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Background: Tumor-associated macrophages (TAMs) shape the tumor
microenvironment and drive hepatocellular carcinoma (HCC) progression.
However, the prognostic significance of TAM polarity-related genes,
particularly based on the CXCL9:SPP1 signature, remains unclear.

Methods: We identified 372 TAM polarity-related genes in the TCGA-LIHC
dataset. Prognostic candidates were selected using univariate Cox regression,
bootstrap resampling, and the Boruta algorithm. Seven machine learning models
were compared, and XGBoost was selected to construct a TAM polarity-related
signature (TPS) consisting of 17 genes. TPS was validated in two external cohorts.
Associations with clinical features, biological pathways, immune status, and drug
sensitivity were explored. scRNA-seq and qRT-PCR were performed to
investigate cellular expression and functional relevance.

Results: TPS markedly different patients into high- and low-risk groups with
significantly different survival outcomes (TCGA 1-, 3-, 5-year AUCs: 0.91, 0.89,
0.88). High-risk patients showed enrichment in glycan metabolism, DNA repair,
and oncogenic pathways, whereas low-risk patients displayed elevated lipid and
amino acid metabolism. Immune profiling revealed greater infiltration of
immunosuppressive cells and higher expression of immune checkpoints in
high-risk patients. Drug sensitivity analysis identified potential therapeutic
targets and candidate compounds, including CDK1, PLK1, and statins. SCRNA-
seq analysis highlighted disrupted macrophage-immune interactions and
identified SPP1 as a key signaling mediator. Silencing of TTC1 and G6PD
suppressed HCC cell proliferation.
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Conclusion: We developed and validated a robust TAM polarity-related signature
that effectively stratifies HCC patients by prognosis. TPS provides insights into
tumor immunity, metabolism, and drug response, and may serve as a valuable
tool for precision medicine in HCC.

machine learning, hepatocellular carcinoma, macrophages polarity, prognosis, single-

cell RNA-seq

Introduction

Hepatocellular carcinoma (HCC) is the most common type of
primary liver cancer and the second leading cause of cancer-related
death globally. Due to the absence of specific symptoms, nearly 50%
of patients are diagnosed with advanced-stage HCC. Current
systemic therapies, including immune checkpoint inhibitors,
antiangiogenic targeted drugs, transarterial chemoembolization
and other treatments, yield an objective response rate of only 45-
55% (1, 2). Consequently, there is an urgent need for new
therapeutic targets and strategies for patients with advanced HCC.

The advent of high-throughput sequencing has enabled early
identification of HCC patients with a poor prognosis and a
suboptimal treatment response, facilitating personalized therapies
to improve outcomes. The tumor microenvironment (TME),
comprising cancer cells, immune cells, and diverse stromal
elements, plays a crucial role in cancer progression. Interactions
within this ecosystem significantly influence cancer development
and treatment responses (3-5). Deciphering the TME is therefore
critical to understanding cancer biology.

Several studies have focused on tumor-associated macrophages
(TAMs) and the TME, which are predominantly of the M2
phenotype within tumors and are associated with
immunosuppression and negative immune regulation. For
instance, Yang highlighted TAM-related mechanisms in
immunotherapy (6). Han and Zhou identified pathways driving
M2 macrophage polarization in HCC (7, 8). Recent single-cell RNA
sequencing studies revealed that TAM polarity, defined by CXCL9:
SPP1 expression, has significant value in head and neck squamous
cell carcinoma. This CXCL9:SPP1 polarity correlated with increased
infiltration of immune cells, and is associated with increased T cell
abundance (9).

Numerous studies have derived prognostic signatures in HCC
based on the TME. For example, NK cell-centric models have
stratified patients by survival and predicted immunotherapy
sensitivity by capturing immune exhaustion versus active anti-
tumor states (10). TME-wide risk scores have delineated immune
subtypes and suggested patients with low TMErisk may benefit
from immune checkpoint inhibitors whereas those with high
TMErisk appear more suited to multi-TKIs (11). Other
frameworks emphasized stromal programs such as cancer-
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associated fibroblasts to predict immunotherapy response and
drug sensitivity and Hallmark-guided immune classifiers and
immune checkpoint related gene signatures provided robust
prognostic tools (12, 13). Collectively, these models underscore
the value of immune contexture in HCC and may enhance our
understanding of the functional role of TAM within the TME.

HCC progression often coincides with an immunosuppressive
TME, driven by chronic inflammation, fibrosis and cirrhosis (14).
Therefore, evaluating TAM polarity in HCC patients is essential for
precise treatment planning. CXCL9:SPP1 TAM polarity has been
observed in non-small cell lung cancer and colorectal cancer, its
transcriptomic signature has not been thoroughly investigated in
HCC. This study aims to classify TAM polarity at the
transcriptomic level and to develop a predictive model for HCC
patients. Machine learning techniques are increasingly applied in
bioinformatics and oncology research due to their superior
predictive capabilities in managing high-dimensional and
heterogeneous clinical data. However, recent studies have
highlighted variations in the performance and stability among
different algorithms. As a result, it is crucial to select the most
suitable algorithm based on established benchmarks for clinical
decision-making.

Our study established a robust TAM polarity signature using
seven machine-learning algorithms. This signature demonstrated
superior predictive power compared to other signatures and clinical
variables across independent cohorts. Additionally, we identified
potential therapeutic targets and agents through in silico analysis
and explored immune interactions and cell cross-talk using sc-RNA
sequencing. We validated the expression of TTC1 and G6PD at
both the transcriptomic and proteomic levels and investigated their
effects on cell proliferation.

