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b-cell destruction by autoreactive T cells is a hey hallmark of type 1 diabetes

mellitus (T1D). Epigenetic mechanisms—including DNA methylation, histone

modifications, chromatin remodeling, and non-coding RNAs—play critical roles

in regulating T-cell development, activation, and tolerance. Disruption of these

processes contributes to immune imbalance and the onset of T1D. This review

summarizes current insights into how epigenetic regulation shapes T-cell

function and highlights emerging evidence linking these changes to

environmental influences such as gut microbiota, diet, and viral infections.

Exploring the interaction between genetic susceptibility and environmental

triggers through an epigenetic framework not only advances our

understanding of T1D pathogenesis but also provides opportunities for

biomarker discovery and the development of targeted epigenetic therapies.

With further research, these advances hold promise for improving precision

medicine strategies in T1D.
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1 Introduction

Type 1 diabetes (T1D) is an autoimmune disease in which the immune system

mistakenly attacks and destroys pancreatic b-cells, eventually leading to insulin shortage

(1). This b-cell loss primarily happens via autoreactive T-cell mechanisms in genetically

predisposed individuals, often initiated or modulated by environmental factors (2).
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Epigenetic regulation—through mechanisms such as DNA

methylation, histone modifications, non-coding RNAs, and

chromatin remodeling—has emerged as a critical mediator

linking genetic susceptibility to environmental influences in T1D

(3). These heritable yet reversible modifications govern T-cell

development, activation, and tolerance, thereby shaping immune

balance and disease risk (4).

The disease progresses through three clinically and biologically

distinct, largely silent stages (5, 6). In Stage 1, individuals have

detectable autoantibodies directed against pancreatic b-cell
antigens, indicating an active immune attack on the islets, but

glucose metabolism remains within the normal range and there are

no symptoms. In Stage 2, ongoing immune-mediated b-cell injury
produces measurable impairment of glucose regulation, for example

abnormal responses on glucose tolerance testing or a rising A1c

although fasting glucose and symptom status may still be non-

diabetic. In Stage 3, b-cell loss reaches a threshold at which

persistent hyperglycemia develops, meeting diagnostic criteria for

diabetes and often accompanied by typical symptoms such as

polyuria, polydipsia, and weight loss. CD4+ and CD8+ T-cells are

essential factors in the progression of T1D and significant elements

of the islet infiltration. Initially, autoreactive T cells are stimulated

by b-cell antigens shown by antigen-presenting cells (APCs) (7).

The activated CD4+ T-cells invade the pancreas and are believed to

aid in b-cell damage through the activation of macrophages and

CD8+ T-cells. These in turn are directly responsible for the

destruction of b-cells through their interaction with major

histocompatibility complex (MHC) class I molecules and by the

secretion of perforin and granzyme (8). Usually, regulatory T cells

(Tregs), the main regulators of inflammatory responses, are

responsible for immune tolerance and homeostasis (9, 10). The

lack of Tregs may become one of the reasons for the development of

human autoimmune diseases like T1D, whereas an excess of Tregs

may lead to the weakening of the immune response to cancer or

infections (11). Established T1D risk genes include the human

leukocyte antigen (HLA) region, insulin (INS), protein tyrosine

phosphatase non-receptor type 22 (PTPN22), interleukin-2

receptor alpha (IL2RA), and cytotoxic T-lymphocyte associated

protein 4 (CTLA4), among others (12). Importantly, their

expression is strongly influenced by epigenetic mechanisms,

which may explain how environmental exposures—such as viral

infections, microbiota alterations, or dietary factors—trigger or

accelerate disease onset. In this review, we aimed to explore the

role of epigenetic regulation of T cells in the pathogenesis of T1D,

with a particular focus on how mechanisms such as DNA

methylation, histone modifications, non-coding RNAs, and

chromatin remodeling influence T-cell development, activation,

and tolerance. By summarizing current findings on epigenetic

dysregulation in both CD4+ and CD8+ T-cell subsets, and

examining the interplay between environmental triggers and

genetic susceptibility, we highlight the growing importance of

epigenetic biomarkers for diagnosis and the therapeutic potential

of epigenome-targeting strategies.
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2 Overview of epigenetic
modifications

2.1 DNA methylation: a versatile and
targeted regulator

DNAmethylation is a key regulatory process of the addition of a

methyl group to cytosine bases within Cytosine-phosphate-

Guanine (CpG) dinucleotides and is mediated by DNA

methyltransferases (DNMTs). In general, promoter methylation is

silencing and demethylation is activation (13). For example, the

transcription factor FOXP3, essential for Treg development, is

silenced when its regulatory regions are hypermethylated and

activated when hypomethylated (14). This helps to maintain

immune tolerance and Treg lineage fidelity.

Region specific hypomethylation also activates immune related

genes. Genes such as HLA-DQB1 and GAD2 have lower

methylation at their promoters and enhancers under

immunostimulatory conditions which in turn enhance antigen

presentation and cytokine responsiveness (15). These are not

stochastic but occur at defined regulatory loci, so it’s a tightly

controlled system of gene activation and silencing.

Methylation variability refers to the differences in DNA

methylation patterns observed across individuals, tissues,

developmental stages, or environmental conditions (16). It has been

noticed even between genetically identical monozygotic twins. High

resolution methylome studies show differential methylation at loci

including INS-IGF2, SH2B3 and MEG3 (17). This inter-individual

variation gives insight into how genetically similar individuals can

have different immunological outcomes. Abnormal methylation

variability is often associated with pathological conditions,

including cancer, autoimmune disorders, and neurological diseases,

making it a valuable biomarker for disease risk and progression.
2.2 Histone modifications: balancing
activation and Repression

Histone modifications are post-translational changes to the

histone tails that wrap DNA into chromatin (15). These changes

control chromatin accessibility and help recruit transcription factors.

