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Background: Despite advances in immunotherapy, durable responses in lung
cancer remain limited to a subset of patients, underscoring the need for
biomarkers capturing spatial immune-tumor interactions. Current methods, such
as PD-L1 immunohistochemistry, suffer from sampling bias and fail to decode
dynamic immune evasion mechanisms non-invasively.

Methods: We developed a radiomics framework integrating longitudinal tumor
growth kinetics (log volume change rate, LVCR) with deep learning to: (1) delineate
tumors via medical knowledge-guided segmentation; and (2) derive an Immune
Evasion Score (IES) predicting immunosuppressive niches. The model employs
immune-aware attention gates (IAAG) to prioritize regions associated with
aggressive growth (high LVCR) and immune evasion.

Results: Validated on 420 CT scans, our approach achieved superior segmentation
accuracy (Dice=0.7728 + 0.03; HD95 = 9.8 + 1.5 mm) over existing models.
Critically, the IES predicted PD-L1 expression (AUC = 0.85; *p*<0.001) and CD8+
T-cell exclusion (*p*<0.01). High IES correlated with rapid immunotherapy
progression (HR = 2.3, *p*=0.004), and spatial analysis confirmed 72.3%
concordance between IAAG-prioritized regions and pathological PD-L1+ niches.
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Conclusion: This work establishes a non-invasive paradigm for mapping
immunosuppressive microenvironments, bridging precision radiotherapy with
immunotherapy personalization. The IES provides a dynamic biomarker of
immune evasion, potentially guiding patient stratification for checkpoint inhibitors.

tumor immune microenvironment, immunotherapy response, radiomic biomarkers,
precision radiotherapy, tumor growth kinetics

1 Introduction

Lung cancer continues to be the most significant contributor to
cancer-related morbidity and mortality on a global scale (1).
According to the GLOBOCAN 2018 estimates, lung cancer was
the most diagnosed cancer and the leading cause of cancer death
worldwide, accounting for 11.6% of the total cancer cases and 18.4%
of the total cancer deaths (2, 3). This trend is expected to persist, as
projections for 2050 indicate a substantial increase in both
incidence and mortality rates, with an estimated 3.8 million new
cases and 3.2 million deaths globally (4, 5).

The burden of lung cancer is not uniform across different
regions and demographics. For instance, the incidence and
mortality rates are higher in countries with a higher Human
Development Index (HDI), and there are notable disparities
between sexes, with men generally exhibiting higher rates than
women (6, 7). However, recent trends have shown an increase in
lung cancer cases among female never-smokers, highlighting the
evolving epidemiological landscape of this disease (8).

Contemporary management strategies focus on three pillars:
prevention, early detection, and therapeutic innovation (9). While
tobacco exposure remains the primary modifiable risk factor, the
emergence of immunotherapy has fundamentally transformed the
treatment paradigm (10, 11). Immune checkpoint inhibitors (ICIs), a
cornerstone of immunotherapy, including anti-PD-1 antibodies (e.g.,
pembrolizumab) and anti-PD-L1 antibodies (e.g., atezolizumab),
occupy a central position in the management of advanced lung
cancer. Paradoxically, durable responses to ICIsoccurs in only 20 -
30% of patients (12), underscoring a critical need for biomarkers
capable of decoding spatial tumor-immune interactions that
determine therapeutic efficacy (13). Static scans capture only a single
time point, failing to reflect dynamic immune-tumor crosstalk—for
example, rapid tumor growth under immune pressure (often linked to
PD-L1 upregulation) or real-time remodeling of the immune
microenvironment during treatment. This imperative is heightened

Abbreviations: LVCR, Log volume change rate; IES, Immune Evasion Score;
TAAG, Immune-aware attention gates; HDI, Human Development Index; ICI,
Immune checkpoint inhibitors; HU, Hounsfield Units; GLCM, Gray-level co-
occurrence matrix; AG, Attention gate; LVCR, Lymphovascular cancer

recurrence; IEEP, Immune Evasion Phenotype Prediction.
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by limitations of current gold-standard approaches: PD-L1
immunohistochemistry suffers from spatial sampling bias, while
tumor mutational burden assessment lacks accessibility in resource-
limited settings. Clinical PD-L1 THC relies on needle biopsies, but
tumor heterogeneity means these samples may not represent the
overall immune phenotype. Approximately 30% of lung cancer
patients exhibit spatial variability in PD-L1 expression, leading to
potential misclassification (14, 15).

