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Background: Pediatric sepsis is a leading cause of global mortality, particularly
among children, with limited therapeutic options beyond antibiotics and organ
support. The Pediatric Sepsis Biomarker Risk Model (PERSEVERE-II) stratifies
mortality risk in pediatric septic shock, yet the molecular mechanisms
underlying high mortality risk remain incompletely understood.

Methods: We analyzed whole blood transcriptomes collected from 81 children
with septic shock on day 1 of meeting study criteria. Patients were stratified into
high- and low-mortality risk groups according to the PERSEVERE-II biomarker
risk model. Using weighted gene co-expression network analysis (WGCNA) and
differential gene expression analyses, we identified molecular pathways and
transcription factors (TFs) associated with mortality risk. Cell type differences
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were inferred using CIBERSORTx and using a reference single-cell dataset
inclusive of neutrophils and their subsets.

Findings: We identified distinct molecular profiles with high-risk patients
displaying significant overexpression of genes related to neutrophil
degranulation and innate immunity, alongside suppressed adaptive immune
responses. The predominance of developing neutrophils underscored a major
role of emergency granulopoiesis. Key TFs identified, including LTF, FOXM1, KLF1,
and CEBPB, were linked to high-risk gene expression signatures. Our findings
indicate a pathological shift toward a dysregulated neutrophil-driven
hyperinflammation and adaptive immune suppressive state, which together are
associated with adverse outcomes.

Interpretation: Our results suggest that neutrophil dysregulation underpins the
high mortality risk conferred by the PERSEVERE-II model. The identified
transcriptional regulators may provide potential targets to mitigate neutrophil
dysregulation and improve outcomes among high-risk patients.

precision medicine, pediatric sepsis, mortality risk stratification, transcriptomics,
immune response, neutrophil dysregulation

Introduction

Sepsis is a heterogenous disease associated with high morbidity
and mortality worldwide (1). Notably, 40% of sepsis cases occur in
children under five years (2), making sepsis the leading cause of
mortality in this age group, responsible for 20% of all under-five
deaths (3). In the United States alone, pediatric sepsis claims over
7,000 lives annually (4) and incurs $7 billion in hospitalizations (5).
Despite this burden of disease, treatments remain limited to
antibiotics and organ function support as clinical and biological
heterogeneity among critically ill children with sepsis continues to
hamper the identification of efficacious therapies (6). Over the past
two decades, using a precision medicine framework research has
aimed to address this heterogeneity, striving to match the right
therapy with the right patient at the right time (7).

The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) was
developed to stratify children with septic shock based on mortality
risk (8). PERSEVERE-II built upon the original model by
incorporating admission platelet count along with five protein
biomarkers measured in sera collected within 24 hours of the
onset of septic shock in children admitted to pediatric intensive
care unit (PICU) to assign a 28-day mortality probability (9). Both
models have been prospectively validated in observational cohorts
of children with septic shock (10). While PERSEVERE-II reliably
estimates mortality risk, it remains unclear what molecular features
underlie children at high risk as compared to those at low risk of
mortality. It follows that a comprehensive assessment of the
underlying pathobiology could inform the development of
targeted interventions specific to high-risk patients.

Frontiers in Immunology

We utilized whole blood transcriptomic data from pediatric septic
shock patient to conduct weighted gene co-expression network
analyses (WGCNA) to identify genes associated with high
PERSEVERE-II mortality risk, with functional annotations
highlighting neutrophil-related processes. We identified differentially
expressed genes distinguishing high- versus low-mortality risk
patients, as stratified by the PERSEVERE-II biomarker model.
Biological pathway analyses indicated overexpression of innate
immune responses with concurrent repression of adaptive immune
responses early in the illness course distinguished high-risk patients.
We employed computational tools to identify transcription factors
regulating implicated genes and applied deconvolution algorithms
alongside reference single-cell data to identify cell subpopulations
contributing to mortality risk. Taken together, our findings align with
prior studies suggesting developing neutrophils and emergency
granulopoiesis (11) contribute to a hyperinflammatory state linked
to adverse septic shock outcomes.

Methods
Patient enrollment

This study leveraged biospecimens from the Sepsis Genomics
Collaborative —a prospective multi-center observational cohort,
which has been previously detailed extensively (12-15). Briefly,
critically ill children between the ages of 1 week and 18 years who
met consensus criteria for septic shock (16) were included and
enrolled from 13 pediatric intensive care units (PICUs) across the
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United States from May 2015, through February 2019. The study
protocol received approval from the Institutional Review Boards
(IRBs) of the primary site (Cincinnati Children’s Hospital IRBs,
Genomics of Septic Shock, IRB ID: 2008-0558 and 2022-0721) and
all participating institutions. Informed consent was obtained from
parents or legal guardians. All procedures involving human
participants adhered to the ethical standards of the participating
institutions’ IRBs, the 1964 Helsinki Declaration and its subsequent
amendments. Whole blood collected in PAXgene RNA tubes and
sera collected within 24 hours of the onset of septic shock were used.
No study-related interventions occurred beyond these blood draws.
De-identified clinical data were collected daily from days 1 to 7 of
PICU admission, with mortality data tracked up to 28 days
post-enrollment.

PERSEVERE biomarker measurement and
risk-stratification

In addition to PICU admission platelet count, the 5
PERSEVERE biomarkers interleukin 8 (IL-8), heat shock protein
(HSPA1B), granzyme B (GZMB), matrix metalloprotein 8 (MMPS),
and C-C motif chemokine ligand 3 (CCL3) were previously
measured in day 1 sera, permitting patient assignment to one of
nine PERSEVERE-II Terminal Nodes (TNs) based on the published
classification and regression tree (CART) (9, 10). Patients classified
to TN 1, 2, 5, and 8 were predicted to be survivors and designated as
low risk (<1.9% risk of death). Patients classified to TN 3, 4, 6, 7, and
9 were predicted non-survivors and considered high risk for
mortality (16.7%-44.4% risk of death) (10). Demographic and
clinical characteristics were compared between children stratified
to low and high PERSEVERE-II risk. Pediatric Risk of Mortality
(PRISM)-III scores were evaluated as an estimate of baseline illness
severity (17). Immunocompromised status, vasoactive and
corticosteroid use, prevalence of mechanical ventilation and renal
replacement therapy were recorded. Outcome variables included
PICU length of stay, PICU-free days, hospital length of stay, 7- and
28-day mortality, and the prevalence of complicated course.
Complicated course was defined as the persistence of at least two
organ failures at 7 days or mortality by 28 days. Dichotomous
variables were compared with the Fisher exact test or chi-squared
test. Nonparametric continuous variables were characterized as
medians with interquartile ranges (IQRs) and evaluated with the
Wilcoxon rank-sum test.