Materials and methods
Data collection and processing

The Cancer Genome Atlas (TCGA) database was used for the
initial analysis. Specifically, mRNA expression data and clinical

information from the TCGA-LIHC cohort (n = 365) were obtained
from UCSC XENA in March 2024. Additionally, external datasets,
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including GSE14520 (n = 221), LIRI_JP (n = 130), were obtained
from the Gene Expression Omnibus and International Cancer
Genome Consortium (ICGC). Only HCC samples with available
survival data were included across all datasets. For somatic
mutation analysis, the maftools package (v2.22.0) was used. RNA
sequencing data were processed using log2(transcripts per million +
1) transformation to represent mRNA expression levels. For raw
expression data obtained from microarrays, background adjustment
and normalization were performed using the Robust Multi-Array
average algorithm from the ‘affy’ R package (v1.82.0). To address
batch effects across cohorts, the ‘ComBat’ function from the ‘sva’ R
package (v3.56.0) was used to correct batch effects and integrate the
data into a Meta-cohort (Supplementary Tables S1, S2). Both overall
survival and biochemical recurrence survival were considered as
primary endpoints. Additionally, drug sensitivity data were
retrieved from Cancer Cell Line Encyclopedia project and the
secondary PRISM Repurposing dataset, encompassing 1,448
compounds tested against 489 cancer cell lines. Raw single-cell
RNA sequencing FASTQ data was collected from samples at PLA
general hospital, Beijing, China (EGAC00001001616
and GSE149614).

Construction of TAM polarity-related
signature by machine learning benchmark

Based on previous study (9), 1812 TAM polarity related genes
were selected, and genes do not present in the HCC bulk RNA
datasets were excluded. Subsequently, univariate Cox regression
analysis was performed using the “Survival” package (v3.7) in the
TCGA-LIHC cohort to identify genes associated with prognosis
(P<0.01). A bootstrap approach, sampling 80% of cases 1,000 times,
was employed to assess the robustness of the selected genes.
Furthermore, the Boruta algorithm with ntree = 1,000 and
maxRuns = 1,000, was used to further identify genes most
strongly associated with prognosis by comparing the importance
of selected features and random ones.

To ensure the accuracy and the robustness of risk signature, we
employed 7 benchmark machine learning algorithms, including
Lasso, Elastic network, Ridge, Partial least squares regression for
Cox (plsRcox), CoxBoost, eXtreme Gradient Boosting survival
(XGBoost), and Supervised principal components (SuperPC),
using nested cross-validation (CV) in TCGA-LIHC cohort. The
inner fold and outer fold hyper-parameters of these algorithms were
set to 5-fold and 10-fold, respectively, to evaluate the performance
of the best-tuned algorithm (Supplementary Tables S3-S5).
Harrell's concordance index (C-index), integrated Brier score
(IBS), and 1-, 3-, 5- and 10-year area under the ROC curve
(AUC) values from 10 testing folds were used to comprehensively
evaluate the performance of 7 models. The model with the highest
average metrics was selected as the optimal model, and the function
“xgb.importance” in XGBoost (v 1.7.6) was used to evaluate the
contribution of each feature to the model predictions.
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Comparison of TAM polarity-related
signature with published signatures

To ensure the robustness of risk signature, we compared our
signature with 4 HCC signatures from previous studies, including
Lu et al. (single-cell RNA signature), Zhang et al. (hypoxia-related
signature), Genhao Zhang (regulatory T-cell related signature) and
Zhao et al. (immune checkpoint related signature) (Supplementary
Table S6) (15-18). We applied each published model's gene
coefficients to datasets to calculate a risk score for each sample.
The C-index and AUC values of each signature were computed
and compared.

Differential expression analysis

Differential analysis between high-risk and low-risk groups was
performed using the “Limma (v3.54.2)” R package. Genes with an
adjusted P value < 0.05 and absolute log2 (Fold-change) > 1 were
considered differentially expressed.

Gene set enrichment analysis and immune
cell infiltration

To investigate the relationship between the risk signature and
biological pathways, we utilized single-sample gene set enrichment
analysis (ssGSEA) to calculate activity scores for both the Hallmark
and Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets
(h.all. v7.4. symbols and c2.cp.kegg. v7.4. symbols, Supplementary
Tables S9-S11). These scores were computed on the Meta-cohort
using the ‘GSVA’ R package. Additionally, to examine the influence
of TPS on the TME, the CIBERSORT algorithm was used to
estimate the proportions of 22 tumor-infiltrating immune cell
types in the Meta-cohort.

In silico discovery of potential targets for
high-risk HCC patients

Because many proteins lack suitable binding sites or do not
exhibit sufficient affinity for small molecules or antibodies, we
initially gathered 2,249 druggable targets from a prior study
(Supplementary Table S13). We the performed a Spearman’s
rank-order correlation analysis to identify targets positively
correlated with the risk score, using threshold of correlation
coefficient > 0.3 and false discovery rate (FDR) < 0.05. Targets
with CERES scores greater than -1 in multiple HCC cell line
were excluded.

To identify potential therapeutic agents, we first used the
Connectivity MAP (CMap), which compares a differential gene
signature to perturbation signatures in its database and generates a
similarity score. Drugs with scores below -95 were considered
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potential candidates for reversing the high-risk gene expression
signature. Additionally, using the “pRRophetic” R package, we
trained a Ridge regression model with 10-fold cross-validation to
predict drug sensitivity, leveraging transcriptomic data and
corresponding drug response data from the PRISM dataset. This
model was then applied to predict the AUC of each drug for each
HCC sample based on its transcriptomic profile. Also, we validated
it using a dedicated cohort of patients with HCC who underwent
anti-PD-1/PD-L1-based immunotherapy (GES202069).

Single-cell sequence data analysis

The scRNA-seq data were initially filtered using the Seurat R
package (v4.3.0). We excluded cells with fewer than 300 or more
than 6,000 expressed genes, or with over 10% of unique molecular
identifiers mapping to mitochondrial genes. Only genes expressed
in at least five cells were retained. The data were normalized, and
the “FindVariableFeatures” function was used to identify the top
2,000 highly variable genes. Dimensionality reduction was
performed via PCA on these variable genes, and the first principal
components were selected for subsequent analyses. Batch effects
across samples were corrected using the Harmony R package.
Finally, cells were clustered using the “FindClusters” function
with a resolution of 0.5. Cell types were identified based on
annotations from the CellMarker database and relevant literature.

Cell crosstalk analysis

To investigate the communication patterns between cells, we
used the CellChat R package. Following the recommended workflow,
we first generated a CellChat object from a normalized count matrix.
We then applied the “identifyOverExpressedGenes” and
“identifyOverExpressedInteractions” functions with default
parameters for preprocessing. Potential ligand-receptor interactions
among all cell types, with a particular focus on interactions between
immune cells and tumor cells, were inferred using the functions
“computeCommunProb”, “computeCommunProbPathway”, and
“aggregateNet” functions with default settings.

