
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Qihang Yuan,
Dalian Medical University, China

REVIEWED BY

Yang Zhu,
National University of Singapore, Singapore
Wenqiang Che,
Guangdong Provincial People’s Hospital, China

*CORRESPONDENCE

Yanbin Dong

dongyanbin@njmu.edu.cn

Yongshuo Liu

liuyongshuo@pku.edu.cn

Xuzhu Gao

alexgwan@163.com

†These authors have contributed equally to
this work

RECEIVED 11 July 2025

ACCEPTED 01 September 2025
PUBLISHED 16 September 2025

CITATION

Tang X, Liu Y, Yang C, Zhang H, Zhang G,
Wang Q, Jiang S, Gao X, Liu Y and Dong Y
(2025) Deciphering the lactylation
landscape in glioma: a novel gene
signature predicts patient survival
and immunotherapy sensitivity.
Front. Immunol. 16:1664347.
doi: 10.3389/fimmu.2025.1664347

COPYRIGHT

© 2025 Tang, Liu, Yang, Zhang, Zhang, Wang,
Jiang, Gao, Liu and Dong. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 16 September 2025

DOI 10.3389/fimmu.2025.1664347
Deciphering the lactylation
landscape in glioma: a
novel gene signature
predicts patient survival and
immunotherapy sensitivity
Xiaolong Tang1†, Yi Liu2†, Congying Yang2, Honglan Zhang2,
Gongming Zhang2, Qiao Wang2, Sujie Jiang3, Xuzhu Gao4*,
Yongshuo Liu5* and Yanbin Dong2*

1Department of Laboratory Medicine, Hospital of Chengdu University of Traditional Chinese Medicine,
Chengdu, Sichuan, China, 2Department of Pathology, The Affiliated Lianyungang Hospital of Xuzhou
Medical University, Lianyungang Clinical College of Nanjing Medical University, The First People’s
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Background: Glioma, the most prevalent primary brain tumor, takes advantage

of lactylation, a metabolic modification linked to tumor behavior and clinical

outcomes. Despite its significance, the role of lactylation in the pathogenesis and

prognosis of glioma remains underexplored. This study established a lactylation-

derived molecular signature to predict survival and response to immunotherapy

in glioma.

Methods: Leveraging the TCGA glioma cohort, we established a lactylation-

related gene (LRG) signature via LASSO and Cox regression analyses, and its

prognostic value was validated in independent cohorts. We comprehensively

character ized the associat ions between the LRGs signature and

clinicopathological features, tumor immunity (immune infiltration and response

to immunotherapy), genomic instability (mutational burden and heterogeneity),

tumor stemness, and therapeutic vulnerability. In vitro validation of the

oncogenicity of HSPE1 was conducted using the CCK-8, colony formation,

transwell, and apoptosis assays in U87 and U251 glioma cells.

Results: A four-gene lactylation signature (KIF2C, CALD1, HSPE1, and IFI16) was

identified. Elevated LRGs score were correlated with advanced tumor grade,

poor prognosis, and reduced response to immunotherapy. Patients in the LRGs-

high group exhibited adverse clinicopathological features, including advanced

age, higher WHO grade, IDH wild-type status, and 1p/19q non-codeletion. The

nomogram model based on the LRGs score exhibited robust prognostic

accuracy (C-index = 0.860). LRGs-related genes were enriched in immune

regulatory pathways, such as cytokine signaling and interferon-g response

pathways. The LRGs-high group displayed increased infi ltration of

immunosuppressive cells, such as M2 macrophages, MDSCs, and CAFs, and

distinct genomic instability profiles. Crucially, HSPE1 knockdown significantly

suppressed the proliferation and invasion of glioma cell lines.
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Conclusions: We defined a novel LRGs signature integrating metabolic and

immune dysregulation in glioma. This signature served as an independent

predictor of prognosis and immunotherapy. Furthermore, we identified HSPE1

as a critical driver of glioma progression.
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Introduction

Glioma, the most prevalent primary malignant tumor of the

central nervous system, accounts for approximately 81% of adult

CNS malignancies. These tumors originate from glial or glial

precursor cells and encompass histopathological subtypes

including astrocytoma, oligodendroglioma, ependymoma, and

oligoastrocytoma (1). The World Health Organization (WHO)

classifies malignant gliomas into low-grade glioma (LGG, WHO

II and III) and glioblastoma (GBM, WHO IV), with the latter being

the most aggressive and lethal subtype (2, 3). Despite multimodal

therapy—including maximal safe resection, radiotherapy, alkylating

chemotherapy, and emerging immunotherapies—clinical outcomes

remain dismal. Specifically, patients with LGG exhibit a median

survival of 5–10 years (4), while patients with GBM rarely survive

more than 14.6 months (5). Sonodynamic therapy (SDT) is

constantly innovating and can potentially be a non-invasive

treatment for glioma in the future (6). However, prognosis is

critically affected by WHO grade, molecular alterations, such as

IDH mutation and 1p/19q codeletion, and therapeutic resistance

(7), underscoring an urgent need for more effective prognostic

biomarkers and therapeutic targets.

Advances in bioinformatics and high-throughput genomic

profiling have revolutionized cancer prognostication (8).

Molecular prognostic models can help refine risk stratification,

identify therapeutic vulnerabilities, and characterize the tumor

immune microenvironment (TIME), guiding precision oncology

approaches in glioma and other tumors (9, 10). Such models play an

indispensable role in predicting response to immunotherapy and

the development of personalized therapeutic strategies.

Lactylation—a recently discovered post-translational

modification driven by lactate—is a key regulator of cancer

metabolism and epigenetics. This modification affects diverse

oncogenic processes, including proliferation, invasion, DNA

repair, and treatment resistance (11). In GBM, the lactylation of

XRCC1 enhanced nuclear translocation and DNA repair capacity,

promoting resistance to chemoradiotherapy (12). Despite its

established role in tumor biology, the prognostic significance of

lactylation-related genes in glioma remains largely unexplored,

representing a critical knowledge gap.

To address this gap, we constructed and validated a novel

prognostic LRGs signature based on four genes (KIF2C, CALD1,
02
HSPE1, and IFI16). This signature stratified patients into distinct

risk groups with significant survival differences and was associated

with immunosuppressive TIME features—particularly M2

macrophage infiltration—predicting a weak response to

immunotherapy. Further analyses revealed differential genomic

instability, tumor stemness, and therapeutic vulnerabilities

between LRGs-high and -low groups. Critically, functional

validation confirmed HSPE1 as a pro-oncogenic driver, where its

silencing suppressed glioma cell proliferation and invasion in vitro.