RNA extraction and library preparation

Whole blood was collected in PAXgene Blood RNA tubes and
stored at —80 °C. For processing, tubes were thawed at room
temperature for 2 h, inverted to homogenize, and 3 mL aliquots
were transferred. RNA was isolated using a modified RNeasy Mini
protocol on a QIAcube (QIAGEN). Briefly, PAXgene blood/
stabilizer was diluted with PBS and centrifuged at 3,000 x g to
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pellet nucleic acids; pellets were washed with nuclease-free water,
re-pelleted (3,000 x g), resuspended in Buffer RLT, treated with
Proteinase K, and passed through gDNA-elimination columns.
Flow-through was combined with isopropanol, bound to a
MinElute column, washed with 80% ethanol, and eluted in
RNase-free water. Eluates were heat-denatured (55°C, 5 min) and
snap-cooled. RNA quantity was measured by Qubit RNA assays
and integrity by BioAnalyzer; samples with RIN < 7 were excluded.
Globin RNA was removed with GLOBINCclear (Invitrogen) per
manufacturer’s instructions. Globin-depleted RNA was quantified
(Qubit RNA HS), and 10 ng was used for rRNA depletion and
library construction with the SMARTer Stranded Total RNA-seq
Kit v2—Pico Input Mammalian (Takara). Libraries were quantified
(Qubit dsDNA HS), sized (Fragment Analyzer High Sensitivity
Small Fragment kit), pooled, and sequenced on an Illumina
NovaSeq 6000 (paired-end, 2 x 100 bp). Per sample, 40-120
million read pairs were generated. FASTQ files were used for
downstream processing. Library prep and sequencing were
performed at TB-SEQ (Palo Alto, CA).

Gene expression matrix

Raw mRNA counts were mapped to 60,846 Ensembl Gene IDs
across samples. The Gene IDs which did not correspond to a known
Human Genome Gene Symbol and Entrez ID were removed,
leaving 20,239 genes. In addition, 171 Ensembl Gene IDs were
true duplicates with identical mRNA count data and were removed.
There were nine duplicate Human Genome Gene Symbol pairs,
each of which had one member that was less expressed than the
other and removed. Finally, there were 26 unique Entrez IDs
corresponding to two or three Gene Symbols, 55 Gene Symbols
in all. These were manually evaluated, and the Gene Symbol with
the lowest average expression was removed. Altogether, this left a
gene expression matrix with 20,030 genes across 81 samples.

Weighted gene co-expression network
construction

We conducted Weighted Correlation Network Analysis
(WGCNA) (18) to identify gene-modules, representing co-
expressed genes, associated with biomarker mortality risk strata
and to explore relationships among genes. First, the raw gene
expression matrix was normalized using trimmed-mean of M-
values (TMM) (19) and low-expression values were removed
using edgeR (20) using the default min.count = 10, leaving 13,515
genes. This normalized, log2-transformed matrix was used for
network construction. A WGCNA soft threshold of 12 was
selected with R* = 0.817 and mean connectivity = 70.200, meeting
our goals of scale free topology model fit coefficient > 0.80 and mean
connectivity < 100 to achieve maximum correlation strength in
addition to appropriate hub connectivity for analysis.
(Supplementary eFigure S1). Pearson’s correlation coefficients
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were calculated to assess the strength of correlation. Signed network
construction was utilized to emphasize directional correlation
relationships between genes. For each gene co-expression module
of interest, its gene expression between conditions was evaluated by
comparing module eigengene expression for high- and low-
mortality risk patients. WGCNA calculates an eigengene
expression value for every patient across every module which
represents the first principal component of the gene expression
for that patient across all genes in that module. The eigengene
expression of high-risk and low-risk patients were compared using a
two-tailed heteroscedastic t-test. WGCNA also computes each
gene’s correlation with its module and the significance of that
correlation; the genes in each module whose correlation with that
module has the most significant p-value were identified as driver
genes. Similarly, WGCNA calculates each gene’s correlation with
the trait of interest and the significance of that correlation, which
revealed the genes whose expression was most associated with the
high-risk strata. The gene lists in modules of interest were
submitted to the Database for Annotation, Visualization and
Integrated Discovery (DAVID) to identify functional annotations
(21); with only those with a Benjamini-Hochberg adjusted p-value <
0.05 being considered significant.

Differential gene expression, functional
pathway annotation, and upstream
regulators

We identified differentially expressed genes (DEGs) comparing
high- and low-mortality risk patients using R package DESeq2 (22).
We used a Benjamini-Hochberg adjusted false discovery rate (FDR)
threshold of 0.05 to identify DEGs. Heatmap and volcano plots were
used to visualize DEGs. The biological relevance of pathways were
determined based on Gene Ontology (GO) annotations and Kyoto
Encyclopedia of Genes and Genomes (KEGG) using
clusterProfiler (22).

Inferring differences in cell types
associated with risk-strata

We inferred relative differences in cell type abundance
comparing risk-strata using CIBERSORTx (23) based on
differentially expressed genes. However, this computational tool
was originally designed for in silico tissue deconvolution rather than
blood and lacks a reference for cell types specific to critically ill
patients. To address this limitation, we used single-cell RNA
sequencing dataset comprised of critically ill adults with sepsis
published by Kwok et al. (11) We calculated a composite gene score
as the geometric mean of top 20 overexpressed genes minus the
geometric mean of top 20 repressed genes using published methods
(24), identified through DEG analyses comparing risk-strata and
also available in the single-cell dataset. We mapped this scaled
composite score against the Uniform Manifold Approximation and
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Projection (UMAP) of the Kwok dataset to infer cell types
contributing to biological differences between risk-strata.

Intercellular communication analyses
among risk-strata

We used the Kwok dataset to generate pseudobulk gene-
expression data. For each individual patient represented in this
dataset, gene-expression in each cell type was aggregated using the
AggregateExpression function in Seurat. The pseudobulk matrix
was batch-corrected using the ComBatseq function from the sva
package (v.3.46.0), a negative binomial regression method. DEGs
comparing risk strata, identified previously, were selected as
features for downstream analyses. To assign risk strata in the
reference single cell dataset, we developed a Support Vector
Machine (SVM) classification model. The normalized matrix and
corresponding labels were randomly split into training and
validation sets (80:20 ratio) to train and fine tune the SVM
model. This model was applied to the corrected pseudobulk data
to assign high- or low-risk labels to all single-cell sepsis samples.
Finally, CellChat analysis (v2.1.0) was performed on the single-cell
matrix, to infer cell-cell communication networks focusing on the
high-risk strata.

