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B-cell destruction by autoreactive T cells is a hey hallmark of type 1 diabetes
mellitus (T1D). Epigenetic mechanisms—including DNA methylation, histone
modifications, chromatin remodeling, and non-coding RNAs—play critical roles
in regulating T-cell development, activation, and tolerance. Disruption of these
processes contributes to immune imbalance and the onset of T1D. This review
summarizes current insights into how epigenetic regulation shapes T-cell
function and highlights emerging evidence linking these changes to
environmental influences such as gut microbiota, diet, and viral infections.
Exploring the interaction between genetic susceptibility and environmental
triggers through an epigenetic framework not only advances our
understanding of T1D pathogenesis but also provides opportunities for
biomarker discovery and the development of targeted epigenetic therapies.
With further research, these advances hold promise for improving precision
medicine strategies in T1D.
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1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease in which the immune system
mistakenly attacks and destroys pancreatic 3-cells, eventually leading to insulin shortage
(1). This B-cell loss primarily happens via autoreactive T-cell mechanisms in genetically
predisposed individuals, often initiated or modulated by environmental factors (2).
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Epigenetic regulation—through mechanisms such as DNA
methylation, histone modifications, non-coding RNAs, and
chromatin remodeling—has emerged as a critical mediator
linking genetic susceptibility to environmental influences in T1D
(3). These heritable yet reversible modifications govern T-cell
development, activation, and tolerance, thereby shaping immune
balance and disease risk (4).

The disease progresses through three clinically and biologically
distinct, largely silent stages (5, 6). In Stage 1, individuals have
detectable autoantibodies directed against pancreatic [-cell
antigens, indicating an active immune attack on the islets, but
glucose metabolism remains within the normal range and there are
no symptoms. In Stage 2, ongoing immune-mediated [3-cell injury
produces measurable impairment of glucose regulation, for example
abnormal responses on glucose tolerance testing or a rising Alc
although fasting glucose and symptom status may still be non-
diabetic. In Stage 3, B-cell loss reaches a threshold at which
persistent hyperglycemia develops, meeting diagnostic criteria for
diabetes and often accompanied by typical symptoms such as
polyuria, polydipsia, and weight loss. CD4" and CD8" T-cells are
essential factors in the progression of T1D and significant elements
of the islet infiltration. Initially, autoreactive T cells are stimulated
by B-cell antigens shown by antigen-presenting cells (APCs) (7).
The activated CD4" T-cells invade the pancreas and are believed to
aid in B-cell damage through the activation of macrophages and
CD8" T-cells. These in turn are directly responsible for the
destruction of PB-cells through their interaction with major
histocompatibility complex (MHC) class I molecules and by the
secretion of perforin and granzyme (8). Usually, regulatory T cells
(Tregs), the main regulators of inflammatory responses, are
responsible for immune tolerance and homeostasis (9, 10). The
lack of Tregs may become one of the reasons for the development of
human autoimmune diseases like T1D, whereas an excess of Tregs
may lead to the weakening of the immune response to cancer or
infections (11). Established T1D risk genes include the human
leukocyte antigen (HLA) region, insulin (INS), protein tyrosine
phosphatase non-receptor type 22 (PTPN22), interleukin-2
receptor alpha (IL2RA), and cytotoxic T-lymphocyte associated
protein 4 (CTLA4), among others (12). Importantly, their
expression is strongly influenced by epigenetic mechanisms,
which may explain how environmental exposures—such as viral
infections, microbiota alterations, or dietary factors—trigger or
accelerate disease onset. In this review, we aimed to explore the
role of epigenetic regulation of T cells in the pathogenesis of T1D,
with a particular focus on how mechanisms such as DNA
methylation, histone modifications, non-coding RNAs, and
chromatin remodeling influence T-cell development, activation,
and tolerance. By summarizing current findings on epigenetic
dysregulation in both CD4" and CD8" T-cell subsets, and
examining the interplay between environmental triggers and
genetic susceptibility, we highlight the growing importance of
epigenetic biomarkers for diagnosis and the therapeutic potential
of epigenome-targeting strategies.

Frontiers in Immunology

10.3389/fimmu.2025.1664255

2 Overview of epigenetic
modifications

2.1 DNA methylation: a versatile and
targeted regulator

DNA methylation is a key regulatory process of the addition of a
methyl group to cytosine bases within Cytosine-phosphate-
Guanine (CpG) dinucleotides and is mediated by DNA
methyltransferases (DNMTs). In general, promoter methylation is
silencing and demethylation is activation (13). For example, the
transcription factor FOXP3, essential for Treg development, is
silenced when its regulatory regions are hypermethylated and
activated when hypomethylated (14). This helps to maintain
immune tolerance and Treg lineage fidelity.

Region specific hypomethylation also activates immune related
genes. Genes such as HLA-DQB1 and GAD2 have lower
methylation at their promoters and enhancers under
immunostimulatory conditions which in turn enhance antigen
presentation and cytokine responsiveness (15). These are not
stochastic but occur at defined regulatory loci, so it’s a tightly
controlled system of gene activation and silencing.

Methylation variability refers to the differences in DNA
methylation patterns observed across individuals, tissues,
developmental stages, or environmental conditions (16). It has been
noticed even between genetically identical monozygotic twins. High
resolution methylome studies show differential methylation at loci
including INS-IGF2, SH2B3 and MEG3 (17). This inter-individual
variation gives insight into how genetically similar individuals can
have different immunological outcomes. Abnormal methylation
variability is often associated with pathological conditions,
including cancer, autoimmune disorders, and neurological diseases,

making it a valuable biomarker for disease risk and progression.