Our integrated analysis established the lactylation-derived signature

as a robust biomarker for prognosis and treatment response

in glioma.
Materials and methods

Data source

The glioma and other cancer cohorts used in this study were

sourced from The Cancer Genome Atlas (TCGA) (https://

portal.gdc.cancer.gov/), Chinese Glioma Genome Atlas (CGGA)

(http://www.cgga.org.cn/), Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/), and Kaplan-Meier Plotter

(https://kmplot.com/) databases, with detailed information

provided in Table 1. According to previously published study (13,

14), a total of 354 lactylation-related genes were included and were

presented in Supplementary Table S1.
Construction of a LRGs signature

To construct a lactylation-related gene signature, we first

utilized the TCGA glioma cohort to screen for genes associated

with patient prognosis, conducting batch survival analysis using the

R package “survival”. The resulting prognostic genes were

intersected with 354 lactylation-related genes, followed by further

refinement of the overlapping genes through LASSO regression

analysis using the R package “glmnet”. Univariate and multivariate

Cox proportional hazards regression analyses were employed to

develop the LRGs model, with Cox regression performed using the

R package “survival” and forest plot visualization achieved through

the R package “ggplot2”. The chromosomal locations of the four
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LRGs core genes (KIF2C, CALD1, HSPE1, and IFI16) were

visualized using the R package “circlize”, and Spearman’s

correlation analysis was employed to examine the relationships

among these genes. Glioma patients were stratified into LRGs-high

and -low groups using the median LRGs score as a cutoff value.

Kaplan-Meier survival analysis and visualization were performed

using the R packages “survival” and “survminer” respectively.

Scatter plot was generated with the R package “ggplot2”, while

time-dependent ROC was produced and visualized using the R

packages “timeROC” and “ggplot2”.
Validation of the LRGs expression levels
and prognostic value

To validate the expression patterns of the LRGs, we utilized the

TCGA and GSE16011 cohorts to compare the differences of the

LRGs score and its core genes between normal brain and glioma

tissues. Subsequently, multiple independent cohorts, such as

CGGA301, CGGA325, CGGA693, GSE4412, and GSE43378, were

employed to evaluate the prognostic value of the LRGs. The

methodologies for generating Kaplan-Meier survival curves,

scatter plots, and time-dependent ROC curves were consistent

with those described previously.
Clinical relevance of the LRGs and
construction of a nomogram model

The TCGA and CGGA693 glioma cohorts were employed to

compare differences in gender, age, WHO grade, IDH status, and

1p/19q co-deletion between LRGs-high and -low groups of glioma

patients. Based on the TCGA glioma cohort, we incorporated five

variables, including age, WHO grade, IDH status, 1p/19q co-
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deletion, and LRGs score, to construct a predictive nomogram

model. Cox regression analysis was performed using the R

package “survival”, while the nomogram was developed and

calibration curves were plotted using the R package “rms”. Time-

dependent AUC and Decision curve analysis (DCA) were analyzed

with the R packages “timeROC” and “stdca.R”, respectively, with

visualization implemented using the R package “ggplot2”.
Functional enrichment analysis

Glioma patients in the TCGA cohort were divided into LRGs-high

and -low groups according to the median LRGs score as the cutoff

value, and differential expression analysis of the original Counts matrix

was performed using the R package “DESeq2”. Differentially expressed

genes (DEGs) were subjected to enrichment analysis through the

Metascape platform (https://metascape.org/). Concurrently, Gene

Ontology (GO), Kyoto Encyclopedia of Genes and Genomes

(KEGG), and Gene Set Enrichment Analysis (GSEA) were

conducted on the DEGs using the R package “clusterProfiler” for

analysis and R package “ggplot2” for visualization.
Tumor microenvironment analysis

The immune cell infiltration scores for glioma patients in the

TCGA cohort were obtained from the CIBERSORTx online

platform (https://cibersortx.stanford.edu/) based on the Cibersort

core algorithm. The infiltration of myeloid-derived suppressor cells

(MDSCs) and cancer-associated fibroblasts (CAFs) were derived

from the Tumor Immune Dysfunction Exclusion (TIDE) online

platform (http://tide.dfci.harvard.edu/). The Stromal, Immune, and

ESTIMATE Scores were sourced from the Estimation of STromal

and Immune cells in MAlignant Tumor tissues using Expression

data (ESTIMATE) database (https://bioinformatics.mdanderson.

org/es t imate/) . We compared the di fferences in the

aforementioned parameters between the LRGs-high and -low

groups, and evaluated the correlations between the LRGs core

genes and these parameters. The immune subtypes in glioma

were sourced from a previously published study (15). Kaplan-

Meier survival analysis was performed to assess the significance of

immune subtypes in predicting patient survival. The single-cell

resolution data from the GSE131928 cohort were sourced from the

TISCH2 platform (http://tisch.comp-genomics.org/). We analyzed

the differentially expressed genes across various malignant cell

types, as well as the expression abundance of LRGs core genes in

different cells. Additionally, the biological functions of highly

expressed genes in malignant cells were investigated through

online analysis using the Metascape platform.
Immunotherapy predictive capability
analysis

The Cancer-immunity cycle was obtained from the Tracking

Tumor Immunopheno t ype (T IP ) da t ab a s e (h t t p : / /
TABLE 1 Details of the cohorts used in this study.

Datasets
Normal

tissues (N)
Tumor

tissues (N)
Clinical
data (N)

TCGA 5 701 698

GSE16011 8 276 NA

GSE43378 NA 50 50

CGGA301 NA 285 285

CGGA325 NA 313 313

CGGA693 NA 657 657

GSE4412 NA 85 85

GSE43378 NA 50 50

GSE131928 NA 28 NA

PRJNA482620 NA 34 34

GSE91061 NA 101 101

KM Plotter
(Atezolizumab)

NA 447 447
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biocc.hrbmu.edu.cn/TIP/), which consists of seven steps: (1) release

of cancer cell antigens, (2) cancer antigen presentation, (3) priming

and activation, (4) trafficking of immune cells to tumors, (5)

infiltration of immune cells into tumors, (6) recognition of cancer

cells by T cells, and (7) killing of cancer cells. Next, we examined the

correlation between the LRGs core genes and the expression of

immune checkpoints, such as CTLA4 and PDCD1 etc., using

sequencing data from glioma patients in the TCGA cohort.