Identification of transcription factors

To identify key transcriptional regulators among high-risk
patients, we submitted gene lists in each WGCNA module with
statistically significant association with high-risk strata to the Chip
Enrichment Analysis (ChEA3) portal (https://maayanlab.cloud/
chea3/) to predict transcription factors (TFs) anticipated to
regulate gene co-expression module (25). The most notable
transcription factor (TF) is denoted by the lowest mean rank,
which indicates the TF predicted by ChEA3 to interact most with
the submitted gene lists after searching across multiple libraries
including ENCODE, GTEx, ARCHS4, and ReMap. Additionally, we
submitted DEGs distinguishing patient risk-strata for Ingenuity
Pathway Analysis (IPA, QIAGEN) (26) (QIAGEN) to identify
upstream regulators and mechanistic networks that could
influence gene expression patterns, focusing on direct interactions
between regulators and selecting TFs with highest activation z-
scores and p<0.001.

Results

A total of 81 patients were included in the study, of whom 24
patients were designated as high risk and 57 patients as low risk for
mortality according to the PERSEVERE-II stratification tool.
Demographic, clinical, and outcome variables comparing patients
in each of the risk-strata are detailed in Table 1. Patients classified as
high risk were more severely ill at illness onset, and had greater
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TABLE 1 Demographic, clinical characteristics, and outcomes

comparing patients classified as high vs. low mortality risk based on the

pediatric sepsis biomarker risk model Il (PERSEVERE-II). Data presented

as n (%) or median (IQR) as appropriate.
High- Low-

mortality risk P value

group (n=57)

Variable

mortality risk
group (n=24)

Age (years) 2.8 (0.8, 6.1) 4.9 (1.5, 5.6) 0.104
Sex (female) 12 (50.0%) 32 (56.1%) 0.612
Race 0.529
White or Caucasian 19 (79.2%) 42 (73.7%)
i]z;lii‘z:ffrican 3 (12.5%) 5 (8.8%)

Other 2 (8.3%) 10 (17.5%)

Ethnicity 0.366
Hispanic or Latino 3 (12.5%) 12 (21.1%)

Co-morbidity 11 (45.8%) 27 (47.4%) 0.899
Immunocompromised 2 (8.3%) 3 (5.3%) 0.600
PRISM-III 17 (11, 27) 8 (3, 12) <0.001
Vasoactive use 24 (100%) 51 (89.5%) 0.099
Corticosteroid use 18 (75.0%) 32 (56.1%) 0.111
\1\;[:;2;2 ':i:: 24 (87.5%) 44 (77.2%) 0.287
Renal Replacement 3 (12.5%) 3 (5.3%) 0.257
PICU LOS 8 (3, 14) 7 (3, 11) 0.889
PICU Free Days 20 (14, 25) 21 (18, 25) 0.889
Hospital LOS 15 (10, 20) 14 (9, 25) 0918
7-day mortality 4 (16.7%) 0 (0%) 0.002
28-day mortality 6 (25.0%) 0 (0%) <0.001
Complicated course 11 (45.8%) 11 (19.3%) 0.014

mortality at 7 and 28 days, as well as a greater burden of
complicated course, relative to low mortality-risk patients.

Weighted gene co-expression network
analyses identifies four modules associated
with high-mortality risk strata

We identified 11 gene co-expression modules using Weighted
Correlation Network Analysis (WGCNA). The correlation between
these modules and the high-risk strata was calculated, as was the
significance level corresponding to each correlation as shown in
Figure 1. Fifty-one genes (designated the Pink module;
Supplementary Table Sla) had the highest correlation (R* =
0.436) and the most significant p-value for the correlation with
the high-risk mortality strata (p = 4.795¢>). Notably, the gene most
strongly associated with this module was MMP8 (p = 1.53¢>°),
which encodes for one of the PERSEVERE-II biomarkers. The 5th-
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and 6th-most strongly associated genes with this module, LCN2 and
RETN, respectively, were two of the original 12 candidate
PERSEVERE biomarker genes that were pruned from the final
model. The gene OLFM4, previously associated with neutrophil
subpopulations in pediatric septic shock (27), also has a strong
association (p = 7.91e™'®). Three Reactome pathways were
significantly associated with this module: “Neutrophil

» o«

Degranulation,” “Innate Immune System,” and “Immune
System.” Three other gene-modules associated with mortality-risk
strata are detailed in Supplementary Tables S1b-d. Comparison of
gene module eigengene expression between mortality-risk strata is
shown in Supplementary eFigure S2, with this 51-gene (“Pink”)
module once again showing the greatest difference between groups.

We identified 260 genes that were significantly associated with
the high-risk strata at p < 0.001 independent of their gene co-
expression module membership (Supplementary Table S2). There
was a high degree of overlap between these genes and DEGs
identified by DESeq2, detailed subsequently. For example, the top
seven genes identified by WGCNA associated with the high-risk
cohort were identified by DESeq2 as genes with significantly lower
expression in high-risk patients (NHSL2: p < 1.9e-11, LRMP: p <
4.14e-10, IL16: p < 6.16€-9, GLIPRI: p < 7.65¢-9, SRPK2: p< 7.73e-9,
AOAH: p< 1.33e-9, CALBI: p< 9.55¢-9, Supplementary Table S4a).
In addition, examining co-expression modules associated with
high-risk strata, there were 9 Pink Module genes, 6 Yellow
Module genes, and 24 Brown Module genes identified by
WGCNA as significantly associated with the high-risk strata
independent of module membership. All of these 39 genes were
also shown to be over-expressed among high-risk patients
with a p < 0.001 by DESeq2 (Supplementary Table S3).

Differential gene expression analyses
corroborate WGCNA analyses implicating
neutrophil dysregulation among high
mortality risk patients

Heatmap visualizing differentially expressed genes comparing
high vs low mortality-risk patients is shown in Figure 2a. A total of
2,654 genes (13.3% of all sequenced genes) were differentially
expressed at an adjusted p-value < 0.05, of which 1,602 genes
were over-expressed and 1,052 were under expressed among high-
risk patients relative to those at low-risk of mortality
(Supplementary Table S4a). Of note, genes coding for 4 out of the
5 PERSEVERE-II biomarkers - GZMB, CXCL8 (IL-8), HSPA1B, and
MMP8 were overexpressed DEGs among high-risk relative to low-
risk patients. Figure 2b shows the volcano plot highlighting the
most differentially expressed genes (DEGs) based on a log2FC
threshold of > + 1 and adjusted p value of <0.001.

