning Zhang3, Nan Geng4, Liwen Zhang5,
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Shijiazhuang, Shijiazhuang, China, 4Department of Respiratory Medicine, the Fourth Hospital of Hebei
Medical University, Shijiazhuang, Shijiazhuang, China, 5Hebei Key Laboratory of Environment and
Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical
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Background: Despite advances in immunotherapy, durable responses in lung

cancer remain limited to a subset of patients, underscoring the need for

biomarkers capturing spatial immune-tumor interactions. Current methods, such

as PD-L1 immunohistochemistry, suffer from sampling bias and fail to decode

dynamic immune evasion mechanisms non-invasively.

Methods: We developed a radiomics framework integrating longitudinal tumor

growth kinetics (log volume change rate, LVCR) with deep learning to: (1) delineate

tumors via medical knowledge-guided segmentation; and (2) derive an Immune

Evasion Score (IES) predicting immunosuppressive niches. The model employs

immune-aware attention gates (IAAG) to prioritize regions associated with

aggressive growth (high LVCR) and immune evasion.

Results: Validated on 420 CT scans, our approach achieved superior segmentation

accuracy (Dice=0.7728 ± 0.03; HD95 = 9.8 ± 1.5 mm) over existing models.

Critically, the IES predicted PD-L1 expression (AUC = 0.85; *p*<0.001) and CD8+

T-cell exclusion (*p*<0.01). High IES correlated with rapid immunotherapy

progression (HR = 2.3, *p*=0.004), and spatial analysis confirmed 72.3%

concordance between IAAG-prioritized regions and pathological PD-L1+ niches.
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Conclusion: This work establishes a non-invasive paradigm for mapping

immunosuppressive microenvironments, bridging precision radiotherapy with

immunotherapy personalization. The IES provides a dynamic biomarker of

immune evasion, potentially guiding patient stratification for checkpoint inhibitors.
KEYWORDS

tumor immune microenvironment, immunotherapy response, radiomic biomarkers,
precision radiotherapy, tumor growth kinetics
1 Introduction

Lung cancer continues to be the most significant contributor to

cancer-related morbidity and mortality on a global scale (1).

According to the GLOBOCAN 2018 estimates, lung cancer was

the most diagnosed cancer and the leading cause of cancer death

worldwide, accounting for 11.6% of the total cancer cases and 18.4%

of the total cancer deaths (2, 3). This trend is expected to persist, as

projections for 2050 indicate a substantial increase in both

incidence and mortality rates, with an estimated 3.8 million new

cases and 3.2 million deaths globally (4, 5).

The burden of lung cancer is not uniform across different

regions and demographics. For instance, the incidence and

mortality rates are higher in countries with a higher Human

Development Index (HDI), and there are notable disparities

between sexes, with men generally exhibiting higher rates than

women (6, 7). However, recent trends have shown an increase in

lung cancer cases among female never-smokers, highlighting the

evolving epidemiological landscape of this disease (8).

Contemporary management strategies focus on three pillars:

prevention, early detection, and therapeutic innovation (9). While

tobacco exposure remains the primary modifiable risk factor, the

emergence of immunotherapy has fundamentally transformed the

treatment paradigm (10, 11). Immune checkpoint inhibitors (ICIs), a

cornerstone of immunotherapy, including anti-PD-1 antibodies (e.g.,

pembrolizumab) and anti-PD-L1 antibodies (e.g., atezolizumab),

occupy a central position in the management of advanced lung

cancer. Paradoxically, durable responses to ICIsoccurs in only 20 -

30% of patients (12), underscoring a critical need for biomarkers

capable of decoding spatial tumor-immune interactions that

determine therapeutic efficacy (13). Static scans capture only a single

time point, failing to reflect dynamic immune-tumor crosstalk—for

example, rapid tumor growth under immune pressure (often linked to

PD-L1 upregulation) or real-time remodeling of the immune

microenvironment during treatment. This imperative is heightened
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by limitations of current gold-standard approaches: PD-L1

immunohistochemistry suffers from spatial sampling bias, while

tumor mutational burden assessment lacks accessibility in resource-

limited settings. Clinical PD-L1 IHC relies on needle biopsies, but

tumor heterogeneity means these samples may not represent the

overall immune phenotype. Approximately 30% of lung cancer

patients exhibit spatial variability in PD-L1 expression, leading to

potential misclassification (14, 15).