For example, H3K9 acetylation (H3KAc) is associated with open

chromatin and active transcription, especially at immune genes like

HLA-DRB1/DQB1 in APCs (13). H3K9 demethylation (H3K9me2)

at loci like CTLA4 is linked to a repressive chromatin state, preserving

immune checkpoints and preventing autoreactivity.

Histone acetylation patterns are sensitive to environmental cues.

Microbial metabolites like butyrate, a short chain fatty acid produced

by commensal Clostridium species (clusters IV/XIVa) inhibit histone

deacetylases (HDACs) and promote acetylation at immune

regulatory loci like FOXP3 (18). This leads to enhanced Treg

differentiation and immune homeostasis. Epigenetic integration of

microbiota derived signals is key to immune tolerance.
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Metabolic factors also affect histone modification patterns. For

example, hyperglycemia decreases the activity of NAD+-dependent

deacetylases SIRT2 and SIRT6, leading to persistent acetylation at

histone residues H3K9, H3K14 and H3K27 (19). These

modifications impair b-cell function, alter stress response gene

expression and may contribute to long term metabolic

complications. Histone modifications are epigenetic sensors of

both microbial and metabolic environments.
2.3 Non-coding RNAs: epigenetic
regulators in health and disease

Both post-transcriptional and chromatin levels of gene

expression are controlled by non-coding RNAs (ncRNAs), which

include microRNAs (miRNAs) and long non-coding RNAs

(lncRNAs) (20). miRNAs usually attach to the 3′ untranslated

regions of target mRNAs to prevent translation or degradation.

Treg migration, cytokine signaling and immunological homeostasis

are controlled by miRNAs like miR-125a-5p and miR-342 in

immune cells. Changes in immune response and disease

susceptibility are linked to polymorphisms in regulatory miRNAs

like miR-146a and miR-155 (15).

Regulatory miRNAs like miR-375 are present in pancreatic b-
cells where they have a role in insulin secretion and b-cell survival.
miR-375 is upregulated in normal conditions resulting in the

suppression of insulin secretion by targeting exocytosis-related

genes (e.g. Myotrophin, PDK1), but chronic high glucose

downregulates miR-375 and leads to dysregulated insulin release

and b-cell stress (13, 15, 21). miRNAs maintain endocrine cell

identity while fine-tuning immunological responses.

lncRNAs are more than 200 nucleotides long and act through

various mechanisms, including chromatin looping, transcriptional

interference and enhancer modulation. HI-LNC25 (LINC01370)

regulates the transcription factor GLIS3 which is critical for b-cell
survival and differentiation, while PLUTOpromotes the expression of

PDX1 a master regulator of insulin production (15). These lncRNAs

have been shown to be tissue-specific epigenetic regulators.

Importantly, recent evidence suggests that lncRNAs may contribute

to disease susceptibility by interacting with non-coding genomic

regions. More than 90% of T1D-associated single nucleotide

polymorphism (SNP) are in non-coding regions, and lncRNAs are

implicated in the development of autoimmune risk. One example is

the SNP of NONHSAG044354 lncRNA within the BACH2 locus, a

gene involved in immunoregulation and tolerance (15, 22). lncRNAs

also maintain epigenetic memory by stabilizing transcriptional

activity at inflammatory loci even after cytokine signaling has

ceased, and thus preserve cellular identity over time (21).
2.4 Chromatin remodeling: organizing the
accessible genome

Chromatin remodeling is the repositioning of nucleosomes by

ATP-dependent complexes like SWI/SNF which control DNA
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accessibility to transcription factors (23). This is important during

T-cell lineage differentiation, b-cell specification and enhancer

activation (14).

Recent single-nucleus assay for transposase-accessible

chromatin using sequencing (snATAC-seq) studies on over

130,000 nuclei have shown that many autoimmune risk variants

map to cis-regulatory elements (cCREs) in memory CD8+ T cells

and Tregs (23). These elements are required for gene accessibility of

CTLA4 and FOXP3 which are central to immune regulation (22).

Chromatin accessibility at these sites is controlled by transcription

factor binding and is disrupted by disease associated variants.

Genome organizers such as Special AT-rich Sequence-Binding

Protein 1 (SATB1) control long range enhancer-promoter

interactions to shape chromatin (14). SATB1 promotes thymic

growth and peripheral function in Tregs by opening chromatin at

super-enhancers near FOXP3 and CTLA4 (24). Regulatory

programs during T cell activation and differentiation rely on these

remodeling activities. Inflammatory cytokines like IL-1b and IFN-g
also dynamically control chromatin accessibility. These signals open

up closed chromatin regions enriched for IRF, STAT and NF-kB
motifs (21, 22). This plasticity allows for rapid transcriptional

responses in immune and endocrine cells. Furthermore, HLA

class II haplotypes, DR3/DQ2 regulate allele specific chromatin

remodeling (25). For example they control HLA-DRB5 in dendritic

cells and immunological tolerance and antigen presentation.
3 Epigenetic dysregulation in T1D-
associated T-cells

3.1 CD4+ T-Cells (Th1, Th17, Tregs)

Tregs in T1D undergo epigenetic changes that can disable them.

Alterations in FOXP3 methylation have been reported in subsets of

autoimmune diabetes. Examples include FOXP3 promoter/Treg-

specific demethylated region (TSDR) hypermethylation and

reduced FOXP3 expression in CD4+ T cells from Latent

Autoimmune Diabetes in Adults (LADA) and fulminant T1D

patients, and enrichment of TSDR-methylated FOXP3+IFN-g+

cells in T1D cohorts (26–28). This epigenetic silencing can be

exacerbated by environmental factors; reduced butyrate from gut

dysbiosis decreases histone acetylation at the FOXP3 enhancer and

further destabilizes Treg function (18). IL2RA (CD25) promoter

hypermethylation limits IL-2 signaling, necessary for Treg survival

and suppressive capacity (29). These changes present early in

disease progression, thus may contribute to breakdown of

immune tolerance before clinical onset (17).