As shown in Figure 3, top panel), genes over-expressed in high-
risk samples were involved in the cell cycle, with the most-enriched

» «

GO terms being “mitotic cell cycle phase transition,” “chromosome

» « » «

segregation,” “organelle fission,” “nuclear division,” and “regulation
of cell cycle phase transition.” The genes repressed among high-risk

patients were involved in “positive regulation of cytokine
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Gene Co-Expression Module Correlation with PERSEVERE-II Risk Strata

MEgrey
MEyellow
MEpink
MEred
MEbrown
MEturquoise
MEmagenta
MEpurple
MEgreen
MEblue
MEblack

o
o
JUBIOIB0D UOHEILI0D 7Y

Darker colors indicate more significant correlations
R2 > 0 (red) associated with high-risk stratum
R2 < 0 (blue) associated with low-risk stratum

FIGURE 1

Weighted gene co-expression network analysis (WGNCA) of gene expression data from children at high and low risk of sepsis mortality based on
pediatric sepsis biomarker risk model Il (PERSEVERE-II) identified the Pink Module of genes (MEpink or Module Eigengene Pink) as the most
correlated with the high-risk phenotype based upon correlation coefficient (R? = 0.436) and statistical significance (p = 4.795e). R? correlation
coefficient with the high-risk trait is shown, as is the p-value for the significance of that correlation, indicated by ***(p < 0.001), **(p < 0.01), or

*(p < 0.05).

» «

production,” “activation of immune response,” “immune-response

»

regulating signaling pathway,” “immune-response activating
signaling pathway,” and “leukocyte-mediated immunity.”
Alternatively, GO annotations “T cell proliferation” and
“regulation of T cell activation” (Figure 3, bottom panel) and
KEGG pathways “T cell receptor signaling pathway” and “B cell
receptor signaling pathway” (Supplementary eFigure S3), reflective
of the adaptive immune response, were repressed among high-

risk patients.

Developing neutrophils contribute
disproportionately to host pathobiology in
the high-risk strata

We identified that high mortality-risk patients had a lower
average fraction of mature neutrophils (35.5%; 95% CI [29.0%,
42.0%]) compared with low mortality-risk patients (46.3%; 95% CI
[42.6%, 50.0%]) based on CIBERSORTx analyses shown in Figure 4.
There was no appreciable difference in the proportion of any of the
other 21 cell types imputed by CIBERSORTx. As shown in Figure 5,
the Kwok et al. dataset had 10 cell types from critically ill adult
patients with sepsis. Genes upregulated among high-risk patients
were expressed primarily by a small population of developing
neutrophils. Further, downregulated genes among patients with
high mortality risk were expressed primarily by mature neutrophils.
We further identified that developing neutrophils exhibited greater
number and strength of inter-cellular interactions, specifically
among high-mortality risk patients.

Frontiers in Immunology

Identification of key transcriptional
regulators

Gene lists of WGCNA submitted to ChEA3, identified LTF,
itself a gene in the Pink Module, as the most enriched TF with a
mean rank of 1.0 and 10 overlapping genes including MMPS8, LCN2,
and RETN. Other TFs of interest identified included KLFI (Brown
Module, mean rank of 1.6 and 231 overlapping genes), FOXM]I
(Yellow Module, mean rank of 2.6 and 192 overlapping genes), and
ZNF12 (Purple Module, mean rank of 8.0 and 13 overlapping
genes). Among the top regulator effect networks associated with
high mortality-risk patients, identified through IPA analyses of
DEGs, was CEBPB with an activation z-score of 5.08 and p-value of
1.11 e'2, indicating the degree of overlap in genes from the dataset
and those modulated by the particular TF. Other key TFs identified
included TFEB, MYC, and TBX3. Consistent with results using the
former approach, FOXM]I was identified to be activated with a z-
score of 3.3 and p-value of overlap of 5.2 ¢! and KLFI had an
activation z-score of 1.7 and p-value of 1.3 ¢** In contrast, LTF and
ZNF12 were not enriched when using causal network analyses in
IPA (Supplementary Table S5).

Discussion

In this study we analyzed whole blood transcriptomic profiles
from 81 pediatric septic shock patients, including 24 high- and 57
low- mortality-risk patients based on the prospectively validated
PERSEVERE-II biomarker stratification tool. Using Weighted Gene
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Expression of Day 1 DEGs: High-Risk vs Low-Risk Patients
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FIGURE 2

FC cutoff = 1; BH-adjusted p-value cutoff = 0.001

(A) Heatmap showing 2,654 differentially expressed genes at a Benjamini-Hochberg adjusted p-value < 0.05 comparing transcriptomic profiles of
children with high- and low-mortality risk based on PERSEVERE-1I model. (B) Volcano plot showing DEGs with a [log2FoldChange| > 1 and

Benjamini-Hochberg adjusted p-value < 0.001.

Co-Expression Network Analysis (WGCNA), which assigns colors
to modules, we identified four gene modules associated with high
mortality risk, with the 51-gene “Pink” Module being most strongly
correlated. Functional pathways linked to these modules
highlighted the roles of innate immune responses and neutrophil
degranulation as key factors associated with severe outcomes.
Moreover, genes overexpressed in high-risk patients were
enriched in neutrophil turnover, while those repressed were
related to adaptive immunity. It is also notable that the seven
genes identified by WGCNA as being most associated with the
high-risk stratum were also identified by DESeq2 as being under-
expressed in high-risk patients. These genes (NHSL2, LRMP, IL16,
GLIPRI, SRPK2, AOAH, CALBI) are among the most under-
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expressed in high-risk patients (Supplementary Table S4b) and
warrant further investigation. High-risk patients exhibited a greater
contribution of developing neutrophils to gene-expression
signatures and fewer mature neutrophils, emphasizing the impact
of neutrophil turnover. Lastly, transcription factors identified
through complementary approaches resulted in several potential
drivers of gene programs for future mechanistic study.

The original PERSEVERE biomarker model was developed by
selecting 12 candidate protein biomarkers associated with genome-
wide expression profiles differentiating patients based on outcome.
Subsequently, CART analyses were used to identify a parsimonious
set of 5 protein biomarkers (IL8, HSPA1B, GZMB, MMP8, and
CCL3) in addition to patient age to stratify patients (8). The
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GO Annotations: Genes Up-Regulated in High-PERSEVERE-II Samples
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FIGURE 3

Gene Ontology annotations up-regulated (top panel) and down-regulated (bottom panel) in high-risk children with sepsis suggest the function of
differentially expressed genes. A Benjamini-Hochberg adjusted p-value < 0.05 was used as a significance threshold for clusterProfiler analysis.

