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Integrating scRNA-seq and
machine learning identifies
MNAT1 as a therapeutic
target in OSCC

Han Gao', Lehua Liu', Weixiang Qian, Yanfei Wu, Jiayao Wang,
Weiping Yang* and Yinfang Shi*

Department of Stomatology, First Affiliated Hospital of Huzhou University, The First People's Hospital
of Huzhou, Huzhou, Zhejiang, China

Background: Oral squamous cell carcinoma, with high global incidence and
mortality, requires improved early intervention strategies. Ubiquitination - a
critical post-translational modification - has been strongly implicated in
tumorigenesis, with particularly significant roles in T-cell regulation. We
developed a T Cell-Related ubiquitination risk model that enhances prognostic
prediction and immunotherapy response assessment, offering a framework for
personalized OSCC manageme.

Method: T cell-Related Ubiquitination genes were identified based on scRNA-
seq analysis, and key genes were selected using WGCNA and LASSO algorithms
to construct a prognostic model. Spearman correlation analysis revealed
significant associations between riskScore and immune infiltration levels,
checkpoint molecule expression, and MMR activity. Pseudotemporal trajectory
and cell-cell communication analyses delineated dynamic gene expression
patterns driving OSCC progression. Functional validation through colony
formation and Transwell assays confirmed the tumor-suppressive effects of
key model genes.

Results: Given the high correlation between T cell-Related Ubiquitination genes
and the prognosis of OSCC patients, a prognostic model based on patient
scRNA-seq data was constructed and validated. The RiskScore derived from
our model correlated significantly with expression levels of MMR genes,
abundance of immune checkpoint proteins, and immunotherapy response.
Cell-cell communication analysis further elucidated epithelial-macrophage
crosstalk via MIF and IFN-II signaling, suggesting microenvironment-driven
progression mechanisms. /n vitro functional assays showed that depletion of
MNAT1 impaired Cal27 cell proliferation and migration capacity.

Conclusions: Collectively, integrating T cell-Related Ubiquitination genes
through advanced computational analyses, we established a robust prognostic
model for OSCC and identified MNAT1 as a promoter of malignant progression,
highlighting its therapeutic potential.
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1 Introduction

Oral squamous cell carcinoma (OSCC) represents the most
common oral and maxillofacial cancer, with a growing global
incidence. Beyond its direct impact on patient mortality and
morbidity, the disease incurs significant socioeconomic burdens
on affected families and society (1). OSCC pathogenesis arises from
a multifactorial interplay, encompassing smoking, alcohol
consumption, chronic oral inflammation, HPV infection, oral
leukoplakia, and genetic susceptibility (2). Due to the complexity
of the pathogenic mechanisms, significant differences in treatment
outcomes exist among individuals, underscoring the urgent need
for new biomarkers and prognostic models to enable precision
medicine (3). In recent years, the rapid development of sequencing
technologies has enabled us to delve into individual genomic
information, thereby discovering genetic variations and gene
expression differences associated with OSCC. These variations
and differences not only provide potential biomarkers for disease
diagnosis, prognosis prediction, and treatment outcome assessment
but also offer robust evidence for guiding the selection of precision
treatment strategies (4). The application of single-cell sequencing
technology has further expanded the scope of research, revealing
not only the interrelation among tumor cells but also providing in-
depth insights into the functions of immune cells in the tumor
microenvironment, opening up new avenues for the treatment and
study of OSCC (5).

T cells, also known as T lymphocytes, are crucial defenders in
the immune system, responsible for combating infections, tumors,
and autoimmune diseases (6). By identifying and clearing infected
cells, finely tuning immune responses, and preserving immune
system balance, T cells play a crucial role in the immune system
(7). With the rapid progress of single-cell sequencing technology
and high-throughput techniques, we have gained a deeper
understanding of the subtypes and functions of T cells, which are
closely linked to the occurrence and progression of cancer (8).
Previous studies have revealed that the interaction between
regulatory T cells and neutrophil extracellular traps plays an
important role in the carcinogenesis of non-alcoholic fatty liver
disease (9). Research by Liang et al. further indicates that tumor-
associated Tregs exhibit unique immune features in non-small cell
lung cancer, significantly influencing the remodeling of the tumor
microenvironment (10). Additionally, upregulation of PD-1 on T
cells and its ligand PD-L1 among oral cancer patients is strongly
implicated in mediating immune evasion and therapy resistance
(11). Consequently, elucidating the interplay between oral cancer
and T cells is critical, providing fundamental insights into disease
mechanisms, prognostic indicators, and the development of novel
therapeutic approaches.