Unlike Treg dysfunction, effector CD4+ subsets (Th1 and Th17

cells) in T1D display activating epigenetic modifications at pro-

inflammatory cytokine loci. Studies of Th1/Th17 lineage-specific

chromatin have shown that enhancers of cytokine genes such as

IFN-g and IL-17 are marked by activating histone modifications,

including H3K27ac, which facilitates transcriptional upregulation

(22, 30). Moreover, single-cell chromatin accessibility analyses

suggest that T1D risk variants are enriched in Th1/Th17-specific
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regulatory elements, potentially altering transcription factor

binding and cytokine expression (23).

It remains unclear whether Th1 and Th17 markers arise from the

same cells (reflecting cellular plasticity) or from distinct subsets, as

studies report both scenarios (31). Similarly, checkpoint receptor

changes such as CTLA4 and PD-1 may not be uniform across all

T1D patients; some studies report reduced PD-1 expression on Tregs,

whereas others find normal levels. Frequencies and suppressive

function of Tregs also show conflicting results across cohorts.

Comparative commentary indicates that while some studies report

increased Th17 cells in T1D, others find no change in IL-17–producing

cells under baseline conditions. These inconsistencies underscore

heterogeneity among patients and highlight the need for careful

interpretation of immune signatures. Together, Treg dysfunction

and Th1/Th17 hyperactivity may create a self-reinforcing cycle of

autoimmunity (Figure 1).
3.2 CD8+ T-cells (cytotoxic T-cells)

CD8+ T-cells are primed for autoreactivity in T1D through

epigenetic changes that make them more reactive to b-cell antigens.
Epigenetic variation in immune cells, such as altered methylation at

loci including INS and IL2RA, has been associated with T1D risk. In

parallel, molecular mimicry between b-cell autoantigens (e.g.,

insulin, GAD65) and microbial peptides may promote activation

of autoreactive T cells (16, 18). Enhancers near genes involved in
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cytotoxic function, such as SOCS1 (cytokine signaling) and STXBP1

(vesicle fusion) are commonly disrupted in T1D patients according

to chromatin accessibility profiling (30). CD8+ T-cells are more

cytotoxic in T1D patients due to these epigenetic changes.

The T1D microenvironment activates CD8+ T-cells. IFN-g
induces MHC class I on b-cells, making them more visible to

cytotoxic T-cells (32). miR-23b, miR-590-5p dysregulate CD8+ T-

cell survival by suppressing TRAIL and FAS (33). Notably, these

epigenetic changes occur early in disease progression, as seen by

hypomethylation at the LDHC locus in children who later develop

autoantibodies (25). Thus, these mechanisms create a self-

reinforcing cycle where epigenetic priming activates CD8+ T-

cells, which in turn destroy more b-cells and release more antigen.
3.3 Dysregulation of immune tolerance

One mechanism of tolerance breakdown in T1D is epigenetic

silencing of immunological checkpoint molecules. T1D patients

have hypermethylation at the CTLA4 and PD-1 loci which reduces

expression of these inhibitory receptors (30, 34). Variants in the

CTLA4 enhancer region can make this worse by disrupting

chromatin architecture and transcription factor binding (IRF1) in

Tregs (24). These epigenetic changes lead to autoimmune b-cell
death,compromised checkpoint function and uncontrolled T cell

activation. Table 1. summarizes several epigenetic changes in

association with T1D.
FIGURE 1

Epigenetic dysregulation of T-cell subsets in T1D. On the left, regulatory T cells (Tregs) exhibit altered epigenetic regulation at immune tolerance–
related loci, including FOXP3 and IL2RA, which may impair their suppressive function. On the right, effector T cells (Th1 and Th17) display activating
histone acetylation (e.g., H3K27ac) at cytokine gene loci (IFNG, IL17A), increasing pro-inflammatory cytokine production. Together, these opposing
epigenetic changes weaken tolerance and promote autoimmunity in T1D.
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3.4 Long non-coding RNAs in T-cell
regulation

lncRNAs shape T-cell fate and effector programs by scaffolding

chromatin modifiers, guiding transcription-factor recruitment, and

modulating enhancer–promoter communication. In Tregs, Flicr

(Foxp3 long intergenic non-coding RNA) acts as a negative tuner

of FOXP3, altering chromatin accessibility at Foxp3 regulatory

elements; genetic ablation increases FOXP3 and improves

tolerance in autoimmune-prone backgrounds, highlighting Flicr

as a rheostat of Treg stability (35).