PERSEVERE II model was developed expressly to improve the
performance of PERSEVERE among children with septic shock and
multiorgan failure (9). Both models have been extensively
prospectively validated in cohorts of pediatric septic shock (8-10).
Notably, several of the genes (MMPS8, LCN2, and RETN) in the
WGCNA module most highly correlated with high mortality risk
are either represented in the PERSEVERE risk model or were
candidate biomarkers. Moreover, DEG analyses revealed that 4
out of the 5 genes encoding for PERSEVERE-II biomarkers, with
the exception of CCL4, were differentially expressed between high-
and low-risk patients. The congruence of these data adds confidence
in our analyses.
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The identification of the contribution of developing neutrophils
to patient risk-strata is wholly unsurprising. Recently, Kwok et al.
used single-cell RNA sequencing to reveal that an adult sepsis gene-
expression endotype, Sepsis Response Signature 1 (SRS1), was
defined by emergency granulopoiesis (11). Using orthogonal
approaches, other groups including our own, have performed
latent profile analyses of critically ill adults and pediatric patients
with sepsis. Transcriptomic analyses of these patients indicate a key
contribution of developing neutrophils to subclass-specific
pathobiology (15, 28, 29). Of interest, the highest risk subset of
patients is consistently characterized by proliferation of developing
neutrophils with concomitant suppression of the adaptive immune
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Average Expression of CIBERSORTx Immune Cell Populations, High vs Low PERSEVERE-II Risk
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CIBERSORTXx analysis of immune cell populations comparing children at high and low risk for sepsis mortality using PERSEVERE-II risk-strata.
"***" indicates the 95% confidence intervals between the two conditions are non-overlapping.

system (30-32), resulting in an unchecked hyperinflammatory state.
While such a phenomenon has been attributed to the presence of
myeloid derived suppressor cells (MDSCs) later in the course of
sepsis (33), the mechanistic basis of such crosstalk between the
innate and adaptive arms of the human immune system remains to
be fully elucidated.

We sought to identify transcription factors (TFs) that
simultaneously regulate the expression of numerous genes related
to the high-risk mortality strata. Lactotransferrin or Lactoferrin
(LTF) was predicted to regulate the 51-gene “Pink” module most
highly associated with high mortality probability based on WGCNA
analyses and ChEA3 TF analyses. Lactoferrin (LTF) is an iron-
binding glycoprotein that plays a crucial role in immune defense by
modulating immune responses, controlling oxidative cell function,
and maintaining tissue integrity, thereby limiting pathological
damage in response to inflammatory injury and promoting
physiological homeostasis (34). Forkhead box M1 (FOXM1I) and
Kruppel-Like Factor 1 (KLFI), identified both through WGCNA
and DEG-based computational pipelines, are thought to serve as
master regulators of DNA damage response (35) and promoting
activation of innate immunity through Thl responses in
macrophages (36), respectively. Finally, CEBPB (CCAAT
Enhancer Binding Protein Beta) identified through DEG and IPA
analyses is an established regulator of emergency granulopoiesis
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(11, 37). While ChEA3 performs better than algorithmic peers in
predicting transcription factor association with a set of genes (25)
and has been used to identify transcription factors associated with
many phenotypes including papillary thyroid cancer (38), infant
brain gene expression (39), dermatologic malignancies (40), and
mesenchymal stem cells (41), among others (42), these data are
correlative. Hypothesis-driven studies focused on these TFs may
further shed light on the mechanistic basis of disease and inform
development of targeted drugs aimed to ameliorate
neutrophil dysregulation.

Our study has several limitations: (1) The sample size of
patients with biomarker and transcriptomic data was relatively
small, warranting validation in larger datasets to confirm findings
and enhance generalizability. (2) The transcriptomic analysis was
based on a single blood sample, which limits insights into dynamic
gene expression changes that may occur later in the disease course.
(3) Gene expression changes may not fully translate to protein levels
due to post-translational modifications; integrating high-
throughput proteomic data could improve robustness and reveal
causal regulatory networks. (4) Single-cell reference data from
adults was used to infer cell types, but pediatric-specific data is
needed to directly validate findings given age-related differences in
sepsis responses. (5) The transcription factor analysis was
exploratory, and further studies are needed to confirm the
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Inference of cell subsets underlying pediatric septic shock mortality risk strata. Top Panel (A) The figure shows the Uniform Manifold Approximation
and Projection (UMAP) derived from the single-cell transcriptomic dataset from critically ill adults with sepsis published by Kwok et al. Cell Type: Ten
cell subsets were identified in the single-cell dataset. (1) Developing neutrophils (pink), (2) Mature neutrophils (red), (3) Cluster differentiation (CD) 14
positive monocytes (light gray), (4) CD16 positive monocytes (black), (5) B lymphocytes (deep purple), (6) Plasmablasts (purple), (7) CD4 positive T
lymphocytes (moss green), (8) CD8 positive T lymphocytes (yellow), (9) NK, Natural killer cells (blue), and (10) Platelets (brown). Up-Regulated Score:
Up-regulated genes among high-risk patients are shown in red. Down-regulated Score: Down-regulated genes among high-risk patients are shown
in red. Composite Score: Composite gene score represents geometric mean of upregulated minus downregulated genes among patients belonging
to high-risk strata. The gene score was scaled as shown in the legend. Cells in red represent those with a high composite gene score indicating that
they contributed predominantly to overexpressed genes among patients with high mortality risk. In contrast, cells in blue represent those with a low
composite gene score indicating that they contributed predominantly to genes underexpressed among patients with low mortality risk. Bottom Left
(B) The plot shows the number of interactions in high-risk patients. Notably, developing neutrophils exhibited a higher number of interactions
compared to other cell types, suggesting a key role in the hyperinflammatory response observed in high-risk patients (shown in red). Bottom Right
(C) The plot represents the differential interaction strength in high-mortality risk patients. Developing neutrophils, monocytes (CD14, CD16), and
neutrophil progenitors display stronger interactions in the high-risk group, (shown in red) with developing neutrophils being a central hub of
communication, indicative of their critical role in driving the hyperinflammatory response.
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identified regulators’ roles in disease pathology and evaluate their

therapeutic potential.

Conclusions
This study reveals key molecular distinctions in mortality risk

for pediatric septic shock patients, as identified by the PERSEVERE-
II biomarker risk model. Transcriptomic analyses highlighted

Frontiers in Immunology

innate immune dysregulation, specifically increased neutrophil
turnover, and suppressed adaptive immunity among high-risk
patients. Developing neutrophils emerged as major contributors
to the hyperinflammatory state linked to severe outcomes.
Transcription factors such as LTF, FOXMI1, KLFI, and CEBPB
were identified as likely regulators of these gene-expression
patterns. These findings provide a foundation for future
mechanistic studies and may aid in the development of targeted
interventions for high-risk pediatric sepsis patients.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663704
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Dunwoodie et al.