Validation of TAM polarity-related genes
expression level

A total of 12 paired specimens of HCC and adjacent non-tumor
tissues were obtained from the First Medical Centre of the Chinese
PLA General Hospital (Supplementary Table S18). After excision,
all specimens were promptly preserved in liquid nitrogen at -196°C.
Total RNA was extracted using TRIzol reagent (Invitrogen,
California, USA), and complementary DNA was synthesized
using the ReverTra Ace qPCR RT Kit (Toyobo, Japan).
Quantitative PCR detection of the prognostic genes was
performed with SYBR® Green Realtime PCR Master Mix
(Toyobo, Japan) on the ABI Step One Plus Real-Time PCR
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system (Applied Biosystems), using B-Actin as an endogenous
control. Each sample was tested in triplicate. The primer
sequences were as follows: TTC1-F (5'-GAGCGGACAAGGTTG
AGAACA-3"),TTCI-R (5-CTCCTCCTTTAGTCTAGTGCTCT-
3’), G6PD-F (5'-CGAGGCCGTCACCAAGAAC-3'), G6PD-R
(5'- GCATGGGTCAGAAGGATTCCTATGT-3"), ACTB-F (5'-
GAGCGGACAAGGTTGAGAACA-3') and ACTB-R (5'-
CGGTGAGGATCTTCATGAGGTAGT-3'). Differences in gene
expression between HCC and corresponding adjacent non-tumor
tissues were analyzed using the 27" method. In addition, we
examined the protein expression levels of TTC1 and G6PD in HCC
using data from He and CPTAC dataset (Clinical Proteomic Tumor
Analysis Consortium) (19). Finally, we performed Western blot
analysis on HCC samples to validate TTC1 and G6PD protein
levels. Briefly, tissues were rinsed with ice-cold phosphate-buffered
saline (PBS) and lysed in a buffer supplemented with protease and
phosphatase inhibitors. Equal amounts of protein lysate were
separated on 10% polyacrylamide gels and transferred onto
polyvinylidene difluoride membranes. Membranes were blocked
in 5% non-fat milk for 1 hour at room temperature, then incubated
overnight at 4 °C with primary antibodies. After three washes in
TBST buffer, membranes were incubated with rabbit secondary
antibody for 2 hours at ambient temperature. Protein bands were
visualized using a chemiluminescence substrate and captured with a
Tanon 5200 automatic imaging system (Shanghai, China). The
primary antibodies used were anti-G6PD (ABclonal, Hubei,
China; Cat#ab133525), anti-TTCI1(Thermo-Abnova, Shanghai,
China; Cat# abs118292), and anti-GAPDH (Cell Signaling
Technology, Beverly, MA, USA; 1:2000, Cat# CST5174S).

Cell culture and transfection

HepG2 and Hep3B cancer cell lines were maintained in DMEM
medium supplemented with 10% fetal bovine serum and 1%
penicillin-streptomycin solution and incubated under standard
conditions at 37°C in a humidified atmosphere containing 5%
CO,. For gene silencing, small interfering RNAs (siRNAs) were
obtained from Genepharma and introduced into cells using
Lipofectamine RNAIMAX (Thermo Fisher Scientific) according to
the manufacturer’s protocol. Cells were harvested 48-72 hours
post-transfection for downstream assays. The siRNA sequences
were: siTTC1 (5-UAUAGAUUUAUAGUCUUCCAG-3') and
siG6PD (5'-UUCUUGGUCAUCAUCUUGGUG-3’). Knockdown
efficiency was confirmed by Western blot analysis as
described above.

Cell viability analysis and wound healing
assay

Following transfection, HepG2 and Hep3B cells were seeded
into 96-well plates at a density of 3 x 10° cells per well. Cellular
viability was assessed using the Cell Counting Kit-8 (Beyotime,
Shanghai, China) according to the manufacturer’s guidelines.
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Absorbance at 450 nm, indicative of metabolic activity, was
measured using a microplate reader (Thermo Fisher Scientific,
California, United States) at time points of 0, 24, 48, 72, and 96
hours. The cell migration ability of HepG2 and Hep3B cells was
evaluated using a wound healing assay. Briefly, cells were seeded in
24-well plates at a density of 5x10° cells per well and cultured in
DMEM supplemented with 10% FBS until a confluent monolayer
formed. A uniform scratch was created using a sterile 10 [LL pipette
tip. Dislodged cells were removed by washing with PBS. Serum-free
medium was then added to minimize cell proliferation. Images of
the scratch were captured at 0 h and 24 h of incubation. The
migration distance was quantified by measuring the change in
scratch width using Image] software, and the percentage of
wound closure was calculated to assess call migration capacity.

Statistical analysis

Comparisons of continuous variables were conducted using the
Kruskal-Wallis test or the Mann-Whitney U test, as appropriate.
Categorical variables were expressed as counts and compared using
the chi-square test or Fisher’s exact test. Survival curves were

Feature selection
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generated using the Kaplan-Meier method and compared by the
log-rank test. Univariate and multivariate Cox regression analyses
were used to identify independent risk factors for overall survival
(OS). A p-value < 0.05 was considered statistically significant, and
all statistical tests were two-tailed. Data analysis was performed
using R version 4.1.0, SPSS 29.0, and GraphPad Prism 10.

Results
Overview of study design
Figure 1 presents an overview of study design, outlining the

process from initial data collection to risk signature development
and downstream analyses (Supplementary Figure S1).

Identification of TAM polarity-associated
signature features in TCGA-LIHC

To identify TAM polarity-associated gene signatures, we began
with 1,812 candidate genes from a previous study, of which 372 were
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FIGURE 1

The flow chart of the establishment of TAM polarity signature in Hepatocellular carcinoma.
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present in the TCGA-LIHC dataset. Using univariate Cox regression
on 365 cases in the TCGA-LITHC cohort, we identified a subset of genes
significantly associated with patient prognosis. We further refined this
list by applying a bootstrap selection approach in the validation
datasets, followed by the Boruta algorithm to pinpoint the most
prognostically important genes. As shown in Figures 2A, B, the
Boruta analysis ranked 17 genes by importance, with TTC1, PANK2,
G6PD, PPMIG, and STK25 emerging as the top five (Figure 2).