Subsequently, glioma patients were stratified into four groups

based on immune checkpoint expression levels combined with

LRGs score, and the prognostic significance of these combinations

was assessed through Kaplan-Meier survival analysis. Furthermore,

we evaluated the predictive capability of the LRGs for

immunotherapy efficacy using the TIDE algorithm and multiple

cohorts, including glioma (PRJNA482620), melanoma (GSE91061),

and atezolizumab pan-cancer (KM Plotter) datasets.
Genetic mutation analysis

Integrated mutation data for glioma samples were obtained

from the GDC portal (https://portal.gdc.cancer.gov/) and analyzed

using the R package “maftools” to identify the top 15 most

frequently mutated genes between LRGs-high and -low groups.

Subsequently, we compared overall survival differences between

patients with mutant- and wild-type variants of genes, such as TTN

and EGFR etc., and analyzed expression differences of the LRGs

core genes between mutant- and wild-type groups.
Genomic heterogeneity and tumor
stemness analyses

Tumor mutation burden (TMB) data were calculated for TCGA

glioma samples using the R package “maftools”. Microsatellite

instability (MSI) data were referenced from the study by Russell

Bonneville et al. (16). Data on tumor purity, tumor ploidy,

homologous recombination deficiency (HRD), and neoantigens

were obtained from the research by Vesteinn Thorsson et al. (15).

Tumor stemness data were derived from previous studies (17), we

acquired six stemness indicators based on mRNA expression and

methylation signatures, including RNAss, EREG-METHss, DMPss,

ENHss, and EREG-EXPss.
Chemotherapy and radiotherapy sensitivity
analyses

For chemotherapy sensitivity analysis, we extracted expression

matrix data of glioma patients from the TCGA cohort and utilized

the core algorithms of the R packages “oncoPredict” and

“pRRophetic” to calculate drug sensitivity scores by integrating

drug and cell line expression profiles provided by these tools. For

radiotherapy sensitivity analysis, we extracted data from the TCGA

glioma patients who received radiotherapy, including those with
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progressive disease/stable disease (PD/SD) and partial response/

complete response (PR/CR).
siRNA transfection, RNA isolation, and
qPCR

siRNAs were purchased from Sangon Biotech. The sequences of

t h e s i R N A s w e r e a s f o l l o w s : s i C t r l : 5 ’ -

UUCUCCGAACGUGUCACGUTT-3 ’ ; s iHSPE1-1# :5 ’ -

GCAGGACAAGCGUUUAGAATT-3 ’ ; s iHSPE1-2# :5 ’ -

GAGUGCUGCUGAAACUGUATT-3’. Glioma cells were seeded

in 12-well plates and transfection was initiated when the cell density

reached approximately 70%. Transfection was performed using

Lipofectamine 3000 according to the manufacturer’s instructions.

Transfection efficiency was evaluated by qRT-PCR. Total RNA was

extracted using Trizol reagent, and reverse transcription was

conducted using M-MLV Reverse Transcriptase. Quantitative

real-time PCR was carried out in triplicate using the SYBR Green

Master Mix. The following primers were used for qPCR: GAPDH-F:

5 ’-GTCTCCTCTGACTTCAACAGCG-3 ’ , GAPDH-R: 5 ’-

ACCACCCTGTTGCTGTAGCCAA-3 ’ ; HSPE1 -F : 5 ’ -

GCTGAAACTGTAACCAAAGGAGG-3 ’ , HSPE1-R: 5 ’-

TCTCCAACTTTCACGCTAACTGG-3’.
Western blot analysis

Western blot analysis was performed as previously described

(18). Briefly, glioma cells were lysed using RIPA lysis buffer

supplemented with a 1× protease inhibitor cocktail. Equal

amounts of protein were separated by 12% SDS-PAGE and

transferred to a 0.22 mm PVDF membrane. The membranes were

blocked with 5% skimmed milk and then incubated overnight at

4°C with primary antibodies: HSPE1 (Affinity, AF0183) and b-actin
(Abmart, P30002). Following primary antibody incubation, the

membranes were incubated with the secondary antibody at room

temperature for 1 hour. Protein bands were visualized using the

Super ECL detection reagent.
Cell proliferation, colony formation and
invasion assays

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8), following the manufacturer’s protocol. Absorbance at 450

nm was measured at the indicated time points to determine cell

viability. For colony formation assays, 1×10³ cells were seeded in 6-

well plates and incubated for 14 days. After incubation, cells were

fixed with 4% paraformaldehyde and stained with 0.1% crystal

violet to visualize the colonies. For the invasion assay, 5×104 cells

were seeded into Transwell inserts with an 8 mm pore size,

precoated with Matrigel. After 24 hours of incubation, the

invasive cells were stained with 0.1% crystal violet, observed
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under a microscope, and the number of invasive cells was counted

using ImageJ software.
Cell apoptosis assay

Apoptosis was analyzed using Annexin V-FITC/propidium

iodide (PI) double staining followed by flow cytometry. Briefly,

harvested cells were resuspended in binding buffer and incubated

with Annexin V-FITC and PI for 10 min at room temperature in the

dark. The apoptotic cell population was quantified by flow

cytometer, and data were analyzed using FlowJo software.
Statistical analysis

All statistical analyses were processed on R Studio (V4.2.1) or

GraphPad Prism 8 software, and P value < 0.05 indicated

statistically significant differences. The quantitative results are

presented as the mean ± standard deviation (SD). Wilcoxon rank

sum test was used for unpaired samples, t-test was used for paired

samples, and ANOVA was used for comparisons between multiple

groups. Log Rank P test was used for Kaplan-Meier survival

analysis. Spearman test was used for Correlation analysis.
Results

Development of a LRGs signature for
glioma

The workflow of this study was depicted in Figure 1. To

establish a LRGs signature predictive of glioma prognosis, we

employed the TCGA glioma cohort as the training set. Initial

analysis identified 7,622 risk-associated genes and 5,264 protective

genes (Figure 2A). Intersection of the 7,622 risk-associated genes

with 354 known lactylation-related genes yielded 147 overlapping

candidates (Figure 2B). Subsequent LASSO regression refined this

set to 28 potential prognostic genes (Figures 2C, D). Differential

expression analysis revealed significant upregulation of nearly half

these genes in glioma versus normal brain tissues (Figure 2E).