In Th1 cells, the antisense lncRNA NeST (also known as

Tmevpg1/Ifng-AS1) is induced in a T-bet/STAT4–dependent

manner and promotes IFNG transcription by recruiting WDR5/

MLL to deposit H3K4 methylation at the Ifng locus; NeST thus

reinforces Th1 polarization and IFN-g output (36–38).
For Th2 programs, lincR-Ccr2-5′AS cooperates with GATA-3

to regulate a chemokine-receptor cluster (CCR1/2/3/5), and its

knockdown impairs Th2 migration in vivo, illustrating how

lncRNAs coordinate lineage-specific trafficking with gene

programs (39).
4 Gene–environment–epigenome
interactions

4.1 Genetic susceptibility

T1D susceptibility is strongly influenced by genetics, with 78

risk loci now identified by large GWAS and fine-mapping studies

(23, 40–52). Many of these risk variants fall in regulatory elements

active in immune and pancreatic cell types, suggesting functional
Frontiers in Immunology 05
effects on gene expression (23). Recent research indicates that

epigenetic mechanisms may be involved in the development of

T1D due to genetic risk variations. SNPs in INS (rs689) and IL2RA

(rs12722495) in particular were linked to altered DNA methylation

at immune cell promoter CpG sites. Higher methylation in CD8+ T

cells was associated with the risk allele rs689, but lower methylation

was found in B cells with rs12722495. These methylation alterations

specific to a genotype may affect immunological functioning and

increase the risk of developing the disease (53). Table 2 summarizes

key genes and their associated SNPs linked to immune function, b-
cell regulation, and T1D risk (49). However, many of these genes,

such as CCR5, IL10, IL27, and GPX7, have been variably reported in

association with T1D. For instance, CCR5 has shown associations

in some populations but not others, and IL10/IL27 findings have

been inconsistent across cohorts. These discrepancies suggest that

some of these loci may have modest effect sizes or population-

specific effects. Therefore, while these genes are candidates

for contributing to T1D susceptibility, many associations

remain tentative, and their precise functional roles in disease

pathogenesis are still uncertain.

4.1.1 Human leukocyte antigen
About 50% of the lifetime risk of T1D is attributed to mutations

in the HLA class II genes on chromosome 6, which increases the

chance of acquiring the disease (47, 54). Specifically, the DR4-DQ8

(DQA1*03:01 – DQB1*03:02) or DR3-DQ2 (DQA1*05:01 –

DQB1*02:01) haplotypes are present in 90% of children with

T1D. The largest risk factor for contracting the disease is the

combination of these two haplotypes in a person’s genotype (55).

Numerous studies have examined the connection between T1D risk

and variations in the HLA gene. These genetic correlations have

implications for disease prediction and means of prevention in

addition to aiding in our understanding of the pathophysiology of

T1D. HLA typing, for instance, is utilized in T1D prevention trials

to identify people who might benefit from early interventions and to

stratify risk (56).

4.1.2 Cathepsin H
Other gene loci, including the susceptibility locus of cathepsin

H (CTSH), have also been linked to the development of T1D in

addition to HLA. CTSH has been linked to a higher incidence of

T1D by genome-wide association studies (GWAS) (51). Using

integrated data from quantitative trait locus (eQTL) with GWAS,

a study identified the possible pathogenic pathways of the CTSH

gene in T1D (57). Single cell RNA sequencing (scRNA) revealed

that the pancreas of T1D patients had a significant upregulation of

the CTSH gene in acinar cells as compared to the control group.

Additionally, a group of genes co-expressed with CTSH that had a

substantial positive connection with T1D were found using single-

cell weighted gene co-expression network analysis (WGCNA). The

CTSH gene in the exocrine pancreas was thought to enhance the

antiviral response based on functional enrichment analysis. An

inflammatory milieu is produced as a result of this amplification,

which also raises the expression of pro-inflammatory cytokines.

T1D is likely to develop as a result of this process, which is likely to
TABLE 1 Contrasting epigenetic regulation of CD4+ vs CD8+ T cells in T1D.

Feature
CD4+ T cells

(Tregs, Th1, Th17)
CD8+ T cells
(Cytotoxic)

Primary
epigenetic
change

FOXP3 and IL2RA
hypermethylation (↓
tolerance); H3K27ac at
IFNG/IL17 loci (↑ cytokine
activity)

Hypomethylation at INS and
GAD65 (↑ antigen
recognition); enhancer
disruption at SOCS1, STXBP1
(↑ cytotoxicity)

Functional
outcome

Loss of immune regulation
(weakened Treg
suppression) and
overproduction of pro-
inflammatory cytokines

Increased autoreactivity,
survival, and cytotoxic
potential of CD8+ T cells

Environmental
triggers

Gut dysbiosis (↓ butyrate
→ FOXP3 silencing); viral
infections (↑ histone
acetylation at cytokine loci)

Molecular mimicry
(Bacteroides); metabolic
stress/high-fat diet; IFN-g
induction of b-cell MHC-I

Key
consequence

Breakdown of tolerance →
failure to restrain
autoimmunity

Direct b-cell destruction →

amplification of antigen
release and immune activation

Pathogenic role
in T1D

“Gatekeepers” of tolerance
fail, allowing autoreactive
responses to persist

“Executioners” of b-cell
damage, driving irreversible b-
cell loss
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1664255
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jabri et al. 10.3389/fimmu.2025.1664255
harm b-cells. High CTSH expression, which is influenced by other

environmental factors such post-translational modifications and

epigenetics, was found to connect with the risk of T1D in another

study (58). When combined, these studies demonstrate how CTSH

contributes to a higher risk of T1D development.
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4.1.3 Other genes
It has been demonstrated that additional potential genes,

including INS, GLIS3, CCR5, BAD, GPX7, GSTT1, and SNX19,

increase vulnerability to T1D (23, 40–51). A few of these genes have

a direct impact on pancreatic b-cell growth and death. Table 3

provides a detailed list of all the genes linked to a higher risk of T1D

along with an explanation of their roles.

Recent research have demonstrated that the pathophysiology of

T1D is complex, despite the fact that genetics has been found to play

a significant influence in the disease. Identical twin studies have

revealed that if one twin has T1D, the other twin may not be at all

susceptible to the condition, indicating that genetic factors by

themselves are insufficient to fully explain how T1D develops (59).
4.2 Environmental triggers

In addition to genetics, environmental factors have been linked

to the development of T1D independently. These include viral

infections, pesticide exposure, lifestyle and eating habits, and

vitamin D deficiency (60–62).

