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Background: Pediatric sepsis is a leading cause of global mortality, particularly

among children, with limited therapeutic options beyond antibiotics and organ

support. The Pediatric Sepsis Biomarker Risk Model (PERSEVERE-II) stratifies

mortality risk in pediatric septic shock, yet the molecular mechanisms

underlying high mortality risk remain incompletely understood.

Methods: We analyzed whole blood transcriptomes collected from 81 children

with septic shock on day 1 of meeting study criteria. Patients were stratified into

high- and low-mortality risk groups according to the PERSEVERE-II biomarker

risk model. Using weighted gene co-expression network analysis (WGCNA) and

differential gene expression analyses, we identified molecular pathways and

transcription factors (TFs) associated with mortality risk. Cell type differences
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were inferred using CIBERSORTx and using a reference single-cell dataset

inclusive of neutrophils and their subsets.

Findings: We identified distinct molecular profiles with high-risk patients

displaying significant overexpression of genes related to neutrophil

degranulation and innate immunity, alongside suppressed adaptive immune

responses. The predominance of developing neutrophils underscored a major

role of emergency granulopoiesis. Key TFs identified, including LTF, FOXM1, KLF1,

and CEBPB, were linked to high-risk gene expression signatures. Our findings

indicate a pathological shift toward a dysregulated neutrophil-driven

hyperinflammation and adaptive immune suppressive state, which together are

associated with adverse outcomes.

Interpretation: Our results suggest that neutrophil dysregulation underpins the

high mortality risk conferred by the PERSEVERE-II model. The identified

transcriptional regulators may provide potential targets to mitigate neutrophil

dysregulation and improve outcomes among high-risk patients.
KEYWORDS

precision medicine, pediatric sepsis, mortality risk stratification, transcriptomics,
immune response, neutrophil dysregulation
Introduction

Sepsis is a heterogenous disease associated with high morbidity

and mortality worldwide (1). Notably, 40% of sepsis cases occur in

children under five years (2), making sepsis the leading cause of

mortality in this age group, responsible for 20% of all under-five

deaths (3). In the United States alone, pediatric sepsis claims over

7,000 lives annually (4) and incurs $7 billion in hospitalizations (5).

Despite this burden of disease, treatments remain limited to

antibiotics and organ function support as clinical and biological

heterogeneity among critically ill children with sepsis continues to

hamper the identification of efficacious therapies (6). Over the past

two decades, using a precision medicine framework research has

aimed to address this heterogeneity, striving to match the right

therapy with the right patient at the right time (7).

The Pediatric Sepsis Biomarker Risk Model (PERSEVERE) was

developed to stratify children with septic shock based on mortality

risk (8). PERSEVERE-II built upon the original model by

incorporating admission platelet count along with five protein

biomarkers measured in sera collected within 24 hours of the

onset of septic shock in children admitted to pediatric intensive

care unit (PICU) to assign a 28-day mortality probability (9). Both

models have been prospectively validated in observational cohorts

of children with septic shock (10). While PERSEVERE-II reliably

estimates mortality risk, it remains unclear what molecular features

underlie children at high risk as compared to those at low risk of

mortality. It follows that a comprehensive assessment of the

underlying pathobiology could inform the development of

targeted interventions specific to high-risk patients.
02
We utilized whole blood transcriptomic data from pediatric septic

shock patient to conduct weighted gene co-expression network

analyses (WGCNA) to identify genes associated with high

PERSEVERE-II mortality risk, with functional annotations

highlighting neutrophil-related processes. We identified differentially

expressed genes distinguishing high- versus low-mortality risk

patients, as stratified by the PERSEVERE-II biomarker model.

Biological pathway analyses indicated overexpression of innate

immune responses with concurrent repression of adaptive immune

responses early in the illness course distinguished high-risk patients.

