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Background: Glioma, the most prevalent primary brain tumor, takes advantage
of lactylation, a metabolic modification linked to tumor behavior and clinical
outcomes. Despite its significance, the role of lactylation in the pathogenesis and
prognosis of glioma remains underexplored. This study established a lactylation-
derived molecular signature to predict survival and response to immunotherapy
in glioma.

Methods: Leveraging the TCGA glioma cohort, we established a lactylation-
related gene (LRG) signature via LASSO and Cox regression analyses, and its
prognostic value was validated in independent cohorts. We comprehensively
characterized the associations between the LRGs signature and
clinicopathological features, tumor immunity (immune infiltration and response
to immunotherapy), genomic instability (mutational burden and heterogeneity),
tumor stemness, and therapeutic vulnerability. In vitro validation of the
oncogenicity of HSPE1 was conducted using the CCK-8, colony formation,
transwell, and apoptosis assays in U87 and U251 glioma cells.

Results: A four-gene lactylation signature (KIF2C, CALD1, HSPE1, and IFI16) was
identified. Elevated LRGs score were correlated with advanced tumor grade,
poor prognosis, and reduced response to immunotherapy. Patients in the LRGs-
high group exhibited adverse clinicopathological features, including advanced
age, higher WHO grade, IDH wild-type status, and 1p/19g non-codeletion. The
nomogram model based on the LRGs score exhibited robust prognostic
accuracy (C-index = 0.860). LRGs-related genes were enriched in immune
regulatory pathways, such as cytokine signaling and interferon-y response
pathways. The LRGs-high group displayed increased infiltration of
immunosuppressive cells, such as M2 macrophages, MDSCs, and CAFs, and
distinct genomic instability profiles. Crucially, HSPE1 knockdown significantly
suppressed the proliferation and invasion of glioma cell lines.
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Conclusions: We defined a novel LRGs signature integrating metabolic and
immune dysregulation in glioma. This signature served as an independent
predictor of prognosis and immunotherapy. Furthermore, we identified HSPE1
as a critical driver of glioma progression.

glioma, lactylation, HSPE1, prognosis, immunotherapy

Introduction

Glioma, the most prevalent primary malignant tumor of the
central nervous system, accounts for approximately 81% of adult
CNS malignancies. These tumors originate from glial or glial
precursor cells and encompass histopathological subtypes
including astrocytoma, oligodendroglioma, ependymoma, and
oligoastrocytoma (1). The World Health Organization (WHO)
classifies malignant gliomas into low-grade glioma (LGG, WHO
II and IIT) and glioblastoma (GBM, WHO 1V), with the latter being
the most aggressive and lethal subtype (2, 3). Despite multimodal
therapy—including maximal safe resection, radiotherapy, alkylating
chemotherapy, and emerging immunotherapies—clinical outcomes
remain dismal. Specifically, patients with LGG exhibit a median
survival of 5-10 years (4), while patients with GBM rarely survive
more than 14.6 months (5). Sonodynamic therapy (SDT) is
constantly innovating and can potentially be a non-invasive
treatment for glioma in the future (6). However, prognosis is
critically affected by WHO grade, molecular alterations, such as
IDH mutation and 1p/19q codeletion, and therapeutic resistance
(7), underscoring an urgent need for more effective prognostic
biomarkers and therapeutic targets.

Advances in bioinformatics and high-throughput genomic
profiling have revolutionized cancer prognostication (8).
Molecular prognostic models can help refine risk stratification,
identify therapeutic vulnerabilities, and characterize the tumor
immune microenvironment (TIME), guiding precision oncology
approaches in glioma and other tumors (9, 10). Such models play an
indispensable role in predicting response to immunotherapy and
the development of personalized therapeutic strategies.

Lactylation—a recently discovered post-translational
modification driven by lactate—is a key regulator of cancer
metabolism and epigenetics. This modification affects diverse
oncogenic processes, including proliferation, invasion, DNA
repair, and treatment resistance (11). In GBM, the lactylation of
XRCC1 enhanced nuclear translocation and DNA repair capacity,
promoting resistance to chemoradiotherapy (12). Despite its
established role in tumor biology, the prognostic significance of
lactylation-related genes in glioma remains largely unexplored,
representing a critical knowledge gap.

To address this gap, we constructed and validated a novel
prognostic LRGs signature based on four genes (KIF2C, CALDI,
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HSPEL, and IFI16). This signature stratified patients into distinct
risk groups with significant survival differences and was associated
with immunosuppressive TIME features—particularly M2
macrophage infiltration—predicting a weak response to
immunotherapy. Further analyses revealed differential genomic
instability, tumor stemness, and therapeutic vulnerabilities
between LRGs-high and -low groups. Critically, functional
validation confirmed HSPE1 as a pro-oncogenic driver, where its
silencing suppressed glioma cell proliferation and invasion in vitro.
Our integrated analysis established the lactylation-derived signature
as a robust biomarker for prognosis and treatment response
in glioma.

Materials and methods
Data source

The glioma and other cancer cohorts used in this study were
sourced from The Cancer Genome Atlas (TCGA) (https://
portal.gdc.cancer.gov/), Chinese Glioma Genome Atlas (CGGA)
(http://www.cgga.org.cn/), Gene Expression Omnibus (GEO)
(https://www.ncbi.nlm.nih.gov/geo/), and Kaplan-Meier Plotter
(https://kmplot.com/) databases, with detailed information
provided in Table 1. According to previously published study (13,
14), a total of 354 lactylation-related genes were included and were
presented in Supplementary Table S1.

Construction of a LRGs signature

To construct a lactylation-related gene signature, we first
utilized the TCGA glioma cohort to screen for genes associated
with patient prognosis, conducting batch survival analysis using the
R package “survival”. The resulting prognostic genes were
intersected with 354 lactylation-related genes, followed by further
refinement of the overlapping genes through LASSO regression
analysis using the R package “glmnet”. Univariate and multivariate
Cox proportional hazards regression analyses were employed to
develop the LRGs model, with Cox regression performed using the
R package “survival” and forest plot visualization achieved through
the R package “ggplot2”. The chromosomal locations of the four
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TABLE 1 Details of the cohorts used in this study.