Within this context, precise tumor delineation assumes dual
significance. First, it remains foundational for radiotherapy
planning, where millimeter-level accuracy determines therapeutic
index. Second, and perhaps more innovatively, it enables spatial
characterization of immune infiltrates within the tumor
microenvironment—a determinant of immunotherapy response.
Deep learning models, particularly 3D U-Net variants, have recently
emerged as highly effective tools for automated tumor delineation.
Unlike traditional methods—such as threshold-based approaches
(prone to error in heterogeneous tissues) or region-growing
algorithms (limited by edge ambiguity)—deep learning
segmentation uses convolutional neural networks to learn
hierarchical features, adapting to irregular tumor margins and
necrotic cores common in lung cancer. These advanced models
utilize large-scale CT datasets containing substantial information,
enabling efficient extraction of high-dimensional features (16, 17).
On public benchmarks, they achieve Dice coefficients ranging from
0.73 to 0.75. For instance, recent studies demonstrate that Attention
U-Net significantly improves segmentation accuracy by dynamically
weighting features through attention gates, facilitating more
precise analysis.

However, several critical limitations remain. First, these models
exhibit limited clinical interpretability, primarily functioning as
“black boxes” without incorporating domain-specific medical
knowledge such as tumor biology or patient demographics.
Consequently, their ability to capture heterogeneous tumor
morphologies—including infiltrative margins or necrotic cores—is
constrained. Second, their reliance on single-timepoint imaging
restricts capacity for monitoring dynamic tumor progression or
regression, as longitudinal CT data are seldom utilized. Static
imaging fails to capture dynamic immune-tumor interactions
(e.g., PD-L1 upregulation during rapid tumor growth), while
clinical PD-L1 detection suffers from spatial sampling bias due to
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tumor heterogeneity (18, 19). Finally, these models show
suboptimal precision in complex cases, particularly with small
nodules (<2 c¢cm) and low-contrast regions, often producing
fragmented or over-segmented outputs that may compromise
clinical decision-making.

To address these challenges, we propose MK-UNet, a medical
knowledge-guided 3D U-Net architecture that synergizes
multimodal imaging data with clinical metadata and tumor
biomarkers through three transformative innovations: 1. Dynamic
Immuno-Phenotypic Fusion: Clinical metadata and tumor
biomarkers (including growth rate quantified via log volume

10.3389/fimmu.2025.1664726

change rate, LVCR) are encoded to prioritize regions exhibiting
immune-evasive morphology. 2. Multimodal Immune-Relevant
Enhancement: Edge-optimized preprocessing targets boundary
features predictive of T-cell exclusion patterns.

3. Longitudinal Immune Monitoring: Sequential CT analysis
captures temporal changes in immune-reactive niches.

Initial validation studies revealed MK-UNet’s capacity to
simultaneously address two critical clinical needs: achieving
superior segmentation accuracy (Dice coefficient 0.7728; 22%
reduction in Hausdorff distance) while enabling precise mapping
of immunologically relevant regions. This dual functionality

FIGURE 1

From left to right: (A) original image, (B) edge enhancement image, (C) Gaussian filter noise reduction image, (D) contrast enhancement image.
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FIGURE 2

From left to right: original image, Windowing filtered image().

establishes the framework as a promising methodology for
advancing precision approaches in immuno-oncology, particularly
for stratifying patients likely to benefit from checkpoint inhibitors.

2 Results
2.1 Data preprocessing

2.1.1 Multi-modal preprocessing

To improve the robustness of the neural network, raw 3D CT
volumes underwent preprocessing to form a 4-channel input using
three complementary algorithms: edge enhancement, Gaussian
denoising, and contrast optimization. The first channel preserved
the original CT Hounsfield Units (HU) values (high threshold=0.2,
low threshold=0.1, determined from the distribution of tumor edge
pixels in the training set), while the remaining three channels were
generated as follows: 1. Edge enhancement was achieved through
Canny edge detection, implemented in Python with a sigma value of
1.5, to accentuate tumor boundaries and structural details; 2.
Gaussian denoising was performed using a 3D Gaussian filter
with a kernel size of 3 and a sigma of 0.8 to reduce noise while
maintaining anatomical features; 3. Contrast optimization involved
linearly scaling pixel intensities to the range [0, 255] to exploit the
full 256 gray levels. A gray-level co-occurrence matrix (GLCM) was
calculated within a sliding window of 5x5x5 voxels, from which
contrast attributes were derived to enhance texture differentiation
between tumors and adjacent tissues. Furthermore, data
augmentation techniques were employed during training to
enhance model generalization, including random rotation, scaling,
translation, and the addition of Gaussian noise. These techniques
were implemented in Python and executed dynamically, the details
are available in the “attention_CT_unet.ipynb” file.