Data availability statement

The data presented in the study are deposited in the NCBI
Sequence Read Archive (SRA) repository, accession number
PRJNA1358292.

Ethics statement

The studies involving humans were approved by the
Institutional Review Board of Cincinnati Children’s Hospital
Medical Center. The studies were conducted in accordance with
the local legislation and institutional requirements. Written
informed consent for participation in this study was provided by
the participants’ legal guardians/next of kin.

Author contributions

LD: Conceptualization, Data curation, Formal analysis,
Methodology, Validation, Writing - original draft, Writing -
review & editing. MH: Formal analysis, Methodology, Validation,
Writing - review & editing. AM: Data curation, Formal analysis,
Methodology, Validation, Writing - review & editing. NS:
Validation, Writing — review & editing. SS: Validation, Writing -
review & editing. JK: Validation, Writing — review & editing. BZ:
Validation, Writing — review & editing. KH: Validation, Writing -
review & editing. JF: Validation, Writing - review & editing. SW:
Validation, Writing - review & editing. MB: Validation, Writing -
review & editing. AS: Validation, Writing — review & editing. RL:
Validation, Writing — review & editing. NT: Validation, Writing -
review & editing. BH: Validation, Writing - review & editing. PJ:
Validation, Writing - review & editing. TS: Validation, Writing -
review & editing. RK: Validation, Writing - review & editing. MA:
Conceptualization, Data curation, Formal analysis, Funding
acquisition, Methodology, Supervision, Writing - original draft,
Writing - review & editing, Validation. AL: Conceptualization,
Data curation, Formal analysis, Methodology, Supervision, Writing
— original draft, Writing - review & editing, Validation.

Funding

The author(s) declare financial support was received for the
research and/or publication of this article. AL was supported by
K08GM148957 and L40GM134527. MA, AL, and BZ were
supported by R21GM150093. MA received funding through NIH
awards R21GM151703 and NIH R35155165 and a Procter K-to-R
Scholar award through the Cincinnati Children’s Research
Foundation. This study was funded by the National Institutes of
Health (NIH, U.S.), including through NIH R35GM126943, held by
Dr. Hector Wong. Transcriptomic data was generated through an
academic partnership with Inflammatix Inc. The funders had no
role in the study design, conduct, analyses, or interpretation; the
findings and views expressed are solely those of the authors.

Frontiers in Immunology

11

10.3389/fimmu.2025.1663704

Acknowledgments

The authors are indebted to the contributions of Dr. Hector
Wong (HW). Library preparation and sequencing to generate bulk
RNA sequencing data were performed in conjunction with
Inflammatix for the SUBtyping in SePsis And Critical illnEss
(“SUBSPACE”) Consortium.

Conflict of interest

Cincinnati Children’s Hospital Medical Center CCHMC and
the estate of the late Dr. Hector R. Wong hold patents for gene-
expression-based pediatric septic shock endotypes, reflective of the
host adaptive immune system. MA and RK hold a provisional
patent for gene-expression-based multiple organ dysfunction
syndrome MODS subclass identification, reflective of the host
innate immune response. Inflammatix, Inc. is a for-profit
company focused on the development and commercialization of
best-in-class host-response diagnostic tests. YHB and TS are
employees and/or stockholders of Inflammatix. PK is a
stockholder of Inflammatix.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The author(s) declared that they were an editorial board
member of Frontiers, at the time of submission. This had no
impact on the peer review process and the final decision.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in this
article has been generated by Frontiers with the support of artificial
intelligence and reasonable efforts have been made to ensure
accuracy, including review by the authors wherever possible. If
you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.1663704/
full#supplementary-material

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fimmu.2025.1663704/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1663704/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1663704
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Dunwoodie et al.

References

1. Weiss SL, Fitzgerald JC, Pappachan J, Wheeler D, Jaramillo-Bustamante JC, Salloo
A, et al. Global epidemiology of pediatric severe sepsis: the sepsis prevalence, outcomes,
and therapies study. Am ] Respir Crit Care Med. (2015) 191:1147-57. doi: 10.1164/
rcem.201412-23230C

2. Rudd KE, Johnson SC, Agesa KM, Shackelford KA, Tsoi D, Kievlan DR, et al.
Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for
the Global Burden of Disease Study. Lancet. (2020) 395:200-11. doi: 10.1016/S0140-
6736(19)32989-7

3. Global report on the epidemiology and burden of sepsis: current evidence,
identifying gaps and future directions (2020). World Health Organization. Available
online at: https://apps.who.int/iris/bitstream/handle/10665/334216/9789240010789-
eng.pdf?sequence=1&isAllowed=y (Accessed September 9, 2024).

4. Hartman ME, Linde-Zwirble WT, Angus DC, Watson RS. Trends in the epidemiology
of pediatric severe sepsis*. Pediatr Crit Care Med ] Soc Crit Care Med World Fed. Pediatr
Intensive Crit Care Soc. (2013) 14:686-93. doi: 10.1097/PCC.0b013e3182917fad

5. Carlton EF, Barbaro RP, Iwashyna TJ, Prescott HC. Cost of pediatric severe sepsis
hospitalizations. JAMA Pediatr. (2019) 173:986-7. doi: 10.1001/jamapediatrics.2019.2570

6. Shah FA, Meyer NJ, Angus DC, Awdish R, Azoulay E, Calfee CS, et al. A research
agenda for precision medicine in sepsis and acute respiratory distress syndrome: an
official american thoracic society research statement. Am J Respir Crit Care Med. (2021)
204:891-901. doi: 10.1164/rccm.202108-1908ST

7. Stevens J, Tezel O, Bonnefil V, Hapstack M, Atreya MR. Biological basis of critical
illness subclasses: from the bedside to the bench and back again. Crit Care Lond Engl.
(2024) 28:186. doi: 10.1186/s13054-024-04959-3

8. Wong HR, Salisbury S, Xiao Q, Cvijanovich NZ, Hall M, Allen GL, et al. The
pediatric sepsis biomarker risk model. Crit Care Lond Engl. (2012) 16:R174.
doi: 10.1186/cc11652

9. Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, et al.
PERSEVERE-II: Redefining the pediatric sepsis biomarker risk model with septic shock
phenotype. Crit Care Med. (2016) 44:2010-7. doi: 10.1097/CCM.0000000000001852