Datasets _Normal _ Tumor Clinical
tissues (N) tissues (N) data (N)
TCGA 5 701 698
GSE16011 8 276 NA
GSE43378 NA 50 50
CGGA301 NA 285 285
CGGA325 NA 313 313
CGGA693 NA 657 657
GSE4412 NA 85 85
GSE43378 NA 50 50
GSE131928 NA 28 NA
PRINA482620 NA 34 34
GSE91061 NA 101 101
KM Plotter NA 147 447

(Atezolizumab)

LRGs core genes (KIF2C, CALDI1, HSPEI, and IFI16) were
visualized using the R package “circlize”, and Spearman’s
correlation analysis was employed to examine the relationships
among these genes. Glioma patients were stratified into LRGs-high
and -low groups using the median LRGs score as a cutoff value.
Kaplan-Meier survival analysis and visualization were performed
using the R packages “survival” and “survminer” respectively.
Scatter plot was generated with the R package “ggplot2”, while
time-dependent ROC was produced and visualized using the R
packages “timeROC” and “ggplot2”.

Validation of the LRGs expression levels
and prognostic value

To validate the expression patterns of the LRGs, we utilized the
TCGA and GSE16011 cohorts to compare the differences of the
LRGs score and its core genes between normal brain and glioma
tissues. Subsequently, multiple independent cohorts, such as
CGGA301, CGGA325, CGGA693, GSE4412, and GSE43378, were
employed to evaluate the prognostic value of the LRGs. The
methodologies for generating Kaplan-Meier survival curves,
scatter plots, and time-dependent ROC curves were consistent
with those described previously.

Clinical relevance of the LRGs and
construction of a nomogram model

The TCGA and CGGA693 glioma cohorts were employed to
compare differences in gender, age, WHO grade, IDH status, and
1p/19q co-deletion between LRGs-high and -low groups of glioma
patients. Based on the TCGA glioma cohort, we incorporated five
variables, including age, WHO grade, IDH status, 1p/19q co-
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deletion, and LRGs score, to construct a predictive nomogram
model. Cox regression analysis was performed using the R
package “survival”, while the nomogram was developed and
calibration curves were plotted using the R package “rms”. Time-
dependent AUC and Decision curve analysis (DCA) were analyzed
with the R packages “timeROC” and “stdca.R”, respectively, with
visualization implemented using the R package “ggplot2”.

Functional enrichment analysis

Glioma patients in the TCGA cohort were divided into LRGs-high
and -low groups according to the median LRGs score as the cutoff
value, and differential expression analysis of the original Counts matrix
was performed using the R package “DESeq2”. Differentially expressed
genes (DEGs) were subjected to enrichment analysis through the
Metascape platform (https://metascape.org/). Concurrently, Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes
(KEGG), and Gene Set Enrichment Analysis (GSEA) were
conducted on the DEGs using the R package “clusterProfiler” for
analysis and R package “ggplot2” for visualization.

Tumor microenvironment analysis

The immune cell infiltration scores for glioma patients in the
TCGA cohort were obtained from the CIBERSORTx online
platform (https://cibersortx.stanford.edu/) based on the Cibersort
core algorithm. The infiltration of myeloid-derived suppressor cells
(MDSCs) and cancer-associated fibroblasts (CAFs) were derived
from the Tumor Immune Dysfunction Exclusion (TIDE) online
platform (http://tide.dfciharvard.edu/). The Stromal, Immune, and
ESTIMATE Scores were sourced from the Estimation of STromal
and Immune cells in MAlignant Tumor tissues using Expression
data (ESTIMATE) database (https://bioinformatics.mdanderson.
org/estimate/). We compared the differences in the
aforementioned parameters between the LRGs-high and -low
groups, and evaluated the correlations between the LRGs core
genes and these parameters. The immune subtypes in glioma
were sourced from a previously published study (15). Kaplan-
Meier survival analysis was performed to assess the significance of
immune subtypes in predicting patient survival. The single-cell
resolution data from the GSE131928 cohort were sourced from the
TISCH2 platform (http://tisch.comp-genomics.org/). We analyzed
the differentially expressed genes across various malignant cell
types, as well as the expression abundance of LRGs core genes in
different cells. Additionally, the biological functions of highly
expressed genes in malignant cells were investigated through
online analysis using the Metascape platform.

Immunotherapy predictive capability
analysis

The Cancer-immunity cycle was obtained from the Tracking
Tumor Immunophenotype (TIP) database (http://
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biocc.hrbmu.edu.cn/TIP/), which consists of seven steps: (1) release
of cancer cell antigens, (2) cancer antigen presentation, (3) priming
and activation, (4) trafficking of immune cells to tumors, (5)
infiltration of immune cells into tumors, (6) recognition of cancer
cells by T cells, and (7) killing of cancer cells. Next, we examined the
correlation between the LRGs core genes and the expression of
immune checkpoints, such as CTLA4 and PDCD1 etc., using
sequencing data from glioma patients in the TCGA cohort.
Subsequently, glioma patients were stratified into four groups
based on immune checkpoint expression levels combined with
LRGs score, and the prognostic significance of these combinations
was assessed through Kaplan-Meier survival analysis. Furthermore,
we evaluated the predictive capability of the LRGs for
immunotherapy efficacy using the TIDE algorithm and multiple
cohorts, including glioma (PRJNA482620), melanoma (GSE91061),
and atezolizumab pan-cancer (KM Plotter) datasets.