Through integrated univariate and multivariate Cox proportional

hazards regression analyses, four lactylation-related genes—KIF2C,

CALD1, HSPE1, and IFI16—emerged as core biomarkers, forming

the basis of the LRGs signature (Figures 2F, G). The specific Cox

regression coefficients were applied in the formula: LRGs score =

(0.20 × KIF2C expression) + (0.48 × CALD1 expression) + (0.75 ×

HSPE1 expression) + (0.17 × IFI16 expression) – 8 (constant)

(Figures 2H). These four genes localized to distinct chromosomal

loci: KIF2C (1p34), CALD1 (7q33), HSPE1 (2q33), and IFI16

(1q23) (Figure 2I). Heatmap analysis demonstrated significant

positive co-expression correlations among all four genes within

glioma tissues (Figure 2J). Scatterplot illustrated that high-LRGs

score patients experienced both elevated mortality rates and

reduced survival durations (Figure 2K). Consistent with this,
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Kaplan-Meier survival curve revealed markedly inferior overall

survival for patients stratified into the LRGs-high group

compared to the -low group (Figure 2L). The LRGs signature

exhibited robust predictive capacity, with time-dependent ROC

analysis yielding area under the curve (AUC) values of 0.848

(95%CI: 0.809 - 0.887), 0.894 (95%CI: 0.860 - 0.928), and 0.827

(95%CI: 0.775 - 0.880) for 1-, 3-, and 5-year survival,

respectively (Figure 2M).
Validation of the LRGs signature

To validate the prognostic robustness of the LRGs signature, we

first quantitatively evaluated expression patterns in TCGA and

GSE16011 cohorts. This analysis confirmed significantly

upregulation of LRGs score and its core genes (KIF2C, CALD1,

HSPE1, and IFI16) in glioma versus normal tissues (Figures 3A, B).

We subsequently validated the LRGs prognostic value in five

independent glioma cohorts, including CGGA301, CGGA325,

CGGA693, GSE4412, and GSE43378. Patients stratified into

LRGs-high group exhibited consistently inferior overall survival

and elevated mortality incidence compared to -low group. Time-

dependent ROC analyses demonstrated sustained predictive

accuracy, with AUC values exceeding 0.700 for 3- and 5-year

survival probabilities in all validation cohorts (Figures 3C–G).

Further quantification via Harrell’s concordance index yielded C-

index values of 0.809 (95%CI: 0.797 - 0.822; TCGA), 0.747 (95%CI:

0.731 - 0.762; CGGA325), 0.704 (95%CI: 0.686 - 0.722; CGGA301),

0.659 (95%CI: 0.644 - 0.673; CGGA693), 0.658 (95%CI: 0.620 -

0.695; GSE43378), and 0.618 (95%CI: 0.581 - 0.655; GSE4412),

affirming the model’s discriminative capacity (Figure 3H).

Comparative analysis against established prognostic signatures

revealed that our LRGs model achieved comparable prognostic

efficacy with greater parsimony, outperforming multi-gene

constructs including those by Zhang Q et al. (16 genes) (19),

Zhang N et al. (5 gene pairs) (20), and Zhang M et al. (10 genes)

(21) in feature economy (Figures 3I–K).
Prognostic model refinement through
multivariate integration

To optimize the precision of our LRGs signature, we

systematically evaluated clinicopathological covariates influencing

glioma outcomes. Comparative analysis of TCGA and CGGA693

cohorts revealed significant differences in multiple clinical

characteristics between LRGs-high and -low glioma patient

groups—including age, WHO grade, IDH status, and 1p/19q co-

deletion—but showed no association with gender distribution

(Figures 4A, B). Next, univariate and multivariate Cox regression

analyses confirmed LRGs score, age, WHO grade, IDH status, and

1p/19q codeletion as independent risk factors (Table 2). These

variables were subsequently integrated into a comprehensive

nomogram, with calibration curves demonstrating excellent

agreement between predicted and observed survival probabilities
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(Figures 4C, D). The composite model achieved a Harrell’s

concordance index (C-index) of 0.860 (95% CI: 0.850 - 0.871).

Time-dependent ROC analysis further validated its predictive

efficacy, with AUC values exceeding 0.800 for 1- to 5-year

survival predictions (Figure 4E). DCA demonstrated that the

nomogram provided superior clinical net benefit compared to

using the LRGs signature alone across most threshold

probabilities, particularly at 3- and 5-year time points,

outperforming both all-treat and all-none reference strategies

(Figures 4F–H). Collectively, the integrated nomogram

demonstrated enhanced prognostic capability and clinical

applicability for glioma risk stratification.
Frontiers in Immunology 06
Functional enrichment implicates the LRGs
signature in immune pathway regulation

Given the significant prognostic association of the LRGs

signature, which prompting further investigation into its

functional underpinnings in glioma biology. Differential

expression analysis between LRGs-high and -low groups

identified 1,169 significantly upregulated and 803 downregulated

genes (Figure 5A). Notably, these upregulated genes demonstrated

significant enrichment in immune signaling pathways, including

inflammatory response, cytokine signaling, and immune response

functions, while downregulated genes were primarily implicated in
FIGURE 1

Flow chart of this study.
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FIGURE 2

Construction of a LRGs signature based on the TCGA glioma cohort. (A) The volcano map displayed the genes that affected the survival of glioma
patients. (B) The Venn diagram showing the intersection of risky genes affecting the survival of glioma patients with lactylation-related genes. (C, D)
Lasso regression analysis further screened for prognosis genes among lactylation-related genes. (E) Comparison of differences in the expression of
lactylation-related genes between normal brain and glioma tissues. (F, G) Univariate and multivariate Cox regression analyses were performed to
construct a LRGs signature in glioma. (H) The band plot displayed the regression coefficients of each gene in the LRGs. (I) The chromosome map
showing specific localization of KIF2C, CALD1, HSPE1, and IFI16. (J) The heatmap showing the correlation between these four genes. (K) The scatter
plot demonstrating the difference in survival time and number of deaths of patients in the LRGs-high and -low groups. (L) Kaplan-Meier survival
analysis was performed to demonstrate the difference in overall survival of glioma patients between the LRGs-high and -low groups using the
TCGA cohort. (M) Time-dependent ROC demonstrating the accuracy of LRGs in predicting 1-, 3-, and 5-year survival in glioma patients. *p < 0.05,
**p < 0.01, ***p < 0.001.
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synaptic function and neurotransmitter transmission (Figures 5B,

C). GO analysis revealed distinct compartmentalization

characteristics, with cellular components primarily localized to

synaptic membranes, collagen-containing extracellular matrices,
Frontiers in Immunology 08
and transmembrane transporter complexes (Figure 5D).