Within this context, precise tumor delineation assumes dual

significance. First, it remains foundational for radiotherapy

planning, where millimeter-level accuracy determines therapeutic

index. Second, and perhaps more innovatively, it enables spatial

characterization of immune infiltrates within the tumor

microenvironment—a determinant of immunotherapy response.

Deep learning models, particularly 3D U-Net variants, have recently

emerged as highly effective tools for automated tumor delineation.

Unlike traditional methods—such as threshold-based approaches

(prone to error in heterogeneous tissues) or region-growing

algorithms (limited by edge ambiguity)—deep learning

segmentation uses convolutional neural networks to learn

hierarchical features, adapting to irregular tumor margins and

necrotic cores common in lung cancer. These advanced models

utilize large-scale CT datasets containing substantial information,

enabling efficient extraction of high-dimensional features (16, 17).

On public benchmarks, they achieve Dice coefficients ranging from

0.73 to 0.75. For instance, recent studies demonstrate that Attention

U-Net significantly improves segmentation accuracy by dynamically

weighting features through attention gates, facilitating more

precise analysis.

However, several critical limitations remain. First, these models

exhibit limited clinical interpretability, primarily functioning as

“black boxes” without incorporating domain-specific medical

knowledge such as tumor biology or patient demographics.

Consequently, their ability to capture heterogeneous tumor

morphologies—including infiltrative margins or necrotic cores—is

constrained. Second, their reliance on single-timepoint imaging

restricts capacity for monitoring dynamic tumor progression or

regression, as longitudinal CT data are seldom utilized. Static

imaging fails to capture dynamic immune-tumor interactions

(e.g., PD-L1 upregulation during rapid tumor growth), while

clinical PD-L1 detection suffers from spatial sampling bias due to
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tumor heterogeneity (18, 19). Finally, these models show

suboptimal precision in complex cases, particularly with small

nodules (<2 cm) and low-contrast regions, often producing

fragmented or over-segmented outputs that may compromise

clinical decision-making.

To address these challenges, we propose MK-UNet, a medical

knowledge-guided 3D U-Net architecture that synergizes

multimodal imaging data with clinical metadata and tumor

biomarkers through three transformative innovations: 1. Dynamic

Immuno-Phenotypic Fusion: Clinical metadata and tumor

biomarkers (including growth rate quantified via log volume
Frontiers in Immunology 03
change rate, LVCR) are encoded to prioritize regions exhibiting

immune-evasive morphology. 2. Multimodal Immune-Relevant

Enhancement: Edge-optimized preprocessing targets boundary

features predictive of T-cell exclusion patterns.

3. Longitudinal Immune Monitoring: Sequential CT analysis

captures temporal changes in immune-reactive niches.

Initial validation studies revealed MK-UNet’s capacity to

simultaneously address two critical clinical needs: achieving

superior segmentation accuracy (Dice coefficient 0.7728; 22%

reduction in Hausdorff distance) while enabling precise mapping

of immunologically relevant regions. This dual functionality
FIGURE 1

From left to right: (A) original image, (B) edge enhancement image, (C) Gaussian filter noise reduction image, (D) contrast enhancement image.
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establishes the framework as a promising methodology for

advancing precision approaches in immuno-oncology, particularly

for stratifying patients likely to benefit from checkpoint inhibitors.
2 Results

2.1 Data preprocessing

2.1.1 Multi-modal preprocessing
To improve the robustness of the neural network, raw 3D CT

volumes underwent preprocessing to form a 4-channel input using

three complementary algorithms: edge enhancement, Gaussian

denoising, and contrast optimization. The first channel preserved

the original CT Hounsfield Units (HU) values (high threshold=0.2,

low threshold=0.1, determined from the distribution of tumor edge

pixels in the training set), while the remaining three channels were

generated as follows: 1. Edge enhancement was achieved through

Canny edge detection, implemented in Python with a sigma value of

1.5, to accentuate tumor boundaries and structural details; 2.

Gaussian denoising was performed using a 3D Gaussian filter

with a kernel size of 3 and a sigma of 0.8 to reduce noise while

maintaining anatomical features; 3. Contrast optimization involved

linearly scaling pixel intensities to the range [0, 255] to exploit the

full 256 gray levels. A gray-level co-occurrence matrix (GLCM) was

calculated within a sliding window of 5×5×5 voxels, from which

contrast attributes were derived to enhance texture differentiation

between tumors and adjacent tissues. Furthermore, data

augmentation techniques were employed during training to

enhance model generalization, including random rotation, scaling,

translation, and the addition of Gaussian noise. These techniques

were implemented in Python and executed dynamically, the details

are available in the “attention_CT_unet.ipynb” file.