The preprocessing pipeline is illustrated in Figure 1, and the
implementation details are available in the “preprocess.py” file.
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2.1.2 Adaptive windowing filtering

To enhance input quality and eliminate extraneous background
regions, an adaptive windowing filter was employed during the
preprocessing phase. This filter dynamically adjusted the threshold
for each voxel based on the intensity distribution of annotated
tumor regions. Specifically, the threshold T(x,y,z) was determined
using the formula: T(x,9,2) = Uwumort1.50twmor Where Uymor and
Otumor represent the mean and standard deviation of tumor voxel
intensities, respectively. Voxels with intensities below this threshold
were masked out, thereby effectively removing non-tumor regions
(such as healthy tissues and air cavities) while preserving the
boundaries and internal texture details of the tumor.

This windowing process substantially reduced background
noise and enhanced the contrast between tumors and
surrounding tissues, as demonstrated in Figure 2. The figure
presents, from left to right, the original CT slice and the filtered
result following adaptive windowing. Detailed implementation and
parameter settings can be found in the “windowing.ipynb”file.

2.2 MK-UNet architecture

The MK-UNet framework is a sophisticated 3D U-Net-based
segmentation model that integrates medical knowledge and
attention mechanisms to enhance the prioritization of tumor-
related regions while incorporating clinical metadata. As depicted
in Figure 3, the architecture follows an encoder-decoder paradigm,
featuring adaptive feature fusion and hierarchical attention gating.

The encoder pathway comprises four sequential downsampling
blocks, each reducing spatial resolution by 50% (e.g., from HxW;
xD; to Hy=H,/8xW,=W,/gxD,=D;/g) and simultaneously doubling
the number of feature channels. To mitigate information loss during
downsampling, attention gate (AG) are incorporated at each skip
connection. The architecture of the AG, detailed in Figure 4,
involves dynamically weighting encoder features using contextual
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FIGURE 3

The overview of MK-UNet framework. The 6-dimensional clinical vector is spatially expanded and concatenated with the 256-channel feature map
at the channel level. The 256-channel feature map (derived from CT scan voxels within manually annotated tumor ROIs) is concatenated with

clinical vectors at the bottleneck layer.

information from coarser decoder layers through a gating
mechanism. This mechanism integrates encoder and decoder
features via learnable convolutions, applying a sigmoid activation
to produce spatial attention maps that emphasize tumor boundaries
and suppress irrelevant background noise.

Frontiers in Immunology

Six clinical and tumor biomarkers—namely age, gender, smoking
history, pathological grade, tumor stage, and lymphovascular cancer
recurrence (LVCR)—are encoded into a six-dimensional vector.
Discrete features, such as gender, are represented using one-hot
encoding, whereas continuous variables, such as age, are normalized
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The architecture of the attention Gate. The attention weights are computed using tumor boundary voxels (from preprocessed CT scans) with high

gradient values, prioritizing regions with irregular margins.

to a range of [0, 1]. Within the bottleneck layer of the encoder, this
vector undergoes spatial expansion to align with the dimensions of the
deepest feature map and is subsequently concatenated channel-wise
with the encoded imaging features. This integration furnishes the
network with supplementary clinical context, thereby directing its
focus towards regions associated with aggressive tumor phenotypes,
such as irregular margins that are indicative of advanced TNM stages.

The decoder pathway incrementally restores spatial resolution
utilizing transposed 3D convolutions and trilinear interpolation. At
each stage, the upsampled features are integrated with gated skip
connections from the encoder through concatenation, followed by
the application of 3D convolutions to enhance boundary details.
The ultimate output is a voxel-wise probability map, produced via a
sigmoid-activated convolutional layer.

Significant advancements encompass attention-guided feature
selection, which serves to filter out extraneous background features,
and clinically informed feature fusion, aimed at enhancing segmentation
robustness for heterogeneous tumors. Detailed implementation specifics
can be found in the model_architecture.py file.