Molecular functions predominant ly involved pass ive

transmembrane transporter activity, gated channel function, and

cytokine binding (Figure 5D). Biological process annotation
FIGURE 3

Validation of the LRGs expression levels and prognostic value was based on multiple cohorts. (A, B) TCGA and GSE16011 cohorts were used to
validate the expression levels of KIF2C, CALD1, HSPE1, IFI16, and the LRGs score between normal brain and glioma tissues, respectively. (C–G) The
scatter plots, Kaplan-Meier, and time-dependent ROC curves were utilized to validate the prognostic value of the LRGs in glioma using the
CGGA301, CGGA325, CGGA693, GSE4412, and GSE43378 cohorts. (H) C-index of the LRGs model in five glioma cohorts. (I–K) The predictive
accuracy of our generated LRGs in predicting 1-, 3-, and 5-year survival in glioma patients was compared to models constructed by others.
*p < 0.05, **p < 0.01, ***p < 0.001.
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demonstrated positive regulation of cytokine-mediated signaling, T

cell activation, and interferon-g response pathways, while negatively
regulating trans-synaptic signaling, membrane potential

modulation, and neurotransmitter transport (Figure 5E). KEGG

pathway analysis further confirmed involvement in oncogenic and
Frontiers in Immunology 09
immune signaling cascades, including PI3K-AKT, IL-17, and JAK-

STAT pathways (Figure 5F). GSEA of hallmark gene sets verified

significant associations with cytokine signaling, cell cycle

checkpoint regulation, and interferon response pathways

(Figures 5G–I).
FIGURE 4

Clinical relevance of the LRGs and optimization of the nomogram. (A, B) Differences in clinicopathologic characteristics of glioma patients between
the LRGs-high and -low groups using the TCGA and CGGA693 cohorts, including gender, age, WHO grade, IDH status, and 1p/19q co-deletion.
(C) Five variables, LRGs score, gender, age, WHO grade, IDH status, and 1p/19q co-deletion were used to construct a nomogram model based on
the TCGA glioma cohort. (D) Calibration curves. (E) Time-dependent AUC curves. (F–H) DCA curves for 1-, 3- and 5-year, respectively.
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The LRGs signature associates with
immunosuppressive microenvironment

Given the established connection between the LRGs and

immune pathways, we systematically profiled tumor-infiltrating

immune cells using the Cibersort algorithm. Patients in the

LRGs-high group exhibited significant enrichment of

immunosuppressive populations, including M0, M1, and M2

macrophages, neutrophils, regulatory T cells (Tregs), gd T cells,

and resting memory CD4+ T cells. In contrast, other patients

showed preferential infiltration of monocytes, activated NK cells,

and activated mast cells (Figure 6A). The expression of LRGs core

genes demonstrated significant positive correlations with pro-

tumoral macrophages (particularly M2-polarized subtypes),

neutrophils, Tregs, and gd T cells, while being inversely correlated

with monocytes, memory B cells, and naïve CD4+ T cells

(Figure 6B). Complementary analyses using the TIDE and

ESTIMATE algorithms further revealed increased infiltration of

MDSCs and CAFs, along with elevated stromal, immune, and

ESTIMATE scores in glioma with high LRGs score (Figures 6C,

D). Each of these ESTIMATE metrics showed positive correlations

with the expression of all four LRGs core genes (Figures 6E).

Immunophenotypic stratification analysis revealed that patients in

the LRGs-low group predominantly exhibited the immunologically

favorable C5 subtype, while those in the -high group were

significantly enriched for the poor-prognosis C4 subtype

(Figures 6F, G).

To elucidate the cellular expression patterns of LRGs core genes,

we utilized the TISCH2 platform to analyze the GSE131928 cohort,
Frontiers in Immunology 10
with a focus on genes specifically expressed in malignant cell

populations (Figure 6H). The results revealed 27 significantly

upregulated and 55 downregulated genes in AC-like malignant

cells; 246 upregulated and 147 downregulated genes in MES-like

malignant cells; 176 upregulated and 269 downregulated genes in

NPC-like malignant cells, and 61 upregulated and 172

downregulated genes in OPC-like malignant cells (Figure 6I). We

further extracted these upregulated genes for enrichment analysis

and found that they were primarily involved in regulating cell cycle

and oncogenic pathways, such as the FOXM1 and VEGFA

pathways (Figure 6J). The LRGs core genes were specifically

expressed in various malignant cell populations, with HSPE1

showing particularly prominent expression. Additionally, IFI16

was also expressed in monocyte/macrophage lineages and

exhausted T cell compartments (Figure 6K). Based on these

findings, we extracted the top 10 upregulated genes expressed in

each malignant cell subtype and observed significant positive

correlations with the four LRGs core genes, except for

B4GALNT1, KIF5A, and TSFM in NPC-like malignant cells and

PIP4K2A in OPC-like malignant cells (Figure 6L).
The LRGs signature predicts response to
immunotherapy

To evaluate the role of the LRGs in tumor immunity, we

characterized cancer-immunity cycle dysregulation between

LRGs-high and -low groups. Despite elevated tumor antigen

release, patients in the LRGs-high group exhibited significantly
TABLE 2 Univariate and multivariate Cox regression analyses were used to screen for risk factors for glioma using the TCGA glioma cohort.

Characteristics
Total
(N)

Univariate analysis Multivariate analysis

Hazard ratio (95%
CI)

P value
Hazard ratio (95%

CI)
P value

LRGs score 695 2.710 (2.411 - 3.047) < 0.001 1.456 (1.192 - 1.780) < 0.001

Gender 695

Male 398 Reference

Female 297 0.793 (0.621 - 1.012) 0.062

Age 695 1.066 (1.056 - 1.076) < 0.001 1.032 (1.020 - 1.045) < 0.001

Grade 634

G2 223 Reference Reference

G3 243 2.999 (2.007 - 4.480) < 0.001 1.801 (1.162 - 2.791) 0.009

G4 168 18.615 (12.460 - 27.812) < 0.001 2.435 (1.357 - 4.371) 0.003

IDH status 685

Mut 439 Reference Reference

WT 246 8.551 (6.558 - 11.150) < 0.001 2.089 (1.339 - 3.259) 0.001

1p/19q codel 688

Codel 170 Reference Reference

Non-codel 518 4.428 (2.885 - 6.799) < 0.001 1.699 (1.010 - 2.857) 0.046
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impaired antigen presentation and processing capacity

(Figures 7A–C). Concurrently, these patients demonstrated

heightened immune cell recruitment to tumor peripheries but

diminished intratumoral infiltration (Figures 7D, E). Although T-
Frontiers in Immunology 11
cell recognition of tumor cells remained comparable between the

two groups, patients in the LRGs-high group exhibited significantly

reduced cytotoxic efficacy against cancer cells (Figures 7F, G).