The preprocessing pipeline is illustrated in Figure 1, and the

implementation details are available in the “preprocess.py” file.
Frontiers in Immunology 04
2.1.2 Adaptive windowing filtering
To enhance input quality and eliminate extraneous background

regions, an adaptive windowing filter was employed during the

preprocessing phase. This filter dynamically adjusted the threshold

for each voxel based on the intensity distribution of annotated

tumor regions. Specifically, the threshold T(x,y,z) was determined

using the formula: T(x,y,z) = mtumor+1.5·;stumor, where mtumor and

stumor represent the mean and standard deviation of tumor voxel

intensities, respectively. Voxels with intensities below this threshold

were masked out, thereby effectively removing non-tumor regions

(such as healthy tissues and air cavities) while preserving the

boundaries and internal texture details of the tumor.

This windowing process substantially reduced background

noise and enhanced the contrast between tumors and

surrounding tissues, as demonstrated in Figure 2. The figure

presents, from left to right, the original CT slice and the filtered

result following adaptive windowing. Detailed implementation and

parameter settings can be found in the “windowing.ipynb”file.
2.2 MK-UNet architecture

The MK-UNet framework is a sophisticated 3D U-Net-based

segmentation model that integrates medical knowledge and

attention mechanisms to enhance the prioritization of tumor-

related regions while incorporating clinical metadata. As depicted

in Figure 3, the architecture follows an encoder-decoder paradigm,

featuring adaptive feature fusion and hierarchical attention gating.

The encoder pathway comprises four sequential downsampling

blocks, each reducing spatial resolution by 50% (e.g., from H1×W1

×D1 toH4=H1/8×W4=W1/8×D4=D1/8) and simultaneously doubling

the number of feature channels. To mitigate information loss during

downsampling, attention gate (AG) are incorporated at each skip

connection. The architecture of the AG, detailed in Figure 4,

involves dynamically weighting encoder features using contextual
FIGURE 2

From left to right: original image, Windowing filtered image().
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information from coarser decoder layers through a gating

mechanism. This mechanism integrates encoder and decoder

features via learnable convolutions, applying a sigmoid activation

to produce spatial attention maps that emphasize tumor boundaries

and suppress irrelevant background noise.
Frontiers in Immunology 05
Six clinical and tumor biomarkers—namely age, gender, smoking

history, pathological grade, tumor stage, and lymphovascular cancer

recurrence (LVCR)—are encoded into a six-dimensional vector.

Discrete features, such as gender, are represented using one-hot

encoding, whereas continuous variables, such as age, are normalized
FIGURE 3

The overview of MK-UNet framework. The 6-dimensional clinical vector is spatially expanded and concatenated with the 256-channel feature map
at the channel level. The 256-channel feature map (derived from CT scan voxels within manually annotated tumor ROIs) is concatenated with
clinical vectors at the bottleneck layer.
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to a range of [0, 1]. Within the bottleneck layer of the encoder, this

vector undergoes spatial expansion to align with the dimensions of the

deepest feature map and is subsequently concatenated channel-wise

with the encoded imaging features. This integration furnishes the

network with supplementary clinical context, thereby directing its

focus towards regions associated with aggressive tumor phenotypes,

such as irregular margins that are indicative of advanced TNM stages.

The decoder pathway incrementally restores spatial resolution

utilizing transposed 3D convolutions and trilinear interpolation. At

each stage, the upsampled features are integrated with gated skip

connections from the encoder through concatenation, followed by

the application of 3D convolutions to enhance boundary details.

The ultimate output is a voxel-wise probability map, produced via a

sigmoid-activated convolutional layer.

Significant advancements encompass attention-guided feature

selection, which serves to filter out extraneous background features,

and clinically informed feature fusion, aimed at enhancing segmentation

robustness for heterogeneous tumors. Detailed implementation specifics

can be found in the model_architecture.py file.
2.3 Quantitative evaluation on test set

The proposed MK-UNet model was assessed using a test set

comprising 60 CT scans, representing 14.3% of the total dataset of 420

cases. The data was divided into 300 training cases (71.4%), 60

validation cases (14.3%), and 60 test cases (14.3%). This distribution

is consistent with standard practices in medical image analysis for

datasets of moderate size, ensuring an adequate amount of training

data while preserving the ability to conduct a robust evaluation. As

illustrated in Table 1, MK-UNet achieved a Dice coefficient of 0.7728 ±

0.03 and an Intersection over Union (IoU) of 0.6471, surpassing

baseline models such as the 3D U-Net (Dice: 0.7322 ± 0.05, IoU:

0.6223) and the Attention U-Net (Dice: 0.7527 ± 0.04, IoU: 0.6302).