10.3389/fimmu.2025.1663519

Construction of TAM polarity-related
signature

Using the 17 genes selected by Boruta, we evaluated seven
prognostic modeling algorithms, Lasso, Ridge, Elastic Net,
XGBoost, plsRcox, SuperPC, and CoxBoost, to identify which
model provided the best predictive performance (Supplementary
Tables S5). We implemented a nested cross-validation strategy, with
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an outer 10-fold cross-validation for model evaluation and an inner
5-fold cross-validation for hyperparameter tuning. As shown in
Figure 2C, the XGBoost-based survival model achieved the highest
performance across multiple metrics, including concordance index
(C-index), integrated Brier score (IBS), and area under the curve
(AUC). The TCGA-LIHC cohort was used as the training set for the
XGBoost model (Figure 2D). As a result, we established a 17-gene
prognostic risk signature, which included key contributors such as
TTCI1, PANK2, G6PD, PPMIG, and STK25 (Figures 2E, F).

Evaluation of TAM polarity-related
signature

We next assessed the prognostic significance of this risk
signature in the TCGA-LIHC training cohort and two external
validation cohorts (LIRI-JP and GSE14520). Performance was
evaluated by the time-dependent AUC at 1, 3, and 5 years, as well
as the concordance index (Figures 3A-C).

Univariate and multivariate Cox regression analyses in all three
cohorts indicated that the risk signature was significantly associated
with overall survival (Figure 3D), suggesting it is an independent

10.3389/fimmu.2025.1663519

prognostic factor for HCC. Specifically, in multivariate analysis for
the TCGA-LIHC, LIRI-JP, and GSE14520 cohorts, the hazard ratios
were 1.986 (95% CI: 1.606-2.365, P < 0.05), 0.917 (95% CI: 0.161-
1.673, P = 0.017), and 1.927 (95% CIL: 0.572-3.281, P = 0.005),
respectively (Figures 3E-G). These findings indicate that the 17-gene
signature effectively stratifies patients into high-risk and low-risk
groups. Time-dependent ROC analysis and Kaplan Meier survival
curves further demonstrated significant differences in survival
between the high-risk and low-risk groups in all three cohorts.
Overall, our TAM polarity-related risk signature showed strong
and robust prognostic value for risk stratification in HCC patients.

Comparison of TAM polarity-related
signature to clinical variables and
published signatures

With the rapid development of next-generation sequencing
technologies and the growing importance of genomics in clinical
practice, robust prognostic biomarkers are increasingly needed. In
this context, the risk score derived from our TAM polarity signature
consistently demonstrated high predictive accuracy. In the TCGA-
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FIGURE 3

Evaluation of the TPS was conducted across multiple cohorts. The time-dependent area under the receiver operating characteristic curve (AUC) was
assessed at 1, 3, and 5 years for the following datasets: (A) TCGA-LIHC, (B) LIRI-JP, and (C) GSE14520. (D) Forest plots illustrate the hazard ratio (HR),
95% confidence interval (Cl), and corresponding P-values for both univariate (orange shading) and multivariate (blue shading) Cox regression
analyses across five prostate cancer cohorts. (E-G) Kaplan—Meier plots display survival outcomes for TCGA-LIHC, LIRI-JP, and GSE14520,
respectively. High- and low-risk groups were classified based on a universal cutoff of. P-values were obtained using the log-rank test. AFP refers to

alpha-fetoprotein; TPS stands for TAM polarity signature
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LIHC cohort, our signature (C-index 0.77) outperformed all
traditional clinical variables as a survival predictor, and it showed
similarly strong performance in the LIRI-JP cohort (C-index 0.68).
In the GSE14520 cohort, the risk score (C-index 0.61) performed
comparably to the best clinical indicator (tumor stage, C-index

0.63) (Figure 4).

10.3389/fimmu.2025.1663519

We also compared our signature against other published HCC
prognostic models by examining the C-index in the TCGA-LIHC,
LIRI-JP, and GSE14520 datasets (Figure 4, Supplementary Tables
S8). Our 17-gene signature achieved higher C-index values than the
other models in all three cohorts. Consistently, ROC curves showed
that the 1-year AUC of our risk score was 0.91, substantially higher
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FIGURE 4

The predictive performance of TPS was compared with that of clinical features and other prognostic signatures. (A) The C-index was evaluated to
compare TPS with clinical features in the following datasets: TCGA-LIHC, DKFZ-PRAD, and GSE14520. Data are presented as the mean + 95%
confidence interval. (B) Univariate Cox regression analysis of prognostic signatures was performed across three HCC cohorts, where dots represent
log, (hazard ratio), and the upper and lower bounds of the bars indicate log, (95% confidence interval). The C-index was compared between TPS
and other prognostic signatures across cohorts, with dots representing the mean C-index and bars indicating the 95% confidence interval. Time-
dependent AUC was compared among prognostic signatures at (C) 1-year, 3-year, and 5-year intervals in the TCGA-LIHC dataset. Asterisks indicate
statistical significance (* p < 0.05, ** p < 0.01, *** p < 0.001).
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than those of the comparator models, underscoring its superior and
stable discriminative ability (Figure 4).

Association of TAM polarity-related
signature with clinical features and
biological process

We next examined associations between the risk signature and
clinical features, as well as its relationship to biological pathways.
Across all cohorts (Figure 5), patients in the high-risk group tended
to have more advanced disease, including higher tumor T stage and
later overall stage (AJCC Stage III-1V), compared to those in the
low-risk group (Supplementary Figure S2, Supplementary Table
S4). To explore pathway differences, we performed single-sample
Gene Set Enrichment Analysis (ssGSEA) on transcriptomic data
from high- vs. low-risk patients. The high-risk group showed
significant enrichment of glycan biosynthesis and carbohydrate

I |
| inm i

10.3389/fimmu.2025.1663519

metabolism pathways (e.g., glycosphingolipid biosynthesis, O-
glycan biosynthesis, galactose metabolism; all P < 0.05) (Figure 5).
In contrast, the low-risk group exhibited greater activity in lipid and
amino acid metabolism pathways, such as arachidonic acid
metabolism, linoleic acid metabolism, o-linolenic acid
metabolism, and unsaturated fatty acid biosynthesis (all P < 0.05).