Subsequent analysis revealed significant positive correlations
FIGURE 5

Biological functions of the LRGs. (A) The volcano map showing differentially expressed genes between LRGs-high and -low groups using the TCGA
glioma cohort. (B, C) The Metascape platform was used for enrichment analysis of upregulated and downregulated genes, respectively. (D) The
radiographic histogram demonstrating LRGs-related genes were subjected to GO enrichment analysis, including MF and CC. (E) The Z-score plot
demonstrating LRGs-related genes were performed for GO enrichment analysis, including BP. (F) The chordal plot showing KEGG analysis of LRGs-
related genes. (G–I) GSEA analysis of LRGs-related genes.
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FIGURE 6

Role of the LRGs in the tumor microenvironment. (A) Differences in infiltration of immune cells between LRGs-high and -low groups based on the
Cibersort algorithm. (B) The heatmap showing the correlation of the LRGs core genes with immune cells. (C, D) Differences in MDSCs, CAFs, and
ESTIMATE scores between LRGs-high and -low groups. (E) The heatmap showing the correlation of the LRGs core genes with ESTIMATE scores.
(F) Differences in immune subtypes between LRGs-high and -low groups. (G) Kaplan-Meier curve showing the effect of immune subtypes on
overall survival of glioma patients. C1: wound healing, C2: IFN-gamma dominant, C3: inflammatory, C4: lymphocyte depleted, C6: TGF-b dominant.
(H, I) The volcano plot displayed differentially expressed genes across various types of malignant cells based on the GSE131928 single-cell cohort.
(J) Enrichment analysis of upregulated genes in malignant cells based on the Metascape platform. (K) The expression abundance of KIF2C, CALD1,
HSPE1, and IFI16 across various cell types. (L) KIF2C, CALD1, HSPE1, and IFI16 exhibited correlations with the top 10 expressed genes in AC-like,
MES-like, NPC-like, and OPC-like malignant cells, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 7

The LRGs predicted response to immunotherapy. Differences in cancer-immunity cycle between patients in the LRGs-high and -low groups were
based on the TIP platform. (A) Step1: release of cancer cell antigens. (B) Step2: cancer antigen presentation. (C) Step3: priming and activation.
(D) Step 4: trafficking of immune cells to tumors. (E) Step 5: infiltration of immune cells into tumors. (F) Step 6: recognition of cancer cells
by T cells. (G) Step7: killing of cancer cells. (H) The heatmap demonstrating the correlation of KIF2C, CALD1, HSPE1, and IFI16 with multiple
immunosuppressive checkpoints. (I) Differential expression of immunosuppressive checkpoints in LRGs-high and -low groups. (J–P) Kaplan-Meier
curves demonstrating the LRGs combined with CTLA4, PDCD1, CD274, HAVCR2, PDCD1LG2, TNFRSF4, or TNFRSF18 respectively, to predict overall
survival in glioma patients. (Q) Differences in TIDE scores between LRGs-high and -low groups. (R–T) Differences in survival between patients in
the LRGs-high and -low groups receiving immunotherapy were analyzed based on the glioma (PRJNA482620), melanoma (GSE91061), and
atezolizumab pan-cancer (KM Plotter) cohorts. *p < 0.05, **p < 0.01, ***p < 0.001.
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between the LRGs core genes and multiple immune checkpoints,

with these checkpoints demonstrating marked upregulation in the

LRGs-high group (Figures 7H, I). Kaplan-Meier analysis

demonstrated poorer survival outcomes in patients with

concurrently elevated expression of both the LRGs and immune

checkpoints, including CTLA-4, PDCD1, CD274, HAVCR2,

PDCD1LG2, TNFRSF4, or TNFRSF18 (Figures 7J–P). Multi-

platform validation incorporating TIDE algorithmic assessment,

glioma, melanoma, and atezolizumab pan-cancer immunotherapy

cohorts consistently showed that patients in the LRGs-high group

exhibited elevated TIDE score, shortened survival duration, and

attenuated therapeutic responsiveness to immune checkpoint

blockade (Figures 7Q-T). These findings collectively established

the LRGs signature as a biomarker for response to immunotherapy

in glioma.
Genetic variation of the LRGs

Given the established link between genetic alterations and

oncogenesis, we examined LRGs-associated genomic variations in

glioma progression using comprehensive mutational profiling

(Figure 8A). Mutations in critical driver genes, such as TTN,

EGFR, PTEN, NF1, and FLG, demonstrated significant

association with adverse overall survival outcomes (Figure 8B).

The expression levels of LRGs core genes were significantly

elevated in most oncogenic mutation groups, with the exception

of HSPE1 suppression in FLG-mut group (Figure 8C). Conversely,

mutations in IDH1, CIC, FUBP1, or NOTCH1 conferred favorable

prognoses, correlating with downregulation of these LRGs-

associated markers, though IFI16 expression remained unaltered

in NOTCH1-mut group (Figures 8D, E). These findings position

LRGs as molecular integrators of genetic variation influencing

glioma pathogenesis.
Associations between the LRGs and tumor
stemness, genomic heterogeneity, and
therapeutic sensitivity

Patients with elevated tumor stemness scores tend to have

poorer prognosis, and these scores can predict tumor metastasis

and recurrence. Comprehensive analysis revealed that the LRGs and

its core genes showed positive correlations with DNAss, EREG-

METHss, DMPss, ENHss, and EREG-EXPss, but negative

correlation with RNAss, suggesting that the LRGs may promote

tumor cell dedifferentiation and enhance stemness (Figures 9A–C).