The Hausdorff Distance 95th percentile (HD95) further underscored

the superiority of MK-UNet, with a boundary alignment error of 9.8 ±

1.5mm, in comparison to 12.4 ± 2.1mm for the 3D U-Net and 11.2 ±

1.8mm for the Attention U-Net. Statistical significance was verified

through paired t-tests (p < 0.01), indicating consistent improvements

across all evaluated metrics.
Frontiers in Immunology 06
2.4 Qualitative assessment

Visual comparisons of segmentation outcomes, as depicted in

Figure 5, underscore the proficiency of MK-UNet in managing

intricate tumor morphologies. Specifically, in instances of

infiltrative adenocarcinoma characterized by irregular margins,

the model successfully maintained fine structural details, such as

pleural extensions, which were frequently oversmoothed by the 3D

U-Net. In contrast, for benign nodules, MK-UNet adeptly excluded

inflammatory regions that were misclassified as tumors by

alternative models.
2.5 Ablation study

To evaluate the contribution of each component of the MK-

UNet architecture, an ablation study was performed utilizing a

consistent training protocol, which included the Adam optimizer

with a learning rate of 1×10−4, a batch size of 2, and 150 epochs on

an NVIDIA RTX 4090. As illustrated in Table 2, the baseline 3D U-

Net achieved a Dice coefficient of 0.7322 and an HD95 of 112.4 mm.

The integration of multi-modal preprocessing techniques, such as

edge enhancement, Gaussian denoising, and adaptive windowing,

resulted in an improved Dice coefficient of 0.7516 and a reduction

in HD95 to 11.5 mm, underscoring the significance of enhanced

input quality. Further incorporation of medical knowledge fusion,

including clinical metadata and tumor biomarkers, led to an

increase in the Dice coefficient to 0.7634 and a decrease in HD95

to 10.3 mm. The final model, which included lesion-aware

attention, achieved optimal performance with a Dice coefficient of

0.7728 and an HD95 of 9.8 mm, thereby demonstrating the

synergistic effect of attention mechanisms and the integration of

clinical priors.
2.6 Computational efficiency

Training the MK-UNet model on a dataset of 300 computed

tomography (CT) volumes necessitated approximately 24 hours of

computational time utilizing an NVIDIA RTX 4090 GPU. The
FIGURE 4

The architecture of the attention Gate. The attention weights are computed using tumor boundary voxels (from preprocessed CT scans) with high
gradient values, prioritizing regions with irregular margins.
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model demonstrated an average inference time of 15 seconds per

scan, with each scan comprising dimensions of 512×512×40 voxels.

Notwithstanding the increased complexity introduced by the

integration of medical knowledge fusion and attention gates, the

model’s parameter count remained comparable to that of the

standard 3D U-Net, with 28.5 million parameters versus 27.9

million, respectively. This parameter efficiency underscores the

model’s suitability for clinical application.
2.7 Immune evasion phenotype prediction
and dynamic modeling

To establish a theoretical link between tumor growth dynamics

and immune microenvironmental characteristics, we propose an

Immune Evasion Phenotype Prediction (IEEP) framework. This

framework integrates longitudinal imaging biomarkers (e.g., LVCR)

with deep learning to decode spatially heterogeneous immune-

suppressive patterns. The implementation comprises three

key components:

2.7.1 LVCR-Driven Modeling of Immune Evasion
Mechanisms

The Log Volume Change Rate (LVCR) quantifies tumor

proliferative aggressiveness using sequential CT scans. Tumors

with high LVCR (>0.15/day) are typically associated with hypoxic

microenvironments, which upregulate PD-L1 expression via HIF -

1a signaling and promote stromal fibrosis to impede CD8+ T-cell

infiltration. To capture these phenotypes, LVCR is encoded into a

6D clinical vector and spatially concatenated with the bottleneck

features of the U-Net. This fusion prioritizes regions exhibiting

radiological hallmarks of immune evasion (e.g., spiculated margins,

necrotic cores) during feature decoding.
2.7.2 Immune-aware attention gates enhance
segmentation accuracy

We design a novel attention mechanism that dynamically

weights encoder-decoder features based on both imaging patterns

and LVCR values:

a  = s · (Wq ½fenc,  fdec,  LVCR� + bq)

where s denotes the sigmoid activation, and Wq, bq are

learnable parameters. The IAAG enhances boundary features in
Frontiers in Immunology 07
high-LVCR regions (e.g., irregular margins, necrosis) while

suppressing homogeneous areas linked to immune “cold”

phenotypes (e.g., calcifications).