We employed computational tools to identify transcription factors

regulating implicated genes and applied deconvolution algorithms

alongside reference single-cell data to identify cell subpopulations

contributing to mortality risk. Taken together, our findings align with

prior studies suggesting developing neutrophils and emergency

granulopoiesis (11) contribute to a hyperinflammatory state linked

to adverse septic shock outcomes.
Methods

Patient enrollment

This study leveraged biospecimens from the Sepsis Genomics

Collaborative –a prospective multi-center observational cohort,

which has been previously detailed extensively (12–15). Briefly,

critically ill children between the ages of 1 week and 18 years who

met consensus criteria for septic shock (16) were included and

enrolled from 13 pediatric intensive care units (PICUs) across the
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United States from May 2015, through February 2019. The study

protocol received approval from the Institutional Review Boards

(IRBs) of the primary site (Cincinnati Children’s Hospital IRBs,

Genomics of Septic Shock, IRB ID: 2008–0558 and 2022-0721) and

all participating institutions. Informed consent was obtained from

parents or legal guardians. All procedures involving human

participants adhered to the ethical standards of the participating

institutions’ IRBs, the 1964 Helsinki Declaration and its subsequent

amendments. Whole blood collected in PAXgene RNA tubes and

sera collected within 24 hours of the onset of septic shock were used.

No study-related interventions occurred beyond these blood draws.

De-identified clinical data were collected daily from days 1 to 7 of

PICU admission, with mortality data tracked up to 28 days

post-enrollment.
PERSEVERE biomarker measurement and
risk-stratification

In addition to PICU admission platelet count, the 5

PERSEVERE biomarkers interleukin 8 (IL-8), heat shock protein

(HSPA1B), granzyme B (GZMB), matrix metalloprotein 8 (MMP8),

and C-C motif chemokine ligand 3 (CCL3) were previously

measured in day 1 sera, permitting patient assignment to one of

nine PERSEVERE-II Terminal Nodes (TNs) based on the published

classification and regression tree (CART) (9, 10). Patients classified

to TN 1, 2, 5, and 8 were predicted to be survivors and designated as

low risk (<1.9% risk of death). Patients classified to TN 3, 4, 6, 7, and

9 were predicted non-survivors and considered high risk for

mortality (16.7%-44.4% risk of death) (10). Demographic and

clinical characteristics were compared between children stratified

to low and high PERSEVERE-II risk. Pediatric Risk of Mortality

(PRISM)-III scores were evaluated as an estimate of baseline illness

severity (17). Immunocompromised status, vasoactive and

corticosteroid use, prevalence of mechanical ventilation and renal

replacement therapy were recorded. Outcome variables included

PICU length of stay, PICU-free days, hospital length of stay, 7- and

28-day mortality, and the prevalence of complicated course.

Complicated course was defined as the persistence of at least two

organ failures at 7 days or mortality by 28 days. Dichotomous

variables were compared with the Fisher exact test or chi-squared

test. Nonparametric continuous variables were characterized as

medians with interquartile ranges (IQRs) and evaluated with the

Wilcoxon rank-sum test.
RNA extraction and library preparation

Whole blood was collected in PAXgene Blood RNA tubes and

stored at −80 °C. For processing, tubes were thawed at room

temperature for 2 h, inverted to homogenize, and 3 mL aliquots

were transferred. RNA was isolated using a modified RNeasy Mini

protocol on a QIAcube (QIAGEN). Briefly, PAXgene blood/

stabilizer was diluted with PBS and centrifuged at 3,000 × g to
Frontiers in Immunology 03
pellet nucleic acids; pellets were washed with nuclease-free water,

re-pelleted (3,000 × g), resuspended in Buffer RLT, treated with

Proteinase K, and passed through gDNA-elimination columns.

Flow-through was combined with isopropanol, bound to a

MinElute column, washed with 80% ethanol, and eluted in

RNase-free water. Eluates were heat-denatured (55°C, 5 min) and

snap-cooled. RNA quantity was measured by Qubit RNA assays

and integrity by BioAnalyzer; samples with RIN < 7 were excluded.