4.2.1 Viral infections
Viral infection-induced autoimmunity may be a significant

factor in the development of T1D (Figure 2) (63). Enteroviruses

have been linked to the etiopathogenesis of T1D on several levels,

including infecting pancreatic b-cells and triggering autoimmunity

against them (64). Most commonly, T1D incidence has been linked

to Coxsackie B viruses (65–67). Enterovirus proteins have been

detected in the pancreas during the outset of illness in people with

T1D (68). It has been demonstrated that several enterovirus species

can infect and impair the function of pancreatic b-cells since these
cells also contain many receptors that enteroviruses employ to entry

into cells. Interferons, which are produced in response to these viral

infections, drive gene transcription; newly diagnosed T1D patients

have been found to exhibit this IFN-stimulated gene expression.

The later emergence of autoantibodies against pancreatic b-cells has
also been linked to this gene transcription. Given that viremia was

missing in children with quick onset T1D in the TEDDY research, it

is possible that infections could cause autoimmunity gradually over

time as opposed to suddenly (69). Moreover, pancreatic b-cell
antigens and certain viruses, like enteroviruses, have structural

similarities. This similarity may result in a condition called

molecular mimicry, in which the body’s own cells, including b-
cells that produce insulin, are mistakenly attacked by the immune

system, which is triggered to combat the virus, causing T1D (60). In

pancreatic b-cells, enteroviruses have been demonstrated to

interfere with the miRNA-mediated inhibition of pro-

inflammatory pathways, whereas related Picornaviridae viruses,

like rhinovirus, can modify the expression of cytokine genes by

altering DNA methylation (70–73). The offspring may be primed

for autoimmune reactions and have a higher chance of developing

T1D later in life if the mother’s enteroviral infection during

pregnancy causes long-lasting epigenetic changes in the fetal

immune-related genes (74–77).
TABLE 2 Summary of key genes and their associated SNPs linked to
immune function, b-cell regulation, and T1D risk.

Gene/
region

SNP Function Reference(s)

HLA
Class II

rs6927022,
rs2157051,
rs9275184,
rs7744001

Presents antigens to CD4+
T-cells for immune
recognition

(157)

CTLA4
rs11571316,
rs3087243

Immune checkpoint
protein that suppresses T-
cell activation

(55, 158)

CCR5 rs113010081
Affects immune cell
function and signaling

(51)

TLR7/8 rs5979785
Detects pathogens and
triggers immune responses

(159)

AFF3 rs9653442

Regulates gene
transcription; linked to
immune cell and cancer
development

(160)

INS rs7111341
Encodes insulin, lowering
blood glucose levels

(43)

GLIS3
rs7020673,
rs10758593

Supports pancreatic b-cell
development and insulin
pr

(42)

BAD rs694739
Promotes programmed cell
death (apoptosis)

(161)

IL7R rs11954020

Facilitates immune
responses, antibody
production, and T-cell
cytotoxicity

(51)

IL10 rs3024505
Suppresses inflammation
(anti-inflammatory
cytokine)

(158)

IL27 rs151234
Modulates T-cell activity
and inhibits excessive
proliferation

(51)

WFS1 rs1046322
Protects b-cells and brain
cells from stress in the
endoplasmic reticulum

(162, 163)

CTSB rs1296023
Breaks down proteins in
lysosomes

(161)

CTSH rs3825932
Essential for lysosomal
protein degradation

(158)

GPX7 –
Regulates pancreatic b-cell
growth and survival

(132)

GSTT1 –
Influences b-cell
proliferation and death

(132)

SNX19 –
Plays a role in b-cell
maintenance and apoptosis

(132)
Adapted from: Mittal et al. “Gene-environment interaction in the pathophysiology (59).
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4.2.2 Pesticide exposure
T1D development has been linked to pesticide exposure.

Chemicals called pesticides are used extensively in agriculture to

control pests, but there have been worries about their possible

effects on human health. Studies have examined the link between

pesticide exposure and T1D, although research in this field is still

ongoing and results are inconclusive (78). Epidemiological studies

suggest that environmental toxins such as pesticides may interact

with genetic susceptibility to influence disease onset. There may be a

connection between pesticide exposure and T1D, according to

epidemiological research. Even at low concentrations, pesticide

exposure has been linked to the occurrence of T1D and

prediabetes, also known as aberrant glucose regulation (79). Men

and women had different causal relationships between pesticide

exposure and impaired glucose control; in men, a U-shaped dose-

response relationship was more pronounced.

Pesticides may also cause or hasten the autoimmune reaction

that destroys b-cells in the pancreas, according to some theories.

Although the exact processes behind this possible link are

unknown, they might have to do with oxidative stress induction

or immune function disturbance (59). These findings illustrate how

environmental exposures beyond viral infections can contribute to

T1D development, setting the stage to examine lifestyle and

dietary influences.
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4.2.3 Lifestyle and diet
Numerous studies have examined the relationship between

dietary and lifestyle factors and the onset of T1D, identifying a

number of connections and possible mechanisms (80). Diet and

lifestyle represent modifiable environmental factors that may

mediate T1D risk, in part through their effects on gut microbiota

and immune function. It is clear that dietary practices that alter the

composition of the gut microbiota may be a major factor in the

development of T1D. Up to now, the most convincing evidence for

a causal link between intestinal microbiome and the disease comes

from well-controlled intervention studies in murine models (81).

Although not fully understood, a complicated relationship between

gut permeability, the immune system, and intestinal microbiota has

previously been discovered (82). The gut barrier, which is made up

of enterocytes, mucus, gut microbiota, tight junction (TJ) proteins,

and the innate and adaptive immune cells that make up the gut-

associated lymphoid tissue, regulates gut permeability (83).

