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Integrating scRNA-seq and
machine learning identifies
MNAT1 as a therapeutic
target in OSCC
Han Gao †, Lehua Liu †, Weixiang Qian, Yanfei Wu, Jiayao Wang,
Weiping Yang* and Yinfang Shi*

Department of Stomatology, First Affiliated Hospital of Huzhou University, The First People’s Hospital
of Huzhou, Huzhou, Zhejiang, China
Background: Oral squamous cell carcinoma, with high global incidence and

mortality, requires improved early intervention strategies. Ubiquitination - a

critical post-translational modification - has been strongly implicated in

tumorigenesis, with particularly significant roles in T-cell regulation. We

developed a T Cell-Related ubiquitination risk model that enhances prognostic

prediction and immunotherapy response assessment, offering a framework for

personalized OSCC manageme.

Method: T cell-Related Ubiquitination genes were identified based on scRNA-

seq analysis, and key genes were selected using WGCNA and LASSO algorithms

to construct a prognostic model. Spearman correlation analysis revealed

significant associations between riskScore and immune infiltration levels,

checkpoint molecule expression, and MMR activity. Pseudotemporal trajectory

and cell-cell communication analyses delineated dynamic gene expression

patterns driving OSCC progression. Functional validation through colony

formation and Transwell assays confirmed the tumor-suppressive effects of

key model genes.

Results: Given the high correlation between T cell-Related Ubiquitination genes

and the prognosis of OSCC patients, a prognostic model based on patient

scRNA-seq data was constructed and validated. The RiskScore derived from

our model correlated significantly with expression levels of MMR genes,

abundance of immune checkpoint proteins, and immunotherapy response.

Cell-cell communication analysis further elucidated epithelial-macrophage

crosstalk via MIF and IFN-II signaling, suggesting microenvironment-driven

progression mechanisms. In vitro functional assays showed that depletion of

MNAT1 impaired Cal27 cell proliferation and migration capacity.

Conclusions: Collectively, integrating T cell-Related Ubiquitination genes

through advanced computational analyses, we established a robust prognostic

model for OSCC and identified MNAT1 as a promoter of malignant progression,

highlighting its therapeutic potential.
KEYWORDS

oral squamous cell carcinoma, machine learning, ubiquitination modification,
T cell, MNAT1
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1 Introduction

Oral squamous cell carcinoma (OSCC) represents the most

common oral and maxillofacial cancer, with a growing global

incidence. Beyond its direct impact on patient mortality and

morbidity, the disease incurs significant socioeconomic burdens

on affected families and society (1). OSCC pathogenesis arises from

a multifactorial interplay, encompassing smoking, alcohol

consumption, chronic oral inflammation, HPV infection, oral

leukoplakia, and genetic susceptibility (2). Due to the complexity

of the pathogenic mechanisms, significant differences in treatment

outcomes exist among individuals, underscoring the urgent need

for new biomarkers and prognostic models to enable precision

medicine (3). In recent years, the rapid development of sequencing

technologies has enabled us to delve into individual genomic

information, thereby discovering genetic variations and gene

expression differences associated with OSCC. These variations

and differences not only provide potential biomarkers for disease

diagnosis, prognosis prediction, and treatment outcome assessment

but also offer robust evidence for guiding the selection of precision

treatment strategies (4). The application of single-cell sequencing

technology has further expanded the scope of research, revealing

not only the interrelation among tumor cells but also providing in-

depth insights into the functions of immune cells in the tumor

microenvironment, opening up new avenues for the treatment and

study of OSCC (5).

T cells, also known as T lymphocytes, are crucial defenders in

the immune system, responsible for combating infections, tumors,

and autoimmune diseases (6). By identifying and clearing infected

cells, finely tuning immune responses, and preserving immune

system balance, T cells play a crucial role in the immune system

(7). With the rapid progress of single-cell sequencing technology

and high-throughput techniques, we have gained a deeper

understanding of the subtypes and functions of T cells, which are

closely linked to the occurrence and progression of cancer (8).

Previous studies have revealed that the interaction between

regulatory T cells and neutrophil extracellular traps plays an

important role in the carcinogenesis of non-alcoholic fatty liver

disease (9). Research by Liang et al. further indicates that tumor-

associated Tregs exhibit unique immune features in non-small cell

lung cancer, significantly influencing the remodeling of the tumor

microenvironment (10). Additionally, upregulation of PD-1 on T

cells and its ligand PD-L1 among oral cancer patients is strongly

implicated in mediating immune evasion and therapy resistance

(11). Consequently, elucidating the interplay between oral cancer

and T cells is critical, providing fundamental insights into disease

mechanisms, prognostic indicators, and the development of novel

therapeutic approaches.

Post-translational modifications (PTMs) of proteins are

processes in which specific enzymes or biomolecules chemically

modify amino acids after protein synthesis, with diverse forms

including phosphorylation, methylation, acetylation and

ubiquitination (12). Among them, ubiquitination has attracted

considerable attention due to its crucial role in various diseases

such as cancer, neurodegenerative diseases, and cardiovascular
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diseases (13). For instance, ubiquitination mediated by CUL3 and

the degradation of BECN1 inhibit the autophagy process, thereby

promoting tumor development (14). By abrogating HBx-mediated

ubiquitination and degradation of GSK3b, MYH9 knockdown

suppresses tumor stemness properties in hepatocellular

carcinoma, as reported (15). Furthermore, the suppression of

glycolysis and proliferation in OSCC by NEDD4L is mediated

through its induction of ENO1 ubiquitination and subsequent

proteasomal degradation (16). In this study, we investigates

Intersecting genes between ubiquitination-related molecules and

T-cell-associated genes. This strategy is anticipated to yield unique

insights into ubiquitin-related molecules and its dysregulation in

disease states, opening a fertile field for future investigation.

MNAT1 Component of CDK Activating Kinase (MNAT1), as a

core subunit of the CDK-activating kinase (CAK) complex,

critically regulates cell cycle progression and DNA damage repair

(17). Emerging evidence indicates that MNAT1 promotes

osteosarcoma pulmonary metastasis via AKT1 upregulation (18).

Furthermore, SMYD2-mediated MNAT1 overexpression has been

implicated in pancreatic adenocarcinoma tumorigenesis through

PI3K/AKT pathway activation (19). It is worth noting that the

oncogenic mechanisms of MNAT1 appear to exhibit a certain

degree of similarity across different cellular contexts, often

involving analogous signaling nodes. Although the role of

MNAT1 has been extensively documented in various solid

tumors, its expression patterns, functional significance, and

underlying mechanisms in OSCC remain largely unexplored. It is

still unclear whether MNAT1 operates through a conserved,

universally applicable mechanism in OSCC or adopts a unique,

tissue-specific oncogenic program. The multifaceted oncogenicity

of MNAT1 positions it as a candidate biomarker for prognosis and a

promising target for therapeutic intervention in OSCC. Elucidating

MNAT1-driven mechanisms in OSCC could provide novel insights

into precision oncology strategies.