Globin RNA was removed with GLOBINclear (Invitrogen) per

manufacturer’s instructions. Globin-depleted RNA was quantified

(Qubit RNA HS), and 10 ng was used for rRNA depletion and

library construction with the SMARTer Stranded Total RNA-seq

Kit v2—Pico Input Mammalian (Takara). Libraries were quantified

(Qubit dsDNA HS), sized (Fragment Analyzer High Sensitivity

Small Fragment kit), pooled, and sequenced on an Illumina

NovaSeq 6000 (paired-end, 2 × 100 bp). Per sample, 40–120

million read pairs were generated. FASTQ files were used for

downstream processing. Library prep and sequencing were

performed at TB-SEQ (Palo Alto, CA).
Gene expression matrix

Raw mRNA counts were mapped to 60,846 Ensembl Gene IDs

across samples. The Gene IDs which did not correspond to a known

Human Genome Gene Symbol and Entrez ID were removed,

leaving 20,239 genes. In addition, 171 Ensembl Gene IDs were

true duplicates with identical mRNA count data and were removed.

There were nine duplicate Human Genome Gene Symbol pairs,

each of which had one member that was less expressed than the

other and removed. Finally, there were 26 unique Entrez IDs

corresponding to two or three Gene Symbols, 55 Gene Symbols

in all. These were manually evaluated, and the Gene Symbol with

the lowest average expression was removed. Altogether, this left a

gene expression matrix with 20,030 genes across 81 samples.
Weighted gene co-expression network
construction

We conducted Weighted Correlation Network Analysis

(WGCNA) (18) to identify gene-modules, representing co-

expressed genes, associated with biomarker mortality risk strata

and to explore relationships among genes. First, the raw gene

expression matrix was normalized using trimmed-mean of M-

values (TMM) (19) and low-expression values were removed

using edgeR (20) using the default min.count = 10, leaving 13,515

genes. This normalized, log2-transformed matrix was used for

network construction. A WGCNA soft threshold of 12 was

selected with R2 = 0.817 and mean connectivity = 70.200, meeting

our goals of scale free topology model fit coefficient > 0.80 and mean

connectivity < 100 to achieve maximum correlation strength in

addition to appropriate hub connectivity for analysis.

(Supplementary eFigure S1). Pearson’s correlation coefficients
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1663704
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dunwoodie et al. 10.3389/fimmu.2025.1663704
were calculated to assess the strength of correlation. Signed network

construction was utilized to emphasize directional correlation

relationships between genes. For each gene co-expression module

of interest, its gene expression between conditions was evaluated by

comparing module eigengene expression for high- and low-

mortality risk patients. WGCNA calculates an eigengene

expression value for every patient across every module which

represents the first principal component of the gene expression

for that patient across all genes in that module. The eigengene

expression of high-risk and low-risk patients were compared using a

two-tailed heteroscedastic t-test. WGCNA also computes each

gene’s correlation with its module and the significance of that

correlation; the genes in each module whose correlation with that

module has the most significant p-value were identified as driver

genes. Similarly, WGCNA calculates each gene’s correlation with

the trait of interest and the significance of that correlation, which

revealed the genes whose expression was most associated with the

high-risk strata. The gene lists in modules of interest were

submitted to the Database for Annotation, Visualization and

Integrated Discovery (DAVID) to identify functional annotations

(21); with only those with a Benjamini-Hochberg adjusted p-value <

0.05 being considered significant.
Differential gene expression, functional
pathway annotation, and upstream
regulators

We identified differentially expressed genes (DEGs) comparing

high- and low-mortality risk patients using R package DESeq2 (22).

We used a Benjamini-Hochberg adjusted false discovery rate (FDR)

threshold of 0.05 to identify DEGs. Heatmap and volcano plots were

used to visualize DEGs. The biological relevance of pathways were

determined based on Gene Ontology (GO) annotations and Kyoto

Encyclopedia of Genes and Genomes (KEGG) using

clusterProfiler (22).
Inferring differences in cell types
associated with risk-strata

We inferred relative differences in cell type abundance

comparing risk-strata using CIBERSORTx (23) based on

differentially expressed genes. However, this computational tool

was originally designed for in silico tissue deconvolution rather than

blood and lacks a reference for cell types specific to critically ill

patients. To address this limitation, we used single-cell RNA

sequencing dataset comprised of critically ill adults with sepsis

published by Kwok et al. (11) We calculated a composite gene score

as the geometric mean of top 20 overexpressed genes minus the

geometric mean of top 20 repressed genes using published methods

(24), identified through DEG analyses comparing risk-strata and

also available in the single-cell dataset. We mapped this scaled

composite score against the Uniform Manifold Approximation and
Frontiers in Immunology 04
Projection (UMAP) of the Kwok dataset to infer cell types

contributing to biological differences between risk-strata.
Intercellular communication analyses
among risk-strata