In addition, the high-risk group was significantly enriched in
pathways related to genetic information processing and cell cycle
regulation. These included multiple DNA replication and repair
mechanisms, as well as apoptosis. Several oncogenic signaling
pathways were also upregulated in high-risk tumors, notably Notch,
WNT/B-catenin, TGF-f3, and ERBB signaling. Meanwhile, the low-risk
group showed higher enrichment of pathways involved in molecular
transport and signaling, such as ABC transporters and neuroactive
ligand-receptor interaction. Collectively, these findings suggest that
high-risk HCC tumors are characterized by enhanced proliferative and
metabolic activity, whereas low-risk tumors exhibit a different
metabolic profile reflecting distinct metabolic reprogramming in HCC.
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The associations between clinicopathologic and biological features and TPS were analyzed. The upper panel of the heatmap illustrates the
distribution of clinical characteristics between RSS-high and TPS-low patients. The lower panel presents z-scores from ssGSEA. The color-coded
right-side annotations indicate the relative enrichment of pathways in the corresponding groups, while the asterisk annotations denote statistical P-
values. A multi-omic characterization was performed to compare TPS-high and TPS-low patients. An oncoprint of common somatic gene mutations
is shown in the lower part, with the bar plot on the right indicating the proportion of somatic mutations in each group.
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Association of TAM polarity-related
signature with the immune
microenvironment

Because TAMs are key regulators of tumor immunity, we
investigated the immune landscape associated with the risk
signature. Using CIBERSORT, we quantified immune cell
infiltration in 365 HCC samples (Supplementary Tables S8, S9)
and compared high- vs. low-risk groups. The high-risk group had
elevated expression of many immunomodulatory molecules
(Figure 6A). High-risk group showed increased expression of
most MHC class I and II genes, suggesting an enhanced
capacity for antigen presentation. They also exhibited
upregulation of pro-tumorigenic chemokines CXCL1, CXCL3,
CXCL5, and CCL20, along with corresponding chemokine

10.3389/fimmu.2025.1663519

receptors CCR1, CCR3, CCR4, CCR6, CCR8, and CCRI10 that
were positively correlated with the risk score. Such chemokine-
receptor interactions can promote immunosuppression and
immune evasion, thereby facilitating tumor progression.
However, given the complexity of chemokine networks, no
single chemokine could fully define the immunological role of
the risk signature within the TME.

The high-risk group also showed higher levels of several immune
cell types, including CD4" T cells, dendritic cells, NK/T cells, T helper 2
cells, and MDSCs, compared to the low-risk group (all P < 0.001,
Figure 6B). The risk score was positively correlated with the
proportions of MDSCs (R = 0.20), regulatory T cells (R = 0.15),
CD4" T cells (R = 0.34), and activated dendritic cells (R = 0.25)
(Figures 6C-F). Consistent with an immune-excluded or
immunosuppressive microenvironment, and PD-1 expressions,
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typically low in non-inflamed tumors, were relatively high in the high-
risk group.

In line with these observations, numerous immune-related
genes were differentially expressed in correlation with the risk
score (Figures 6G, H). While no single immune marker showed a
perfect linear relationship with the risk score, several inhibitory
immune checkpoint genes and markers, including CD276, LAIR1,
HAVCR2, CD80, and CD86, were significantly associated with
higher risk scores. This further supports the presence of an
immunosuppressive milieu in high-risk patients. Notably, the
checkpoint receptors PDCD1 and TIGIT, which are indicative of
T-cell exhaustion, were more highly expressed in the high-
risk group.

Identification of therapeutic targets and
drugs for high-risk HCC

To uncover potential therapeutic targets linked to the risk
signature, we correlated the risk score with the expression of
druggable genes. A Spearman’s rank correlation analysis in the
TCGA-LIHC cohort identified 115 genes whose expression was
positively correlated with the risk score (R > 0.5, FDR < 0.05 in both
the training and validation sets) (Figure 7, Supplementary Tables
S10, S11). We considered these genes as candidate targets associated
with the high-risk state. To assess their functional importance, we
examined CERES dependency scores in 22 HCC cell lines. This
analysis narrowed the list to 17 high-priority targets that showed
strong genetic dependency (CERES scores predominantly below -1)
(Figure 7, Supplementary Tables S14, S15). Many of these candidate
targets, for example, CDK7, PRC1, PLK1, CDK1, BIRC5, CDC7,
KIF11, NDC80, and AURKSB, are critical regulators of cell division,
aligning with the proliferative nature of high-risk tumors.

Next, we used the Connectivity Map (CMap) to predict drugs that
could reverse the high-risk gene expression profile. We first derived a
consensus set of differentially expressed genes (DEGs) that characterize
the high-risk tumors. Using a meta-analysis of expression data, we
identified 2,543 DEGs distinguishing high-risk from low-risk cases
(Supplementary Table S16). We selected the top 150 upregulated and
top 150 downregulated genes from this list to serve as a representative
“signature” of high-risk tumors. This 300-gene expression signature
was queried against the CMap database. As a result, we identified 84
small-molecule compounds with CMap connectivity scores below -90,
indicating a strong predicted ability to invert the high-risk
transcriptional program (Figure 7). Among these candidate
compounds, approximately 13.1% were topoisomerase inhibitors and
10.7% were CDK inhibitors.

We further prioritized therapeutic compounds by integrating
drug sensitivity data from PRISM and CTRP databases. Predicted
drug AUC values were compared between high-risk and low-risk
groups for the top CMap candidates. Twelve compounds were
identified that showed significantly greater efficacy in high-risk
patients from the TCGA-LIHC cohort (Figure 7D). According to
the CTRP data, high-risk tumors were more sensitive to HMG-CoA
reductase inhibitors (e.g., fluvastatin, simvastatin, lovastatin) and to
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the p53 inhibitor pifithrin-o. Likewise, analysis of PRISM data
suggested that other agents, including bicalutamide, flubendazole,
dofetilide, zaldaride, AB-751, linifanib, tacrolimus, and rutin, could
be selectively effective in high-risk HCC cases. Additionally, The
result of HCC immunotherapy cohort demonstrated that patients
in the high-risk group exhibited a significantly better response to
immunotherapy. (Figure 7, Supplementary Figure S3).