This study constructs a prognostic model for oral cancer using

multiple ubiquitination-related genes and T cell-related genes.

Multi-omics analysis combining bulk and single-cell RNA

sequencing revealed MNAT1 as a promising prognostic

biomarker. Mechanistically, MNAT1 coordinates with tumor-

associated macrophages through the MIF and IFN-II signaling

axis, synergistically driving OSCC progression via immune

microenvironment remodeling.
2 Materials and methods

2.1 Dataset download

Transcriptional and clinical data related to head and neck

squamous cell carcinoma (HNSC) were downloaded from the

TCGA database. OSCC samples were then identified based on

clinical annotations. Since the clinical annotations of HNSC

include detailed anatomical sites, we primarily retained samples

originating from the tongue, gingiva, buccal mucosa, lip, floor of

mouth, and palate, as confirmed by multiple experienced oral
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pathologists. These were further intersected with samples having

complete clinical information. Our final cohort comprised 336

OSCC samples, including 307 tumor tissues and 29 adjacent

normal tissues. Available clinical annotations encompassed

survival time, status, age, gender, TNM stage, and other relevant

parameters. Furthermore, bulk transcriptome data and scRNA-seq

profiles were sourced from the Gene Expression Omnibus (GEO).

This included four bulk transcriptomic datasets (GSE41613,

GSE30784, GSE74530, GSE31056) and the single-cell RNA-seq

dataset GSE172577, which comprises six OSCC specimens.
2.2 Single cell sequencing analysis

Single-cell RNA sequencing (scRNA-seq) provides high-

resolution transcriptomic profiling at the individual cell level.

This technology enables the identification of functional and

transcriptional diversity across distinct cell populations and

reveals heterogeneity within cell types. Following initial quality

control to exclude low-quality samples with nFeature_RNA ≤ 50 or

percent_MT ≥ 5%, the filtered data were processed using the

“Seurat” package. Principal Component Analysis (PCA) and t-

dis t r ibuted Stochast ic Neighbor Embedding (t-SNE)

dimensionality reduction facilitated cell clustering. Subsequent

cell type annotation was performed with “SingleR”, which allowed

us to identify genes specifically associated with T cells.
2.3 Cell cycle analysis

Cell cycle analysis was performed using the “Tricycle” R

package with human cell cycle reference gene sets. First, a

reference-based pseudotime trajectory was constructed from

standardized cycling transcriptomes. ScRNA-seq data were then

projected onto this trajectory space via the “project_cycle_space”

function. Cellular cycle phase positions were quantified by

calculating the circular position angle (q, 0~2p) for each cell

using “estimate_cycle_position”. Finally, cell cycle phase

distribution across populations was visualized through polar

coordinate plots.
2.4 Pseudotemporal trajectory analysis

Cellular differentiation trajectories were inferred using the

“Monocle2” R package. The computational pipeline initiated with

data normalization through the “estimateSizeFactors” function to

adjust for intercellular sequencing depth variation, followed by gene

dispersion estimation via “estimateDispersions”. Low-abundance

transcripts and substandard cellular profiles were systematically

filtered to ensure data quality. Inter-subpopulation differential gene

expression was subsequently identified using the “differentialGeneTest”

function. For trajectory inference, the “DDRTree” algorithm was

employed to perform nonlinear dimensionality reduction, projecting

high-dimensional transcriptomic data into a low-dimensional
Frontiers in Immunology 03
manifold. Pseudotemporal ordering of individual cells was ultimately

visualized, reconstructing their dynamic progression along inferred

developmental trajectories.
2.5 Cellchat analysis

Cell-cell interaction networks were systematically interrogated

using the “CellChat” computational framework. The analytical

pipeline commenced with the construction of a “CellChat” object

adhering to the standardized workflow. Leveraging the curated

ligand-receptor interaction repository (CellChatDB.human), we

subsequently quantified both the interaction probability and

network complexity across distinct cellular subsets. This approach

enabled the identification of dominant signaling pathways and their

topological features within the tumor microenvironment.
2.6 WGCNA analysis

weighted gene co-expression network analysis (WGCNA)

enables extraction of biologically meaningful patterns from

transcriptome-scale expression datasets, elucidating the

organization and functional dynamics of gene networks. This

advances comprehension of biological processes and offers critical

support for disease diagnosis, therapeutic development, and

prognostic evaluation. Its applications encompass module

discovery, biomarker identification, clinical-module correlation

analysis, functional annotation, and network reconstruction. Here,

T cell-associated ubiquitination genes served as the foundation for

co-expression network construction, with stemness-linked modules

prioritized for downstream investigation.
2.7 Modeling construction and validation

Applying least absolute shrinkage and selection operator

(LASSO) regression, we identified prognosis-associated key genes

and established a Cox-based prognostic model. This enabled

der ivat ion of indiv idual ized r iskScores , fo l lowed by

comprehensive evaluation of these molecular determinants in

OSCC patient outcomes.

The riskScore for each OSCC patient is calculated using the

following formula: riskScore = Expression of MNAT1 × coefficient +

Expression of PSMD10× coefficient +Expression of EIF3F× coefficient.

We partitioned the TCGA cohort into training and validation

dataset, with external validation performed on GSE41613. Subsequent

Kaplan-Meier analysis interrogated survival disparities across

prognostic groups. Risk-stratified survival curves delineated patient

outcomes between high- and low-risk cohorts, while heatmaps

visualized differential expression of model genes. To evaluate

prognostic predictors, Cox regression modeled associations between

riskScore, clinicopathological variables, and survival outcomes. Time-

dependent ROC curves quantified predictive accuracy for disease

progression. We integrated riskScore with clinical features via
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nomograms, projecting 1-, 3-, and 5-year survival probabilities.