Post-translational modifications (PTMs) of proteins are
processes in which specific enzymes or biomolecules chemically
modify amino acids after protein synthesis, with diverse forms
including phosphorylation, methylation, acetylation and
ubiquitination (12). Among them, ubiquitination has attracted
considerable attention due to its crucial role in various diseases
such as cancer, neurodegenerative diseases, and cardiovascular
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diseases (13). For instance, ubiquitination mediated by CUL3 and
the degradation of BECNI inhibit the autophagy process, thereby
promoting tumor development (14). By abrogating HBx-mediated
ubiquitination and degradation of GSK3B, MYH9 knockdown
suppresses tumor stemness properties in hepatocellular
carcinoma, as reported (15). Furthermore, the suppression of
glycolysis and proliferation in OSCC by NEDD4L is mediated
through its induction of ENO1 ubiquitination and subsequent
proteasomal degradation (16). In this study, we investigates
Intersecting genes between ubiquitination-related molecules and
T-cell-associated genes. This strategy is anticipated to yield unique
insights into ubiquitin-related molecules and its dysregulation in
disease states, opening a fertile field for future investigation.

MNAT1 Component of CDK Activating Kinase (MNATI), as a
core subunit of the CDK-activating kinase (CAK) complex,
critically regulates cell cycle progression and DNA damage repair
(17). Emerging evidence indicates that MNAT1 promotes
osteosarcoma pulmonary metastasis via AKT1 upregulation (18).
Furthermore, SMYD2-mediated MNAT1 overexpression has been
implicated in pancreatic adenocarcinoma tumorigenesis through
PI3K/AKT pathway activation (19). It is worth noting that the
oncogenic mechanisms of MNATI appear to exhibit a certain
degree of similarity across different cellular contexts, often
involving analogous signaling nodes. Although the role of
MNATI has been extensively documented in various solid
tumors, its expression patterns, functional significance, and
underlying mechanisms in OSCC remain largely unexplored. It is
still unclear whether MNAT1 operates through a conserved,
universally applicable mechanism in OSCC or adopts a unique,
tissue-specific oncogenic program. The multifaceted oncogenicity
of MNAT1 positions it as a candidate biomarker for prognosis and a
promising target for therapeutic intervention in OSCC. Elucidating
MNATI1-driven mechanisms in OSCC could provide novel insights
into precision oncology strategies.

This study constructs a prognostic model for oral cancer using
multiple ubiquitination-related genes and T cell-related genes.
Multi-omics analysis combining bulk and single-cell RNA
sequencing revealed MNATI as a promising prognostic
biomarker. Mechanistically, MNAT1 coordinates with tumor-
associated macrophages through the MIF and IFN-II signaling
axis, synergistically driving OSCC progression via immune
microenvironment remodeling.

2 Materials and methods
2.1 Dataset download

Transcriptional and clinical data related to head and neck
squamous cell carcinoma (HNSC) were downloaded from the
TCGA database. OSCC samples were then identified based on
clinical annotations. Since the clinical annotations of HNSC
include detailed anatomical sites, we primarily retained samples
originating from the tongue, gingiva, buccal mucosa, lip, floor of
mouth, and palate, as confirmed by multiple experienced oral

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663487
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gao et al.

pathologists. These were further intersected with samples having
complete clinical information. Our final cohort comprised 336
OSCC samples, including 307 tumor tissues and 29 adjacent
normal tissues. Available clinical annotations encompassed
survival time, status, age, gender, TNM stage, and other relevant
parameters. Furthermore, bulk transcriptome data and scRNA-seq
profiles were sourced from the Gene Expression Omnibus (GEO).
This included four bulk transcriptomic datasets (GSE41613,
GSE30784, GSE74530, GSE31056) and the single-cell RNA-seq
dataset GSE172577, which comprises six OSCC specimens.