The proposed IAAG mechanism significantly improved

segmentation performance in immune-suppressive subregions.

For high-LVCR tumors (n=25), MK-UNet achieved a Dice

coefficient of 0.79 ± 0.04 and HD95 of 8.2 ± 1.3 mm,

outperforming the baseline 3D U-Net (Dice=0.71 ± 0.05, HD95 =

12.1 ± 2.0 mm) and Attention U-Net (Dice=0.75 ± 0.04, HD95 =

10.5 ± 1.8 mm) (Table 3). Visual analysis demonstrated that IAAG

effectively prioritized spiculated margins and necrotic cores,

reducing over-segmentation in homogeneous regions.

2.7.3 Immune microenvironment correlation
The immune escape score (IES) is defined as a comprehensive

score based on three prognosis-related parameters: tumor growth

rate, morphological heterogeneity, and expression of immune

markers. From segmented masks, IES integrated three prognostic

indices: IES = 0.6 · LVCR + 0.3(1-Sphericity) + 0.1 · PD-L1+Area

Ratio. IES weights were determined via multi-factor Cox regression

analysis, based on the prognostic strength of each indicator: LVCR

(HR = 1.8, p<0.001), sphericity (HR = 1.3, p=0.02), and PD-

L1+Area Ratio (HR = 1.1, p=0.04). To verify the applicability of

the Cox proportional hazards model, we conducted the Schoenfeld

residual test. The results showed that neither the global test nor the

residual-time correlation of the IES group was significant, satisfying

the proportional hazards assumption. To validate the biological

plausibility of IAAG, we reference an independent cohort from

TCGA-LUAD, where CT-based spiculation length positively

correlated with PD-L1 positivity (IHC, r = 0.38, P = 0.002).

Post-hoc radiomic analysis of MK-UNet segmentation masks

revealed that tumors with irregular margins (sphericity <0.6)

exhibited lower CD8+ T-cell density (r=0.41, p=0.007) and higher

PD-L1 expression (r=0.38, p=0.01) compared to spherical tumors.

These results corroborate prior studies linking jagged tumor

boundaries to immune-excluded phenotypes.
3 Discussion

The MK-UNet framework constitutes a substantial advancement

in the automated segmentation of lung tumors by methodically

integrating clinical parameters—specifically, the log volume change

rate (LVCR)—with deep learning architectures. This study addresses a

crucial limitation of extant methodologies, which primarily depend on

imaging data alone and overlook clinically validated indicators that

capture tumor growth dynamics. Our findings reveal that the

inclusion of LVCR as a dynamic prior significantly improves

segmentation accuracy, especially for tumors with indistinct

boundaries or heterogeneous growth patterns. In the following

discussion, we situate these findings within the broader context of

medical image analysis, highlighting both the technical innovations

and the clinical significance of our approach. Current models mainly

rely on static image data and are unable to capture the dynamic

changes in the tumor immune microenvironment, thereby limiting
TABLE 1 Segmentation performance comparison on the test set (n=60).

Model
Dice
coefficient

Intersection over
Union (IoU)

HD95
(mm)

3D U-Net 0.7322± 0.05 0.6223 12.4 ± 2.1

3D ResNet 0.7231± 0.06 0.6178 13.1 ± 2.3

Attention
U-Net

0.7527± 0.04 0.6302 11.2 ± 1.8

MK-
UNet (Ours)

0.7728± 0.03 0.6471 9.8 ± 1.5
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their application in predicting the response to immunotherapy (20).