2.2 Histone modifications: balancing
activation and Repression

Histone modifications are post-translational changes to the
histone tails that wrap DNA into chromatin (15). These changes
control chromatin accessibility and help recruit transcription factors.
For example, H3K9 acetylation (H3KAc) is associated with open
chromatin and active transcription, especially at immune genes like
HLA-DRB1/DQBI1 in APCs (13). H3K9 demethylation (H3K9me2)
at loci like CTLA4 is linked to a repressive chromatin state, preserving
immune checkpoints and preventing autoreactivity.

Histone acetylation patterns are sensitive to environmental cues.
Microbial metabolites like butyrate, a short chain fatty acid produced
by commensal Clostridium species (clusters IV/XIVa) inhibit histone
deacetylases (HDACs) and promote acetylation at immune
regulatory loci like FOXP3 (18). This leads to enhanced Treg
differentiation and immune homeostasis. Epigenetic integration of
microbiota derived signals is key to immune tolerance.
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Metabolic factors also affect histone modification patterns. For
example, hyperglycemia decreases the activity of NAD*-dependent
deacetylases SIRT2 and SIRTS, leading to persistent acetylation at
histone residues H3K9, H3K14 and H3K27 (19). These
modifications impair B-cell function, alter stress response gene
expression and may contribute to long term metabolic
complications. Histone modifications are epigenetic sensors of
both microbial and metabolic environments.

2.3 Non-coding RNAs: epigenetic
regulators in health and disease

Both post-transcriptional and chromatin levels of gene
expression are controlled by non-coding RNAs (ncRNAs), which
include microRNAs (miRNAs) and long non-coding RNAs
(IncRNAs) (20). miRNAs usually attach to the 3’ untranslated
regions of target mRNAs to prevent translation or degradation.
Treg migration, cytokine signaling and immunological homeostasis
are controlled by miRNAs like miR-125a-5p and miR-342 in
immune cells. Changes in immune response and disease
susceptibility are linked to polymorphisms in regulatory miRNAs
like miR-146a and miR-155 (15).

Regulatory miRNAs like miR-375 are present in pancreatic 3-
cells where they have a role in insulin secretion and B-cell survival.
miR-375 is upregulated in normal conditions resulting in the
suppression of insulin secretion by targeting exocytosis-related
genes (e.g. Myotrophin, PDK1), but chronic high glucose
downregulates miR-375 and leads to dysregulated insulin release
and B-cell stress (13, 15, 21). miRNAs maintain endocrine cell
identity while fine-tuning immunological responses.

IncRNAs are more than 200 nucleotides long and act through
various mechanisms, including chromatin looping, transcriptional
interference and enhancer modulation. HI-LNC25 (LINC01370)
regulates the transcription factor GLIS3 which is critical for -cell
survival and differentiation, while PLUTO promotes the expression of
PDX1 a master regulator of insulin production (15). These IncRNAs
have been shown to be tissue-specific epigenetic regulators.
Importantly, recent evidence suggests that IncRNAs may contribute
to disease susceptibility by interacting with non-coding genomic
regions. More than 90% of T1D-associated single nucleotide
polymorphism (SNP) are in non-coding regions, and IncRNAs are
implicated in the development of autoimmune risk. One example is
the SNP of NONHSAG044354 IncRNA within the BACH2 locus, a
gene involved in immunoregulation and tolerance (15, 22). IncRNAs
also maintain epigenetic memory by stabilizing transcriptional
activity at inflammatory loci even after cytokine signaling has
ceased, and thus preserve cellular identity over time (21).

2.4 Chromatin remodeling: organizing the
accessible genome

Chromatin remodeling is the repositioning of nucleosomes by
ATP-dependent complexes like SWI/SNF which control DNA
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accessibility to transcription factors (23). This is important during
T-cell lineage differentiation, B-cell specification and enhancer
activation (14).

Recent single-nucleus assay for transposase-accessible
chromatin using sequencing (snATAC-seq) studies on over
130,000 nuclei have shown that many autoimmune risk variants
map to cis-regulatory elements (cCREs) in memory CD8+ T cells
and Tregs (23). These elements are required for gene accessibility of
CTLA4 and FOXP3 which are central to immune regulation (22).
Chromatin accessibility at these sites is controlled by transcription
factor binding and is disrupted by disease associated variants.

Genome organizers such as Special AT-rich Sequence-Binding
Protein 1 (SATBI1) control long range enhancer-promoter
interactions to shape chromatin (14). SATB1 promotes thymic
growth and peripheral function in Tregs by opening chromatin at
super-enhancers near FOXP3 and CTLA4 (24). Regulatory
programs during T cell activation and differentiation rely on these
remodeling activities. Inflammatory cytokines like IL-1f and IFN-y
also dynamically control chromatin accessibility. These signals open
up closed chromatin regions enriched for IRF, STAT and NF-kB
motifs (21, 22). This plasticity allows for rapid transcriptional
responses in immune and endocrine cells. Furthermore, HLA
class II haplotypes, DR3/DQ2 regulate allele specific chromatin
remodeling (25). For example they control HLA-DRB5 in dendritic
cells and immunological tolerance and antigen presentation.

3 Epigenetic dysregulation in T1D-
associated T-cells

3.1 CD4+ T-Cells (Th1, Thl7, Tregs)

Tregs in T1D undergo epigenetic changes that can disable them.
Alterations in FOXP3 methylation have been reported in subsets of
autoimmune diabetes. Examples include FOXP3 promoter/Treg-
specific demethylated region (TSDR) hypermethylation and
reduced FOXP3 expression in CD4" T cells from Latent
Autoimmune Diabetes in Adults (LADA) and fulminant T1D
patients, and enrichment of TSDR-methylated FOXP3'IFN-y"
cells in T1D cohorts (26-28). This epigenetic silencing can be
exacerbated by environmental factors; reduced butyrate from gut
dysbiosis decreases histone acetylation at the FOXP3 enhancer and
further destabilizes Treg function (18). IL2RA (CD25) promoter
hypermethylation limits IL-2 signaling, necessary for Treg survival
and suppressive capacity (29). These changes present early in
disease progression, thus may contribute to breakdown of
immune tolerance before clinical onset (17).