Genetic mutation analysis

Integrated mutation data for glioma samples were obtained
from the GDC portal (https://portal.gdc.cancer.gov/) and analyzed
using the R package “maftools” to identify the top 15 most
frequently mutated genes between LRGs-high and -low groups.
Subsequently, we compared overall survival differences between
patients with mutant- and wild-type variants of genes, such as TTN
and EGFR etc., and analyzed expression differences of the LRGs
core genes between mutant- and wild-type groups.

Genomic heterogeneity and tumor
stemness analyses

Tumor mutation burden (TMB) data were calculated for TCGA
glioma samples using the R package “maftools”. Microsatellite
instability (MSI) data were referenced from the study by Russell
Bonneville et al. (16). Data on tumor purity, tumor ploidy,
homologous recombination deficiency (HRD), and neoantigens
were obtained from the research by Vesteinn Thorsson et al. (15).
Tumor stemness data were derived from previous studies (17), we
acquired six stemness indicators based on mRNA expression and
methylation signatures, including RNAss, EREG-METHss, DMPss,
ENHss, and EREG-EXPss.

Chemotherapy and radiotherapy sensitivity
analyses

For chemotherapy sensitivity analysis, we extracted expression
matrix data of glioma patients from the TCGA cohort and utilized
the core algorithms of the R packages “oncoPredict” and
“pRRophetic” to calculate drug sensitivity scores by integrating
drug and cell line expression profiles provided by these tools. For
radiotherapy sensitivity analysis, we extracted data from the TCGA
glioma patients who received radiotherapy, including those with
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progressive disease/stable disease (PD/SD) and partial response/
complete response (PR/CR).

siRNA transfection, RNA isolation, and
qPCR

siRNAs were purchased from Sangon Biotech. The sequences of
the siRNAs were as follows: siCtrl: 5°-
UUCUCCGAACGUGUCACGUTT-3’; siHSPE1-1#:5-
GCAGGACAAGCGUUUAGAATT-3’; siHSPE1-2#:5"-
GAGUGCUGCUGAAACUGUATT-3". Glioma cells were seeded
in 12-well plates and transfection was initiated when the cell density
reached approximately 70%. Transfection was performed using
Lipofectamine 3000 according to the manufacturer’s instructions.
Transfection efficiency was evaluated by qRT-PCR. Total RNA was
extracted using Trizol reagent, and reverse transcription was
conducted using M-MLV Reverse Transcriptase. Quantitative
real-time PCR was carried out in triplicate using the SYBR Green
Master Mix. The following primers were used for gPCR: GAPDH-F:
5-GTCTCCTCTGACTTCAACAGCG-3’, GAPDH-R: 5’-
ACCACCCTGTTGCTGTAGCCAA-3’; HSPE1-F: 5’-
GCTGAAACTGTAACCAAAGGAGG-3’, HSPEL-R: 5’-
TCTCCAACTTTCACGCTAACTGG-3.

Western blot analysis

Western blot analysis was performed as previously described
(18). Briefly, glioma cells were lysed using RIPA lysis buffer
supplemented with a 1x protease inhibitor cocktail. Equal
amounts of protein were separated by 12% SDS-PAGE and
transferred to a 0.22 um PVDF membrane. The membranes were
blocked with 5% skimmed milk and then incubated overnight at
4°C with primary antibodies: HSPE1 (Affinity, AF0183) and B-actin
(Abmart, P30002). Following primary antibody incubation, the
membranes were incubated with the secondary antibody at room
temperature for 1 hour. Protein bands were visualized using the
Super ECL detection reagent.

Cell proliferation, colony formation and
invasion assays

Cell proliferation was assessed using the Cell Counting Kit-8
(CCK-8), following the manufacturer’s protocol. Absorbance at 450
nm was measured at the indicated time points to determine cell
viability. For colony formation assays, 1x10? cells were seeded in 6-
well plates and incubated for 14 days. After incubation, cells were
fixed with 4% paraformaldehyde and stained with 0.1% crystal
violet to visualize the colonies. For the invasion assay, 5%10* cells
were seeded into Transwell inserts with an 8 um pore size,
precoated with Matrigel. After 24 hours of incubation, the
invasive cells were stained with 0.1% crystal violet, observed
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under a microscope, and the number of invasive cells was counted
using Image] software.

Cell apoptosis assay

Apoptosis was analyzed using Annexin V-FITC/propidium
iodide (PI) double staining followed by flow cytometry. Briefly,
harvested cells were resuspended in binding buffer and incubated
with Annexin V-FITC and PI for 10 min at room temperature in the
dark. The apoptotic cell population was quantified by flow
cytometer, and data were analyzed using FlowJo software.

Statistical analysis

All statistical analyses were processed on R Studio (V4.2.1) or
GraphPad Prism 8 software, and P value < 0.05 indicated
statistically significant differences. The quantitative results are
presented as the mean + standard deviation (SD). Wilcoxon rank
sum test was used for unpaired samples, t-test was used for paired
samples, and ANOVA was used for comparisons between multiple
groups. Log Rank P test was used for Kaplan-Meier survival
analysis. Spearman test was used for Correlation analysis.