10. Wong HR, Caldwell JT, Cvijanovich NZ, Weiss SL, Fitzgerald JC, Bigham MT,
et al. Prospective clinical testing and experimental validation of the Pediatric Sepsis
Biomarker Risk Model. Sci Transl Med. (2019) 11. doi: 10.1126/scitranslmed.aax9000

11. Kwok AJ, Allcock A, Ferreira RC, Cano-Gamez E, Smee M, Burnham KL, et al.
Neutrophils and emergency granulopoiesis drive immune suppression and an extreme
response endotype during sepsis. Nat Immunol. (2023) 24:767-79. doi: 10.1038/
541590-023-01490-5

12. Wong HR, Cvijanovich NZ, Anas N, Allen GL, Thomas NJ, Bigham MT, et al.
Developing a clinically feasible personalized medicine approach to pediatric septic shock.
Am ] Respir Crit Care Med. (2015) 191:309-15. doi: 10.1164/rccm.201410-18640C

13. Atreya MR, Cvijanovich NZ, Fitzgerald JC, Weiss SL, Bigham MT, Jain PN, et al.
Integrated PERSEVERE and endothelial biomarker risk model predicts death and
persistent MODS in pediatric septic shock: a secondary analysis of a prospective
observational study. Crit Care. (2022) 26:210. doi: 10.1186/s13054-022-04070-5

14. Atreya MR, Huang M, Moore AR, Zheng H, Hasin-Brumshtein Y, Fitzgerald JC,
et al. Machine learning driven identification of gene-expression signatures correlated with
multiple organ dysfunction trajectories and complex sub-endotypes of pediatric septic shock
(2022). Available online at: https://www.researchsquare.com/article/rs-2093663/v1.

15. Atreya MR, Huang M, Moore AR, Zheng H, Hasin-Brumshtein Y, Fitzgerald JC,
et al. Identification and transcriptomic assessment of latent profile pediatric septic shock
phenotypes. Crit Care Lond Engl. (2024) 28:246. doi: 10.1186/s13054-024-05020-z

16. Goldstein B, Giroir B, Randolph A. & International Consensus Conference on
Pediatric Sepsis. International pediatric sepsis consensus conference: definitions for sepsis
and organ dysfunction in pediatrics. Pediatr Crit Care Med ] Soc Crit Care Med World Fed.
Pediatr Intensive Crit Care Soc. (2005) 6:2-8. doi: 10.1097/01.PCC.0000149131.72248.E6

17. Pollack MM, Patel KM, Ruttimann UE. Prism III: An updated pediatric risk of
mortality score. Crit Care Med. (1996) 24:743-52. doi: 10.1097/00003246-199605000-
00004

18. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation
network analysis. BMC Bioinf. (2008) 9:559. doi: 10.1186/1471-2105-9-559

19. Robinson MD, Oshlack A. A scaling normalization method for differential
expression analysis of RNA-seq data. Genome Biol. (2010) 11:R25. doi: 10.1186/gb-
2010-11-3-r25

20. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
differential expression analysis of digital gene expression data. Bioinforma. Oxf. Engl.
(2010) 26:139-40. doi: 10.1093/bioinformatics/btp616

21. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of
large gene lists using DAVID bioinformatics resources. Nat Protoc. (2009) 4:44-57.
doi: 10.1038/nprot.2008.211

Frontiers in Immunology

12

10.3389/fimmu.2025.1663704

22. Yu G, Wang L-G, Han Y, He Q-Y. clusterProfiler: an R package for comparing
biological themes among gene clusters. Omics ] Integr Biol. (2012) 16:284-7.
doi: 10.1089/0mi.2011.0118

23. Newman AM, Steen CB, Liu CL, Gentles AJ, Chaudhuri AA, Scherer F, et al.
Determining cell type abundance and expression from bulk tissues with digital
cytometry. Nat Biotechnol. (2019) 37:773-82. doi: 10.1038/541587-019-0114-2

24. Zheng H, Rao AM, Dermadi D, Toh J, Murphy Jones L, Donato M, et al. Multi-
cohort analysis of host immune response identifies conserved protective and
detrimental modules associated with severity across viruses. Immunity. (2021)
54:753-768.e5. doi: 10.1016/j.immuni.2021.03.002

25. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al.
ChEA3: transcription factor enrichment analysis by orthogonal omics integration.
Nucleic Acids Res 47 W212. (2019) (W1):W212-24. doi: 10.1093/nar/gkz446

26. Krimer A, Green J, Pollard J, Tugendreich S. Causal analysis approaches in
Ingenuity Pathway Analysis. Bioinforma. Oxf. Engl. (2014) 30:523-30. doi: 10.1093/
bioinformatics/btt703

27. Alder MN, Opoka AM, Lahni P, Hildeman DA, Wong HR. Olfactomedin-4 is a
candidate marker for a pathogenic neutrophil subset in septic shock. Crit Care Med.
(2017) 45:€426-32. doi: 10.1097/CCM.0000000000002102

28. Neyton LPA, Sinha P, Sarma A, Mick E, Kalantar K, Chen S, et al. Host and
microbe blood metagenomics reveals key pathways characterizing critical illness
phenotypes. Am ] Respir Crit Care Med. (2024) 209(7):805-15. doi: 10.1164/
rcem.202308-13280C

29. Sinha P, Neyton L, Sarma A, Wu N, Jones C, Zhuo H, et al. Molecular
Phenotypes of ARDS in the ROSE Trial have Differential Outcomes and Gene
Expression Patterns That Differ at Baseline and Longitudinally Over Time. Am J
Respir Crit Care Med. (2024) 209(7):816-28. doi: 10.1164/rccm.202308-14900C

30. Shanley TP, Cvijanovich N, Allen GL, Lin R, Anas N, Meyer K, et al. Genome-
level longitudinal expression of signaling pathways and gene networks in pediatric
septic shock. Mol Med. (2007) 13:495-508. doi: 10.2119/2007-00065.Shanley

31. Cvijanovich N, Shanley TP, Lin R, Allen GL, Thomas NJ, Checchia P, et al.
Validating the genomic signature of pediatric septic shock. Physiol Genomics. (2008)
34:127-34. doi: 10.1152/physiolgenomics.00025.2008

32. Wong HR, Cvijanovich N, Allen GL, Lin R, Anas N, Meyer K, et al. Genomic
expression profiling across the pediatric systemic inflammatory response syndrome,
sepsis, and septic shock spectrum*. Crit Care Med. (2009) 37:1558-66. doi: 10.1097/
CCM.0b013e31819fcc08