We used the Kwok dataset to generate pseudobulk gene-

expression data. For each individual patient represented in this

dataset, gene-expression in each cell type was aggregated using the

AggregateExpression function in Seurat. The pseudobulk matrix

was batch-corrected using the ComBatseq function from the sva

package (v.3.46.0), a negative binomial regression method. DEGs

comparing risk strata, identified previously, were selected as

features for downstream analyses. To assign risk strata in the

reference single cell dataset, we developed a Support Vector

Machine (SVM) classification model. The normalized matrix and

corresponding labels were randomly split into training and

validation sets (80:20 ratio) to train and fine tune the SVM

model. This model was applied to the corrected pseudobulk data

to assign high- or low-risk labels to all single-cell sepsis samples.

Finally, CellChat analysis (v2.1.0) was performed on the single-cell

matrix, to infer cell-cell communication networks focusing on the

high-risk strata.
Identification of transcription factors

To identify key transcriptional regulators among high-risk

patients, we submitted gene lists in each WGCNA module with

statistically significant association with high-risk strata to the Chip

Enrichment Analysis (ChEA3) portal (https://maayanlab.cloud/

chea3/) to predict transcription factors (TFs) anticipated to

regulate gene co-expression module (25). The most notable

transcription factor (TF) is denoted by the lowest mean rank,

which indicates the TF predicted by ChEA3 to interact most with

the submitted gene lists after searching across multiple libraries

including ENCODE, GTEx, ARCHS4, and ReMap. Additionally, we

submitted DEGs distinguishing patient risk-strata for Ingenuity

Pathway Analysis (IPA, QIAGEN) (26) (QIAGEN) to identify

upstream regulators and mechanistic networks that could

influence gene expression patterns, focusing on direct interactions

between regulators and selecting TFs with highest activation z-

scores and p<0.001.
Results

A total of 81 patients were included in the study, of whom 24

patients were designated as high risk and 57 patients as low risk for

mortality according to the PERSEVERE-II stratification tool.

Demographic, clinical, and outcome variables comparing patients

in each of the risk-strata are detailed in Table 1. Patients classified as

high risk were more severely ill at illness onset, and had greater
frontiersin.org
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mortality at 7 and 28 days, as well as a greater burden of

complicated course, relative to low mortality-risk patients.
Weighted gene co-expression network
analyses identifies four modules associated
with high-mortality risk strata

We identified 11 gene co-expression modules using Weighted

Correlation Network Analysis (WGCNA). The correlation between

these modules and the high-risk strata was calculated, as was the

significance level corresponding to each correlation as shown in

Figure 1. Fifty-one genes (designated the Pink module;

Supplementary Table S1a) had the highest correlation (R2 =

0.436) and the most significant p-value for the correlation with

the high-risk mortality strata (p = 4.795e-5). Notably, the gene most

strongly associated with this module was MMP8 (p = 1.53e-36),

which encodes for one of the PERSEVERE-II biomarkers. The 5th-
Frontiers in Immunology 05
and 6th-most strongly associated genes with this module, LCN2 and

RETN, respectively, were two of the original 12 candidate

PERSEVERE biomarker genes that were pruned from the final

model. The gene OLFM4, previously associated with neutrophil

subpopulations in pediatric septic shock (27), also has a strong

association (p = 7.91e-15). Three Reactome pathways were

significantly associated with this module: “Neutrophil

Degranulation,” “Innate Immune System,” and “Immune

System.” Three other gene-modules associated with mortality-risk

strata are detailed in Supplementary Tables S1b-d. Comparison of

gene module eigengene expression between mortality-risk strata is

shown in Supplementary eFigure S2, with this 51-gene (“Pink”)

module once again showing the greatest difference between groups.