The landscape of crosstalk between tumor
cells and immune cells

To gain insight into cell-cell interactions in the tumor
microenvironment, we analyzed scRNA-seq data from 10 HCC
patients. After stringent quality control, we obtained a dataset of
58,896 cells from primary tumors, metastatic tumors, and normal
liver tissue. Unsupervised clustering identified 38 distinct cell
clusters, and their stability was confirmed using down-sampling
and leave-one-patient-out validation analyses. We classified these
clusters into 10 major cell types based on canonical marker genes
(Figures 8A-C, Supplementary Tables S17, S19).

Tumor tissues displayed a highly heterogeneous cellular
composition with an abundance of immune and stromal cells.
Macrophages, dendritic cells (DCs), fibroblasts, and T/NK cells
were more prominent in tumors, reflecting an inflammatory
microenvironment (Figures 8D, E). In contrast, normal liver
tissues were predominantly composed of hepatocytes with far
fewer immune cells. Notably, both tumor and normal samples
contained mature B cells and plasma B cells, although their
frequencies were slightly higher in normal tissue. Endothelial cells
were present in both settings but showed greater variability among
normal samples. These observations indicate that HCC tumors
harbor significantly more immune infiltrates and stromal
components than adjacent normal liver, underscoring the
immunologically active nature of the tumor microenvironment.

We further explored inter-patient heterogeneity by analyzing
the tissue preference of each cell type using a Ro/e metric
(Figure 8F). Unique marker genes were identified for all 10 cell
types based on differentially expressed genes. Figure 8G illustrates
the cellular composition of each sample annotated by these marker
genes, revealing several noteworthy patterns. For instance, patients
whose tumors had high expression of NKG7 in T/NK cells exhibited
robust anti-tumor immune activity characterized by an expansion
of cytotoxic lymphocytes. Tumors with elevated S100A8 and
S100A9 expression showed a pronounced expansion of myeloid
cell populations, indicative of an immunosuppressive phenotype.
Additionally, samples with high levels of KRT8 and KRT18
contained an abundance of malignant hepatocytes (Figure 8). To
visualize where the TAM polarity signature is active within the
tumor, we generated a t-SNE plot mapping the enrichment of the
TPS gene signature across different cell populations (Figure 8H).

We next examined cell-cell communication networks in the
tumor versus normal single-cell datasets. Using ligand-receptor
interaction analysis, we found that intercellular communication was
globally more extensive and stronger in tumor tissue compared to
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Identification of potential therapeutic targets and agents for TPS-high patients was conducted. (A) Dot plots illustrate the correlation coefficients
derived from Spearman’s rank correlation analysis between TPS and druggable mRNA expression in the TCGA-LIHC datasets. Light blue dots
represent potential targets that meet the threshold in Spearman’s rank correlation analysis (R > 0.3, adjusted P < 0.05), while dark blue dots indicate
targets also selected by CERES analysis. (B) The distribution of CERES scores for identified targets in HCC cell lines is shown. (C) The composition of
chemical compounds identified by Connectivity Map (CMap) analysis is presented, with only the top 10 drug categories displayed. (D) Drug sensitivity
predictions for the high-risk TPS group in the TCGA hepatocellular carcinoma cohort were performed based on data from the CTRP and PRISM
databases. (E) The inferred area under the curve (AUC) values of potential drugs from CTRP and PRISM databases were compared between TPS-high
and TPS-low patients in the TCGA-LIHC dataset. (F) Assessment of immunotherapy response in the TPS high-risk subgroup using the HCC

immunotherapy dataset GSE202069.

normal tissue (Figures 9A, B). Tumor endothelial cells were
identified as central signal senders and receivers in the network,
highlighting their key role in connecting with multiple cell types.
Interestingly, communication between macrophages and other
immune cells was reduced in tumors relative to normal tissue
(Figures 9C, D), suggesting that macrophage interactions in the
tumor are altered and may influence immune cell infiltration.
Pathway analysis of the differential ligand-receptor interactions
between tumor and normal environments highlighted SPP1 as a
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significantly upregulated signaling factor in tumors. We analyzed
the expression of SPP1 and its receptor-associated genes across the
cell types in primary tumor, metastatic, and normal samples
(Figure 9E). SPP1 emerged as a central mediator of cell-cell
crosstalk in the tumor microenvironment, with especially high
signaling activity between macrophages and various immune cells
(monocytes, plasma B cells, T/NK cells, DCs) (Figure 9F). This
suggests that SPP1-driven interactions play a crucial role in shaping

the immune microenvironment in HCC.
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Single-cell analysis to identify tumor and normal subpopulations in HCC. The visualizations and analyses provide insights into cellular diversity and
marker expression patterns: (A) tSNE visualization displaying cells from 10 HCC patients. (B) identification of subclusters from 10 HCC patients.
(C) The tSNE plots illustrate the expression patterns of signature genes across six primary cell types, with color gradients representing gene
expression levels. (D) The proportions of major cells in each sample. (E) The proportions of major cells across all samples. (F) Tissue preference of
each cell type in each sample estimated by Ro/e. (G) Heatmap showing the presence of different cell subsets. (H) tSNE visualization based on TPS

signature enrichment across cellular subsets.

Validation of TAM polarity-related
signature expression in HCC patients

Notably, TTC1 and G6PD exhibited significantly higher expression
levels in tumor cells compared to other cell types within the TME.
Furthermore, a machine learning-based feature importance analysis
identified TTC1 and G6PD as the top two most influential genes in the
prognostic model, leading to their selection for experimental validation
(Supplementary Figure S3). These genes were prioritized for validation
because public transcriptomic and proteomic datasets indicated that
both are highly upregulated in tumors compared to normal liver
(Figures 10A, B). We first confirmed their overexpression in clinical
tissue samples by performing gqRT-PCR and Western blot on 10 pairs
of HCC tumors and adjacent non-tumor liver tissues. Consistent with
the database predictions, TTCl and G6PD mRNA levels were
markedly higher in tumor tissues than in matched normal tissues,
which mirrors their elevated protein levels in tumors (Figures 10C-E,
Supplementary Figures S6, S7).
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We next investigated the effects of TTC1 and G6PD knockdown
in HCC cell lines. Using siRNA, we silenced each gene in HepG2
and Hep3B cells, achieving efficient knockdown as confirmed
by reduced mRNA and protein expression (Figure 11A,
Supplementary Figures S8, S9). Loss of TTCl or G6PD
significantly suppressed the proliferation of both HCC cell lines
(P < 0.05; Figure 11C). In wound-healing assays, cells with TTC1 or
G6PD knockdown showed a significantly wider scratch gap at 24
hours compared to control cells (P < 0.05; Figure 11, Supplementary
Figures S10, S11). This indicates that silencing either gene markedly
impairs the migratory ability of HCC cells in vitro.