2.2 Single cell sequencing analysis

Single-cell RNA sequencing (scRNA-seq) provides high-
resolution transcriptomic profiling at the individual cell level.
This technology enables the identification of functional and
transcriptional diversity across distinct cell populations and
reveals heterogeneity within cell types. Following initial quality
control to exclude low-quality samples with nFeature_ RNA < 50 or
percent_MT > 5%, the filtered data were processed using the
“Seurat” package. Principal Component Analysis (PCA) and t-
distributed Stochastic Neighbor Embedding (t-SNE)
dimensionality reduction facilitated cell clustering. Subsequent
cell type annotation was performed with “SingleR”, which allowed
us to identify genes specifically associated with T cells.

2.3 Cell cycle analysis

Cell cycle analysis was performed using the “Tricycle” R
package with human cell cycle reference gene sets. First, a
reference-based pseudotime trajectory was constructed from
standardized cycling transcriptomes. SCRNA-seq data were then
projected onto this trajectory space via the “project_cycle_space”
function. Cellular cycle phase positions were quantified by
calculating the circular position angle (0, 0~2m) for each cell
using “estimate_cycle_position”. Finally, cell cycle phase
distribution across populations was visualized through polar
coordinate plots.

2.4 Pseudotemporal trajectory analysis

Cellular differentiation trajectories were inferred using the
“Monocle2” R package. The computational pipeline initiated with
data normalization through the “estimateSizeFactors” function to
adjust for intercellular sequencing depth variation, followed by gene
dispersion estimation via “estimateDispersions”. Low-abundance
transcripts and substandard cellular profiles were systematically
filtered to ensure data quality. Inter-subpopulation differential gene
expression was subsequently identified using the “differential GeneTest”
function. For trajectory inference, the “DDRTree” algorithm was
employed to perform nonlinear dimensionality reduction, projecting
high-dimensional transcriptomic data into a low-dimensional
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manifold. Pseudotemporal ordering of individual cells was ultimately
visualized, reconstructing their dynamic progression along inferred
developmental trajectories.

2.5 Cellchat analysis

Cell-cell interaction networks were systematically interrogated
using the “CellChat” computational framework. The analytical
pipeline commenced with the construction of a “CellChat” object
adhering to the standardized workflow. Leveraging the curated
ligand-receptor interaction repository (CellChatDB.human), we
subsequently quantified both the interaction probability and
network complexity across distinct cellular subsets. This approach
enabled the identification of dominant signaling pathways and their
topological features within the tumor microenvironment.

2.6 WGCNA analysis

weighted gene co-expression network analysis (WGCNA)
enables extraction of biologically meaningful patterns from
transcriptome-scale expression datasets, elucidating the
organization and functional dynamics of gene networks. This
advances comprehension of biological processes and offers critical
support for disease diagnosis, therapeutic development, and
prognostic evaluation. Its applications encompass module
discovery, biomarker identification, clinical-module correlation
analysis, functional annotation, and network reconstruction. Here,
T cell-associated ubiquitination genes served as the foundation for
co-expression network construction, with stemness-linked modules
prioritized for downstream investigation.

2.7 Modeling construction and validation

Applying least absolute shrinkage and selection operator
(LASSO) regression, we identified prognosis-associated key genes
and established a Cox-based prognostic model. This enabled
derivation of individualized riskScores, followed by
comprehensive evaluation of these molecular determinants in
OSCC patient outcomes.

The riskScore for each OSCC patient is calculated using the
following formula: riskScore = Expression of MNAT1 x coefficient +
Expression of PSMD10 x coefficient + Expression of EIF3F x coefficient.