MK-UNet significantly addresses this deficiency by introducing

longitudinal tumor growth kinetics (Log Volume Change Rate,

LVCR) as dynamic prior information. Firstly, LVCR not only helps

the model identify tumor regions with aggressive growth patterns but

also provides temporal guidance for feature extraction, enabling the
Frontiers in Immunology 08
model to better understand the changing trends of tumors at different

time points. Secondly, by designing immune-aware attention gates

(IAAG), MK-UNet can prioritize the attention to morphological

features related to immune escape, such as irregular edges and

necrotic cores, in regions with high LVCR, thereby improving

segmentation accuracy and enhancing the recognition ability of
FIGURE 5

From left to right: input image, predicted output (tumor segmentation location), and ground truth (manual labeling). The input CT slice (left) includes
the entire lung field, but the model only processes the cropped tumor region (delineated by the red box in the input image) for segmentation.
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immunosuppressive microenvironments. Additionally, the immune

evasion score (IES) further integrates tumor growth rate,

morphological heterogeneity, and expression levels of immune

markers, providing a quantitative indicator for dynamic monitoring

of the tumor immune status. These innovations enable MK-UNet not

only to achieve precise tumor segmentation but also to provide strong

support for the selection of personalized immunotherapy regimens,

truly realizing the transition from static to dynamic and filling the gap

in dynamic monitoring of existing models.

A significant advancement of MK-UNet is its explicit

incorporation of the Longitudinal Volume Change Rate (LVCR), a

quantitative metric for assessing tumor growth rate derived from

sequential CT scans. Traditional models rely on static features like

age, gender, or baseline tumor size—variables that do not capture

dynamic shifts in immune evasion (21). In contrast, LVCR quantifies

the longitudinal changes in tumor volume, directly reflecting how

tumors evolve under immune monitoring. This dynamic dimension is

irreplaceable (22). In contrast to traditional segmentation models that

consider tumors as static anatomical entities, MK-UNet utilizes LVCR

to deduce temporal growth dynamics, thereby facilitating adaptive

feature learning. Tumors with rapid growth (indicated by high LVCR)

frequently present with irregular margins and necrotic cores, which

pose challenges to conventional models. By integrating LVCR into the

network, MK-UNet emphasizes regions with substantial spatial

heterogeneity, aligning its focus with the diagnostic reasoning

employed by radiologists. According to previous literature research, a

DICE of 0.7728 is acceptable (23, 24). This methodology is

substantiated by the results of an ablation study: excluding LVCR

from the medical knowledge vector resulted in a 1.9% decrease in the

Dice coefficient (from 0.7728 to 0.7539) and a 1.4 mm increase in

HD95 errors (from 9.8 to 11.2 mm). These findings highlight the

critical importance of incorporating domain-specific knowledge into

model design, a strategy that has been infrequently explored in

previous research.

The multi-modal preprocessing pipeline, which integrates edge

enhancement, Gaussian denoising, and adaptive windowing,

operates synergistically with LVCR to enhance tumor-related

signals. Edge enhancement serves to delineate subtle boundaries

between tumors and adjacent parenchyma, while adaptive

windowing dynamically adjusts intensity thresholds based on

LVCR values. This dual approach has demonstrated efficacy for

subsolid nodules, where conventional intensity-based methods

frequently fall short. For instance, in scenarios of pseudo

progression, characterized by inflammatory changes that mimic
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tumor growth, LVCR-guided filtering reduced false positives by

18% compared to the Attention U-Net. In addition, LVCR, as a

dynamic indicator of tumor growth kinetics, captures the temporal

changes of immune evasion that cannot be reflected by static

metadata. The lesion-aware attention mechanism further refines

this process by dynamically weighting spatial and channel features.

In the case of high-LVCR tumors, attention gates prioritize voxels

with spiculated margins or internal necrosis, which are indicative of

malignancy. Conversely, for slow-growing lesions, the mechanism

suppresses calcifications and other benign hyperattenuating

artifacts. This adaptability parallels the interpretive workflows of

radiologists, who analyze growth kinetics and morphological

features in conjunction—a level of contextual understanding.

The performance of MK-UNet, with a Dice coefficient of 0.7728

and a 95th percentile Hausdorff Distance (HD95) of 9.8 mm, closely

aligns with the inter-observer variability observed among radiologists,

which recent studies have reported as having an HD95 range of 8.2 –

10.1 mm. This suggests that MK-UNet is poised for semi-automated

integration into clinical practice. The model’s capability to accurately

preserve intricate structural details, such as pleural infiltration in

advanced adenocarcinomas, holds significant implications for

radiotherapy planning, where precise dose coverage is essential.

Additionally, the model’s inference time of 15 seconds per scan is

compatible with real-time clinical workflows, offering the potential to

reduce delineation time by 50 – 70% compared to manual methods. By

producing biologically informed segmentation masks, MK-UNet also

enhances subsequent radiomics analyses. For example, shape features

correlated with LVCR, such as sphericity and surface irregularity, could

serve as non-invasive indicators of tumor aggressiveness, although

prospective validation is required. Future work could leverage the high-

precision segmentation provided by MK-UNet to investigate spatial

relationships between tumor subregions (e.g., necrotic core vs. viable

tissue) and immune cell infiltration patterns. Such analysis may

uncover imaging biomarkers predictive of the therapeutic efficacy of

ICI, potentially guiding personalized treatment strategies.