Unlike Treg dysfunction, effector CD4+ subsets (Th1 and Th17
cells) in TID display activating epigenetic modifications at pro-
inflammatory cytokine loci. Studies of Th1/Th17 lineage-specific
chromatin have shown that enhancers of cytokine genes such as
IFN-y and IL-17 are marked by activating histone modifications,
including H3K27ac, which facilitates transcriptional upregulation
(22, 30). Moreover, single-cell chromatin accessibility analyses
suggest that T1D risk variants are enriched in Th1/Th17-specific
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regulatory elements, potentially altering transcription factor
binding and cytokine expression (23).

It remains unclear whether Thl and Th17 markers arise from the
same cells (reflecting cellular plasticity) or from distinct subsets, as
studies report both scenarios (31). Similarly, checkpoint receptor
changes such as CTLA4 and PD-1 may not be uniform across all
T1D patients; some studies report reduced PD-1 expression on Tregs,
whereas others find normal levels. Frequencies and suppressive
function of Tregs also show conflicting results across cohorts.
Comparative commentary indicates that while some studies report
increased Th17 cells in T1D, others find no change in IL-17-producing
cells under baseline conditions. These inconsistencies underscore
heterogeneity among patients and highlight the need for careful
interpretation of immune signatures. Together, Treg dysfunction
and Th1/Th17 hyperactivity may create a self-reinforcing cycle of
autoimmunity (Figure 1).

3.2 CD8+ T-cells (cytotoxic T-cells)

CD8+ T-cells are primed for autoreactivity in T1D through
epigenetic changes that make them more reactive to 3-cell antigens.
Epigenetic variation in immune cells, such as altered methylation at
loci including INS and IL2RA, has been associated with T1D risk. In
parallel, molecular mimicry between B-cell autoantigens (e.g.,
insulin, GAD65) and microbial peptides may promote activation
of autoreactive T cells (16, 18). Enhancers near genes involved in
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cytotoxic function, such as SOCS1 (cytokine signaling) and STXBP1
(vesicle fusion) are commonly disrupted in T1D patients according
to chromatin accessibility profiling (30). CD8+ T-cells are more
cytotoxic in T1D patients due to these epigenetic changes.

The T1D microenvironment activates CD8+ T-cells. IFN-y
induces MHC class I on B-cells, making them more visible to
cytotoxic T-cells (32). miR-23b, miR-590-5p dysregulate CD8+ T-
cell survival by suppressing TRAIL and FAS (33). Notably, these
epigenetic changes occur early in disease progression, as seen by
hypomethylation at the LDHC locus in children who later develop
autoantibodies (25).
reinforcing cycle where epigenetic priming activates CD8+ T-

Thus, these mechanisms create a self-

cells, which in turn destroy more B-cells and release more antigen.

3.3 Dysregulation of immune tolerance

One mechanism of tolerance breakdown in T1D is epigenetic
silencing of immunological checkpoint molecules. T1D patients
have hypermethylation at the CTLA4 and PD-1 loci which reduces
expression of these inhibitory receptors (30, 34). Variants in the
CTLA4 enhancer region can make this worse by disrupting
chromatin architecture and transcription factor binding (IRF1) in
Tregs (24). These epigenetic changes lead to autoimmune [3-cell
death,compromised checkpoint function and uncontrolled T cell
activation. Table 1. summarizes several epigenetic changes in
association with T1D.

Th1and Th17 Cells

©
\

-@

Histone

l / acetylation
IL17

Excessive
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Epigenetic dysregulation of T-cell subsets in T1D. On the left, regulatory T cells (Tregs) exhibit altered epigenetic regulation at immune tolerance—
related loci, including FOXP3 and IL2RA, which may impair their suppressive function. On the right, effector T cells (Th1l and Th17) display activating
histone acetylation (e.g., H3K27ac) at cytokine gene loci (IFNG, IL17A), increasing pro-inflammatory cytokine production. Together, these opposing
epigenetic changes weaken tolerance and promote autoimmunity in T1D.
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TABLE 1 Contrasting epigenetic regulation of CD4* vs CD8" T cells in T1D.

Feature

CD4* T cells

(Tregs, Thi, Th1l7)

FOXP3 and IL2RA

CD8* T cells
(Cytotoxic)

Hypomethylation at INS and

Primary hypermethylation (| GADG65 (1 antigen
epigenetic tolerance); H3K27ac at recognition); enhancer
change IFNG/IL17 loci (1 cytokine disruption at SOCS1, STXBP1
activity) (1 cytotoxicity)
Loss of immune regulation
. (weakened Treg Increased autoreactivity,
Functional i X X
suppression) and survival, and cytotoxic
outcome . . +
overproduction of pro- potential of CD8" T cells
inflammatory cytokines
Gut dysbiosis (] butyrate Molecular mimicry
Environmental | — FOXP3 silencing); viral (Bacteroides); metabolic
triggers infections (1 histone stress/high-fat diet; IFN-y
acetylation at cytokine loci) | induction of B-cell MHC-I
Ke Breakdown of tolerance — Direct B-cell destruction —
Y failure to restrain amplification of antigen
consequence

Pathogenic role
in T1ID

autoimmunity

“Gatekeepers” of tolerance
fail, allowing autoreactive
responses to persist

release and immune activation

“Executioners” of B-cell
damage, driving irreversible B-
cell loss

3.4 Long non-coding RNAs in T-cell
regulation

IncRNAs shape T-cell fate and effector programs by scaffolding
chromatin modifiers, guiding transcription-factor recruitment, and
modulating enhancer—promoter communication. In Tregs, Flicr
(Foxp3 long intergenic non-coding RNA) acts as a negative tuner
of FOXP3, altering chromatin accessibility at Foxp3 regulatory
elements; genetic ablation increases FOXP3 and improves
tolerance in autoimmune-prone backgrounds, highlighting Flicr
as a rheostat of Treg stability (35).