We identified 260 genes that were significantly associated with

the high-risk strata at p < 0.001 independent of their gene co-

expression module membership (Supplementary Table S2). There

was a high degree of overlap between these genes and DEGs

identified by DESeq2, detailed subsequently. For example, the top

seven genes identified by WGCNA associated with the high-risk

cohort were identified by DESeq2 as genes with significantly lower

expression in high-risk patients (NHSL2: p < 1.9e-11, LRMP: p <

4.14e-10, IL16: p < 6.16e-9, GLIPR1: p < 7.65e-9, SRPK2: p< 7.73e-9,

AOAH: p< 1.33e-9, CALB1: p< 9.55e-9, Supplementary Table S4a).

In addition, examining co-expression modules associated with

high-risk strata, there were 9 Pink Module genes, 6 Yellow

Module genes, and 24 Brown Module genes identified by

WGCNA as significantly associated with the high-risk strata

independent of module membership. All of these 39 genes were

also shown to be over-expressed among high-risk patients

with a p < 0.001 by DESeq2 (Supplementary Table S3).
Differential gene expression analyses
corroborate WGCNA analyses implicating
neutrophil dysregulation among high
mortality risk patients

Heatmap visualizing differentially expressed genes comparing

high vs low mortality-risk patients is shown in Figure 2a. A total of

2,654 genes (13.3% of all sequenced genes) were differentially

expressed at an adjusted p-value < 0.05, of which 1,602 genes

were over-expressed and 1,052 were under expressed among high-

risk patients relative to those at low-risk of mortality

(Supplementary Table S4a). Of note, genes coding for 4 out of the

5 PERSEVERE-II biomarkers -GZMB, CXCL8 (IL-8),HSPA1B, and

MMP8 were overexpressed DEGs among high-risk relative to low-

risk patients. Figure 2b shows the volcano plot highlighting the

most differentially expressed genes (DEGs) based on a log2FC

threshold of > ± 1 and adjusted p value of <0.001.

As shown in Figure 3, top panel), genes over-expressed in high-

risk samples were involved in the cell cycle, with the most-enriched

GO terms being “mitotic cell cycle phase transition,” “chromosome

segregation,” “organelle fission,” “nuclear division,” and “regulation

of cell cycle phase transition.” The genes repressed among high-risk

patients were involved in “positive regulation of cytokine
TABLE 1 Demographic, clinical characteristics, and outcomes
comparing patients classified as high vs. low mortality risk based on the
pediatric sepsis biomarker risk model II (PERSEVERE-II). Data presented
as n (%) or median (IQR) as appropriate.

Variable
High-

mortality risk
group (n=24)

Low-
mortality risk
group (n=57)

P value

Age (years) 2.8 (0.8, 6.1) 4.9 (1.5, 5.6) 0.104

Sex (female) 12 (50.0%) 32 (56.1%) 0.612

Race 0.529

White or Caucasian 19 (79.2%) 42 (73.7%)

Black or African
American

3 (12.5%) 5 (8.8%)

Other 2 (8.3%) 10 (17.5%)

Ethnicity 0.366

Hispanic or Latino 3 (12.5%) 12 (21.1%)

Co-morbidity 11 (45.8%) 27 (47.4%) 0.899

Immunocompromised 2 (8.3%) 3 (5.3%) 0.600

PRISM-III 17 (11, 27) 8 (3, 12) <0.001

Vasoactive use 24 (100%) 51 (89.5%) 0.099

Corticosteroid use 18 (75.0%) 32 (56.1%) 0.111

Mechanical
Ventilation

24 (87.5%) 44 (77.2%) 0.287

Renal Replacement 3 (12.5%) 3 (5.3%) 0.257

PICU LOS 8 (3, 14) 7 (3, 11) 0.889

PICU Free Days 20 (14, 25) 21 (18, 25) 0.889

Hospital LOS 15 (10, 20) 14 (9, 25) 0.918

7-day mortality 4 (16.7%) 0 (0%) 0.002

28-day mortality 6 (25.0%) 0 (0%) <0.001

Complicated course 11 (45.8%) 11 (19.3%) 0.014
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production,” “activation of immune response,” “immune-response

regulating signaling pathway,” “immune-response activating

signaling pathway,” and “leukocyte-mediated immunity.”