The design of MK-UNet aims to ensure its seamless integration

into existing radiotherapy planning systems. Currently, mainstream

radiotherapy planning systems such as Eclipse, Monaco, and

Pinnacle all support the DICOM standard for data exchange.

Both the input and output of MK-UNet adhere to the DICOM

standard, ensuring compatibility with these systems. Additionally,

the model’s inference time is 15 seconds per scan, which matches
TABLE 2 Ablation study of MK-UNet components (test
set performance).

Configuration Dice HD95 (mm)

Baseline (3D U-Net) 0.7322 12.4

+Multi-modal Preprocessing 0.7516 11.5

+ Medical
Knowledge Fusion

0.7634 10.3

+ Lesion-aware Attention 0.7728 9.8
TABLE 3 Segmentation performance stratified by LVCR subgroups.

Model
High-

LVCR (Dice)
High-LVCR
(HD95, mm)

Low-
LVCR
(Dice)

3D U-Net 0.71 ± 0.05 12.1 ± 2.0 0.73 ± 0.04

Attention
U-Net

0.75 ± 0.04 10.5 ± 1.8 0.76 ± 0.03

MK-
UNet
(Ours)

0.79 ± 0.04 8.2 ± 1.3 0.77 ± 0.03

3D U-Net 0.71 ± 0.05 12.1 ± 2.0 0.73 ± 0.04
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the real-time requirements in radiotherapy planning and does not

significantly increase the workload of doctors. The input data of

MK-UNet is standard CT scan images, and the output is a binary

segmentation mask, both in DICOM format. This standardized data

format not only facilitates integration with radiotherapy planning

systems but also enables the model to be easily integrated into

hospital information systems (HIS) and radiology information

systems (RIS). Moreover, the high-precision segmentation results

of the model can be directly used for subsequent dose calculation

and treatment plan formulation, further enhancing work efficiency.

MK-UNet demonstrates outstanding performance in terms of

interface compatibility and adaptability to data formats, enabling

smooth integration into existing radiotherapy planning systems and

meeting the practical clinical demands.

For patients with high IES (active immune escape), the

combination of PD - 1/PD-L1 inhibitors and chemotherapy can

be given priority, while for those with low IES, monotherapy with

immunotherapy may be more suitable. This approach enables

patients to benefit more specifically from immunotherapy and

avoids overtreatment. The trend of IES generated by consecutive

CT scans can assess the dynamic changes in the immune

microenvironment, assist in determining the appropriate timing

of treatment, and also predict the degree of pathological response to

neoadjuvant immunotherapy before surgery. However, the

predictive efficacy of IES may be influenced by the tumor’s

immune phenotype. For tumors lacking immune cell infiltration,

the growth kinetics features dependent on IES may have difficulty

capturing immune escape signals. For patients with high

microsatellite instability, the high mutation burden may weaken

the predictive value of morphological features. This requires future

validation of the universality of IES in larger-scale cohorts.

Despite its innovative contributions, MK-UNet exhibits several

limitations. Firstly, the calculation of LVCR necessitates longitudinal

CT data, potentially limiting its applicability to patients with incidental

findings on initial scans. Future research could investigate surrogate

indicators derived from single-timepoint imaging, such as texture-

based proliferation scores. Secondly, the training data were obtained

from a single institution with uniform imaging protocols. Additionally,

the model encounters difficulties with tumors adjacent to high-

attenuation structures, such as the chest wall, where boundary

ambiguity remains an issue. The integration of anatomical priors,

such as organ-atlas registration, may alleviate this challenge. Lastly,

while LVCR improves segmentation, its prognostic value has yet to be

assessed. Establishing a link between MK-UNet’s outputs and clinical

outcomes, such as survival and recurrence, will be essential for its

translational impact. Although the initial validation showed a Dice

coefficient of 0.7728, the key characteristics of the external cohort (such

as sample size, details of scanning equipment, and differences in patient

populations) were not fully reported, which limits a comprehensive

assessment of the model’s generalization ability and clinical translation

potential in a multi-center environment. Future work will focus on

supplementing the existing external data information and conducting

rigorous validation on larger-scale and more diverse multi-center

datasets to effectively enhance the model’s universality and

robustness and promote its progress towards clinical application.
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MK-UNet enhances automated lung tumor segmentation by