In Thl cells, the antisense IncRNA NeST (also known as
Tmevpgl/Ifng-AS1) is induced in a T-bet/STAT4-dependent
manner and promotes IFNG transcription by recruiting WDR5/
MLL to deposit H3K4 methylation at the Ifng locus; NeST thus
reinforces Thl polarization and IFN-y output (36-38).

For Th2 programs, lincR-Ccr2-5'AS cooperates with GATA-3
to regulate a chemokine-receptor cluster (CCR1/2/3/5), and its
knockdown impairs Th2 migration in vivo, illustrating how
IncRNAs coordinate lineage-specific trafficking with gene
programs (39).

4 Gene—environment—epigenome
interactions
4.1 Genetic susceptibility

T1D susceptibility is strongly influenced by genetics, with 78
risk loci now identified by large GWAS and fine-mapping studies

(23, 40-52). Many of these risk variants fall in regulatory elements
active in immune and pancreatic cell types, suggesting functional
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effects on gene expression (23). Recent research indicates that
epigenetic mechanisms may be involved in the development of
T1D due to genetic risk variations. SNPs in INS (rs689) and IL2RA
(rs12722495) in particular were linked to altered DNA methylation
at immune cell promoter CpG sites. Higher methylation in CD8" T
cells was associated with the risk allele rs689, but lower methylation
was found in B cells with rs12722495. These methylation alterations
specific to a genotype may affect immunological functioning and
increase the risk of developing the disease (53). Table 2 summarizes
key genes and their associated SNPs linked to immune function, 3-
cell regulation, and T1D risk (49). However, many of these genes,
such as CCR5, IL10, IL27, and GPX7, have been variably reported in
association with T1D. For instance, CCR5 has shown associations
in some populations but not others, and IL10/IL27 findings have
been inconsistent across cohorts. These discrepancies suggest that
some of these loci may have modest effect sizes or population-
specific effects. Therefore, while these genes are candidates
for contributing to T1D susceptibility, many associations
remain tentative, and their precise functional roles in disease
pathogenesis are still uncertain.

4.1.1 Human leukocyte antigen

About 50% of the lifetime risk of T1D is attributed to mutations
in the HLA class II genes on chromosome 6, which increases the
chance of acquiring the disease (47, 54). Specifically, the DR4-DQ8
(DQA1*03:01 — DQBI1*03:02) or DR3-DQ2 (DQA1*05:01 —
DQB1*02:01) haplotypes are present in 90% of children with
T1D. The largest risk factor for contracting the disease is the
combination of these two haplotypes in a person’s genotype (55).
Numerous studies have examined the connection between T1D risk
and variations in the HLA gene. These genetic correlations have
implications for disease prediction and means of prevention in
addition to aiding in our understanding of the pathophysiology of
T1D. HLA typing, for instance, is utilized in T1D prevention trials
to identify people who might benefit from early interventions and to
stratify risk (56).

4.1.2 Cathepsin H

Other gene loci, including the susceptibility locus of cathepsin
H (CTSH), have also been linked to the development of T1D in
addition to HLA. CTSH has been linked to a higher incidence of
T1D by genome-wide association studies (GWAS) (51). Using
integrated data from quantitative trait locus (eQTL) with GWAS,
a study identified the possible pathogenic pathways of the CTSH
gene in T1D (57). Single cell RNA sequencing (scRNA) revealed
that the pancreas of T1D patients had a significant upregulation of
the CTSH gene in acinar cells as compared to the control group.
Additionally, a group of genes co-expressed with CTSH that had a
substantial positive connection with T1D were found using single-
cell weighted gene co-expression network analysis (WGCNA). The
CTSH gene in the exocrine pancreas was thought to enhance the
antiviral response based on functional enrichment analysis. An
inflammatory milieu is produced as a result of this amplification,
which also raises the expression of pro-inflammatory cytokines.
T1D is likely to develop as a result of this process, which is likely to
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TABLE 2 Summary of key genes and their associated SNPs linked to
immune function, B-cell regulation, and T1D risk.

Gene/

. SNP
region

Reference(s)

Function

16927022,
HLA rs2157051,
Class 1T rs9275184,
157744001

Presents antigens to CD4+
T-cells for immune (157)
recognition

Immune checkpoint
rs11571316,

CTLA4
rs3087243

protein that suppresses T- (55, 158)

cell activation

Affects immune cell
1113010081 (51)

CCR5
function and signaling

Detects pathogens and

TLR7/8 rs5979785 (159)

triggers immune responses

Regulates gene

transcription; linked to

AFF3 159653442 (160)

immune cell and cancer
development

Encodes insulin, lowering

INS rs7111341 (43)

blood glucose levels
Supports pancreatic 3-cell
development and insulin (42)

pr

rs7020673,
rs10758593

GLIS3

Promotes programmed cell

BAD 694739
8 death (apoptosis)

(161)
Facilitates immune
responses, antibody
production, and T-cell
cytotoxicity

IL7R rs11954020 (51)

Suppresses inflammation

1L10 rs3024505 (anti-inflammatory (158)

cytokine)