Alternatively, GO annotations “T cell proliferation” and

“regulation of T cell activation” (Figure 3, bottom panel) and

KEGG pathways “T cell receptor signaling pathway” and “B cell

receptor signaling pathway” (Supplementary eFigure S3), reflective

of the adaptive immune response, were repressed among high-

risk patients.
Developing neutrophils contribute
disproportionately to host pathobiology in
the high-risk strata

We identified that high mortality-risk patients had a lower

average fraction of mature neutrophils (35.5%; 95% CI [29.0%,

42.0%]) compared with low mortality-risk patients (46.3%; 95% CI

[42.6%, 50.0%]) based on CIBERSORTx analyses shown in Figure 4.

There was no appreciable difference in the proportion of any of the

other 21 cell types imputed by CIBERSORTx. As shown in Figure 5,

the Kwok et al. dataset had 10 cell types from critically ill adult

patients with sepsis. Genes upregulated among high-risk patients

were expressed primarily by a small population of developing

neutrophils. Further, downregulated genes among patients with

high mortality risk were expressed primarily by mature neutrophils.

We further identified that developing neutrophils exhibited greater

number and strength of inter-cellular interactions, specifically

among high-mortality risk patients.
Frontiers in Immunology 06
Identification of key transcriptional
regulators

Gene lists of WGCNA submitted to ChEA3, identified LTF,

itself a gene in the Pink Module, as the most enriched TF with a

mean rank of 1.0 and 10 overlapping genes includingMMP8, LCN2,

and RETN. Other TFs of interest identified included KLF1 (Brown

Module, mean rank of 1.6 and 231 overlapping genes), FOXM1

(Yellow Module, mean rank of 2.6 and 192 overlapping genes), and

ZNF12 (Purple Module, mean rank of 8.0 and 13 overlapping

genes). Among the top regulator effect networks associated with

high mortality-risk patients, identified through IPA analyses of

DEGs, was CEBPB with an activation z-score of 5.08 and p-value of

1.11 e-12, indicating the degree of overlap in genes from the dataset

and those modulated by the particular TF. Other key TFs identified

included TFEB, MYC, and TBX3. Consistent with results using the

former approach, FOXM1 was identified to be activated with a z-

score of 3.3 and p-value of overlap of 5.2 e-11 and KLF1 had an

activation z-score of 1.7 and p-value of 1.3 e-16. In contrast, LTF and

ZNF12 were not enriched when using causal network analyses in

IPA (Supplementary Table S5).
Discussion

In this study we analyzed whole blood transcriptomic profiles

from 81 pediatric septic shock patients, including 24 high- and 57

low- mortality-risk patients based on the prospectively validated

PERSEVERE-II biomarker stratification tool. Using Weighted Gene
FIGURE 1

Weighted gene co-expression network analysis (WGNCA) of gene expression data from children at high and low risk of sepsis mortality based on
pediatric sepsis biomarker risk model II (PERSEVERE-II) identified the Pink Module of genes (MEpink or Module Eigengene Pink) as the most
correlated with the high-risk phenotype based upon correlation coefficient (R2 = 0.436) and statistical significance (p = 4.795e-5). R2 correlation
coefficient with the high-risk trait is shown, as is the p-value for the significance of that correlation, indicated by ***(p < 0.001), **(p < 0.01), or
*(p < 0.05).
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Co-Expression Network Analysis (WGCNA), which assigns colors

to modules, we identified four gene modules associated with high

mortality risk, with the 51-gene “Pink”Module being most strongly

correlated. Functional pathways linked to these modules

highlighted the roles of innate immune responses and neutrophil

degranulation as key factors associated with severe outcomes.

Moreover, genes overexpressed in high-risk patients were

enriched in neutrophil turnover, while those repressed were

related to adaptive immunity. It is also notable that the seven

genes identified by WGCNA as being most associated with the

high-risk stratum were also identified by DESeq2 as being under-

expressed in high-risk patients. These genes (NHSL2, LRMP, IL16,

GLIPR1, SRPK2, AOAH, CALB1) are among the most under-
Frontiers in Immunology 07
expressed in high-risk patients (Supplementary Table S4b) and

warrant further investigation. High-risk patients exhibited a greater

contribution of developing neutrophils to gene-expression

signatures and fewer mature neutrophils, emphasizing the impact

of neutrophil turnover. Lastly, transcription factors identified

through complementary approaches resulted in several potential

drivers of gene programs for future mechanistic study.