effectively integrating clinical expertise with deep learning

methodologies. The incorporation of LVCR as a growth dynamic

prior, in conjunction with multi-modal preprocessing and attention

mechanisms, results in significant improvements in both accuracy

and robustness. This study illustrates the systematic encoding of

domain knowledge into AI models, thereby augmenting their

clinical relevance and interpretability. As the field of oncology

increasingly adopts data-driven tools, frameworks such as MK-

UNet are poised to play a crucial role in bridging computational

innovation with patient-centered care.
5 Methods

5.1 Data description

The dataset was retrospectively obtained from the Fourth Hospital

of Hebei Medical University and consisted of 420 lung CT scans from

patients with pathologically confirmed malignant pulmonary nodules.

All participants underwent a minimum of two CT examinations where

nodules were detectable, and none had a prior history of treatments

such as surgery, chemotherapy, or radiotherapy, nor any inflammatory

lesions. The CT scans were acquired with a slice thickness of 3 mm and

reconstructed into a standard in-plane matrix of 512 × 512 pixels,

yielding a spatial resolution of 0.6 × 0.6 mm². CT scans were

reconstructed using manufacturer-specific standard kernels: Siemens

Somatom Force scanners used the B30f kernel (soft tissue

optimization), while GE Revolution scanners used the Standard

kernel (balanced spatial resolution and noise reduction). Tumor

regions of interest (ROIs) were manually delineated by two board-

certified radiologists using 3D Slicer, with any discrepancies

adjudicated by a senior radiologist with over 15 years of experience.

Comprehensive clinical metadata, including age, gender, smoking

history, pathological grade, tumor stage, and log volume change rate

(LVCR), were systematically recorded for each patient. To explore the

potential correlation between tumormorphology and immune profiles,

we downloaded data from 50 samples with PD - 1 expression values

from the TCGA-LUAD dataset, along with their corresponding

imaging images from The Cancer Imaging Archive (TCIA). This

study received approval from the Ethics Committee of Hebei

Medical University (Approval No. 2023341), and the requirement for

informed consent was waived due to the retrospective nature of

the study.

The calculation formula for LVCR is as follows:

LVCR =
o
n

i=1
wi( lnVi − lnV)(ti −�t)

o
n

i=1
wi(ti −�t)

2

wi: The weight coefficient for the i-th measurement, which

modulates the influence of each data point based on either time

intervals(wi=ti-ti-1) or measurement error(wi=1/si
2); ti: The specific
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time point (in days) of the i-th CT scan, with t1 = 0 representing the

baseline scan; vi: The tumor volume (in cm³) measured from the i-

th CT scan, obtained through segmentation; n: The total number of

CT scans conducted.
5.2 Loss function

The training objective integrates Dice Loss and Binary Cross-

Entropy (BCE) Loss to effectively manage class imbalance and

enhance both volumetric overlap and pixel-wise classification

accuracy. Dice Loss measures the similarity between the predicted

binary mask A and the ground truth mask B. The Dice coefficient is

defined as follows::

Dice(A, B) =
2� A ∩ Bj j
Aj j + Bj j

where ∣A∩B∣ represents the intersection of the two masks, and

∣A∣+∣B∣ denotes their union.
The Dice Loss is then calculated as:

DiceLoss(A, B) = 1 −
2� A ∩ Bj j
Aj j + Bj j

A smaller Dice Loss indicates higher overlap between

predictions and ground truth.

The BCE Loss is computed as:

BCE Loss  = −
1
No

N

i=1
½yilog(p(yi)) + (1 − yi)log(1 − p(yi))�

where N denotes the total number of voxels within the input

volume. BCE Loss assesses classification errors on a per-voxel basis

by penalizing deviations from the true label distribution. Each voxel

is assigned a binary label y∈ {0,1}, representing the ground truth

classification as either background or tumor, while p(y) denotes the

predicted probability of the voxel belonging to the tumor class. The

loss approaches zero when predictions align perfectly with labels

(e.g., p(y)→1 if y = 1, or p(y)→0 if y = 0).

The final hybrid loss is a weighted sum of the two components:

Total Loss = l1Dice (A, B) + l2DiceLoss (A, B), with l1=0.6 and l2
=0.4 empirically determined to balance segmentation accuracy and

boundary precision.
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