Results

Development of a LRGs signature for
glioma

The workflow of this study was depicted in Figure 1. To
establish a LRGs signature predictive of glioma prognosis, we
employed the TCGA glioma cohort as the training set. Initial
analysis identified 7,622 risk-associated genes and 5,264 protective
genes (Figure 2A). Intersection of the 7,622 risk-associated genes
with 354 known lactylation-related genes yielded 147 overlapping
candidates (Figure 2B). Subsequent LASSO regression refined this
set to 28 potential prognostic genes (Figures 2C, D). Differential
expression analysis revealed significant upregulation of nearly half
these genes in glioma versus normal brain tissues (Figure 2E).
Through integrated univariate and multivariate Cox proportional
hazards regression analyses, four lactylation-related genes—KIF2C,
CALD1, HSPEIL, and IFI16—emerged as core biomarkers, forming
the basis of the LRGs signature (Figures 2F, G). The specific Cox
regression coefficients were applied in the formula: LRGs score =
(0.20 x KIF2C expression) + (0.48 x CALD1 expression) + (0.75 X
HSPEL expression) + (0.17 x IFI16 expression) — 8 (constant)
(Figures 2H). These four genes localized to distinct chromosomal
loci: KIF2C (1p34), CALDI1 (7q33), HSPE1 (2q33), and IFI16
(1q23) (Figure 2I). Heatmap analysis demonstrated significant
positive co-expression correlations among all four genes within
glioma tissues (Figure 2J). Scatterplot illustrated that high-LRGs
score patients experienced both elevated mortality rates and
reduced survival durations (Figure 2K). Consistent with this,
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Kaplan-Meier survival curve revealed markedly inferior overall
survival for patients stratified into the LRGs-high group
compared to the -low group (Figure 2L). The LRGs signature
exhibited robust predictive capacity, with time-dependent ROC
analysis yielding area under the curve (AUC) values of 0.848
(95%CI: 0.809 - 0.887), 0.894 (95%CI: 0.860 - 0.928), and 0.827
(95%CI: 0.775 - 0.880) for 1-, 3-, and 5-year survival,
respectively (Figure 2M).

Validation of the LRGs signature

To validate the prognostic robustness of the LRGs signature, we
first quantitatively evaluated expression patterns in TCGA and
GSE16011 cohorts. This analysis confirmed significantly
upregulation of LRGs score and its core genes (KIF2C, CALDI,
HSPE], and IFI16) in glioma versus normal tissues (Figures 3A, B).
We subsequently validated the LRGs prognostic value in five
independent glioma cohorts, including CGGA301, CGGA325,
CGGA693, GSE4412, and GSE43378. Patients stratified into
LRGs-high group exhibited consistently inferior overall survival
and elevated mortality incidence compared to -low group. Time-
dependent ROC analyses demonstrated sustained predictive
accuracy, with AUC values exceeding 0.700 for 3- and 5-year
survival probabilities in all validation cohorts (Figures 3C-G).
Further quantification via Harrell’s concordance index yielded C-
index values of 0.809 (95%CI: 0.797 - 0.822; TCGA), 0.747 (95%ClI:
0.731 - 0.762; CGGA325), 0.704 (95%CI: 0.686 - 0.722; CGGA301),
0.659 (95%CI: 0.644 - 0.673; CGGA693), 0.658 (95%CIL: 0.620 -
0.695; GSE43378), and 0.618 (95%CI: 0.581 - 0.655; GSE4412),
affirming the model’s discriminative capacity (Figure 3H).
Comparative analysis against established prognostic signatures
revealed that our LRGs model achieved comparable prognostic
efficacy with greater parsimony, outperforming multi-gene
constructs including those by Zhang Q et al. (16 genes) (19),
Zhang N et al. (5 gene pairs) (20), and Zhang M et al. (10 genes)
(21) in feature economy (Figures 31-K).

Prognostic model refinement through
multivariate integration

To optimize the precision of our LRGs signature, we
systematically evaluated clinicopathological covariates influencing
glioma outcomes. Comparative analysis of TCGA and CGGA693
cohorts revealed significant differences in multiple clinical
characteristics between LRGs-high and -low glioma patient
groups—including age, WHO grade, IDH status, and 1p/19q co-
deletion—but showed no association with gender distribution
(Figures 4A, B). Next, univariate and multivariate Cox regression
analyses confirmed LRGs score, age, WHO grade, IDH status, and
1p/19q codeletion as independent risk factors (Table 2). These
variables were subsequently integrated into a comprehensive
nomogram, with calibration curves demonstrating excellent
agreement between predicted and observed survival probabilities
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FIGURE 1
Flow chart of this study.

(Figures 4C, D). The composite model achieved a Harrell’s
concordance index (C-index) of 0.860 (95% CI: 0.850 - 0.871).
Time-dependent ROC analysis further validated its predictive
efficacy, with AUC values exceeding 0.800 for 1- to 5-year
survival predictions (Figure 4E). DCA demonstrated that the
nomogram provided superior clinical net benefit compared to
using the LRGs signature alone across most threshold
probabilities, particularly at 3- and 5-year time points,
outperforming both all-treat and all-none reference strategies
(Figures 4F-H). Collectively, the integrated nomogram
demonstrated enhanced prognostic capability and clinical
applicability for glioma risk stratification.

Functional enrichment implicates the LRGs
signature in immune pathway regulation

Given the significant prognostic association of the LRGs
signature, which prompting further investigation into its
functional underpinnings in glioma biology. Differential
expression analysis between LRGs-high and -low groups
identified 1,169 significantly upregulated and 803 downregulated
genes (Figure 5A). Notably, these upregulated genes demonstrated
significant enrichment in immune signaling pathways, including
inflammatory response, cytokine signaling, and immune response
functions, while downregulated genes were primarily implicated in
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Validation of the LRGs expression levels and prognostic value was based on multiple cohorts. (A, B) TCGA and GSE16011 cohorts were used to
validate the expression levels of KIF2C, CALD1, HSPEL, IFI16, and the LRGs score between normal brain and glioma tissues, respectively. (C—G) The
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*p < 0.05, **p < 0.01, ***p < 0.001.

synaptic function and neurotransmitter transmission (Figures 5B,  and transmembrane transporter complexes (Figure 5D).
C). GO analysis revealed distinct compartmentalization = Molecular functions predominantly involved passive
characteristics, with cellular components primarily localized to  transmembrane transporter activity, gated channel function, and
synaptic membranes, collagen-containing extracellular matrices,  cytokine binding (Figure 5D). Biological process annotation
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Clinical relevance of the LRGs and optimization of the nomogram. (A, B) Differences in clinicopathologic characteristics of glioma patients between
the LRGs-high and -low groups using the TCGA and CGGA693 cohorts, including gender, age, WHO grade, IDH status, and 1p/19q co-deletion.
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demonstrated positive regulation of cytokine-mediated signaling, T
cell activation, and interferon-y response pathways, while negatively
regulating trans-synaptic signaling, membrane potential
modulation, and neurotransmitter transport (Figure 5E). KEGG
pathway analysis further confirmed involvement in oncogenic and
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(Figures 5G-1).
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immune signaling cascades, including PI3K-AKT, IL-17, and JAK-
STAT pathways (Figure 5F). GSEA of hallmark gene sets verified
significant associations with cytokine signaling, cell cycle
checkpoint regulation, and interferon response pathways
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TABLE 2 Univariate and multivariate Cox regression analyses were used to screen for risk factors for glioma using the TCGA glioma cohort.