The original PERSEVERE biomarker model was developed by

selecting 12 candidate protein biomarkers associated with genome-

wide expression profiles differentiating patients based on outcome.

Subsequently, CART analyses were used to identify a parsimonious

set of 5 protein biomarkers (IL8, HSPA1B, GZMB, MMP8, and

CCL3) in addition to patient age to stratify patients (8). The
FIGURE 2

(A) Heatmap showing 2,654 differentially expressed genes at a Benjamini-Hochberg adjusted p-value < 0.05 comparing transcriptomic profiles of
children with high- and low-mortality risk based on PERSEVERE-II model. (B) Volcano plot showing DEGs with a |log2FoldChange| > 1 and
Benjamini-Hochberg adjusted p-value < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1663704
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Dunwoodie et al. 10.3389/fimmu.2025.1663704
PERSEVERE II model was developed expressly to improve the

performance of PERSEVERE among children with septic shock and

multiorgan failure (9). Both models have been extensively

prospectively validated in cohorts of pediatric septic shock (8–10).

Notably, several of the genes (MMP8, LCN2, and RETN) in the

WGCNA module most highly correlated with high mortality risk

are either represented in the PERSEVERE risk model or were

candidate biomarkers. Moreover, DEG analyses revealed that 4

out of the 5 genes encoding for PERSEVERE-II biomarkers, with

the exception of CCL4, were differentially expressed between high-

and low-risk patients. The congruence of these data adds confidence

in our analyses.
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The identification of the contribution of developing neutrophils

to patient risk-strata is wholly unsurprising. Recently, Kwok et al.

used single-cell RNA sequencing to reveal that an adult sepsis gene-

expression endotype, Sepsis Response Signature 1 (SRS1), was

defined by emergency granulopoiesis (11). Using orthogonal

approaches, other groups including our own, have performed

latent profile analyses of critically ill adults and pediatric patients

with sepsis. Transcriptomic analyses of these patients indicate a key

contribution of developing neutrophils to subclass-specific

pathobiology (15, 28, 29). Of interest, the highest risk subset of

patients is consistently characterized by proliferation of developing

neutrophils with concomitant suppression of the adaptive immune
FIGURE 3

Gene Ontology annotations up-regulated (top panel) and down-regulated (bottom panel) in high-risk children with sepsis suggest the function of
differentially expressed genes. A Benjamini-Hochberg adjusted p-value < 0.05 was used as a significance threshold for clusterProfiler analysis.
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system (30–32), resulting in an unchecked hyperinflammatory state.

While such a phenomenon has been attributed to the presence of

myeloid derived suppressor cells (MDSCs) later in the course of

sepsis (33), the mechanistic basis of such crosstalk between the

innate and adaptive arms of the human immune system remains to

be fully elucidated.

We sought to identify transcription factors (TFs) that

simultaneously regulate the expression of numerous genes related

to the high-risk mortality strata. Lactotransferrin or Lactoferrin

(LTF) was predicted to regulate the 51-gene “Pink” module most

highly associated with high mortality probability based onWGCNA

analyses and ChEA3 TF analyses. Lactoferrin (LTF) is an iron-

binding glycoprotein that plays a crucial role in immune defense by

modulating immune responses, controlling oxidative cell function,

and maintaining tissue integrity, thereby limiting pathological

damage in response to inflammatory injury and promoting

physiological homeostasis (34). Forkhead box M1 (FOXM1) and

Kruppel-Like Factor 1 (KLF1), identified both through WGCNA

and DEG-based computational pipelines, are thought to serve as

master regulators of DNA damage response (35) and promoting

activation of innate immunity through Th1 responses in

macrophages (36), respectively. Finally, CEBPB (CCAAT

Enhancer Binding Protein Beta) identified through DEG and IPA

analyses is an established regulator of emergency granulopoiesis
Frontiers in Immunology 09
(11, 37). While ChEA3 performs better than algorithmic peers in

predicting transcription factor association with a set of genes (25)

and has been used to identify transcription factors associated with

many phenotypes including papillary thyroid cancer (38), infant

brain gene expression (39), dermatologic malignancies (40), and

mesenchymal stem cells (41), among others (42), these data are

correlative. Hypothesis-driven studies focused on these TFs may

further shed light on the mechanistic basis of disease and inform

development of targeted drugs aimed to amel iorate

neutrophil dysregulation.