Modulates T-cell activity

1L27 rs151234 and inhibits excessive (51)

proliferation

Protects B-cells and brain

WES1 rs1046322 cells from stress in the (162, 163)

endoplasmic reticulum

Breaks down proteins in

CTSB 151296023 (161)

lysosomes

Essential for lysosomal

CTSH
protein degradation

153825932 (158)

GPX7 ~ Regulates pancréatic B-cell (132)
growth and survival

Influences B-cell
TT1 - 132
S proliferation and death (132)

SNX19 ~ Pla?fs a role in B-cell ' (132)
maintenance and apoptosis

Adapted from: Mittal et al. “Gene-environment interaction in the pathophysiology (59).

harm B-cells. High CTSH expression, which is influenced by other
environmental factors such post-translational modifications and
epigenetics, was found to connect with the risk of T1D in another
study (58). When combined, these studies demonstrate how CTSH
contributes to a higher risk of T1D development.
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4.1.3 Other genes

It has been demonstrated that additional potential genes,
including INS, GLIS3, CCR5, BAD, GPX7, GSTT1, and SNX19,
increase vulnerability to T1D (23, 40-51). A few of these genes have
a direct impact on pancreatic B-cell growth and death. Table 3
provides a detailed list of all the genes linked to a higher risk of T1D
along with an explanation of their roles.

Recent research have demonstrated that the pathophysiology of
T1D is complex, despite the fact that genetics has been found to play
a significant influence in the disease. Identical twin studies have
revealed that if one twin has T1D, the other twin may not be at all
susceptible to the condition, indicating that genetic factors by
themselves are insufficient to fully explain how T1D develops (59).

4.2 Environmental triggers

In addition to genetics, environmental factors have been linked
to the development of T1D independently. These include viral
infections, pesticide exposure, lifestyle and eating habits, and
vitamin D deficiency (60-62).

4.2.1 Viral infections

Viral infection-induced autoimmunity may be a significant
factor in the development of T1D (Figure 2) (63). Enteroviruses
have been linked to the etiopathogenesis of T1D on several levels,
including infecting pancreatic 3-cells and triggering autoimmunity
against them (64). Most commonly, T1D incidence has been linked
to Coxsackie B viruses (65-67). Enterovirus proteins have been
detected in the pancreas during the outset of illness in people with
T1D (68). It has been demonstrated that several enterovirus species
can infect and impair the function of pancreatic B-cells since these
cells also contain many receptors that enteroviruses employ to entry
into cells. Interferons, which are produced in response to these viral
infections, drive gene transcription; newly diagnosed T1D patients
have been found to exhibit this IFN-stimulated gene expression.
The later emergence of autoantibodies against pancreatic [3-cells has
also been linked to this gene transcription. Given that viremia was
missing in children with quick onset T1D in the TEDDY research, it
is possible that infections could cause autoimmunity gradually over
time as opposed to suddenly (69). Moreover, pancreatic [3-cell
antigens and certain viruses, like enteroviruses, have structural
similarities. This similarity may result in a condition called
molecular mimicry, in which the body’s own cells, including -
cells that produce insulin, are mistakenly attacked by the immune
system, which is triggered to combat the virus, causing T1D (60). In
pancreatic B-cells, enteroviruses have been demonstrated to
interfere with the miRNA-mediated inhibition of pro-
inflammatory pathways, whereas related Picornaviridae viruses,
like rhinovirus, can modify the expression of cytokine genes by
altering DNA methylation (70-73). The offspring may be primed
for autoimmune reactions and have a higher chance of developing
T1D later in life if the mother’s enteroviral infection during
pregnancy causes long-lasting epigenetic changes in the fetal
immune-related genes (74-77).
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TABLE 3 Epigenetic dysregulation in T1D-associated T-cells.

Affected
gene/
pathway

Epigenetic
change

Cell type

Environmental trigger

10.3389/fimmu.2025.1664255

Evidence

Reference(s)
source

Mechanism

FOXP3 | Histone acetylation — Human, in
Treg functi Gut dysbiosi b t 13, 20
hypermethylation | Treg function ut dysbiosis (1 butyrate) FOXP3 silencing vitro ( )
Tregs
IL2RA P. t thylati H ,
. | 1L-2 signaling B romoter me- ylation — | l?man (14, 24)
hypermethylation IL-2 responsiveness animal
IEN-y/IL-17 1 Pro Histone acetylation Human,
- - - —
Th1/Th17 4 X Viral infections (coxsackievirus) . 4 X animal, in (22, 30)
H3K27ac inflammatory cytokine overproduction vitro
INS/GAD65 Autoanti H thylati
i 1 u' o'an 1gen Molecular mimicry (Bacteroides) ypomf: ylation _,>,T Human (16, 18)
hypomethylation | reactivity autoantigen recognition
LDHC Metabolic stress — epigenetic Human
—
CD8+ T-cells . Early priming Diet (high-fat) . Pg cohort, (25, 33)
hypomethylation priming .
animal
miR-23b 1 TRAIL/FAS Dysregulated miRNAs — 1 Animal, in (33)
downregulation signaling CD8+ T-cell survival vitro
Immune CTLA-4 Promoter methylation — |
T i — H 30, 34
Checkpoints hypermethylation | Treg suppression checkpoint inhibition uman ( )
) . Human
Genome-wide X . . . IFN-o. — | DNMT activity
. 1 Autoimmunity Enterovirus infection R pancreas, (21)
hypomethylation — global hypomethylation .
animal
Systemic
TLR4/NF-B 1 Pro- ‘ ‘ Microb?ota—z.ierived LPS — Hufnan
L X LPS (Gram-negative bacteria) TLR4 signaling — (children), (164)
activation 1nﬂammat0ry . . .
inflammation animal

4.2.2 Pesticide exposure

T1D development has been linked to pesticide exposure.
Chemicals called pesticides are used extensively in agriculture to
control pests, but there have been worries about their possible
effects on human health. Studies have examined the link between
pesticide exposure and T1D, although research in this field is still
ongoing and results are inconclusive (78). Epidemiological studies
suggest that environmental toxins such as pesticides may interact
with genetic susceptibility to influence disease onset. There may be a
connection between pesticide exposure and T1D, according to
epidemiological research. Even at low concentrations, pesticide
exposure has been linked to the occurrence of T1D and
prediabetes, also known as aberrant glucose regulation (79). Men
and women had different causal relationships between pesticide
exposure and impaired glucose control; in men, a U-shaped dose-
response relationship was more pronounced.