Calibration curves assessed concordance between predicted and

observed events, and decision curve analysis (DCA) determined

clinical utility of the predictive framework.
2.8 Immunoassay

“CIBERSORT” quantified immune cell infiltration abundances

across 21 subsets for each OSCC sample, delineating patient-

specific immune landscapes. “ESTIMATE” systematically profiled

tumor tissue microenvironments through immune, stromal, and

ESTIMATE score, comprehensively characterizing tumor

mircroenvironment (TME) heterogeneity. To interrogate

riskScore-immunotherapy linkages, Spearman correlations

assessed associations with mismatch repair (MMR) proteins and

immune checkpoints, evaluating predictive potential for therapeutic

response. Given microsatellite instability’s (MSI) prognostic and

therapeutic relevance, we further compared intergroup MSI scores

to stratify immunotherapy beneficiaries. Based on the tumor

immune dysfunction and exclusion (TIDE) scoring algorithm,

this study used gene expression data from tumor tissues to deeply

analyze the immune inhibition and rejection in the tumor immune

microenvironment, further verifying the immune therapy response

of patients in different risk groups. Additionally, further leveraging

the IMvigor210 cohort—with curated transcriptomic profiles and

clinical annotations from PD-L1 inhibitor-treated patients—we

stratified immunotherapy responses in OSCC sample.
2.9 Mutation analysis

Mutation analysis entails detecting, characterizing, and

interpreting genomic alterations in biological specimens. These

alterations represent heritable changes impacting genomic

architecture, protein function, or phenotypic expression.

Common variant types include single nucleotide polymorphisms

(SNPs), insertions (Ins), and deletions (Del), reflecting distinct

DNA modifications. Of particular significance are ATCG

substitutions—specific single nucleotide variants (SNVs) that

illuminate tumorigenesis mechanisms through genomic alteration

signatures. This study will analyze the diverse mutation patterns of

patients in high and low-risk groups to explore their

underlying mechanisms.
2.10 Sensitivity analysis of chemotherapy
drugs

Chemotherapy employs cytotoxic agents to combat

malignancies through targeted disruption of cancer cell cycle

progression. These compounds impair proliferative capacity via

diverse mechanisms, ultimately inducing cell death. We

systematically profiled eight oral cancer chemotherapeutics—5-

Fluorouracil, Paclitaxel, Docetaxel, Entinostat, Cisplatin,
Frontiers in Immunology 04
Oxaliplatin, Cyclophosphamide, and Carmustine—stratifying

differential chemosensitivity between risk groups based on

IC50 comparisons.
2.11 Functional enrichment analysis

Functional enrichment analysis reveals excessive expression

biological pathways and functional modules within gene sets,

enabling interpretation of biological significance and regulatory

mechanisms. This study covers GO, KEGG, and Hallmark

analyses. Specifically, GO analysis was annotated using the

c5.go.v7.4.symbols.gmt gene set file. KEGG analysis utilized the

c2.cp.kegg.v7.4.symbols.gmt gene set file. Hallmark analysis, on the

other hand, was annotated based on the h.all.v2023.2.Hs.symbols.gmt

gene set file.
2.12 Cell culture

Human oral squamous cell carcinoma-derived CAL27 cells

were cultured in DMEM (PM150230, Wuhan Pricella

Biotechnology Co., Ltd.) with 10% FBS, 1% penicillin-

streptomycin-gentamicin (Beyotime, China), maintained at 37°C

and 5% CO2.
2.13 Cell transfection

CAL27 cells were transfected with Lipofectamine™ 3000

(Thermo Fisher Scientific, USA) per manufacturer’s guidelines.

Two short hairpin RNA (shRNA) targeting MNAT1 were

designed in Supplementary Table S1.
2.14 Real-time quantitative PCR

Following established methodology, total RNA was isolated

with TRIzol (Invitrogen, USA) (20). After quantification, RNA

underwent reverse transcription using EasyQuick RT MasterMix

(EasyQuick RT MasterMix, CW2019S, CWBlO, China).

Quantitative PCR employed TB Green® Premix Ex Taq™

(Takara Bio, Japan) with GAPDH normalization, applying the 2

−DDCt method for expression quantification. Primer sequences are

provided in Supplementary Table S1.
2.15 CCK8 assay

CAL27 cells (2×103/well) were plated in 96-well plates with

100ul complete medium. Cell proliferation was assessed at 0, 24 and

48hours post-seeding by adding 10ml CCK-8 reagent (E-CK-A362,

Elabscience Biotechnology Co., Ltd., China) to each well. Post-2h

incubation (37°C and 5% CO2), 450 nm absorbance was quantified

via microplate reader.
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2.16 Colony formation assays

For colony formation assays, CAL27 cells were seeded in 6-well

plates at 1.5×103 cells/well and cultured in DMEM/10% FBS,

refreshed every 72 h. Post-10-day incubation, cells underwent

PBS washing, 4% paraformaldehyde fixation, and 0.1% crystal

violet staining (G1059, Beijing Solarbio Science & Technology

Co., Ltd., China). Following three PBS washes, plates were imaged

under bright-field microscopy. Colony numbers were quantified

using the cell counting module in ImageJ.
2.17 Transwell assay

For migration and invasion assays, resuspended in serum-free

DMEM, 50,000 CAL27 cells were placed in Transwell upper

chambers (NEST Biotechnology Co.,Ltd., China). Lower

chambers held 10% FBS-complete medium as chemoattraction

source. Post-48h incubation (37 °C and 5% CO2), migrated cells

underwent 4% paraformaldehyde fixation and 0.1% crystal violet

staining. After three PBS washes, non-migrated cells were cleared

frommembrane surfaces with cotton swabs. Cells were documented

by inverted microscopy and quantified via the cell counting module

in ImageJ.
2.18 Macrophage stimulation and
co-culture assay

THP-1 cells (1×106) were treated with 320 nmol/L PMA for

24h. The treated THP-1 cells were then seeded into 6-well plates,

with 5×105 CAL27 cells inoculated in the upper chamber. After 48h

of culture, macrophages were collected for qRT-PCR.
2.19 Data statistics

Bivariate group comparisons used Wilcoxon tests, with

Spearman correlations assessing variable associations. Survival

outcomes were evaluated by Kaplan-Meier curves and log-rank

testing. Cox proportional hazards modeling (“survival” R package)

generated hazard ratios (HRs) and 95% confidence intervals (CIs).

Statistical significance was defined as two-tailed P < 0.05. All

analyses implemented R (v4.2.2).
3 Results

3.1 Single cell sequencing analysis

Firstly, a flowchart was created to illustrate the study’s design,

implementation, and result analysis processes, enhancing readers’

understanding of the research’s significance (Figure 1A). The GEO

repository (GSE172577) provided single-cell transcriptomes from

OSCC patients, and after data organization, six OSCC samples were
Frontiers in Immunology 05
included for subsequent analysis. Initially, analysis of nFeature (the

number of detected genes) and nCount (the gene expression count

per cell), including mitochondrial read fraction per cell, was

performed. (Supplementary Figures S1A–C). Cells were then

filtered based on nFeature_RNA > 50 and percent_MT < 5% for

quality control. Additionally, a correlation of 0.89 between nFeature

and nCount was observed (Supplementary Figure S1D). Following

this, genes with significant coefficients of variation between cells

were extracted and used for subsequent PCA and tSNE

dimensionality reduction analysis, resulting in the classification of

samples into 27 clusters (Figure 1B, Supplementary Figure S1E).