Univariate analysis

Total
(N) Hazard ratio (95%
(@])]

Characteristics

Multivariate analysis

Hazard ratio (95%

P value ) P value

LRGs score 695 2.710 (2.411 - 3.047) < 0.001 1.456 (1.192 - 1.780) < 0.001
Gender 695

Male 398 Reference

Female 297 0.793 (0.621 - 1.012) 0.062

Age 695 1.066 (1.056 - 1.076) < 0.001 1.032 (1.020 - 1.045) < 0.001
Grade 634

G2 223 Reference Reference

G3 243 2.999 (2.007 - 4.480) < 0.001 1.801 (1.162 - 2.791) 0.009

G4 168 18.615 (12.460 - 27.812) < 0.001 2.435 (1.357 - 4.371) 0.003

IDH status 685

Mut 439 Reference Reference

WT 246 8.551 (6.558 - 11.150) < 0.001 2.089 (1.339 - 3.259) 0.001

1p/19q codel 688

Codel 170 Reference Reference

Non-codel 518 4.428 (2.885 - 6.799) < 0.001 1.699 (1.010 - 2.857) 0.046

The LRGs signature associates with
immunosuppressive microenvironment

Given the established connection between the LRGs and
immune pathways, we systematically profiled tumor-infiltrating
immune cells using the Cibersort algorithm. Patients in the
LRGs-high group exhibited significant enrichment of
immunosuppressive populations, including M0, M1, and M2
macrophages, neutrophils, regulatory T cells (Tregs), Y0 T cells,
and resting memory CD4" T cells. In contrast, other patients
showed preferential infiltration of monocytes, activated NK cells,
and activated mast cells (Figure 6A). The expression of LRGs core
genes demonstrated significant positive correlations with pro-
tumoral macrophages (particularly M2-polarized subtypes),
neutrophils, Tregs, and Y8 T cells, while being inversely correlated
with monocytes, memory B cells, and naive CD4" T cells
(Figure 6B). Complementary analyses using the TIDE and
ESTIMATE algorithms further revealed increased infiltration of
MDSCs and CAFs, along with elevated stromal, immune, and
ESTIMATE scores in glioma with high LRGs score (Figures 6C,
D). Each of these ESTIMATE metrics showed positive correlations
with the expression of all four LRGs core genes (Figures 6E).
Immunophenotypic stratification analysis revealed that patients in
the LRGs-low group predominantly exhibited the immunologically
favorable C5 subtype, while those in the -high group were
significantly enriched for the poor-prognosis C4 subtype
(Figures 6F, G).

To elucidate the cellular expression patterns of LRGs core genes,
we utilized the TISCH2 platform to analyze the GSE131928 cohort,
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with a focus on genes specifically expressed in malignant cell
populations (Figure 6H). The results revealed 27 significantly
upregulated and 55 downregulated genes in AC-like malignant
cells; 246 upregulated and 147 downregulated genes in MES-like
malignant cells; 176 upregulated and 269 downregulated genes in
NPC-like malignant cells, and 61 upregulated and 172
downregulated genes in OPC-like malignant cells (Figure 6I). We
further extracted these upregulated genes for enrichment analysis
and found that they were primarily involved in regulating cell cycle
and oncogenic pathways, such as the FOXM1 and VEGFA
pathways (Figure 6]). The LRGs core genes were specifically
expressed in various malignant cell populations, with HSPEIL
showing particularly prominent expression. Additionally, IFI16
was also expressed in monocyte/macrophage lineages and
exhausted T cell compartments (Figure 6K). Based on these
findings, we extracted the top 10 upregulated genes expressed in
each malignant cell subtype and observed significant positive
correlations with the four LRGs core genes, except for
B4GALNT]1, KIF5A, and TSFM in NPC-like malignant cells and
PIP4K2A in OPC-like malignant cells (Figure 6L).

The LRGs signature predicts response to
immunotherapy

To evaluate the role of the LRGs in tumor immunity, we
characterized cancer-immunity cycle dysregulation between
LRGs-high and -low groups. Despite elevated tumor antigen
release, patients in the LRGs-high group exhibited significantly
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FIGURE 5

Biological functions of the LRGs. (A) The volcano map showing differentially expressed genes between LRGs-high and -low groups using the TCGA
glioma cohort. (B, C) The Metascape platform was used for enrichment analysis of upregulated and downregulated genes, respectively. (D) The
radiographic histogram demonstrating LRGs-related genes were subjected to GO enrichment analysis, including MF and CC. (E) The Z-score plot
demonstrating LRGs-related genes were performed for GO enrichment analysis, including BP. (F) The chordal plot showing KEGG analysis of LRGs-
related genes. (G-I) GSEA analysis of LRGs-related genes.

impaired antigen presentation and processing capacity
(Figures 7A-C). Concurrently, these patients demonstrated
heightened immune cell recruitment to tumor peripheries but
diminished intratumoral infiltration (Figures 7D, E). Although T-
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cell recognition of tumor cells remained comparable between the
two groups, patients in the LRGs-high group exhibited significantly
reduced cytotoxic efficacy against cancer cells (Figures 7F, G).
Subsequent analysis revealed significant positive correlations
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FIGURE 6

Role of the LRGs in the tumor microenvironment. (A) Differences in infiltration of immune cells between LRGs-high and -low groups based on the
Cibersort algorithm. (B) The heatmap showing the correlation of the LRGs core genes with immune cells. (C, D) Differences in MDSCs, CAFs, and
ESTIMATE scores between LRGs-high and -low groups. (E) The heatmap showing the correlation of the LRGs core genes with ESTIMATE scores.