2.3 Quantitative evaluation on test set

The proposed MK-UNet model was assessed using a test set
comprising 60 CT scans, representing 14.3% of the total dataset of 420
cases. The data was divided into 300 training cases (71.4%), 60
validation cases (14.3%), and 60 test cases (14.3%). This distribution
is consistent with standard practices in medical image analysis for
datasets of moderate size, ensuring an adequate amount of training
data while preserving the ability to conduct a robust evaluation. As
illustrated in Table 1, MK-UNet achieved a Dice coefficient of 0.7728 +
0.03 and an Intersection over Union (IoU) of 0.6471, surpassing
baseline models such as the 3D U-Net (Dice: 0.7322 + 0.05, IoU:
0.6223) and the Attention U-Net (Dice: 0.7527 + 0.04, IoU: 0.6302).
The Hausdorff Distance 95th percentile (HD95) further underscored
the superiority of MK-UNet, with a boundary alignment error of 9.8 +
1.5mm, in comparison to 12.4 + 2.1mm for the 3D U-Net and 11.2 +
1.8mm for the Attention U-Net. Statistical significance was verified
through paired t-tests (p < 0.01), indicating consistent improvements
across all evaluated metrics.

Frontiers in Immunology

2.4 Qualitative assessment

Visual comparisons of segmentation outcomes, as depicted in
Figure 5, underscore the proficiency of MK-UNet in managing
intricate tumor morphologies. Specifically, in instances of
infiltrative adenocarcinoma characterized by irregular margins,
the model successfully maintained fine structural details, such as
pleural extensions, which were frequently oversmoothed by the 3D
U-Net. In contrast, for benign nodules, MK-UNet adeptly excluded
inflammatory regions that were misclassified as tumors by
alternative models.

2.5 Ablation study

To evaluate the contribution of each component of the MK-
UNet architecture, an ablation study was performed utilizing a
consistent training protocol, which included the Adam optimizer
with a learning rate of 1x10—4, a batch size of 2, and 150 epochs on
an NVIDIA RTX 4090. As illustrated in Table 2, the baseline 3D U-
Net achieved a Dice coefficient of 0.7322 and an HD95 of 112.4 mm.
The integration of multi-modal preprocessing techniques, such as
edge enhancement, Gaussian denoising, and adaptive windowing,
resulted in an improved Dice coefficient of 0.7516 and a reduction
in HD95 to 11.5 mm, underscoring the significance of enhanced
input quality. Further incorporation of medical knowledge fusion,
including clinical metadata and tumor biomarkers, led to an
increase in the Dice coefficient to 0.7634 and a decrease in HD95
to 10.3 mm. The final model, which included lesion-aware
attention, achieved optimal performance with a Dice coefficient of
0.7728 and an HD95 of 9.8 mm, thereby demonstrating the
synergistic effect of attention mechanisms and the integration of
clinical priors.

2.6 Computational efficiency

Training the MK-UNet model on a dataset of 300 computed
tomography (CT) volumes necessitated approximately 24 hours of
computational time utilizing an NVIDIA RTX 4090 GPU. The
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TABLE 1 Segmentation performance comparison on the test set (n=60).

Model Dice Intersection over HD95

coefficient Union (loU) (mm)
3D U-Net 0.7322+ 0.05 0.6223 124 £ 2.1
3D ResNet 0.7231+ 0.06 0.6178 131 +23
Attention 0.7527+ 0.04 0.6302 112+18
U-Net R ’ e
MK-

0.7728 0.03 0.6471 98+ 15

UNet (Ours)

model demonstrated an average inference time of 15 seconds per
scan, with each scan comprising dimensions of 512x512x40 voxels.
Notwithstanding the increased complexity introduced by the
integration of medical knowledge fusion and attention gates, the
model’s parameter count remained comparable to that of the
standard 3D U-Net, with 28.5 million parameters versus 27.9
million, respectively. This parameter efficiency underscores the
model’s suitability for clinical application.

2.7 Immune evasion phenotype prediction
and dynamic modeling

To establish a theoretical link between tumor growth dynamics
and immune microenvironmental characteristics, we propose an
Immune Evasion Phenotype Prediction (IEEP) framework. This
framework integrates longitudinal imaging biomarkers (e.g., LVCR)
with deep learning to decode spatially heterogeneous immune-
suppressive patterns. The implementation comprises three
key components:

2.7.1 LVCR-Driven Modeling of Immune Evasion
Mechanisms

The Log Volume Change Rate (LVCR) quantifies tumor
proliferative aggressiveness using sequential CT scans. Tumors
with high LVCR (>0.15/day) are typically associated with hypoxic
microenvironments, which upregulate PD-L1 expression via HIF -
Lo signaling and promote stromal fibrosis to impede CD8+ T-cell
infiltration. To capture these phenotypes, LVCR is encoded into a
6D clinical vector and spatially concatenated with the bottleneck
features of the U-Net. This fusion prioritizes regions exhibiting
radiological hallmarks of immune evasion (e.g., spiculated margins,
necrotic cores) during feature decoding.