Our study has several limitations: (1) The sample size of

patients with biomarker and transcriptomic data was relatively

small, warranting validation in larger datasets to confirm findings

and enhance generalizability. (2) The transcriptomic analysis was

based on a single blood sample, which limits insights into dynamic

gene expression changes that may occur later in the disease course.

(3) Gene expression changes may not fully translate to protein levels

due to post-translational modifications; integrating high-

throughput proteomic data could improve robustness and reveal

causal regulatory networks. (4) Single-cell reference data from

adults was used to infer cell types, but pediatric-specific data is

needed to directly validate findings given age-related differences in

sepsis responses. (5) The transcription factor analysis was

exploratory, and further studies are needed to confirm the
FIGURE 4

CIBERSORTx analysis of immune cell populations comparing children at high and low risk for sepsis mortality using PERSEVERE-II risk-strata.
“***” indicates the 95% confidence intervals between the two conditions are non-overlapping.
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identified regulators’ roles in disease pathology and evaluate their

therapeutic potential.
Conclusions

This study reveals key molecular distinctions in mortality risk

for pediatric septic shock patients, as identified by the PERSEVERE-

II biomarker risk model. Transcriptomic analyses highlighted
Frontiers in Immunology 10
innate immune dysregulation, specifically increased neutrophil

turnover, and suppressed adaptive immunity among high-risk

patients. Developing neutrophils emerged as major contributors

to the hyperinflammatory state linked to severe outcomes.

Transcription factors such as LTF, FOXM1, KLF1, and CEBPB

were identified as likely regulators of these gene-expression

patterns. These findings provide a foundation for future

mechanistic studies and may aid in the development of targeted

interventions for high-risk pediatric sepsis patients.
FIGURE 5

Inference of cell subsets underlying pediatric septic shock mortality risk strata. Top Panel (A) The figure shows the Uniform Manifold Approximation
and Projection (UMAP) derived from the single-cell transcriptomic dataset from critically ill adults with sepsis published by Kwok et al. Cell Type: Ten
cell subsets were identified in the single-cell dataset. (1) Developing neutrophils (pink), (2) Mature neutrophils (red), (3) Cluster differentiation (CD) 14
positive monocytes (light gray), (4) CD16 positive monocytes (black), (5) B lymphocytes (deep purple), (6) Plasmablasts (purple), (7) CD4 positive T
lymphocytes (moss green), (8) CD8 positive T lymphocytes (yellow), (9) NK, Natural killer cells (blue), and (10) Platelets (brown). Up-Regulated Score:
Up-regulated genes among high-risk patients are shown in red. Down-regulated Score: Down-regulated genes among high-risk patients are shown
in red. Composite Score: Composite gene score represents geometric mean of upregulated minus downregulated genes among patients belonging
to high-risk strata. The gene score was scaled as shown in the legend. Cells in red represent those with a high composite gene score indicating that
they contributed predominantly to overexpressed genes among patients with high mortality risk. In contrast, cells in blue represent those with a low
composite gene score indicating that they contributed predominantly to genes underexpressed among patients with low mortality risk. Bottom Left
(B) The plot shows the number of interactions in high-risk patients. Notably, developing neutrophils exhibited a higher number of interactions
compared to other cell types, suggesting a key role in the hyperinflammatory response observed in high-risk patients (shown in red). Bottom Right
(C) The plot represents the differential interaction strength in high-mortality risk patients. Developing neutrophils, monocytes (CD14, CD16), and
neutrophil progenitors display stronger interactions in the high-risk group, (shown in red) with developing neutrophils being a central hub of
communication, indicative of their critical role in driving the hyperinflammatory response.
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