33. Darden DB, Bacher R, Brusko MA, Knight P, Hawkins RB, Cox MG, et al. Single
cell RNA-seq of human myeloid derived suppressor cells in late sepsis reveals multiple
subsets with unique transcriptional responses: A pilot study. Shock Augusta Ga. (2021)
55:587-95. doi: 10.1097/SHK.0000000000001671

34, Kruzel ML, Zimecki M, Actor JK. Lactoferrin in a context of inflammation-
induced pathology. Front Immunol. (2017) 8:1438. doi: 10.3389/fimmu.2017.01438

35. Zona S, Bella L, Burton MJ, Moraes GN. de & Lam, E. W.-F. FOXM1: An
emerging master regulator of DNA damage response and genotoxic agent resistance.
Biochim Biophys Acta. (2014) 1839:1316. doi: 10.1016/j.bbagrm.2014.09.016

36. Cao Z, Sun X, Icli B, Wara AK, Feinberg MW. Role of Kriippel-like factors in
leukocyte development, function, and disease. Blood. (2010) 116:4404-14. doi: 10.1182/
blood-2010-05-285353

37. Xu C, Xu J, Lu L, Tian W, Ma J, Wu M. Identification of key genes and novel
immune infiltration-associated biomarkers of sepsis. Innate Immun. (2020) 26:666-82.
doi: 10.1177/1753425920966380

38. Huang Y, Prasad M, Lemon WJ, Hampel H, Wright FA, Kornacker K, et al. Gene
expression in papillary thyroid carcinoma reveals highly consistent profiles. Proc Natl
Acad Sci U S A. (2001) 26:15044-9. doi: 10.1073/pnas.251547398

39. Wang W, Liu Z, Peng D, Lin GN, Wang Z. Genomic insights into genes
expressed specifically during infancy highlight their dominant influence on the
neuronal system. BMC Genomics. (2024) 25:1012. doi: 10.1186/s12864-024-10911-0

40. Kim J, Kang JH, Noh MG, Lee B, Choi YD, Kim O], et al. New potential
diagnostic markers for verrucous hyperplasia and verrucous carcinoma based on
RNA-sequencing data. Mol Cell Probes. (2024) 77:101980. doi: 10.1016/j.mcp.2024.
101980

41. Khan AA, Huat TJ, Al Mutery A, El-Serafi AT, Kacem HH, Abdallah SH, et al.
Significant transcriptomic changes are associated with differentiation of bone marrow-
derived mesenchymal stem cells into neural progenitor-like cells in the presence of
bFGF and EGF. Cell Biosci. (2020) 10:126. doi: 10.1186/s13578-020-00487-z

42. Love MI, Huber W, Anders S. Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2. Genome Biol. (2014) 15:550.
doi: 10.1186/s13059-014-0550-8

frontiersin.org


https://doi.org/10.1164/rccm.201412-2323OC
https://doi.org/10.1164/rccm.201412-2323OC
https://doi.org/10.1016/S0140-6736(19)32989-7
https://doi.org/10.1016/S0140-6736(19)32989-7
https://apps.who.int/iris/bitstream/handle/10665/334216/9789240010789-eng.pdf?sequence=1&isAllowed=y
https://apps.who.int/iris/bitstream/handle/10665/334216/9789240010789-eng.pdf?sequence=1&isAllowed=y
https://doi.org/10.1097/PCC.0b013e3182917fad
https://doi.org/10.1001/jamapediatrics.2019.2570
https://doi.org/10.1164/rccm.202108-1908ST
https://doi.org/10.1186/s13054-024-04959-3
https://doi.org/10.1186/cc11652
https://doi.org/10.1097/CCM.0000000000001852
https://doi.org/10.1126/scitranslmed.aax9000
https://doi.org/10.1038/s41590-023-01490-5
https://doi.org/10.1038/s41590-023-01490-5
https://doi.org/10.1164/rccm.201410-1864OC
https://doi.org/10.1186/s13054-022-04070-5
https://www.researchsquare.com/article/rs-2093663/v1
https://doi.org/10.1186/s13054-024-05020-z
https://doi.org/10.1097/01.PCC.0000149131.72248.E6
https://doi.org/10.1097/00003246-199605000-00004
https://doi.org/10.1097/00003246-199605000-00004
https://doi.org/10.1186/1471-2105-9-559
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1093/bioinformatics/btp616
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1089/omi.2011.0118
https://doi.org/10.1038/s41587-019-0114-2
https://doi.org/10.1016/j.immuni.2021.03.002
https://doi.org/10.1093/nar/gkz446
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1093/bioinformatics/btt703
https://doi.org/10.1097/CCM.0000000000002102
https://doi.org/10.1164/rccm.202308-1328OC
https://doi.org/10.1164/rccm.202308-1328OC
https://doi.org/10.1164/rccm.202308-1490OC
https://doi.org/10.2119/2007-00065.Shanley
https://doi.org/10.1152/physiolgenomics.00025.2008
https://doi.org/10.1097/CCM.0b013e31819fcc08
https://doi.org/10.1097/CCM.0b013e31819fcc08
https://doi.org/10.1097/SHK.0000000000001671
https://doi.org/10.3389/fimmu.2017.01438
https://doi.org/10.1016/j.bbagrm.2014.09.016
https://doi.org/10.1182/blood-2010-05-285353
https://doi.org/10.1182/blood-2010-05-285353
https://doi.org/10.1177/1753425920966380
https://doi.org/10.1073/pnas.251547398
https://doi.org/10.1186/s12864-024-10911-0
https://doi.org/10.1016/j.mcp.2024.101980
https://doi.org/10.1016/j.mcp.2024.101980
https://doi.org/10.1186/s13578-020-00487-z
https://doi.org/10.1186/s13059-014-0550-8
https://doi.org/10.3389/fimmu.2025.1663704
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

	Neutrophil dysregulation differentiates pediatric septic shock biomarker-based mortality-risk strata: insights from weighted gene co-expression network and transcriptomic analyses
	Introduction
	Methods
	Patient enrollment
	PERSEVERE biomarker measurement and risk-stratification
	RNA extraction and library preparation
	Gene expression matrix
	Weighted gene co-expression network construction
	Differential gene expression, functional pathway annotation, and upstream regulators
	Inferring differences in cell types associated with risk-strata
	Intercellular communication analyses among risk-strata
	Identification of transcription factors

	Results
	Weighted gene co-expression network analyses identifies four modules associated with high-mortality risk strata
	Differential gene expression analyses corroborate WGCNA analyses implicating neutrophil dysregulation among high mortality risk patients
	Developing neutrophils contribute disproportionately to host pathobiology in the high-risk strata
	Identification of key transcriptional regulators

	Discussion
	Conclusions
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