Pesticides may also cause or hasten the autoimmune reaction
that destroys B-cells in the pancreas, according to some theories.
Although the exact processes behind this possible link are
unknown, they might have to do with oxidative stress induction
or immune function disturbance (59). These findings illustrate how
environmental exposures beyond viral infections can contribute to
T1D development, setting the stage to examine lifestyle and
dietary influences.
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4.2.3 Lifestyle and diet

Numerous studies have examined the relationship between
dietary and lifestyle factors and the onset of T1D, identifying a
number of connections and possible mechanisms (80). Diet and
lifestyle represent modifiable environmental factors that may
mediate T1D risk, in part through their effects on gut microbiota
and immune function. It is clear that dietary practices that alter the
composition of the gut microbiota may be a major factor in the
development of T1D. Up to now, the most convincing evidence for
a causal link between intestinal microbiome and the disease comes
from well-controlled intervention studies in murine models (81).
Although not fully understood, a complicated relationship between
gut permeability, the immune system, and intestinal microbiota has
previously been discovered (82). The gut barrier, which is made up
of enterocytes, mucus, gut microbiota, tight junction (TJ) proteins,
and the innate and adaptive immune cells that make up the gut-
associated lymphoid tissue, regulates gut permeability (83).
Intestinal permeability and the passage of microbial antigens,
products, or microbes themselves can result from the breakdown
of T] and the compromise of the intestinal barrier. The expression
of TJ proteins, which include claudin-2, occludin, cingulin, and
zonula occludens (ZO) proteins, controls the TJ of the intestinal
barrier. According to some research, intestinal permeability is
dependent on elevated zonulin levels, which are impacted by
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Epigenetic Dysregulation Linking Genetic Risk and Environmental Triggers to T1D. Genetic susceptibility loci influence epigenetic regulation in T cells
through mechanisms including DNA methylation, histone modifications, and non-coding RNAs. Environmental exposures, such as viral infections,
altered gut microbiota, and dietary factors, exert reversible effects on these pathways. The resulting epigenetic dysregulation promotes loss of

immune tolerance, B-cell inflammation, and progression to T1D.

bacterial colonization (84, 85). It is also known that zonulin
modulates T7J to reversibly modify intestinal permeability (86-88).
It is interesting to note that elevated blood zonulin levels occur prior
to the development of clinically noticeable T1D (89). However,
subsequent studies have raised concerns regarding the specificity of
zonulin assays and the generalizability of these findings. Critical
reviews indicate that while zonulin represents a potentially
important modulator of intestinal permeability, its measurement
can be affected by cross-reactivity and methodological variability,
and not all individuals with T1D show elevated levels. Therefore,
interpreting zonulin data requires caution, and it should be
considered alongside other markers and functional assessments of
intestinal barrier integrity. Furthermore, an increase in intestinal
paracellular permeability has been found in TI1D patients,
supporting the concept of barrier dysfunction as a feature of
disease pathogenesis (90-93).

Intestinal permeability was higher in children with multiple islet
autoantibodies (=2 IA) who developed T1D than in those who did
not, indicating a role for intestinal permeability in the
pathophysiology of TID (94, 95). The intestinal barrier’s
permeability is modulated by a variety of gut commensals (96).

Frontiers in Immunology

The data that certain gut bacteria create gamma-aminobutyric acid
and express GAD supports a theory. By acting as an antigen to
activate submucosal T-cells, the GAD produced from bacteria as a
result of gut bacterial death (e.g., by viral or antibiotic-mediated
mechanisms) may miseducate the host immune system and result
in the development of T1D (97, 98).

Some of the bacteria can carry peptide sequences that resemble
insulin, which could cause auto-immunity, according to
bioinformatics research (99). Remarkably, T-cell clones that are
directed against preproinsulin peptides have demonstrated a high
degree of cross-reactivity with peptides from Clostridium and
Bacteroides species (100). A peptide generated by Parabacteroides
distasonis that resembles the 3-chain of insulin has been found in a
NOD mouse model (101). T-cells are able to identify this peptide,
which triggers an immunological reaction to this insulin chain.

The gnotobiotic zebrafish model has shown that the intestinal
microbiota is necessary for the normal growth of the pancreatic 3-
cell population during early larval development. This is due to the
action of a bacterial protein called B-cell expansion factor A (BefA),
which is produced by gut microbes (102). These results raise the
possibility that the gut microbiota plays a part in the formation of
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early pancreatic 3-cells and point to a connection between juvenile
fecal microbiota composition and an elevated risk of diabetes.

Studies have repeatedly shown that TID is linked to notable
changes in the makeup of the gut microbiota. In comparison to
healthy controls, children who subsequently developed T1D had
different microbial patterns, including lower levels of Lactococcus
lactis and Streptococcus thermophilus and greater levels of
Bifidobacterium spp., according to the seminal TEDDY study
(103). Bacteroides species are more prevalent in both established
T1D patients and at-risk individuals, according to several
independent studies (104-106). Certain strains, such as B. dorei
and B. vulgatus, are particularly enriched in high-risk Finnish
children (107), while B. stercoris, B. intestinalis, B. cellulosilyticus,
and B. fragilis are found in Italian patients (108).