These cells were further annotated, revealing distinct categories

such as T cells, Keratinocytes, Epithelial cells, Macrophages, DCs,

Fibroblasts, Endothelial cells, Neutrophils, NK cells, and Tissue

stem cells (Figure 1C). Next, we further presented the cell ratios of

different samples (Figure 1D). Additionally, the main differentially

expressed genes among different cell types were displayed

(Figures 1E–N, Supplementary Figure S1F). To delineate pathway

heterogeneity among distinct cellular populations, we performed

gene set enrichment analysis using the “irGSEA” algorithm. The

resultant enrichment profiles revealed cell type-specific activation

patterns, with quantitative evaluation of pathway distribution and

engagement magnitude across subtypes (Figures 1O, P). To

interrogate cell cycle deregulation in OSCC, we implemented the

“Tricycle” algorithm for cell cycle phase projection. This

computational framework accurately mapped single-cell

transcriptomes onto a cell cycle phase continuum, enabling

systematic classification of proliferative states across the tumor

ecosystem (Figure 2A). Subsequently, we further demonstrated

the different cell cycle ratios of different cell types (Figures 2B, C).
3.2 Model construction and validation with
LASSO-COX algorithm

Given the pivotal role of T cells in oral cancer progression, we

extracted 3860 key genes closely associated with T cells, paralleled

with a focus on ubiquitination, incorporating 797 key

ubiquitination genes. Through the intersection of these two gene

sets, we identified a total of 191 key genes (Figure 2D).

Subsequently, WGCNA analysis was performed, revealing the

effective clustering of samples into three modules (Figures 2E–G).

Tumor stemness index, indicative of tumor cell similarity to stem

cells and correlated with enhanced biological activities in stem cells

and heightened tumor dedifferentiation, was assessed (21). To

probe genes related to this index, we selected the pertinent cluster

MEdarkseagreen1 (Figure 2H). Further, KM analysis conducted on

this gene set unveiled 349 genes significantly associated with

prognosis (Figure 2I). Following this, differential analysis was

executed, culminating in the identification of 455 genes through

volcano plots and heatmaps (Figures 2J, K). Subsequent gene

intersection from WGCNA, differential analysis, and KM analysis

yielded a set of 37 genes (Figure 2L).

We initiated a comprehensive analysis to explore potential

interactions among intersecting genes, leveraging the STRING
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database (Figure 3A). Subsequently, A potent prognostic signature

was constructed from the 37 candidate genes using Lasso Cox

regression. This method enhances model generalizability by

automatically selecting predictive features and regularizing

coefficients to prevent overfitting. The optimal model, determined
Frontiers in Immunology 06
by the l criterion, comprised three genes (MNAT1, PSMD10, and

EIF3F), which yielded the best predictive performance (Figures 3B,

C). To validate the model’s predictive performance, we utilized

three datasets. The TCGA dataset was partitioned into training and

validation subsets via the “caret” R package, while the GSE41613
FIGURE 1

Single-cell sequencing analysis for screening T cell-related genes. (A) A flowchart of manuscript. (B) PCA and tSNE clustering divided cells into 27
clusters. (C) The singleR package annotated cells and categorized them into 10 major cell groups. (D) the cell ratios of different samples. (E-N) Violin
plots illustrate the expression patterns of key genes across distinct cellular subpopulations. (O, P) Enrichment analysis via the irGSEA algorithm
quantifies dominant signaling pathways within each cell subtype.
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FIGURE 2

WGCNA combined with differential and prognosis analysis to identify key genes. (A) Cell cycle analysis visualizing the phase distribution for each
single cell. (B, C) Bar plots depicting the proportional representation of distinct cell cycle phases across cellular subpopulations. (D) The Venn
diagram illustrates the intersection of T cell marker genes and ubiquitin proteasome system genes. (E, F) The WGCNA algorithm demonstrates the
optimal soft threshold. (G) The gene dendrogram displays genes are well clustered into 3 categories. (H) MEdarkseagreen1 module genes are found
to be closely associated with the tumor stemness index. (I) KM analysis shows 349 genes with prognostic value. (J, K) The volcano plot and heatmap
display 455 differentially expressed genes between cancer tissues and normal tissues. (L) The UpSet plot shows the intersection of differential
analysis, KM analysis, and WGCNA analysis with 37 genes.
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oral cancer dataset provided an additional validation set.

Consistently across these datasets, patients assigned high-

riskScore demonstrated a poorer prognosis. (Figures 3D–F).

Additionally, survival analysis comparing patient groups stratified

by risk revealed a significantly elevated mortality rate in the high-
Frontiers in Immunology 08
risk cohort. Expression heatmaps further identified markedly higher

levels of MNAT1, PSMD10, and EIF3F in the high-risk group

relative to the low-risk group (Figures 3G–I). To evaluate the link

between the riskScore and clinical characteristics, univariate and

multivariate Cox regression analyses were performed. Univariate
FIGURE 3

LASSO-COX algorithm constructs a risk prognosis model and validation. (A) The PPI network shows the correlation and importance of key genes.
(B, C) Genes suitable for constructing the optimal model were selected using the LASSO-COX algorithm. (D-F) KM analysis revealed that patients in
the high-risk group had a worse prognosis than those in the low-risk group in different datasets. (G-I) Survival analysis revealed a higher mortality
rate in the high-risk group, and the heatmap demonstrated higher expression levels of MNAT1, PSMD10 and EIF3F in the high-risk group.
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analysis identified age, N stage, and riskScore as significant

prognostic indicators. Importantly, multivariate Cox regression

confirmed the riskScore as a valuable independent prognostic

factor (Figures 4A, B). Furthermore, assessment of clinical
Frontiers in Immunology 09
indicators across the high- and low-risk groups showed no

significant differences in these parameters between the cohorts

(Figure 4C). Recognizing the potential enhancement in prognosis

prediction accuracy through the integration of clinical indicators
FIGURE 4

The efficacy validation of the riskScore model and the construction and validation of clinical predictive models. (A, B) Univariate and multivariate
COX analyses revealed that the riskScore is a valuable independent prognostic factor. (C) Heatmap analysis revealed that the high and low risk
groups were not related to the patients’ clinical characteristics. (D) The nomogram was constructed by integrating the riskScore and clinical factors
to predict patient survival at 1, 3, and 5 years. (E) The calibration curve illustrates that the model can reasonably predict patient survival. (F) The ROC
curves displayed the AUC value of the nomogram score. (G) DCA curve showed the effectiveness of the clinical prediction model.
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and risk scores, we built a nomogram for 1-, 3-, and 5-year

prognosis predict ion (Figure 4D). Calibration curves

demonstrated the nomogram’s favorable predictive performance.