2.7.2 Immune-aware attention gates enhance
segmentation accuracy

We design a novel attention mechanism that dynamically
weights encoder-decoder features based on both imaging patterns
and LVCR values:

o =0- (We[fenc) fdeo LVCR] + b9)

where o denotes the sigmoid activation, and Wy, by are
learnable parameters. The JAAG enhances boundary features in
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high-LVCR regions (e.g., irregular margins, necrosis) while
suppressing homogeneous areas linked to immune “cold”
phenotypes (e.g., calcifications).

The proposed TAAG mechanism significantly improved
segmentation performance in immune-suppressive subregions.
For high-LVCR tumors (n=25), MK-UNet achieved a Dice
coefficient of 0.79 + 0.04 and HD95 of 8.2 + 1.3 mm,
outperforming the baseline 3D U-Net (Dice=0.71 + 0.05, HD95 =
12.1 £ 2.0 mm) and Attention U-Net (Dice=0.75 + 0.04, HD95 =
10.5 + 1.8 mm) (Table 3). Visual analysis demonstrated that IAAG
effectively prioritized spiculated margins and necrotic cores,
reducing over-segmentation in homogeneous regions.

2.7.3 Immune microenvironment correlation

The immune escape score (IES) is defined as a comprehensive
score based on three prognosis-related parameters: tumor growth
rate, morphological heterogeneity, and expression of immune
markers. From segmented masks, IES integrated three prognostic
indices: IES = 0.6 - LVCR + 0.3(1-Sphericity) + 0.1 - PD-L1"Area
Ratio. IES weights were determined via multi-factor Cox regression
analysis, based on the prognostic strength of each indicator: LVCR
(HR = 1.8, p<0.001), sphericity (HR = 1.3, p=0.02), and PD-
L1"Area Ratio (HR = 1.1, p=0.04). To verify the applicability of
the Cox proportional hazards model, we conducted the Schoenfeld
residual test. The results showed that neither the global test nor the
residual-time correlation of the IES group was significant, satisfying
the proportional hazards assumption. To validate the biological
plausibility of IAAG, we reference an independent cohort from
TCGA-LUAD, where CT-based spiculation length positively
correlated with PD-L1 positivity (IHC, r = 0.38, P = 0.002).

Post-hoc radiomic analysis of MK-UNet segmentation masks
revealed that tumors with irregular margins (sphericity <0.6)
exhibited lower CD8+ T-cell density (r=0.41, p=0.007) and higher
PD-LI expression (r=0.38, p=0.01) compared to spherical tumors.
These results corroborate prior studies linking jagged tumor
boundaries to immune-excluded phenotypes.

3 Discussion

The MK-UNet framework constitutes a substantial advancement
in the automated segmentation of lung tumors by methodically
integrating clinical parameters—specifically, the log volume change
rate (LVCR)—with deep learning architectures. This study addresses a
crucial limitation of extant methodologies, which primarily depend on
imaging data alone and overlook clinically validated indicators that
capture tumor growth dynamics. Our findings reveal that the
inclusion of LVCR as a dynamic prior significantly improves
segmentation accuracy, especially for tumors with indistinct
boundaries or heterogeneous growth patterns. In the following
discussion, we situate these findings within the broader context of
medical image analysis, highlighting both the technical innovations
and the clinical significance of our approach. Current models mainly
rely on static image data and are unable to capture the dynamic
changes in the tumor immune microenvironment, thereby limiting
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From left to right: input image, predicted output (tumor segmentation location), and ground truth (manual labeling). The input CT slice (left) includes
the entire lung field, but the model only processes the cropped tumor region (delineated by the red box in the input image) for segmentation.

their application in predicting the response to immunotherapy (20).
MK-UNet significantly addresses this deficiency by introducing
longitudinal tumor growth kinetics (Log Volume Change Rate,
LVCR) as dynamic prior information. Firstly, LVCR not only helps
the model identify tumor regions with aggressive growth patterns but
also provides temporal guidance for feature extraction, enabling the

Frontiers in Immunology

model to better understand the changing trends of tumors at different
time points. Secondly, by designing immune-aware attention gates
(IAAG), MK-UNet can prioritize the attention to morphological
features related to immune escape, such as irregular edges and
necrotic cores, in regions with high LVCR, thereby improving
segmentation accuracy and enhancing the recognition ability of
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TABLE 2 Ablation study of MK-UNet components (test
set performance).