Intestinal permeability and the passage of microbial antigens,

products, or microbes themselves can result from the breakdown

of TJ and the compromise of the intestinal barrier. The expression

of TJ proteins, which include claudin-2, occludin, cingulin, and

zonula occludens (ZO) proteins, controls the TJ of the intestinal

barrier. According to some research, intestinal permeability is

dependent on elevated zonulin levels, which are impacted by
TABLE 3 Epigenetic dysregulation in T1D-associated T-cells.

Cell type
Epigenetic
change

Affected
gene/
pathway

Environmental trigger Mechanism
Evidence
source

Reference(s)

Tregs

FOXP3
hypermethylation

↓ Treg function Gut dysbiosis (↓ butyrate)
↓ Histone acetylation →

FOXP3 silencing
Human, in
vitro

(13, 20)

IL2RA
hypermethylation

↓ IL-2 signaling —
Promoter methylation → ↓
IL-2 responsiveness

Human,
animal

(14, 24)

Th1/Th17
IFN-g/IL-17
H3K27ac

↑ Pro-
inflammatory

Viral infections (coxsackievirus)
Histone acetylation →

cytokine overproduction

Human,
animal, in
vitro

(22, 30)

CD8+ T-cells

INS/GAD65
hypomethylation

↑ Autoantigen
reactivity

Molecular mimicry (Bacteroides)
Hypomethylation → ↑
autoantigen recognition

Human (16, 18)

LDHC
hypomethylation

Early priming Diet (high-fat)
Metabolic stress → epigenetic
priming

Human
cohort,
animal

(25, 33)

miR-23b
downregulation

↑ TRAIL/FAS
signaling

—
Dysregulated miRNAs → ↑
CD8+ T-cell survival

Animal, in
vitro

(33)

Immune
Checkpoints

CTLA-4
hypermethylation

↓ Treg suppression —
Promoter methylation → ↓
checkpoint inhibition

Human (30, 34)

Systemic

Genome-wide
hypomethylation

↑ Autoimmunity Enterovirus infection
IFN-a → ↓ DNMT activity
→ global hypomethylation

Human
pancreas,
animal

(21)

TLR4/NF-kB
activation

↑ Pro-
inflammatory

LPS (Gram-negative bacteria)
Microbiota-derived LPS →

TLR4 signaling →

inflammation

Human
(children),
animal

(164)
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1664255
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jabri et al. 10.3389/fimmu.2025.1664255
bacterial colonization (84, 85). It is also known that zonulin

modulates TJ to reversibly modify intestinal permeability (86–88).

It is interesting to note that elevated blood zonulin levels occur prior

to the development of clinically noticeable T1D (89). However,

subsequent studies have raised concerns regarding the specificity of

zonulin assays and the generalizability of these findings. Critical

reviews indicate that while zonulin represents a potentially

important modulator of intestinal permeability, its measurement

can be affected by cross-reactivity and methodological variability,

and not all individuals with T1D show elevated levels. Therefore,

interpreting zonulin data requires caution, and it should be

considered alongside other markers and functional assessments of

intestinal barrier integrity. Furthermore, an increase in intestinal

paracellular permeability has been found in T1D patients,

supporting the concept of barrier dysfunction as a feature of

disease pathogenesis (90–93).

Intestinal permeability was higher in children with multiple islet

autoantibodies (≥2 IA) who developed T1D than in those who did

not, indicating a role for intestinal permeability in the

pathophysiology of T1D (94, 95). The intestinal barrier’s

permeability is modulated by a variety of gut commensals (96).
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The data that certain gut bacteria create gamma-aminobutyric acid

and express GAD supports a theory. By acting as an antigen to

activate submucosal T-cells, the GAD produced from bacteria as a

result of gut bacterial death (e.g., by viral or antibiotic-mediated

mechanisms) may miseducate the host immune system and result

in the development of T1D (97, 98).

Some of the bacteria can carry peptide sequences that resemble

insulin, which could cause auto-immunity, according to

bioinformatics research (99). Remarkably, T-cell clones that are

directed against preproinsulin peptides have demonstrated a high

degree of cross-reactivity with peptides from Clostridium and

Bacteroides species (100). A peptide generated by Parabacteroides

distasonis that resembles the b-chain of insulin has been found in a

NOD mouse model (101). T-cells are able to identify this peptide,

which triggers an immunological reaction to this insulin chain.

The gnotobiotic zebrafish model has shown that the intestinal

microbiota is necessary for the normal growth of the pancreatic b-
cell population during early larval development. This is due to the

action of a bacterial protein called b-cell expansion factor A (BefA),

which is produced by gut microbes (102). These results raise the

possibility that the gut microbiota plays a part in the formation of
FIGURE 2

Epigenetic Dysregulation Linking Genetic Risk and Environmental Triggers to T1D. Genetic susceptibility loci influence epigenetic regulation in T cells
through mechanisms including DNA methylation, histone modifications, and non-coding RNAs. Environmental exposures, such as viral infections,
altered gut microbiota, and dietary factors, exert reversible effects on these pathways. The resulting epigenetic dysregulation promotes loss of
immune tolerance, b-cell inflammation, and progression to T1D.
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early pancreatic b-cells and point to a connection between juvenile

fecal microbiota composition and an elevated risk of diabetes.

Studies have repeatedly shown that T1D is linked to notable

changes in the makeup of the gut microbiota. In comparison to

healthy controls, children who subsequently developed T1D had

different microbial patterns, including lower levels of Lactococcus

lactis and Streptococcus thermophilus and greater levels of

Bifidobacterium spp., according to the seminal TEDDY study

(103). Bacteroides species are more prevalent in both established

T1D patients and at-risk individuals, according to several

independent studies (104–106). Certain strains, such as B. dorei

and B. vulgatus, are particularly enriched in high-risk Finnish

children (107), while B. stercoris, B. intestinalis, B. cellulosilyticus,

and B. fragilis are found in Italian patients (108).