ROC curve analysis further validated the effectiveness of the

nomogram score, with AUC values at three years of 0.677, 0.680,

and 0.675. Moreover, DCA analysis affirmed the nomogram score’s

efficacy in predicting prognosis (Figures 4E–G).
3.3 Immune landscape of RiskScore model

Utilizing the “CIBERSORT” algorithm, we characterized the

composition of 21 distinct immune cell populations. Analysis

revealed a significant inverse relationship for B cells naive, Mast

cells resting, and regulatory T cells (Tregs) with the riskScore;

conversely, Dendritic cells resting, Macrophages M1, Mast cells

activated, and NK cells activated showed a positive association

(Figure 5A). To further validate this finding, we performed an in-

depth analysis focusing on immune cells displaying P-values below

0.01, demonstrating the association of B cells naive, Mast cells

resting, Dendritic cells resting, and Mast cells activated with the

riskScore (Figures 5B–E). TME as the peripheral environment of

tumor cell growth contains various complex components, such as

blood vessels, immune cells, fibroblasts, inflammatory cells of bone

marrow origin, signaling molecules, and the extracellular matrix

(22). Employing the Estimate algorithm, we observed significantly

depressed immune, stromal, and ESTIMATE score in the high-risk

group compared to the low-risk group (Figure 5F). Additionally,

further analysis of MSI scores revealed elevated levels in the high-

risk group (Figure 5G). We utilized MMR and immune checkpoint

analysis to predict the potential association between riskScore and

immune therapy. EPCAM, MSH2, and PMS2 expression levels

showed a positive association with the riskScore based on MMR

analysis (Figure 5H). Assessment of immune checkpoints further

revealed associations between the riskScore and multiple

checkpoint indicators. Notably, CTLA4 and PD1 exhibited a close

correlation with the riskScore, while PDL1 did not show significant

correlation when the p-value threshold was set to 0.001 (Figure 5I).

We then further evaluated TIDE scores in the high-low risk group,

and the results showed that patients in the low-risk group had

higher TIDE scores (Figure 5J). To assess the therapeutic response

among patients stratified by riskScore, we conducted an immune

therapy score analysis. The results revealed better treatment

outcomes in patients from the high-risk group after receiving

immune therapy (Figures 5K–M).
3.4 Risk model mutation analysis and drug
sensitivity analysis

We conducted a thorough analysis of TCGA-derived mutation

data for oral cancer patients. Through variant classification analysis,

we found that the main mutation category was Missense Mutation

(Figure 6A). Further variant type analysis revealed single nucleotide

polymorphisms as the predominant variant class, revealing an
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average of 87 mutations per sample (Figures 6B–D). For single

nucleotide variations, the main type was the C>T transition

(Figure 6E). To gain deeper insight into the mutational landscape

of key model genes, the somatic mutation rate for each gene was

separately analyzed. It is worth noting that the mutation rates of

MNAT1 and PSMD10 were both 0.2% (Figure 6F). Comparative

analysis of mutated genes across risk groups revealed significantly

elevated mutation frequencies for CSMD3, LRP1B, SYNE1, CASP8,

and PCLO in high-risk patients (Figures 6G, H). Subsequent

assessment of chemotherapy drug sensitivity identified differential

responses: The low-risk group demonstrated reduced sensitivity to

5-Fluorouracil, Paclitaxel, and Docetaxel, evidenced by higher IC50

values. Conversely, Entinostat showed diminished efficacy in the

high-risk group, reflected in elevated IC50 values (Figures 6I–P).
3.5 Functional enrichment analysis

In order to deeply understand the differences between high and

low-risk groups, we conducted molecular function (MF), biological

process (BP), and cellular component (CC) analyses within the

Gene Ontology (GO) enrichment framework. In the BP analysis,

significantly enriched terms were mainly associated with the

biogenesis of ribonucleoprotein complexes, ribosome biogenesis,

and cytoplasmic translation (Supplementary Figure S2A). MF

analysis mainly revealed structural constituent of ribosome,

ribonucleoprotein complex binding, and cadherin binding

(Supplementary Figure S2B). In the CC analysis, significantly

enrichments comprised ribosomal subunit, ribosome, and

mitochondrial protein-containing complex (Supplementary

Figures S2C, D). To identify mechanisms underlying prognostic

disparities, we conducted KEGG enrichment analysis. The analysis

results showed that the main enriched pathways included ribosome,

cell cycle, cGMP-PKG signaling pathway, and Rap1 signaling

pathway (Supplementary Figure S2E). In addition, we also

performed hallmark analysis, revealing multiple significantly

enriched pathways, including complement system, upregulation

of KRAS signaling pathway, PI3K-AKT-MTOR signaling

pathway, TGF-b signaling pathway, and TNFa signaling pathway

via NFKB (Supplementary Figure S2F).
3.6 Epithelial cell heterogeneity and
pseudo-temporal analysis

To delineate the functional heterogeneity of epithelial cells in

OSCC, we performed single-cell transcriptomic analysis on purified

epithelial populations. Unsupervised clustering partitioned these

cells into eight distinct clusters(Epi0-Epi7), each exhibiting unique

marker gene signatures (Figure 7A). Functional enrichment analysis

revealed significant activation of oxidative phosphorylation and

interferon alpha/gamma response pathways across subsets

(Figure 7B). Pseudotime trajectory reconstruction uncovered a

differentiation continuum spanning these clusters (Figures 7C, D).

Epi1, Epi2, Epi4, and Epi5 localized to the early pseudotemporal
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FIGURE 5

Analysis of RiskScore and immune landscape. (A) The correlation between riskScore and 21 immune cells was calculated using the ssGSEA algorithm.
(B-E) Correlation analysis found that B cells naive, Mast cells resting, Dendritic cells resting, and Mast cells activated had the highest correlation with
riskScore (P<0.01). (F) Differential analysis found that the high-risk group had lower immune scores, stromal scores, and total scores. (G) Differential
analysis found that the MSI score was higher in the high-risk group. (H) MMR genes were found to be closely associated with riskScore. (I) Radar
plots showed the correlation between riskScore and multiple immune checkpoints. (J) Differential analysis found that the TIDE score was higher in
the low-risk group. (K-M) Patients with higher riskScore were more likely to experience remission according to the IMvigor210 dataset.
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FIGURE 6