Configuration Dice HD95 (mm)
Baseline (3D U-Net) 0.7322 124
+Multi-modal Preprocessing 0.7516 115

+ Medical 0.7634 103
Knowledge Fusion

+ Lesion-aware Attention 0.7728 9.8

immunosuppressive microenvironments. Additionally, the immune
evasion score (IES) further integrates tumor growth rate,
morphological heterogeneity, and expression levels of immune
markers, providing a quantitative indicator for dynamic monitoring
of the tumor immune status. These innovations enable MK-UNet not
only to achieve precise tumor segmentation but also to provide strong
support for the selection of personalized immunotherapy regimens,
truly realizing the transition from static to dynamic and filling the gap
in dynamic monitoring of existing models.

A significant advancement of MK-UNet is its explicit
incorporation of the Longitudinal Volume Change Rate (LVCR), a
quantitative metric for assessing tumor growth rate derived from
sequential CT scans. Traditional models rely on static features like
age, gender, or baseline tumor size—variables that do not capture
dynamic shifts in immune evasion (21). In contrast, LVCR quantifies
the longitudinal changes in tumor volume, directly reflecting how
tumors evolve under immune monitoring. This dynamic dimension is
irreplaceable (22). In contrast to traditional segmentation models that
consider tumors as static anatomical entities, MK-UNet utilizes LVCR
to deduce temporal growth dynamics, thereby facilitating adaptive
feature learning. Tumors with rapid growth (indicated by high LVCR)
frequently present with irregular margins and necrotic cores, which
pose challenges to conventional models. By integrating LVCR into the
network, MK-UNet emphasizes regions with substantial spatial
heterogeneity, aligning its focus with the diagnostic reasoning
employed by radiologists. According to previous literature research, a
DICE of 0.7728 is acceptable (23, 24). This methodology is
substantiated by the results of an ablation study: excluding LVCR
from the medical knowledge vector resulted in a 1.9% decrease in the
Dice coefficient (from 0.7728 to 0.7539) and a 1.4 mm increase in
HD95 errors (from 9.8 to 11.2 mm). These findings highlight the
critical importance of incorporating domain-specific knowledge into
model design, a strategy that has been infrequently explored in
previous research.

The multi-modal preprocessing pipeline, which integrates edge
enhancement, Gaussian denoising, and adaptive windowing,
operates synergistically with LVCR to enhance tumor-related
signals. Edge enhancement serves to delineate subtle boundaries
between tumors and adjacent parenchyma, while adaptive
windowing dynamically adjusts intensity thresholds based on
LVCR values. This dual approach has demonstrated efficacy for
subsolid nodules, where conventional intensity-based methods
frequently fall short. For instance, in scenarios of pseudo
progression, characterized by inflammatory changes that mimic
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TABLE 3 Segmentation performance stratified by LVCR subgroups.

W High- High-LVCR

LVCR (Dice) (HD95, mm)
3D U-Net 0.71 £ 0.05 12.1 £2.0 0.73 £ 0.04
Attention

0.75 + 0.04 105+ 1.8 0.76 £ 0.03

U-Net
MK-
UNet 0.79 + 0.04 82+ 13 0.77 £ 0.03
(Ours)
3D U-Net 0.71 £ 0.05 12.1 £2.0 0.73 £ 0.04

tumor growth, LVCR-guided filtering reduced false positives by
18% compared to the Attention U-Net. In addition, LVCR, as a
dynamic indicator of tumor growth kinetics, captures the temporal
changes of immune evasion that cannot be reflected by static
metadata. The lesion-aware attention mechanism further refines
this process by dynamically weighting spatial and channel features.
In the case of high-LVCR tumors, attention gates prioritize voxels
with spiculated margins or internal necrosis, which are indicative of
malignancy. Conversely, for slow-growing lesions, the mechanism
suppresses calcifications and other benign hyperattenuating
artifacts. This adaptability parallels the interpretive workflows of
radiologists, who analyze growth kinetics and morphological
features in conjunction—a level of contextual understanding.