Discussion

Tumor-associated macrophages (TAMs), a predominant
component of the TME, play a pivotal role in the progression and
in shaping the immune landscape of various cancers, including
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The results of the intercellular communication analysis and the SPP1 signaling pathway are summarized, which illustrate potential incoming and
outgoing signaling pathways among various cell types. (A) The intercellular communication quantity and strength of tumor and normal tissue.

(B) The differential number and intensity of cell-cell interactions between cells in HCC. (C) Bubble diagram visualizing the overall profile of possible
incoming or outgoing signaling pathways between cells in HCC. (D) The relative and actual information flow of tumor and normal tissue based on
ligand-receptor interactions. (E) The intensity of cell-cell interactions in the SPP1 signaling pathway in different cell subpopulations. (F) The

differential number and strength of cellular interactions.

HCC (20). Macrophage polarization, often classified into pro-
inflammatory M1 and anti-inflammatory M2 phenotypes, has
been shown to significantly influence tumor progression,
immunosuppression, and response to therapy (21, 22). Also,
previous studies have explored the biological function of TAMs in
the TME and often treating macrophage biology as just one
component of a larger immune mixture. Because the balance
between classically activated (M1-like) and alternatively activated
(M2-like) phenotypes directly shapes antigen presentation, T-cell
recruitment, and immunosuppression, a polarity-focused model
may provide complementary information (18, 23). Recently,
Ruben et al. identified a novel macrophage polarity signature
defined by CXCL9 and SPP1, termed CS-macrophage polarity,
which demonstrated a strong association with cancer prognosis
and was integrated within a broader network of tumor promoting
or suppressing cellular interactions (9). As reported, SPP1 acts as a
potent oncogene that enhances HCC cell proliferation, migration,
invasion, and confers resistance to therapy. A key mechanism
identified is its role in activating the fatty acid metabolic pathway,
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which provides energy and building blocks for rapidly dividing
tumor cells. Inhibition of fatty acid oxidation has been shown to
reverse these pro-tumorigenic effects, highlighting the SPP1-fatty
acid metabolism axis as a crucial vulnerability in HCC (24). Beyond
cell-autonomous effects, SPP1 is a pivotal component of
immunosuppressive TME. Single-cell and spatial transcriptomic
analyses have revealed that SPP1 is highly expressed by a specific
subset of SPP1+ tumor-associated macrophages. These TAMs
interact with cancer-associated fibroblasts via ligand-receptor
pairs to stimulate extracellular matrix remodeling (25). This
interaction forms a physical “tumor immune barrier” at the
tumor boundary, which restricts the infiltration of cytotoxic
CD8" T cells into the tumor core, thereby creating an immune-
excluded phenotype and contributing to resistance against immune
checkpoint blockade therapy (26).

In this study, we developed a tumor-associated macrophage
polarity signature to quantify macrophage infiltration and predict
clinical outcomes in HCC using data from three independent
cohorts. We benchmarked seven machine learning algorithms to
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Validation of the expression levels of signature genes. (A) Comparative analysis of TTC1 and G6PD expression between HCC and normal liver tissues
using integrated data from TCGA database. (B) Expression profiles of TTC1 and G6PD in normal versus tumor tissues were further analyzed using the
UALCAN database. (C) Quantitative reverse transcription PCR results further confirmed significant differential expression of TTC1 and GEPD between
HCC and normal tissues (n=6 pairs). (D, E) Validation of TTC1 and G6PD protein expression levels in HCC tumor samples and paired adjacent non-

tumor tissues by Western blot (n=6 pairs).

construct a robust prognostic model, identifying the optimal
classifier through comparative performance evaluation. Utilizing
single-cell RNA sequencing data, we further explored intercellular
communication by analyzing receptor-ligand interactions and
signaling pathway alterations between tumor and normal tissues.
Notably, SPP1-associated signaling pathways were markedly
dysregulated in tumor tissues, underscoring the importance of
TPS-driven signaling networks in shaping the HCC immune
microenvironment. These results indicate that TPS and SPP1/
CXCL9 play a crucial role in modulating tumor
microenvironment in HCC. We also validated TTC1, PANK2 and
G6PD expression levels in tumor by RT-qPCR. Furthermore, we
explored whether TPS could guide therapeutic strategies for HCC
using in silico approaches, revealing that patients with high TPS
were more likely to benefit from topoisomerase inhibitors.
Additionally, we identified 17 potential therapeutic targets, such
as PRC1, POLA2, and PSMD1, along with 11 therapeutic agents. In
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summary, this study introduced an innovative and reliable TPS that
quantifies replication stress, predicts prognosis, and informs
therapeutic decisions in HCC.