(F) Differences in immune subtypes between LRGs-high and -low groups. (G) Kaplan-Meier curve showing the effect of immune subtypes on
overall survival of glioma patients. C1: wound healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C6: TGF-B dominant.
(H, 1) The volcano plot displayed differentially expressed genes across various types of malignant cells based on the GSE131928 single-cell cohort.
(J) Enrichment analysis of upregulated genes in malignant cells based on the Metascape platform. (K) The expression abundance of KIF2C, CALD1,
HSPE1, and IFI16 across various cell types. (L) KIF2C, CALD1, HSPEL, and IFI16 exhibited correlations with the top 10 expressed genes in AC-like,
MES-like, NPC-like, and OPC-like malignant cells, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.
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The LRGs predicted response to immunotherapy. Differences in cancer-immunity cycle between patients in the LRGs-high and -low groups were
based on the TIP platform. (A) Stepl: release of cancer cell antigens. (B) Step2: cancer antigen presentation. (C) Step3: priming and activation.

(D) Step 4: trafficking of immune cells to tumors. (E) Step 5: infiltration of immune cells into tumors. (F) Step 6: recognition of cancer cells

by T cells. (G) Step7: killing of cancer cells. (H) The heatmap demonstrating the correlation of KIF2C, CALD1, HSPE1, and IFI16 with multiple
immunosuppressive checkpoints. (I) Differential expression of immunosuppressive checkpoints in LRGs-high and -low groups. (J—P) Kaplan-Meier
curves demonstrating the LRGs combined with CTLA4, PDCD1, CD274, HAVCR2, PDCD1LG2, TNFRSF4, or TNFRSF18 respectively, to predict overall
survival in glioma patients. (Q) Differences in TIDE scores between LRGs-high and -low groups. (R=T) Differences in survival between patients in
the LRGs-high and -low groups receiving immunotherapy were analyzed based on the glioma (PRINA482620), melanoma (GSE91061), and
atezolizumab pan-cancer (KM Plotter) cohorts. *p < 0.05, **p < 0.01, ***p < 0.001.
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between the LRGs core genes and multiple immune checkpoints,
with these checkpoints demonstrating marked upregulation in the
LRGs-high group (Figures 7H, I). Kaplan-Meier analysis
demonstrated poorer survival outcomes in patients with
concurrently elevated expression of both the LRGs and immune
checkpoints, including CTLA-4, PDCD1, CD274, HAVCR2,
PDCDILG2, TNFRSF4, or TNFRSF18 (Figures 7J-P). Multi-
platform validation incorporating TIDE algorithmic assessment,
glioma, melanoma, and atezolizumab pan-cancer immunotherapy
cohorts consistently showed that patients in the LRGs-high group
exhibited elevated TIDE score, shortened survival duration, and
attenuated therapeutic responsiveness to immune checkpoint
blockade (Figures 7Q-T). These findings collectively established
the LRGs signature as a biomarker for response to immunotherapy
in glioma.

Genetic variation of the LRGs

Given the established link between genetic alterations and
oncogenesis, we examined LRGs-associated genomic variations in
glioma progression using comprehensive mutational profiling
(Figure 8A). Mutations in critical driver genes, such as TTN,
EGFR, PTEN, NF1, and FLG, demonstrated significant
association with adverse overall survival outcomes (Figure 8B).
The expression levels of LRGs core genes were significantly
elevated in most oncogenic mutation groups, with the exception
of HSPEI suppression in FLG-mut group (Figure 8C). Conversely,
mutations in IDH1, CIC, FUBP1, or NOTCH]1 conferred favorable
prognoses, correlating with downregulation of these LRGs-
associated markers, though IFI16 expression remained unaltered
in NOTCH1-mut group (Figures 8D, E). These findings position
LRGs as molecular integrators of genetic variation influencing
glioma pathogenesis.

Associations between the LRGs and tumor
stemness, genomic heterogeneity, and
therapeutic sensitivity

Patients with elevated tumor stemness scores tend to have
poorer prognosis, and these scores can predict tumor metastasis
and recurrence. Comprehensive analysis revealed that the LRGs and
its core genes showed positive correlations with DNAss, EREG-
METHss, DMPss, ENHss, and EREG-EXPss, but negative
correlation with RNAss, suggesting that the LRGs may promote
tumor cell dedifferentiation and enhance stemness (Figures 9A-C).
Tumor patients exhibiting high heterogeneity levels face increased
risks of recurrence and mortality. Results of heterogeneity analysis
revealed that the LRGs and their core genes were positively
correlated with TMB, HRD, and LOH, while showing negative
correlations with MATH and MSI, suggesting that tumors with high
LRGs score exhibited greater genomic instability, higher mutational
burden, and potential homologous recombination deficiency
(Figures 9D-F). Chemosensitivity analysis indicated that patients
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in the LRGs-high group exhibited enhanced sensitivity to
temozolomide, cisplatin, oxaliplatin, irinotecan, teniposide, 5-
fluorouracil, and gemcitabine, but developed resistance to
olaparib, afatinib, paclitaxel, gefitinib, and erlotinib (Figure 9G).
Notably, the LRGs score was significantly elevated in the
radiotherapy non-responder (PD/SD) group compared to the
responder (PR/CR) group, further establishing LRGs as
biomarkers of therapeutic resistance Figure 9H.