Tumor patients exhibiting high heterogeneity levels face increased

risks of recurrence and mortality. Results of heterogeneity analysis

revealed that the LRGs and their core genes were positively

correlated with TMB, HRD, and LOH, while showing negative

correlations with MATH andMSI, suggesting that tumors with high

LRGs score exhibited greater genomic instability, higher mutational

burden, and potential homologous recombination deficiency

(Figures 9D–F). Chemosensitivity analysis indicated that patients
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in the LRGs-high group exhibited enhanced sensitivity to

temozolomide, cisplatin, oxaliplatin, irinotecan, teniposide, 5-

fluorouracil, and gemcitabine, but developed resistance to

olaparib, afatinib, paclitaxel, gefitinib, and erlotinib (Figure 9G).

Notably, the LRGs score was significantly elevated in the

radiotherapy non-responder (PD/SD) group compared to the

responder (PR/CR) group, further establishing LRGs as

biomarkers of therapeutic resistance Figure 9H.
HSPE1 promotes tumorigenesis in glioma

Given that HSPE1, a core LRGs gene, demonstrated the highest

hazard ratio in multivariate Cox analysis, exhibited high expression

abundance in malignant cells, and has an undefined functional role

in gliomagenesis, we selected HSPE1 for further investigation into

its ability to affect glioma cells. In U87 and U251 glioma cell models,

we successfully knocked down HSPE1 expression, as verified by

qPCR and Western blot analysis (Figures 10A, B). Functional

characterization demonstrated that HSPE1 ablation significantly

attenuated malignant phenotypes, suppressing cellular proliferation

in CCK-8 assay (Figure 10C), reducing clonogenic capacity in

colony formation assay (Figures 10D, E), and markedly

attenuating invasive potential in transwell assay (Figures 10F, G).

However, HSPE1 knockdown showed no significant effect on the

apoptosis of glioma cells (Supplementary Figure S1).

Complementing these deficits observed in in vitro functional

assays, clinical validation utilizing the Human Protein Atlas

(HPA) database revealed significant overexpression of HSPE1 in

glioma specimens compared to normal brain tissue, which was

further confirmed by immunohistochemical (IHC) analysis of tissue

microarrays (Figures 10H, I). In summary, these integrated

mechanistic and clinical findings establish HSPE1 as a critical

mediator of gliomagenesis within the lactylation-related

oncogenic network.
Discussion

Lactylation, a post-translational modification, has emerged as a

key regulator of glioma biology, particularly during metabolic

reprogramming, thereby controlling tumor growth and

metastasis. For example, lactate promoted the synthesis of

nucleoside triphosphates essential for the proliferation of

H3K27M-mutant glioma cells through lactylation-mediated

activation of nucleoside diphosphate kinase NME1 (22).

Lactylation of c-Myc maintained the stability of c-Myc, which

promoted the migration and invasion of GBM cells (23).

Additionally, lactylation modification maintains the stemness of

glioma cells and drug resistance. For instance, PTBP1 lactylation

was found to facilitate glioma stem cell maintenance through

PFKFB4-driven glycolysis (24). Glycolytic reprogramming-

induced XRCC1 lactylation induced therapeutic resistance in

ALDH1A3-overexpressing glioblastoma (12). Histone H3K9

lactylation was shown to confer temozolomide resistance in
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FIGURE 8

Genetic mutation analysis. (A) The waterfall depicted genetic mutations differences in glioma patients between LRGs-high and -low groups.
(B) Kaplan-Meier curves demonstrating the difference in overall survival of glioma patients between the TTN, EGFR, PTEN, NF1, and FLG mutant-
and wild-type groups. (C) Differential expression of KIF2C, CALD1, HSPE1, and IFI16 between TTN, EGFR, PTEN, NF1, and FLG mutant- and wild-type
groups, respectively. (D) Kaplan-Meier curves demonstrating the difference in overall survival of glioma patients between the IDH1, CIC, FUBP1,
and NOTCH1 mutant- and wild-type groups. (E) Differential expression of KIF2C, CALD1, HSPE1, and IFI16 between IDH1, CIC, FUBP1, and NOTCH1
mutant- and wild-type groups, respectively. *p < 0.05, **p < 0.01, ***p < 0.001.
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glioblastoma through LUC7L2-mediated retention of the MLH1

intron (25). Briefly, lactylation modification plays a critical role in

the development of glioma, and an in-depth exploration of the

relationship between lactylation and glioma can help unravel the

biological mechanisms underlying tumorigenesis.

In this study, we focused on investigating the expression

patterns of Lactylation-related genes and constructed a LRGs

signature based on four genes—KIF2C, CALD1, HSPE1, and

IFI16—that were highly expressed in glioma tissues, which

effectively stratified patient risk and assisted clinicians in
Frontiers in Immunology 16
developing personalized treatment strategies. Notably, our model

demonstrated advantages in both predictive accuracy and model

simplicity when compared side-by-side with other established

prognostic models for glioma, enhancing its clinical applicability.

In contrast to the lactylation-related glioma prognostic model

developed by researchers such as Wu Z et al. (14), our approach

incorporated a larger number of lactylation-related genes, providing

superior predictive performance for patient prognosis and

immunotherapy response. Furthermore, we demonstrated that

HSPE1 knockdown significantly inhibited the proliferation and
FIGURE 9

Tumor stemness, genomic heterogeneity, and drug sensitivity analyses. (A) Correlation of the LRGs with tumor stemness-related indicators,
including DNAss, EREG-METHss, DMPss, ENHss, RNAss, and EREG-EXPss. (B) Differences in tumor stemness-related indicators between LRGs-high
and -low groups. (C) Correlation analysis between the LRGs core genes and tumor stemness-related indicators. (D) Correlation of the LRGs with
genomic heterogeneity-related indicators, including TMB, MATH, MSI, Ploidy, HRD, and LOH. (E) Differences in genomic heterogeneity-related
indicators between LRGs-high and -low groups. (F) Correlation analysis between the LRGs core genes and genomic heterogeneity-related
indicators. (G) Differences in sensitivity to common chemotherapeutic agents between LRGs-high and -low groups. (H) Differences in LRGs score
between PD/SD and PR/CR groups of glioma patients treated with radiotherapy. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1664347
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2025.1664347
invasion of glioma cells. This multi-dimensional analysis offered a

more comprehensive perspective on glioma biology and held

potential for enabling more individualized treatment strategies.