The performance of MK-UNet, with a Dice coefficient of 0.7728
and a 95th percentile Hausdorft Distance (HD95) of 9.8 mm, closely
aligns with the inter-observer variability observed among radiologists,
which recent studies have reported as having an HD95 range of 8.2 -
10.1 mm. This suggests that MK-UNet is poised for semi-automated
integration into clinical practice. The model’s capability to accurately
preserve intricate structural details, such as pleural infiltration in
advanced adenocarcinomas, holds significant implications for
radiotherapy planning, where precise dose coverage is essential.
Additionally, the model’s inference time of 15 seconds per scan is
compatible with real-time clinical workflows, offering the potential to
reduce delineation time by 50 - 70% compared to manual methods. By
producing biologically informed segmentation masks, MK-UNet also
enhances subsequent radiomics analyses. For example, shape features
correlated with LVCR, such as sphericity and surface irregularity, could
serve as non-invasive indicators of tumor aggressiveness, although
prospective validation is required. Future work could leverage the high-
precision segmentation provided by MK-UNet to investigate spatial
relationships between tumor subregions (e.g., necrotic core vs. viable
tissue) and immune cell infiltration patterns. Such analysis may
uncover imaging biomarkers predictive of the therapeutic efficacy of
ICI, potentially guiding personalized treatment strategies.

The design of MK-UNet aims to ensure its seamless integration
into existing radiotherapy planning systems. Currently, mainstream
radiotherapy planning systems such as Eclipse, Monaco, and
Pinnacle all support the DICOM standard for data exchange.
Both the input and output of MK-UNet adhere to the DICOM
standard, ensuring compatibility with these systems. Additionally,
the model’s inference time is 15 seconds per scan, which matches
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the real-time requirements in radiotherapy planning and does not
significantly increase the workload of doctors. The input data of
MK-UNet is standard CT scan images, and the output is a binary
segmentation mask, both in DICOM format. This standardized data
format not only facilitates integration with radiotherapy planning
systems but also enables the model to be easily integrated into
hospital information systems (HIS) and radiology information
systems (RIS). Moreover, the high-precision segmentation results
of the model can be directly used for subsequent dose calculation
and treatment plan formulation, further enhancing work efficiency.
MK-UNet demonstrates outstanding performance in terms of
interface compatibility and adaptability to data formats, enabling
smooth integration into existing radiotherapy planning systems and
meeting the practical clinical demands.

For patients with high IES (active immune escape), the
combination of PD - 1/PD-L1 inhibitors and chemotherapy can
be given priority, while for those with low IES, monotherapy with
immunotherapy may be more suitable. This approach enables
patients to benefit more specifically from immunotherapy and
avoids overtreatment. The trend of IES generated by consecutive
CT scans can assess the dynamic changes in the immune
microenvironment, assist in determining the appropriate timing
of treatment, and also predict the degree of pathological response to
neoadjuvant immunotherapy before surgery. However, the
predictive efficacy of IES may be influenced by the tumor’s
immune phenotype. For tumors lacking immune cell infiltration,
the growth kinetics features dependent on IES may have difficulty
capturing immune escape signals. For patients with high
microsatellite instability, the high mutation burden may weaken
the predictive value of morphological features. This requires future
validation of the universality of IES in larger-scale cohorts.

Despite its innovative contributions, MK-UNet exhibits several
limitations. Firstly, the calculation of LVCR necessitates longitudinal
CT data, potentially limiting its applicability to patients with incidental
findings on initial scans. Future research could investigate surrogate
indicators derived from single-timepoint imaging, such as texture-
based proliferation scores. Secondly, the training data were obtained
from a single institution with uniform imaging protocols. Additionally,
the model encounters difficulties with tumors adjacent to high-
attenuation structures, such as the chest wall, where boundary
ambiguity remains an issue. The integration of anatomical priors,
such as organ-atlas registration, may alleviate this challenge. Lastly,
while LVCR improves segmentation, its prognostic value has yet to be
assessed. Establishing a link between MK-UNet’s outputs and clinical
outcomes, such as survival and recurrence, will be essential for its
translational impact. Although the initial validation showed a Dice
coefficient of 0.7728, the key characteristics of the external cohort (such
as sample size, details of scanning equipment, and differences in patient
populations) were not fully reported, which limits a comprehensive
assessment of the model’s generalization ability and clinical translation
potential in a multi-center environment. Future work will focus on
supplementing the existing external data information and conducting
rigorous validation on larger-scale and more diverse multi-center
datasets to effectively enhance the model’s universality and
robustness and promote its progress towards clinical application.
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4 Conclusion