However, results across cohorts have not always been
consistent, indicating that microbial signatures of TID risk are
still unclear. For example, while the TEDDY longitudinal analysis
found differences in early microbiota, other cohorts such as
Diabimmune and DIPP report different taxa changes (103).
Recent reviews and meta-analyses emphasize that microbial
findings vary by geography and study population, and some
studies fail to replicate specific “diabetogenic” bacteria (109).

Two trends that stand out in functional investigations of the gut
microbiome in T1D are the significant drop in butyrate-producing
bacteria from Clostridium clusters IV and XIVa and the decreased
number of species that break down mucin, such as Prevotella and
Akkermansia (110, 111). Studies using metagenomic and
metabolomic techniques have found common microbial traits
between T1D patients and their siblings, such as higher
Clostridiales and Dorea with concomitant reductions in Dialister
and Akkermansia (111) These alterations seem to be
clinically significant.

One especially noteworthy observation is the reduction of
butyrate-producing bacteria, which has been linked in several
studies to greater intestinal permeability and an increased risk of
T1D (110, 112-114). Intervention studies that demonstrate that
butyrate supplementation can enhance metabolic parameters and
cause disease remission in NOD mice models further reinforce this
relationship (115, 116). The exact molecular pathways are still
unclear, highlighting a crucial field for further investigation, even
though these findings collectively strongly link gut microbiota
dysbiosis to T1D development, especially through processes
involving barrier function and immune modulation.

Systemic immunological responses are significantly shaped by
short-chain fatty acids (SCFAs) generated from the microbiota,
especially butyrate and propionate (117). The pancreas and lymph
nodes are among the distal tissues that these compounds affect after
diffusing through the intestinal epithelium. Through processes
including HDACs inhibition and free fatty acid receptor (FFAR)
activation, SCFAs control T-cell activity. This results in epigenetic
remodeling that promotes the formation of regulatory T cells and
lowers inflammation. However, host-specific variables including
nutrition, metabolic status, and microbiome makeup affect SCFA
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effects, which are highly context-dependent. In order to completely
comprehend and utilize SCFA-driven immune regulation in the
setting of T1D, it may be necessary to integrate metagenomic,
metabolomic, and epigenetic techniques.

Vitamin D represents another dietary factor that may influence
T1D risk through immune modulation. The onset of T1D has been
linked to low vitamin D levels (118-121). This correlation is
believed to result from vitamin D’s possible ability to influence
immune system modulation, which may have an effect on the
autoimmune processes implicated in T1D. Other research,
however, has found no link between low vitamin D levels and
increased incidence of T1D (122, 123). Furthermore, interventional
studies investigating vitamin D supplementation for T1D
prevention have produced mixed results. For example, a 2021
meta-analysis reported limited and inconsistent evidence that
vitamin D supplementation reduces T1D risk, highlighting
variability in study design, population, and dosing regimens.
These findings indicate that, while vitamin D may have
immunomodulatory effects, supplementation alone has not been
conclusively shown to prevent T1D (124).

Vitamin D affects immune function through genetic pathways
involving the vitamin D receptor (VDR), in addition to its
traditional role in maintaining mineral homeostasis (125). VDR
binds to vitamin D response elements (VDREs) and forms a
heterodimer with retinoid X receptor (RXR) upon binding
1,25(0OH)D (126). This heterodimer regulates transcription
differently depending on the cell type. Vitamin D’s specific
immunomodulatory effects on T cells and other immunological
subsets implicated in T1D may be explained by this. Furthermore,
complexes of vitamin D and VDR can disrupt transcription factors
like CREB, altering gene expression without the involvement of
RXR and pointing to different epigenetic processes of immune
control (112).

4.2.4 Antibiotic use

Research has indicated a link between the use of antibiotics and
a higher risk of developing T1D (80, 127, 128). Depending on the
route of delivery, using broad-spectrum antibiotics during the first
two years of life has been linked to an increased risk of developing
T1D (129). Interestingly, only infants born via cesarean section
showed a correlation between broad-spectrum antibiotics and T1D,
but kids born vaginally did not. Other research, however, finds no
connection between T1D and antibiotic use (130, 131). To
determine the role of antibiotic use and delivery method in the
development of T1D, more research is necessary.

4.3 Integrated mechanisms

It is currently unclear what causes pancreatic 3 cell loss and the
development of T1D in certain people, despite the distinct roles of
environmental risk factors and genetic vulnerability. There is a
growing theory that the pathophysiology of T1D is significantly
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Environmental triggers and their epigenetic impact on T1D pathogenesis. Viral infections promote DNA hypomethylation, autoantigen expression,
T-cell activation, and pro-inflammatory cytokine release, leading to progressive epigenetic dysregulation. In parallel, microbiota dysbiosis reduces
butyrate availability, decreases FOXP3 acetylation, and impairs Treg function, driving inflammation and gut barrier damage. Together, these
environmental—epigenetic interactions amplify immune dysregulation and contribute to the development of T1D.

influenced by the interplay between genetic predisposition and
environmental variables (Figure 3). The impact of gene variations
that cause autoimmunity and result in T1D clinical symptoms may
be amplified by environmental variables (59).