However, results across cohorts have not always been

consistent, indicating that microbial signatures of T1D risk are

still unclear. For example, while the TEDDY longitudinal analysis

found differences in early microbiota, other cohorts such as

Diabimmune and DIPP report different taxa changes (103).

Recent reviews and meta-analyses emphasize that microbial

findings vary by geography and study population, and some

studies fail to replicate specific “diabetogenic” bacteria (109).

Two trends that stand out in functional investigations of the gut

microbiome in T1D are the significant drop in butyrate-producing

bacteria from Clostridium clusters IV and XIVa and the decreased

number of species that break down mucin, such as Prevotella and

Akkermansia (110, 111). Studies using metagenomic and

metabolomic techniques have found common microbial traits

between T1D patients and their siblings, such as higher

Clostridiales and Dorea with concomitant reductions in Dialister

and Akkermansia (111) These alterations seem to be

clinically significant.

One especially noteworthy observation is the reduction of

butyrate-producing bacteria, which has been linked in several

studies to greater intestinal permeability and an increased risk of

T1D (110, 112–114). Intervention studies that demonstrate that

butyrate supplementation can enhance metabolic parameters and

cause disease remission in NOD mice models further reinforce this

relationship (115, 116). The exact molecular pathways are still

unclear, highlighting a crucial field for further investigation, even

though these findings collectively strongly link gut microbiota

dysbiosis to T1D development, especially through processes

involving barrier function and immune modulation.

Systemic immunological responses are significantly shaped by

short-chain fatty acids (SCFAs) generated from the microbiota,

especially butyrate and propionate (117). The pancreas and lymph

nodes are among the distal tissues that these compounds affect after

diffusing through the intestinal epithelium. Through processes

including HDACs inhibition and free fatty acid receptor (FFAR)

activation, SCFAs control T-cell activity. This results in epigenetic

remodeling that promotes the formation of regulatory T cells and

lowers inflammation. However, host-specific variables including

nutrition, metabolic status, and microbiome makeup affect SCFA
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effects, which are highly context-dependent. In order to completely

comprehend and utilize SCFA-driven immune regulation in the

setting of T1D, it may be necessary to integrate metagenomic,

metabolomic, and epigenetic techniques.

Vitamin D represents another dietary factor that may influence

T1D risk through immune modulation. The onset of T1D has been

linked to low vitamin D levels (118–121). This correlation is

believed to result from vitamin D’s possible ability to influence

immune system modulation, which may have an effect on the

autoimmune processes implicated in T1D. Other research,

however, has found no link between low vitamin D levels and

increased incidence of T1D (122, 123). Furthermore, interventional

studies investigating vitamin D supplementation for T1D

prevention have produced mixed results. For example, a 2021

meta-analysis reported limited and inconsistent evidence that

vitamin D supplementation reduces T1D risk, highlighting

variability in study design, population, and dosing regimens.

These findings indicate that, while vitamin D may have

immunomodulatory effects, supplementation alone has not been

conclusively shown to prevent T1D (124).

Vitamin D affects immune function through genetic pathways

involving the vitamin D receptor (VDR), in addition to its

traditional role in maintaining mineral homeostasis (125). VDR

binds to vitamin D response elements (VDREs) and forms a

heterodimer with retinoid X receptor (RXR) upon binding

1,25(OH)D (126). This heterodimer regulates transcription

differently depending on the cell type. Vitamin D’s specific

immunomodulatory effects on T cells and other immunological

subsets implicated in T1D may be explained by this. Furthermore,

complexes of vitamin D and VDR can disrupt transcription factors

like CREB, altering gene expression without the involvement of

RXR and pointing to different epigenetic processes of immune

control (112).

4.2.4 Antibiotic use
Research has indicated a link between the use of antibiotics and

a higher risk of developing T1D (80, 127, 128). Depending on the

route of delivery, using broad-spectrum antibiotics during the first

two years of life has been linked to an increased risk of developing

T1D (129). Interestingly, only infants born via cesarean section

showed a correlation between broad-spectrum antibiotics and T1D,

but kids born vaginally did not. Other research, however, finds no

connection between T1D and antibiotic use (130, 131). To

determine the role of antibiotic use and delivery method in the

development of T1D, more research is necessary.
4.3 Integrated mechanisms

It is currently unclear what causes pancreatic b cell loss and the

development of T1D in certain people, despite the distinct roles of

environmental risk factors and genetic vulnerability. There is a

growing theory that the pathophysiology of T1D is significantly
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influenced by the interplay between genetic predisposition and

environmental variables (Figure 3). The impact of gene variations

that cause autoimmunity and result in T1D clinical symptoms may

be amplified by environmental variables (59).

Together with environmental variables, epigenetic modulators

have become important regulators of gene expression and cellular

phenotype (34, 132–136). One of the main molecular pathways

through which gene-environment interactions may heighten

vulnerability to T1D is thought to be epigenetics (12, 133, 137).