Analysis of Mutation and Drug Sensitivity in RiskScore. (A-C) Mutation analysis shows the type of gene mutation in OSCC patient. (D) Mutation
analysis showed that the median mutation in OSCC patients was 87. (E) Mutation analysis showed the type and number of point mutations in OSCC
patients. (F) Mutation analysis showed the mutation sites of 2 key genes in the model. (G, H) The waterfall plot revealed different mutated genes and
mutation rates between the high and low-risk groups. (I-P) The IC50 of Entinostat was lower in the low-risk group, while it was lower for 5-
Fluorouracil, Paclitaxel, and Docetaxel in the high-risk group. There was no significant difference in the IC50 between the two groups for Oxaliplatin,
Carmustine, Cyclophosphamide and Cisplatin.
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FIGURE 7

Single-cell transcriptomics reveals epithelial heterogeneity, pathway activation, and pseudotemporal dynamics in OSCC. (A) Eight distinct epithelial
subpopulations (Epi0-Epi7) were identified from OSCC cellular subpopulations. (B) Functional enrichment analysis shows significant activation of
oxidative phosphorylation (OXPHOS) and interferon-a/g response pathways in epithelial subpopulations. (C, D) Pseudotime trajectory reconstruction
reveals a continuous differentiation continuum across epithelial subpopulations. (E, F) Pseudotemporal ordering and density plots position Epi1, Epi2,
Epi4 and Epi5 in early pseudotime domains, with Epi0 located in terminal branches. (G, H) Expression dynamics of key regulators (EIF3F, MNAT1,
PSMD10) along pseudotime, showing high expression in early phases followed by progressive downregulation.
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domain, whereas Epi0 occupied terminal positions, suggesting

distinct maturation state (Figures 7E, F). Notably, critical

regulators including EIF3F, MNAT1, and PSMD10 demonstrated

stage-specific expression patterns. These genes exhibited peak

transcriptional activity in early pseudotime compartments with

progressive downregulation along the trajectory, implicating their

potential roles in initiating malignant transformation

(Figures 7G, H).
3.7 Functional validation of MNAT1 in
OSCC pathogenesis

To substantiate the oncogenic role of MNAT1 in oral

carcinogenesis, we first conducted multi-cohort validation across

three independent transcriptomic datasets. Consistently, MNAT1

exhibited significant upregulation in tumor tissues compared to

normal counterparts (Figures 8A–C). Furthermore, elevated

MNAT1 expression correlated with poorer patient prognosis

(Figure 8D). To validate MNAT1’s oncogenic function, we

employed the CAL27 OSCC cell line model. Efficient MNAT1

silencing was achieved through shRNA-mediated knockdown

(Figure 8E). Subsequent CCK-8 proliferation assays revealed a

time-dependent attenuation of cell viability, with optical density

(OD450) decreasing at 48 hours post-transfection compared to

scramble controls (Figure 8F). This anti-proliferative effect was also

corroborated by colony formation assays (Figure 8G). Furthermore,

Transwell migration and invasion assays exhibited significant

decreases respectively upon MNAT1 suppression (Figure 8H).
3.8 Macrophage-epithelial crosstalk in
OSCC progression

To further investigate the functional interplay between tumor

cells and macrophages, we moved beyond the conventional M1/M2

classification paradigm. Using unsupervised single-cell clustering,

we resolved macrophage heterogeneity into six transcriptionally

distinct subsets (Macro0-Macro5), with Macro0 representing the

predominant population (Figures 9A, B). Subtype-specific marker

gene signatures were systematically annotated (Figures 9C–H).

CellChat analysis revealed intensive bidirectional communication

between epithelial and macrophage subsets, with quantitative

mapping of interaction number and strength network

(Figures 9I, J).

Intercellular communication networks were revealed through

ligand-receptor pair analysis, revealing bidirectional signaling

between epithelial and macrophage subsets (Figures 9K, L). It can

be seen that the main pathway from epithelial cells to macrophages

is the MIF signaling network, while the main pathway from

macrophages to epithelial cells is the IFN-II signaling pathway

(Figures 9M, N, Supplementary Figures S3A, B). Moreover, the

main ligand-receptor pairs in the MIF pathway are the MIF - (CD74

+CXCR4) signaling network, while the main ligand-receptor pairs

in the IFN-II pathway are the IFN-(IFNGR1+IFNGR2) signaling
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pathway (Supplementary Figures S3C, D). Specifically, in the MIF -

(CD74+CXCR4) signaling network, it can be seen that the

interactions mainly occur between Epi0, Epi1, Epi2, Epi4, Epi5

and Macro0, Macro1, Macro2, Macro3, whereas in the IFN-

(IFNGR1+IFNGR2) signaling pathway, the interactions primarily

involve Macro0, Macro1, Macro3, Macro4 and Epi0, Epi1, Epi2,

Epi4, Epi5, Epi6 (Figures 9O, P, Supplementary Figures S3E–H).

We made an interesting observation through cell-cell

communication analysis: compared to other clusters of tumor

epithelial cells, clusters EPI12, EPI4, and EPI5 prominently

interact with macrophages via the MIF signaling pathway.

Notably, MNAT1 is highly expressed precisely in these

subpopulations, suggesting that MNAT1 may facilitate crosstalk

with macrophages through the MIF pathway. To test whether

MNAT1 functionally influences this interaction, we knocked

down MNAT1 and observed a significant decrease in MIF

expression (Supplementary Figure S4A). We next explored the

functional consequence of this regulation using a co-culture

system. THP-1 cells were first differentiated into M0 macrophages

by PMA treatment for 24 hours, and then co-cultured with tumor

cells. Following co-culture, macrophages were collected and

analyzed. Strikingly, macrophages co-cultured with MNAT1-

knockdown tumor cells showed reduced expression of the M2

markers CD206 and CD163 (Supplementary Figures S4B, C),

indicating that MNAT1 knockdown suppresses M2 polarization

of macrophages, thereby impeding tumor progression.
4 Discussion

OSCC, as a complex and variable disease, faces many challenges

in the fields of treatment and research (23). Although traditional

surgical, radiotherapy, and chemotherapy still dominate, with the

rapid development of medical technology, targeted therapy and

immunotherapy are gradually integrating into clinical practice,

bringing new treatment options for patients (24). However, the

diversity and heterogeneity of OSCC lead to significant differences

in the efficacy of targeted therapy and immunotherapy among

different patients (4). Therefore, we urgently need more accurate

methods to predict patient prognosis and formulate personalized

treatment plans (25). To this end, we have conducted in-depth

studies on the role of hub genes in OSCC and constructed a

prognosis model based on these genes. By analyzing patients’

gene expression data, we can more accurately predict patient

prognosis, provide more accurate survival predictions and

personalized treatment plans for clinical practice, thereby

potentially improving patient survival rates and quality of life.