Together with environmental variables, epigenetic modulators
have become important regulators of gene expression and cellular
phenotype (34, 132-136). One of the main molecular pathways
through which gene-environment interactions may heighten
vulnerability to T1D is thought to be epigenetics (12, 133, 137).
Investigations into epigenetic mechanisms, such as changes in DNA
methylation, have revealed abnormal patterns in genes related to
insulin control and immune function in people with T1D (138-141)
Laajala et al. did not observe differences in DNA methylation
between cases and controls in cord blood samples (142). By
contrast, Johnson et al. reported DNA methylation changes that
preceded seroconversion, indicating that methylation alterations
can occur before the appearance of islet autoantibodies. They
analyzed multiple pre-disease peripheral-blood samples and
identified longitudinal differences in the rate of age-related
methylation change at 10 genomic regions. Several of these
differences were detectable as early as birth and in samples taken
before onset of islet autoimmunity (143). Additionally, in the setting
of TID, histone alterations have demonstrated their impact on
immune response gene dysregulation (144). Another aspect of
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epigenetics that has been highlighted is the function of miRNAs,
specifically in regulating inflammatory and immunological
responses in T1D (133, 145-148). In addition to their
implications for biomarker discovery, epigenetic changes linked to
T1D risk also pave the way for precision medicine approaches in
T1D diagnosis, risk assessment, and treatment (59).

5 Epigenetic biomarkers and
therapeutic potential

Epigenetic biomarkers are emerging as valuable tools that can
be used in understanding, diagnosing, and potentially treating
various diseases including T1D. Longitudinal studies show that
specific methylation changes occur before clinical disease onset. In
T1D, early demethylation events at immune and [3-cell genes can be
detected months to years before diagnosis (20). For instance,
hypomethylation at the INS promoter, a hallmark of active
insulin transcription, correlates with B-cell function and can be
detected in circulating cell-free DNA (15, 17, 29).

Similarly, circulating miRNA pose as a promising biomarker
and predictor of T1D progression. miR-25 has been found to be
negatively associated with residual B-cell function, and positively
associated with glycemic control 3 months after onset (149). This
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suggests that miR-25 may have a role in cell proliferation of
pancreatic endocrine cells, thus making it of benefit in evaluating
T1D progression and management. Another study suggested the
usage of hsa-miR-1-3p in monitoring T1D progression and
associated cardiovascular complications (146). Assessing for such
epigenetic changes may aid in early detection, diagnosis, and
prognosis of T1D among other diseases as well.

Epigenetic mechanisms are being explored as therapeutic
targets. One promising strategy involves the use of small molecule
inhibitors that target enzymes involved in epigenetic modifications
including HDACs and DNMTs. HDAC inhibitors can promote a
more permissive chromatin state, thereby enhancing the expression
of genes involved in immune regulation and tolerance (150, 151).
DNMT inhibitors, on the other hand, may reverse aberrant DNA
hypermethylation and restore the expression of silenced checkpoint
inhibitors such as PD-1 or CTLA-4 (152). Early preclinical models
suggest that modulating these enzymes in T-cells may reduce
autoreactivity and promote immune tolerance in autoimmune
settings, although translation to humans is still in early stages (153).

Another emerging area of therapeutic research involves
miRNA-based therapies. Since specific miRNAs contribute to the
dysregulation of T-cell function in T1D, strategies that restore the
balance of miRNA expression may help re-establish immune
homeostasis (154). This could involve the use of miRNA mimics
to restore deficient regulatory miRNAs or antagomirs to inhibit
pro-inflammatory miRNAs. While these approaches offer a degree
of precision not seen with conventional immunosuppressive
therapies and may reduce off-target effects, challenges remain
regarding delivery methods, tissue specificity, and potential
immune responses. CRISPR/dCas9-mediated epigenetic editing is
an emerging approach that enables precise, reversible control of
gene expression without altering the DNA sequence. Unlike
conventional CRISPR, the catalytically inactive “dead” Cas9
(dCas9) is fused to epigenetic modifiers such as p300 (a histone
acetyltransferase) or TET1 (a DNA demethylase) and guided to
specific genomic loci by custom-designed guide RNAs. This system
allows researchers to modulate the epigenetic landscape of immune-
regulatory genes in T-cells with high specificity. For example,
targeting dCas9-p300 to the promoter of the FOXP3 gene in
mouse primary T-cells significantly enhanced and stabilized
FOXP3 expression, promoting a regulatory T-cell phenotype even
under inflammatory conditions (155). Similarly, in human T-cell
models, dCas9-TET1 systems have been used to reduce methylation
at FOXP3 enhancer regions and induce functional suppressive
Treg-like cells (156). These findings highlight the potential of
epigenetic editing to reprogram autoreactive T-cells, restore
immune tolerance, and ultimately serve as a targeted, gene-
specific immunotherapy for autoimmune diseases such as T1D;
however, clinical translation is limited, and challenges such as
efficient in vivo delivery, immune cell targeting, and off-target
effects remain to be addressed.
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6 Conclusion

The immunological landscape of T1D is significantly shaped by
epigenetic mechanisms, particularly in regulating T-cell growth,
activation, and tolerance. These pathways operate at the
intersection of genetic susceptibility and environmental
exposures, offering a more integrated view of TID pathogenesis.
Recent findings on DNA methylation, histone remodeling, and
non-coding RNAs shed light on why immune tolerance fails in
some individuals but not others. Crucially, the reversibility of
epigenetic modifications enables the possibility of therapeutic
immune cell reprogramming. At the same time, epigenetic
signatures hold promise as biomarkers for early risk stratification,
prediction of disease progression, and monitoring of therapeutic
response. Despite this potential, major challenges remain, including
limited understanding of the causal hierarchy among epigenetic
changes, variability across patient populations, and difficulty
distinguishing disease-driving modifications from secondary
changes. As tools such as CRISPR-based editing and single-cell
epigenomics advance, integrating biomarker discovery with
mechanistic insights will be essential for translating epigenetic
research into durable and precise strategies for preventing or
delaying T1D onset.
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