HSPE1 promotes tumorigenesis in glioma

Given that HSPE1, a core LRGs gene, demonstrated the highest
hazard ratio in multivariate Cox analysis, exhibited high expression
abundance in malignant cells, and has an undefined functional role
in gliomagenesis, we selected HSPE1 for further investigation into
its ability to affect glioma cells. In U87 and U251 glioma cell models,
we successfully knocked down HSPE1 expression, as verified by
qPCR and Western blot analysis (Figures 10A, B). Functional
characterization demonstrated that HSPE1 ablation significantly
attenuated malignant phenotypes, suppressing cellular proliferation
in CCK-8 assay (Figure 10C), reducing clonogenic capacity in
colony formation assay (Figures 10D, E), and markedly
attenuating invasive potential in transwell assay (Figures 10F, G).
However, HSPE1 knockdown showed no significant effect on the
apoptosis of glioma cells (Supplementary Figure S1).
Complementing these deficits observed in in vitro functional
assays, clinical validation utilizing the Human Protein Atlas
(HPA) database revealed significant overexpression of HSPEI in
glioma specimens compared to normal brain tissue, which was
further confirmed by immunohistochemical (IHC) analysis of tissue
microarrays (Figures 10H, I). In summary, these integrated
mechanistic and clinical findings establish HSPE1 as a critical
mediator of gliomagenesis within the lactylation-related
oncogenic network.

Discussion

Lactylation, a post-translational modification, has emerged as a
key regulator of glioma biology, particularly during metabolic
reprogramming, thereby controlling tumor growth and
metastasis. For example, lactate promoted the synthesis of
nucleoside triphosphates essential for the proliferation of
H3K27M-mutant glioma cells through lactylation-mediated
activation of nucleoside diphosphate kinase NMEIL (22).
Lactylation of c-Myc maintained the stability of c-Myc, which
promoted the migration and invasion of GBM cells (23).
Additionally, lactylation modification maintains the stemness of
glioma cells and drug resistance. For instance, PTBP1 lactylation
was found to facilitate glioma stem cell maintenance through
PFKFB4-driven glycolysis (24). Glycolytic reprogramming-
induced XRCC1 lactylation induced therapeutic resistance in
ALDHI1A3-overexpressing glioblastoma (12). Histone H3K9
lactylation was shown to confer temozolomide resistance in
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FIGURE 8

Genetic mutation analysis. (A) The waterfall depicted genetic mutations differences in glioma patients between LRGs-high and -low groups.

(B) Kaplan-Mejer curves demonstrating the difference in overall survival of glioma patients between the TTN, EGFR, PTEN, NF1, and FLG mutant-
and wild-type groups. (C) Differential expression of KIF2C, CALD1, HSPE1, and IFI16 between TTN, EGFR, PTEN, NF1, and FLG mutant- and wild-type
groups, respectively. (D) Kaplan-Meier curves demonstrating the difference in overall survival of glioma patients between the IDH1, CIC, FUBP1,

and NOTCH1 mutant- and wild-type groups. (E) Differential expression of KIF2C, CALD1, HSPE1, and IFI16 between IDH1, CIC, FUBP1, and NOTCH1
mutant- and wild-type groups, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 9

Tumor stemness, genomic heterogeneity, and drug sensitivity analyses. (A) Correlation of the LRGs with tumor stemness-related indicators,
including DNAss, EREG-METHSss, DMPss, ENHss, RNAss, and EREG-EXPss. (B) Differences in tumor stemness-related indicators between LRGs-high
and -low groups. (C) Correlation analysis between the LRGs core genes and tumor stemness-related indicators. (D) Correlation of the LRGs with
genomic heterogeneity-related indicators, including TMB, MATH, MSI, Ploidy, HRD, and LOH. (E) Differences in genomic heterogeneity-related
indicators between LRGs-high and -low groups. (F) Correlation analysis between the LRGs core genes and genomic heterogeneity-related
indicators. (G) Differences in sensitivity to common chemotherapeutic agents between LRGs-high and -low groups. (H) Differences in LRGs score
between PD/SD and PR/CR groups of glioma patients treated with radiotherapy. *p < 0.05, **p < 0.01, ***p < 0.001.

glioblastoma through LUC7L2-mediated retention of the MLH1
intron (25). Briefly, lactylation modification plays a critical role in
the development of glioma, and an in-depth exploration of the
relationship between lactylation and glioma can help unravel the
biological mechanisms underlying tumorigenesis.

In this study, we focused on investigating the expression
patterns of Lactylation-related genes and constructed a LRGs
signature based on four genes—KIF2C, CALDI, HSPE1, and
IFI116—that were highly expressed in glioma tissues, which
effectively stratified patient risk and assisted clinicians in
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developing personalized treatment strategies. Notably, our model
demonstrated advantages in both predictive accuracy and model
simplicity when compared side-by-side with other established
prognostic models for glioma, enhancing its clinical applicability.
In contrast to the lactylation-related glioma prognostic model
developed by researchers such as Wu Z et al. (14), our approach
incorporated a larger number of lactylation-related genes, providing
superior predictive performance for patient prognosis and
immunotherapy response. Furthermore, we demonstrated that
HSPE1 knockdown significantly inhibited the proliferation and
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FIGURE 10

Knockdown of HSPE1 expression inhibited proliferation and invasion of glioma U251 and U87 cells in vitro. (A) HSPE1 mRNA levels in U87 and U251
cells after knockdown. (B) Western Blot showing HSPE1 protein levels in U87 and U251 cells after knockdown. (C) CCK-8 assay for cell proliferation
in U87 and U251 after HSPE1 knockdown. (D) Colony formation assay showing the number of colonies in U87 and U251 after HSPE1 knockdown.
(E) Quantification of colonies formed in U87 and U251 cells after HSPE1 knockdown. (F) Transwell invasion assay showing cell migration in U87 and
U251 cells. (G) Quantification of cell migration in U87 and U251 cells. (H) Representative immunohistochemistry staining of HSPE1 in glioma and
normal tissue in HPA database. (I) IHC score of HSPEL staining in the HAP database from glioma and normal tissues. Data in A, C, E, G, and | are
presented as the mean + SD. *p < 0.05, ***p < 0.001. One-way ANOVA with Tukey's test for A, C, E, and G (n = 3). Two-tailed student’s t-test for I.