MK-UNet enhances automated lung tumor segmentation by
effectively integrating clinical expertise with deep learning
methodologies. The incorporation of LVCR as a growth dynamic
prior, in conjunction with multi-modal preprocessing and attention
mechanisms, results in significant improvements in both accuracy
and robustness. This study illustrates the systematic encoding of
domain knowledge into AI models, thereby augmenting their
clinical relevance and interpretability. As the field of oncology
increasingly adopts data-driven tools, frameworks such as MK-
UNet are poised to play a crucial role in bridging computational
innovation with patient-centered care.

5 Methods

5.1 Data description

The dataset was retrospectively obtained from the Fourth Hospital
of Hebei Medical University and consisted of 420 lung CT scans from
patients with pathologically confirmed malignant pulmonary nodules.
All participants underwent a minimum of two CT examinations where
nodules were detectable, and none had a prior history of treatments
such as surgery, chemotherapy, or radiotherapy, nor any inflammatory
lesions. The CT scans were acquired with a slice thickness of 3 mm and
reconstructed into a standard in-plane matrix of 512 x 512 pixels,
yielding a spatial resolution of 0.6 x 0.6 mm® CT scans were
reconstructed using manufacturer-specific standard kernels: Siemens
Somatom Force scanners used the B30f kernel (soft tissue
optimization), while GE Revolution scanners used the Standard
kernel (balanced spatial resolution and noise reduction). Tumor
regions of interest (ROIs) were manually delineated by two board-
certified radiologists using 3D Slicer, with any discrepancies
adjudicated by a senior radiologist with over 15 years of experience.
Comprehensive clinical metadata, including age, gender, smoking
history, pathological grade, tumor stage, and log volume change rate
(LVCR), were systematically recorded for each patient. To explore the
potential correlation between tumor morphology and immune profiles,
we downloaded data from 50 samples with PD - 1 expression values
from the TCGA-LUAD dataset, along with their corresponding
imaging images from The Cancer Imaging Archive (TCIA). This
study received approval from the Ethics Committee of Hebei
Medical University (Approval No. 2023341), and the requirement for
informed consent was waived due to the retrospective nature of
the study.

The calculation formula for LVCR is as follows:

n RN _
Swi(InV; =InV)(t; - 1)
LVCR = =

n
72
Swilti = 1)
i=1
w;: The weight coefficient for the i-th measurement, which

modulates the influence of each data point based on either time
intervals(w;=t-t;_;) or measurement error(wi=1/07); t; The specific
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time point (in days) of the i-th CT scan, with t; = 0 representing the
baseline scan; v;: The tumor volume (in cm?®) measured from the i-
th CT scan, obtained through segmentation; n: The total number of
CT scans conducted.

5.2 Loss function

The training objective integrates Dice Loss and Binary Cross-
Entropy (BCE) Loss to effectively manage class imbalance and
enhance both volumetric overlap and pixel-wise classification
accuracy. Dice Loss measures the similarity between the predicted
binary mask A and the ground truth mask B. The Dice coefficient is
defined as follows::

, 2% |AN B
DICC(A,B) = W

where |ANB| represents the intersection of the two masks, and
|A]+|B| denotes their union.
The Dice Loss is then calculated as:

2% |AN B

DiceLoss(A,B) =1 - ——F7——
|A| + [B]

A smaller Dice Loss indicates higher overlap between
predictions and ground truth.
The BCE Loss is computed as:

N
BCE Loss = — % > yilog(p(y) + (1 = y)log(1 = p(y,))]
i=1

where N denotes the total number of voxels within the input
volume. BCE Loss assesses classification errors on a per-voxel basis
by penalizing deviations from the true label distribution. Each voxel
is assigned a binary label ye {0,1}, representing the ground truth
classification as either background or tumor, while p(y) denotes the
predicted probability of the voxel belonging to the tumor class. The
loss approaches zero when predictions align perfectly with labels
(e.g, p(»)—1if y =1, or p(y)—0if y = 0).

The final hybrid loss is a weighted sum of the two components:
Total Loss = A,Dice (A, B) + A,DiceLoss (A, B), with 4,=0.6 and A,
=0.4 empirically determined to balance segmentation accuracy and
boundary precision.
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