Investigations into epigenetic mechanisms, such as changes in DNA

methylation, have revealed abnormal patterns in genes related to

insulin control and immune function in people with T1D (138–141)

Laajala et al. did not observe differences in DNA methylation

between cases and controls in cord blood samples (142). By

contrast, Johnson et al. reported DNA methylation changes that

preceded seroconversion, indicating that methylation alterations

can occur before the appearance of islet autoantibodies. They

analyzed multiple pre-disease peripheral-blood samples and

identified longitudinal differences in the rate of age-related

methylation change at 10 genomic regions. Several of these

differences were detectable as early as birth and in samples taken

before onset of islet autoimmunity (143). Additionally, in the setting

of T1D, histone alterations have demonstrated their impact on

immune response gene dysregulation (144). Another aspect of
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epigenetics that has been highlighted is the function of miRNAs,

specifically in regulating inflammatory and immunological

responses in T1D (133, 145–148). In addition to their

implications for biomarker discovery, epigenetic changes linked to

T1D risk also pave the way for precision medicine approaches in

T1D diagnosis, risk assessment, and treatment (59).
5 Epigenetic biomarkers and
therapeutic potential

Epigenetic biomarkers are emerging as valuable tools that can

be used in understanding, diagnosing, and potentially treating

various diseases including T1D. Longitudinal studies show that

specific methylation changes occur before clinical disease onset. In

T1D, early demethylation events at immune and b-cell genes can be

detected months to years before diagnosis (20). For instance,

hypomethylation at the INS promoter, a hallmark of active

insulin transcription, correlates with b-cell function and can be

detected in circulating cell-free DNA (15, 17, 29).

Similarly, circulating miRNA pose as a promising biomarker

and predictor of T1D progression. miR-25 has been found to be

negatively associated with residual b-cell function, and positively

associated with glycemic control 3 months after onset (149). This
FIGURE 3

Environmental triggers and their epigenetic impact on T1D pathogenesis. Viral infections promote DNA hypomethylation, autoantigen expression,
T-cell activation, and pro-inflammatory cytokine release, leading to progressive epigenetic dysregulation. In parallel, microbiota dysbiosis reduces
butyrate availability, decreases FOXP3 acetylation, and impairs Treg function, driving inflammation and gut barrier damage. Together, these
environmental–epigenetic interactions amplify immune dysregulation and contribute to the development of T1D.
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suggests that miR-25 may have a role in cell proliferation of

pancreatic endocrine cells, thus making it of benefit in evaluating

T1D progression and management. Another study suggested the

usage of hsa-miR-1-3p in monitoring T1D progression and

associated cardiovascular complications (146). Assessing for such

epigenetic changes may aid in early detection, diagnosis, and

prognosis of T1D among other diseases as well.

Epigenetic mechanisms are being explored as therapeutic

targets. One promising strategy involves the use of small molecule

inhibitors that target enzymes involved in epigenetic modifications

including HDACs and DNMTs. HDAC inhibitors can promote a

more permissive chromatin state, thereby enhancing the expression

of genes involved in immune regulation and tolerance (150, 151).

DNMT inhibitors, on the other hand, may reverse aberrant DNA

hypermethylation and restore the expression of silenced checkpoint

inhibitors such as PD-1 or CTLA-4 (152). Early preclinical models

suggest that modulating these enzymes in T-cells may reduce

autoreactivity and promote immune tolerance in autoimmune

settings, although translation to humans is still in early stages (153).

Another emerging area of therapeutic research involves

miRNA-based therapies. Since specific miRNAs contribute to the

dysregulation of T-cell function in T1D, strategies that restore the

balance of miRNA expression may help re-establish immune

homeostasis (154). This could involve the use of miRNA mimics

to restore deficient regulatory miRNAs or antagomirs to inhibit

pro-inflammatory miRNAs. While these approaches offer a degree

of precision not seen with conventional immunosuppressive

therapies and may reduce off-target effects, challenges remain

regarding delivery methods, tissue specificity, and potential

immune responses. CRISPR/dCas9-mediated epigenetic editing is

an emerging approach that enables precise, reversible control of

gene expression without altering the DNA sequence. Unlike

conventional CRISPR, the catalytically inactive “dead” Cas9

(dCas9) is fused to epigenetic modifiers such as p300 (a histone

acetyltransferase) or TET1 (a DNA demethylase) and guided to

specific genomic loci by custom-designed guide RNAs. This system

allows researchers to modulate the epigenetic landscape of immune-

regulatory genes in T-cells with high specificity. For example,

targeting dCas9-p300 to the promoter of the FOXP3 gene in

mouse primary T-cells significantly enhanced and stabilized

FOXP3 expression, promoting a regulatory T-cell phenotype even

under inflammatory conditions (155). Similarly, in human T-cell

models, dCas9-TET1 systems have been used to reduce methylation

at FOXP3 enhancer regions and induce functional suppressive

Treg-like cells (156). These findings highlight the potential of

epigenetic editing to reprogram autoreactive T-cells, restore

immune tolerance, and ultimately serve as a targeted, gene-

specific immunotherapy for autoimmune diseases such as T1D;

however, clinical translation is limited, and challenges such as

efficient in vivo delivery, immune cell targeting, and off-target

effects remain to be addressed.
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The immunological landscape of T1D is significantly shaped by

epigenetic mechanisms, particularly in regulating T-cell growth,

activation, and tolerance. These pathways operate at the

intersection of genetic susceptibility and environmental

exposures, offering a more integrated view of T1D pathogenesis.

Recent findings on DNA methylation, histone remodeling, and

non-coding RNAs shed light on why immune tolerance fails in

some individuals but not others. Crucially, the reversibility of

epigenetic modifications enables the possibility of therapeutic

immune cell reprogramming. At the same time, epigenetic

signatures hold promise as biomarkers for early risk stratification,

prediction of disease progression, and monitoring of therapeutic

response. Despite this potential, major challenges remain, including

limited understanding of the causal hierarchy among epigenetic

changes, variability across patient populations, and difficulty

distinguishing disease-driving modifications from secondary

changes. As tools such as CRISPR-based editing and single-cell

epigenomics advance, integrating biomarker discovery with

mechanistic insights will be essential for translating epigenetic

research into durable and precise strategies for preventing or

delaying T1D onset.
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