In this study, given the close association between T cells and

oral cancer, we used single-cell sequencing analysis to screen T cell

marker genes. Additionally, considering the important role of

ubiquitination genes in oral cancer patients, we also included

ubiquitination modification genes, applying WGCNA integrated

with differential and prognostic approaches. This integrative

strategy enabled construction of a predictive model featuring key

genes such as MNAT1, PSMD10, and EIF3F. While the expression
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FIGURE 8

Multi-cohort validation and functional experiment confirm MNAT1 as an oncogenic driver in OSCC. (A-C) MNAT1 expression is significantly
upregulated in OSCC tumor tissues compared to normal tissues across three independent transcriptomic cohorts. (D) Kaplan-Meier analysis
demonstrates reduced overall survival in OSCC patients with high MNAT1 expression versus low MNAT1 expression. (E) RT-qPCR confirms efficient
MNAT1 knockdown in CAL27 cells. n = 3 biologically independent experiments. Data represent mean ± SD. P values were calculated by two-side
Student’s t-test. (F, G) CCK-8 and colony formation assays reveal significantly impaired proliferative capacity in MNAT1-knockdown CAL27 cells. The
quantitative analysis is shown on the right. n = 3 biologically independent experiments. Data represent mean ± SD. P values were calculated by two-
side Student’s t-test. (H) Transwell migration and Matrigel invasion assays show markedly reduced migratory and invasive abilities following MNAT1
knockdown. Scale bar = 100um. The quantitative analysis is shown on the right. n = 3 biologically independent experiments. Data represent mean ±
SD. P values were calculated by two-side Student’s t-test. (*p<0.05; **p<0.01; ***p<0.001; ****p<0.0001).
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FIGURE 9

Single-cell analysis reveals macrophage heterogeneity and epithelial-macrophage crosstalk driving OSCC progression. (A) Five distinct macrophage
subpopulations (Macro0-Macro4) were identified in OSCC. (B) Bar plot demonstrates the proportional distribution of macrophage subsets, with
Macro0 representing the predominant population. (C-H) Violin plots display canonical marker gene expression profiles for each macrophage
subpopulation. (I, J) Cell communication analysis quantifies interaction number and strength between epithelial and macrophage subsets. (K, L) Dot
plots visualize significant ligand-receptor pairs across epithelial and macrophage subpopulations. (M, N) Dominant directional signaling axes. (M) MIF
pathway mediates epithelial-to-macrophage signaling; (N) IFN-II (IFNg) pathway drives macrophage-to-epithelial communication. (O, P) Key ligand-
receptor interactions: (O) MIF-(CD74+CXCR4) primarily links Epi0/Epi1/Epi2/Epi4/Epi5 to Macro0/Macro1/Macro2/Macro3/Macro4; (P) IFNg-(IFNGR1
+IFNGR2) mainly connects Macro0/Macro1/Macro3/Macro4 with Epi0/Epi1/Epi2/Epi4/Epi5/Epi6.
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patterns, functional significance, and underlying mechanisms of

MNAT1 remain entirely unexplored in OSCC, it has been

demonstrated to promote proliferation and cisplatin resistance in

osteosarcoma by modulating the PI3K/Akt/mTOR pathway (26).

Furthermore, PSMD10 is regarded as a biomarker for epithelial

carcinogenesis, and overexpression has been observed in human

oral cancer. And, consequently, HNSCC patients with relatively

high PSMD10 expression levels have a shorter survival period (27,

28). Although the relationship between EIF3F and OSCC is

similarly uninvestigated, its tumor-promotional functions are

emerging in other malignancies, where it has been shown to

enhance migration and invasion in lung cancer and to remodel

fatty acid biosynthesis to fuel malignancy in hepatocellular

carcinoma (29, 30). These studies have confirmed from multiple

perspectives the close relationship between these genes and cancer,

further validating the reliability of the selected genes in the

predictive model we established. The riskScore model

demonstrated favorable prognostic performance, offering valuable

clinical utility for treatment planning and patient management.

Given the significant impact of immune cells in the tumor

microenvironment of oral cancer, we conducted an in-depth

analysis of 21 immune cell subpopulations. Among them, the

subpopulations of B cells naive, Mast cells resting, Dendritic cells

resting, and Mast cells activated particularly attracted our attention.

Extensive research has confirmed that B cells, dendritic cells, and

mast cells are closely related to the development of OSCC (31–33).

Moreover, MSI, MMR, and immune checkpoints have become

significant predictors for immunotherapy (34, 35). In our study,

the high-risk group showed higher MSI scores. This finding piqued

our interest, as patients with high MSI expression often

demonstrate better treatment outcomes in immunotherapy (36).

It suggests that high-risk patients might have a poorer prognosis

without immunotherapy but could respond more positively to

immunotherapy. Further MMR correlation analysis revealed a

strong correlation between the riskScore and genes such as

EPCAM, MSH2, and PMS2, which further supports the potential

value of our riskScore in predicting patient responses to

immunotherapy . To va l idate th is , we conducted an

immunotherapy response analysis, and the results indicated that

patients responsive to immunotherapy had higher riskScore,

consistent with our previous analysis. Therefore, we found that

OSCC patients with poorer prognosis might benefit more from

immunotherapy. These findings provide new perspectives and

evidence for personalized treatment strategies for oral cancer.

Given the established contribution of gene mutations to oral

cancer pathogenesis, comprehensive mutation profiling revealed

significantly elevated mutational frequencies for TP53, TTN, FAT1,

CSMD3, LRP1B, and PCLO in high-risk relative to low-risk

patients. Among these, mutations in the P53 gene have been

shown to regulate the immune microenvironment in OSCC (37),

underscoring its critical influence on the progression of oral cancer.

Additionally, mutations in the TTN gene were identified in

metastatic OSCC patients, suggesting its involvement in the

metas tas i s process (38) . The FAT1 gene suppresses

carcinogenesis, modulates oxidative stress, and potentiates
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cisplatin response in OSCC via the LRP5/WNT2/GSS signaling

cascade (39). Similarly, mutations in CSMD3, LRP1B, and PCLO

are closely associated with tumor development and progression

(40–42). These findings deliver compelling insights into genetic

distinctions across risk-stratified cohorts, enhancing our

understanding of oral cancer pathogenesis while informing future

precision therapeutics.

Chemotherapy, a cornerstone in cancer treatment, has seen

significant advancements over the past few decades (43). To assess

differential chemotherapy responses across risk-stratified cohorts,

we per formed a deta i led analys i s of e ight common

chemotherapeutic agents used in oral cancer treatment. The

results indicated that the IC50 values for 5-Fluorouracil,

Paclitaxel, and Docetaxel were relatively higher in the low-risk

group. Conversely, in the high-risk group, the IC50 value for

Entinostat was notably higher. By systematically analyzing the

IC50 values of different chemotherapy drugs across the two

patient groups, we provided robust scientific evidence and

guidance for selecting the most appropriate chemotherapeutic

agents for distinct patient cohorts in future clinical practice.