invasion of glioma cells. This multi-dimensional analysis offered a
more comprehensive perspective on glioma biology and held
potential for enabling more individualized treatment strategies.
One of the most notable advancements in our model was the
incorporation of the nomogram, which integrated the LRGs score
with critical clinicopathological factors such as age, WHO grade,
IDH status, and 1p/19q codeletion. This integration significantly
improved the predictive accuracy of the model, making it more
practical for clinical use. Our nomogram, with a C-index of 0.860,
demonstrated strong predictive power, particularly in predicting 1-
to 5-year survival, with AUC values exceeding 0.8. These impressive
metrics underscored the model’s ability to provide precise prognosis
predictions that are essential for individualized patient
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management. Additionally, the time-dependent ROC and DCA
further demonstrated that the nomogram significantly
outperformed both the LRGs score alone and traditional clinical
models in predicting survival at the 3- and 5-year time points, thus
establishing its value as a robust tool for guiding treatment decisions
and improving patient outcomes.

Studies have shown that the glioma microenvironment is
immunosuppressive in nature, for example, regulatory T (Treg)
cells prevented tumor cells from being directly killed by cytotoxic T
lymphocyte (CTL) cells by depleting CTL-mediated
immunosuppression in the glioma microenvironment (26).
Importantly, lactylation modification played a key role in the
glioma microenvironment, for example, lactate induced epigenetic
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reprogramming of glioma cells through histone lactylation, which
led to transcriptional upregulation of CD47 to inhibit phagocytosis
and promote immune evasion (27). Additionally, LDHA-mediated
lactate production impaired tumor immune surveillance by T cells
and NK cells (28). In the present study, we revealed that the LRGs
core genes were associated with various immunosuppressive cells,
such as M2 macrophages, MDSCs, and CAFs. It has been reported
that hypoxia-mediated lactate accumulation was taken up by
macrophages, which subsequently induces M2 macrophage
polarization by regulating TNFSF9 expression and promoted the
secretion of cytokines such as IL-10, TGF-B, and VEGEF, thereby
facilitating malignant progression of glioma (29, 30). These findings
suggested that LRGs core genes may play a critical role in maintaining
the immunosuppressive properties of the glioma microenvironment.

Recently, with the groundbreaking discovery of lymphatic
vessels in the central nervous system, the emergence of
immunotherapy has undoubtedly brought new hope for patients
with refractory glioma. For instance, therapeutic inhibition of PD-
L1 or CTLA-4 significantly reduced the number of tumor-
infiltrating Treg cells and improved long-term survival in mouse
glioma models (31). Lactylation-related genes, such as SLC16A3,
TRIM28, and BRD4, can promote immune evasion by increasing
PD-L1 expression abundance or diminishing the efficacy of anti-
PD-1 therapy (32-34). Furthermore, lactylation modification had
been investigated in immunotherapy, for example, CCR8 lactylation
can impair the effectiveness of CAR-T therapy against glioblastoma
(35). Notably, this study revealed that the LRGs core genes were
significantly associated with immunosuppressive checkpoints, and
glioma patients in the LRGs-high exhibited lower response rates
and overall remission rates to immunotherapy. These findings
suggested that the LRGs may play a role in tumor immune
evasion, tumorigenesis, and resistance to immunotherapy.

One of the key strengths of our study was the experimental
validation of the critical gene within the LRGs. Specifically, we
provided functional evidence that HSPEI played an essential role in
glioma progression. HSPE1, a co-chaperonin involved in
mitochondrial protein import and macromolecular assembly,
worked together with Hsp60 to facilitate the correct folding of
imported proteins. HSPEL had been found to be aberrantly
expressed in various cancers and was associated with poor
prognosis (36). Notably, its expression was significantly elevated
in multiple GBM cell lines (37). However, the functional role of
HSPEL1 in glioma has remained unclear until now. Our findings
established that HSPE1 was a key player in glioma progression, and
its upregulation contributed to tumor growth and invasiveness. This
experimental validation strengthened the translational potential of
our findings and provided a direct link between computational
predictions and experimental biology, highlighting HSPEL as a
promising therapeutic target for glioma treatment.

By integrating machine learning, genomic data, tumor
microenvironment features, and experimental validation, our
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study offered a comprehensive, multi-faceted approach to glioma
prognosis. This refined LRGs model not only improved prediction
accuracy but also enhanced our ability to understand the underlying
biological mechanisms, ultimately facilitating the development of
more effective, personalized therapies for glioma patients. Further
validation through prospective clinical trials will be crucial for
translating this model into routine clinical practice.

Limitation

Our study has some limitations. First, the analysis is based on
retrospective data, and prospective clinical validation is needed to
confirm the value of the lactylation-based prognostic model in real-
world settings. Additionally, while the model demonstrated strong
predictive ability, further studies are required to identify additional
lactylation-related genes that could improve its accuracy. The
functional validation of HSPEL, particularly in vivo, is another
critical step to further solidify the biological relevance of these
markers. Moreover, the specific mechanisms through which
lactylation modification regulates immune microenvironment
components, such as M2 macrophage polarization, require
further in-depth investigation.

Conclusion

In summary, we developed a prognostic risk model for glioma
based on the four lactylation-related genes, integrating clinical
features, tumor microenvironment, genomic heterogeneity, and
drug sensitivity. The model exhibited strong predictive accuracy,
providing a comprehensive approach for personalized treatment.
Experimental validation of HSPEI revealed its crucial role in glioma
progression, supporting its potential as a therapeutic target. Our
findings highlight the value of combining molecular signatures and
machine learning to improve the prognosis of glioma and guide
clinical decision-making.
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