Machine learning has been increasingly employed to predict
survival outcomes in oncology research (27, 28). However, the
successful translation of these approaches into clinical practice
remains a considerable challenge. The models utilized in our
study were specifically designed to handle heterogeneous, high-
dimensional datasets and are well-suited for survival analysis (29,
30). Penalized regression methods—such as Lasso, Ridge, and
Elastic Net—effectively address multicollinearity and are
particularly advantageous when the number of predictors far
exceeds the number of observations, as they prevent overfitting
through regularization (29, 30). Unlike Ridge regression, Lasso and
Elastic Net perform variable selection by shrinking some coefficients
to zero, enhancing model interpretability (31). Nevertheless, in the
presence of highly correlated predictors, Lasso may fail to identify
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Knockdown of TTC1 and G6PD suppresses cell proliferation. (A, B) Western blot analysis showing reduced expression of TTC1 and G6PD in HepG2
and Hep3B cells following siRNA-mediated knockdown. (C) Depletion of TTC1 and G6PD via RNAi reduces cell proliferation, as observed by live-cell
imaging. (D) Cell proliferation was assessed by CCK-8 in control, TTC1-knockdown, and G6PD-knockdown groups (n=3). (E) Wound healing assay
demonstrates that downregulation of TTC1 and G6PD expression reduces the migration ability of HepG2 and Hep3B cell lines. (* p < 0.05, ** p <
0.01, *** p < 0.001).

the most informative variables, whereas Elastic Net can assign
similar weights to correlated features, thereby improving
robustness (32). We also incorporated boosting-based approaches,
including CoxBoost and XGBoost, which are designed to minimize
prediction errors by combining multiple weak learners into a strong
ensemble model. CoxBoost utilizes likelihood-based boosting for
estimating the regression coefficient vector and allows for the
incorporation of clinically relevant mandatory variables into the
final model (33, 34). XGBoost, introduced by Chen et al. in 2016
(35), offers a computationally efficient and flexible gradient
boosting framework that supports extensive hyperparameter
tuning and regularization. These characteristics likely contribute
to its superior predictive performance observed in our
benchmarking. In addition, dimension-reduction methods such as
SuperPC and plsRcox were evaluated. SuperPC identifies genes
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most correlated with survival outcomes and derives principal
components from them to predict prognosis (36). However,
interpretation of these components can be complex due to their
multigene composition. Similarly, plsRcox applies partial least
squares regression to construct Cox models, generating latent
variables from linear combinations of all predictors (37). This can
compromise model interpretability and potentially introduce noise,
as irrelevant predictors may still contribute to the components (38).
These limitations may account for the relatively lower predictive
performance of these methods in our study. Notably, the
performance of machine learning algorithms can be influenced by
the characteristics of the training dataset, including sample size,
feature distribution, and biological variability. Immunological
profiling revealed that high-risk patients exhibited significantly
elevated levels of regulatory T cells (Tregs) and myeloid-derived
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suppressor cells, indicative of an immunosuppressive tumor
microenvironment (39). This phenotype may underlie the limited
efficacy of immune checkpoint inhibitors as monotherapy in these
individuals. Consequently, combination therapies, such as anti-PD-
1 antibodies administered alongside Treg-depleting agents or
MDSC-targeted interventions, may prove more effective in
enhancing anti-tumor immunity. These strategies hold promise
for reprogramming the immune microenvironment and improving
treatment outcomes.

In this study, we constructed a prognostic signature based on
CXCL9:SPP1 macrophage polarity using machine learning
techniques. This signature demonstrated strong and consistent
prognostic power across external HCC cohorts. To gain a deeper
understanding of molecular differences, we performed integrative
multi-omics analyses, which revealed substantial disparities
between high- and low-risk groups in terms of genomic
mutations, immune cell composition, and intercellular
communication. These findings underscore the critical role of
macrophage polarization in shaping the tumor immune
microenvironment, thereby influencing both HCC progression
and response to therapy.

Our results also suggest potential roles for TTC1, PANK2, and
G6PD in the development and progression of HCC. TTC1, which has
been implicated in cell cycle regulation and apoptosis, was significantly
overexpressed in tumor tissues relative to adjacent normal tissues,
suggesting that it plays a vital role in HCC pathogenesis (40). Further
bioinformatic analysis indicated that TTCI may act as a downstream
effector of p62, an oncogenic scaffold protein involved in the
dysregulation of multiple liver cancer-related genes (41). Given its
association with disease severity, TTC1 holds promise not only as a
prognostic biomarker but also as a potential therapeutic target.
PANK?2, the sole mitochondrial isoform of pantothenate kinase, is
markedly upregulated in HCC tissues. It has been associated with
metabolic reprogramming, including enhanced lipid metabolism and
energy production. Garcia et al. reported that PANK2 contributes to
the dysregulation of metabolic pathways, thereby promoting tumor cell
proliferation and malignancy (42). Furthermore, PANK?2 is involved in
signaling pathways related to mitochondrial function and oxidative
stress. Wang et al. also found that PANK2 expression correlates with
clinical outcomes and immune infiltration in HCC (43). G6PD,
encoding glucose-6-phosphate dehydrogenase, is a key enzyme in the
pentose phosphate pathway and plays an essential role in maintaining
redox homeostasis and anabolic metabolism in cancer cells. Its
overexpression in HCC has been linked to disease progression, with
elevated G6PD activity supporting NADPH production, oxidative
stress resistance, and lipid biosynthesis (44). Moreover, G6PD has
been shown to facilitate tumor migration and invasion through the
induction of epithelial-mesenchymal transition, thereby promoting
metastasis (45). Given its involvement in glucose metabolism and
redox regulation, G6PD represents a potential prognostic biomarker
and therapeutic target in HCC, with inhibitors of G6PD or the pentose
phosphate pathway offering promising avenues for treatment.

This study presents a machine learning, based framework for
evaluating and comparing multiple survival prediction models,
leading to the identification of a TPS with superior prognostic
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performance across multiple cohorts. However, several limitations
should be acknowledged. The absence of prospective validation
cohorts and the lack of experimental functional validation for TPS
related genes (including rescue experiments, multiplex
immunofluorescence or spatial transcriptomics) may limit the
immediate clinical applicability of our findings. Furthermore,
heterogeneity in cohort characteristics may introduce bias Further
investigation is necessary to fully elucidate the biological
mechanisms and therapeutic relevance of TPS. This should
include functional validation of key TPS genes using in vitro and
in vivo models to clarify their roles in tumor progression and
metastasis. Also, candidate inhibitors or molecular interventions
should be tested in cell-based assays and patient-derived xenograft
models to determine their anti-tumor efficacy. Combination
strategies with existing therapies, such as immune checkpoint
inhibitors, should also be explored to assess potential
synergistic effects.

Conclusion

In conclusion, this study developed a robust and effective
prognostic model for HCC using multiple machine learning
algorithms. The TPS demonstrates strong potential for clinical
risk stratification and may inform personalized treatment
strategies for HCC patients.
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