To uncover molecular mechanisms driving prognostic

disparities in risk-stratified cohorts, we performed comprehensive

functional enrichment profiling. At the BP level, we observed

significant enrichment in cytoplasmic translation and rRNA

processing. At the CC level, ribosome and cell-substrate junction

were notably enriched, while at the MF level, cadherin binding,

translation factor activity, and RNA binding were prominently

highlighted. Current research substantiates the crucial roles of

ribosomes, rRNA processing, and cadherin binding in

tumorigenesis and cancer progression (44–46). Additionally, the

enrichment of cell-substrate junction and cadherin binding

functions suggests their potential involvement in tumor

metastasis (47, 48). KEGG pathway analysis revealed significant

enrichment in the Ribosome and Cell Cycle pathways, both

critically involved in OSCC pathogenesis (49, 50). Furthermore,

HALLMARK enrichment profiling demonstrated significant

enrichments in the TGF-b transduction pathway, PI3K/AKT/

mTOR signaling cascade, and TNFa-NFkB signaling axis.

Literature indicates that OSCC cells interact with cancer-

associated fibroblasts (CAFs) through the TGF-b/SOX9 axis

during cancer progression (51). Our study also found that tumor-

promoting CAFs with high itgb2 expression can activate the PI3K/

AKT/mTOR axis, thereby promoting OSCC tumor proliferation via

NADH-driven oxidative phosphorylation in mitochondria (52).

Additionally, TNF-a and lipopolysaccharide (LPS) play critical

roles in inflammation regulation during tumorigenesis (53).These

findings not only reinforce our analysis results, providing strong

evidence for prognostic disparities across risk-stratified cohorts but

also offer valuable insights into potential mechanistic pathways,

guiding future research in exploring therapeutic targets.

Subsequently, to further clarify the role of key genes in tumor

epithelial cells, we performed pseudotime analysis. Typically,

pseudotime analysis transitions from a low differentiation state to

a high differentiation state. Our results suggest that MNAT1, EIF3F,

and PSMD10 are all highly expressed in the low differentiation state,
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indicating these key genes are critical factors promoting tumor

malignancy. Through literature review, we found that MNAT1

plays an important role in tumor development. Therefore, we

focused on MNAT1. Through CCK8, colony formation, and

Transwell experiments, we further confirmed that MNAT1

promotes OSCC proliferation and migration. Further cell

communication analysis suggests that tumor epithelial cells and

macrophages primarily interact through the MIF and IFN-II

pathways. Studies have shown that the importance of MIF and

IFN-II in cancer has been confirmed in many clinically relevant

cancer models and is closely related to cancer development (54, 55).

These studies further support our findings, indicating that MNAT1

in tumor epithelial cells promotes M2 macrophage polarization via

the MIF- (CD74+CXCR4) pa thway , the reby dr i v ing

OSCC progression.

Certainly, our study has several limitations. First, although we

utilized multiple public databases to construct and validate the

prediction model, some datasets may lack comprehensive clinical

details. To more accurately elucidate the nature of the disease and

its predictors, we plan to prospectively collect samples and data

from our hospital in future work, thereby filling this gap through in-

depth analysis. Second, while the model demonstrates excellent

performance within the current study cohort, its clinical

applicability requires further consideration. Specifically, our

cohort was derived from a single institution with a relatively

homogeneous ethnic background. Significant differences in

genetics, lifestyle, and environmental factors across different

ethnicities and regions may influence gene expression patterns

and, consequently, the performance of our gene signature. We

aim to further validate the model using local patient cohorts in

subsequent studies. Finally, our model is mainly based on patients

who have received initial treatment, rather than those who have

undergone multiple rounds of chemotherapy and immunotherapy.

This may impose limitations on the assessment of patients. In the

future, we hope to further collect data from patients with various

treatment backgrounds to build a more accurate model.

Overall, this study has important clinical application value. The

prognostic model constructed by multiple ubiquitination

modification and T cell-related genes can more accurately predict

the survival of patients, and this model can further predict the

efficacy of chemotherapy and immunotherapy, providing guidance

for the selection of clinical drugs. Through single-cell sequencing,

we identified MNAT1 as a master oncogenic driver that potentiates

OSCC proliferation and metastasis. Furthermore, we found that

MNAT1 directly influences macrophage polarization through MIF-

mediated epithelial-macrophage crosstalk, thereby impacting

OSCC progression.
5 Conclusion

We present a ubiquitination and T cell-based prognostic model

predicting OSCC survival and treatment response. We have further

validated MNAT1 as an oncogenic driver and defined its role in
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promoting macrophage M2 polarization through MIF-mediated

epithelial-macrophage crosstalk.
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SUPPLEMENTARY FIGURE 1

Single-cell sequencing analysis for screening T cell-related genes. (A-C) The
violin plots show the nFeature_RNA, nCount_RNA, and percent_MT of 6
OSCC samples. (D) The scatter plot shows that the correlation between
Frontiers in Immunology 19
nFeature_RNAh and nCount_RNA is 0.89. (E) The volcano plot displays 1500
highly variable genes. (F) The heatmap displays the major differentially

expressed genes in different cell types.

SUPPLEMENTARY FIGURE 2

GO, KEGG, and HALLMARK functional enrichment (A-D) Gene Ontology
enrichment analysis of the riskScore model. (E) KEGG enrichment analysis

of the riskScore model. (F) HALLMARK enrichment analysis of the
riskScore model.

SUPPLEMENTARY FIGURE 3

Single-cell analysis reveals epithelial-macrophage communication networks in

OSCC. (A, B) Heatmaps quantify interaction weights of senders, receivers,
mediators, and influencers within the MIF and IFN-II signaling pathways. (C, D)
Violin plots visualize dominant ligand-receptor pairsmediating cellular crosstalk in
MIF and IFN-II pathways. (E-H) Circos diagrams map primary cellular interactions

for: (E) MIF-ACKR3 signaling; (F) MIF-(CD74+CXCR4) signaling; (G) MIF-(CD74
+CD44) signaling; (H) IFNg-(IFNGR1+IFNGR2) signaling.

SUPPLEMENTARY FIGURE 4

MNAT1 influenced M2macrophage polarization. (A-C) The expression of MIF,

CD206 and CD163 mRNA in TAMs co-cultured with control or MNAT1-KD
CAL27 cells, detected by RT-qPCR analyses (n=3). Data represent mean ± SD.

P values were calculated by two-side Student’s t-test. (*p<0.05; **p<0.01;
***p<0.001; ****p<0.0001).
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