One of the most notable advancements in our model was the

incorporation of the nomogram, which integrated the LRGs score

with critical clinicopathological factors such as age, WHO grade,

IDH status, and 1p/19q codeletion. This integration significantly

improved the predictive accuracy of the model, making it more

practical for clinical use. Our nomogram, with a C-index of 0.860,

demonstrated strong predictive power, particularly in predicting 1-

to 5-year survival, with AUC values exceeding 0.8. These impressive

metrics underscored the model’s ability to provide precise prognosis

predictions that are essential for individualized patient
Frontiers in Immunology 17
management. Additionally, the time-dependent ROC and DCA

further demonstrated that the nomogram significantly

outperformed both the LRGs score alone and traditional clinical

models in predicting survival at the 3- and 5-year time points, thus

establishing its value as a robust tool for guiding treatment decisions

and improving patient outcomes.

Studies have shown that the glioma microenvironment is

immunosuppressive in nature, for example, regulatory T (Treg)

cells prevented tumor cells from being directly killed by cytotoxic T

lymphocyte (CTL) ce l l s by deple t ing CTL-mediated

immunosuppression in the glioma microenvironment (26).

Importantly, lactylation modification played a key role in the

glioma microenvironment, for example, lactate induced epigenetic
FIGURE 10

Knockdown of HSPE1 expression inhibited proliferation and invasion of glioma U251 and U87 cells in vitro. (A) HSPE1 mRNA levels in U87 and U251
cells after knockdown. (B) Western Blot showing HSPE1 protein levels in U87 and U251 cells after knockdown. (C) CCK-8 assay for cell proliferation
in U87 and U251 after HSPE1 knockdown. (D) Colony formation assay showing the number of colonies in U87 and U251 after HSPE1 knockdown.
(E) Quantification of colonies formed in U87 and U251 cells after HSPE1 knockdown. (F) Transwell invasion assay showing cell migration in U87 and
U251 cells. (G) Quantification of cell migration in U87 and U251 cells. (H) Representative immunohistochemistry staining of HSPE1 in glioma and
normal tissue in HPA database. (I) IHC score of HSPE1 staining in the HAP database from glioma and normal tissues. Data in A, C, E, G, and I are
presented as the mean ± SD. *p < 0.05, ***p < 0.001. One-way ANOVA with Tukey’s test for A, C, E, and G (n = 3). Two-tailed student’s t-test for I.
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reprogramming of glioma cells through histone lactylation, which

led to transcriptional upregulation of CD47 to inhibit phagocytosis

and promote immune evasion (27). Additionally, LDHA-mediated

lactate production impaired tumor immune surveillance by T cells

and NK cells (28). In the present study, we revealed that the LRGs

core genes were associated with various immunosuppressive cells,

such as M2 macrophages, MDSCs, and CAFs. It has been reported

that hypoxia-mediated lactate accumulation was taken up by

macrophages, which subsequently induces M2 macrophage

polarization by regulating TNFSF9 expression and promoted the

secretion of cytokines such as IL-10, TGF-b, and VEGF, thereby

facilitating malignant progression of glioma (29, 30). These findings

suggested that LRGs core genes may play a critical role in maintaining

the immunosuppressive properties of the glioma microenvironment.

Recently, with the groundbreaking discovery of lymphatic

vessels in the central nervous system, the emergence of

immunotherapy has undoubtedly brought new hope for patients

with refractory glioma. For instance, therapeutic inhibition of PD-

L1 or CTLA-4 significantly reduced the number of tumor-

infiltrating Treg cells and improved long-term survival in mouse

glioma models (31). Lactylation-related genes, such as SLC16A3,

TRIM28, and BRD4, can promote immune evasion by increasing

PD-L1 expression abundance or diminishing the efficacy of anti-

PD-1 therapy (32–34). Furthermore, lactylation modification had

been investigated in immunotherapy, for example, CCR8 lactylation

can impair the effectiveness of CAR-T therapy against glioblastoma

(35). Notably, this study revealed that the LRGs core genes were

significantly associated with immunosuppressive checkpoints, and

glioma patients in the LRGs-high exhibited lower response rates

and overall remission rates to immunotherapy. These findings

suggested that the LRGs may play a role in tumor immune

evasion, tumorigenesis, and resistance to immunotherapy.

One of the key strengths of our study was the experimental

validation of the critical gene within the LRGs. Specifically, we

provided functional evidence that HSPE1 played an essential role in

glioma progression. HSPE1, a co-chaperonin involved in

mitochondrial protein import and macromolecular assembly,

worked together with Hsp60 to facilitate the correct folding of

imported proteins. HSPE1 had been found to be aberrantly

expressed in various cancers and was associated with poor

prognosis (36). Notably, its expression was significantly elevated

in multiple GBM cell lines (37). However, the functional role of

HSPE1 in glioma has remained unclear until now. Our findings

established that HSPE1 was a key player in glioma progression, and

its upregulation contributed to tumor growth and invasiveness. This

experimental validation strengthened the translational potential of

our findings and provided a direct link between computational

predictions and experimental biology, highlighting HSPE1 as a

promising therapeutic target for glioma treatment.

By integrating machine learning, genomic data, tumor

microenvironment features, and experimental validation, our
Frontiers in Immunology 18
study offered a comprehensive, multi-faceted approach to glioma

prognosis. This refined LRGs model not only improved prediction

accuracy but also enhanced our ability to understand the underlying

biological mechanisms, ultimately facilitating the development of

more effective, personalized therapies for glioma patients. Further

validation through prospective clinical trials will be crucial for

translating this model into routine clinical practice.
Limitation

Our study has some limitations. First, the analysis is based on

retrospective data, and prospective clinical validation is needed to

confirm the value of the lactylation-based prognostic model in real-

world settings. Additionally, while the model demonstrated strong

predictive ability, further studies are required to identify additional

lactylation-related genes that could improve its accuracy. The

functional validation of HSPE1, particularly in vivo, is another

critical step to further solidify the biological relevance of these

markers. Moreover, the specific mechanisms through which

lactylation modification regulates immune microenvironment

components, such as M2 macrophage polarization, require

further in-depth investigation.
Conclusion

In summary, we developed a prognostic risk model for glioma

based on the four lactylation-related genes, integrating clinical

features, tumor microenvironment, genomic heterogeneity, and

drug sensitivity. The model exhibited strong predictive accuracy,

providing a comprehensive approach for personalized treatment.

Experimental validation of HSPE1 revealed its crucial role in glioma

progression, supporting its potential as a therapeutic target. Our

findings highlight the value of combining molecular signatures and

machine learning to improve the prognosis of glioma and guide

clinical decision-making.
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