We partitioned the TCGA cohort into training and validation
dataset, with external validation performed on GSE41613. Subsequent
Kaplan-Meier analysis interrogated survival disparities across
prognostic groups. Risk-stratified survival curves delineated patient
outcomes between high- and low-risk cohorts, while heatmaps
visualized differential expression of model genes. To evaluate
prognostic predictors, Cox regression modeled associations between
riskScore, clinicopathological variables, and survival outcomes. Time-
dependent ROC curves quantified predictive accuracy for disease
progression. We integrated riskScore with clinical features via
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nomograms, projecting 1-, 3-, and 5-year survival probabilities.
Calibration curves assessed concordance between predicted and
observed events, and decision curve analysis (DCA) determined
clinical utility of the predictive framework.

2.8 Immunoassay

“CIBERSORT” quantified immune cell infiltration abundances
across 21 subsets for each OSCC sample, delineating patient-
specific immune landscapes. “ESTIMATE” systematically profiled
tumor tissue microenvironments through immune, stromal, and
ESTIMATE score, comprehensively characterizing tumor
mircroenvironment (TME) heterogeneity. To interrogate
riskScore-immunotherapy linkages, Spearman correlations
assessed associations with mismatch repair (MMR) proteins and
immune checkpoints, evaluating predictive potential for therapeutic
response. Given microsatellite instability’s (MSI) prognostic and
therapeutic relevance, we further compared intergroup MSI scores
to stratify immunotherapy beneficiaries. Based on the tumor
immune dysfunction and exclusion (TIDE) scoring algorithm,
this study used gene expression data from tumor tissues to deeply
analyze the immune inhibition and rejection in the tumor immune
microenvironment, further verifying the immune therapy response
of patients in different risk groups. Additionally, further leveraging
the IMvigor210 cohort—with curated transcriptomic profiles and
clinical annotations from PD-L1 inhibitor-treated patients—we
stratified immunotherapy responses in OSCC sample.

2.9 Mutation analysis

Mutation analysis entails detecting, characterizing, and
interpreting genomic alterations in biological specimens. These
alterations represent heritable changes impacting genomic
architecture, protein function, or phenotypic expression.
Common variant types include single nucleotide polymorphisms
(SNPs), insertions (Ins), and deletions (Del), reflecting distinct
DNA modifications. Of particular significance are ATCG
substitutions—specific single nucleotide variants (SNVs) that
illuminate tumorigenesis mechanisms through genomic alteration
signatures. This study will analyze the diverse mutation patterns of
patients in high and low-risk groups to explore their
underlying mechanisms.

2.10 Sensitivity analysis of chemotherapy
drugs

Chemotherapy employs cytotoxic agents to combat
malignancies through targeted disruption of cancer cell cycle
progression. These compounds impair proliferative capacity via
diverse mechanisms, ultimately inducing cell death. We
systematically profiled eight oral cancer chemotherapeutics—5-
Fluorouracil, Paclitaxel, Docetaxel, Entinostat, Cisplatin,
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Oxaliplatin, Cyclophosphamide, and Carmustine—stratifying
differential chemosensitivity between risk groups based on
IC50 comparisons.

2.11 Functional enrichment analysis

Functional enrichment analysis reveals excessive expression
biological pathways and functional modules within gene sets,
enabling interpretation of biological significance and regulatory
mechanisms. This study covers GO, KEGG, and Hallmark
analyses. Specifically, GO analysis was annotated using the
c5.go.v7.4.symbols.gmt gene set file. KEGG analysis utilized the
c2.cp.kegg.v7.4.symbols.gmt gene set file. Hallmark analysis, on the
other hand, was annotated based on the h.all.v2023.2.Hs.symbols.gmt
gene set file.

2.12 Cell culture

Human oral squamous cell carcinoma-derived CAL27 cells
were cultured in DMEM (PM150230, Wuhan Pricella
Biotechnology Co., Ltd.) with 10% FBS, 1% penicillin-
streptomycin-gentamicin (Beyotime, China), maintained at 37°C
and 5% CO,.

2.13 Cell transfection

CAL27 cells were transfected with LipofectamineTM 3000
(Thermo Fisher Scientific, USA) per manufacturer’s guidelines.
Two short hairpin RNA (shRNA) targeting MNAT1 were
designed in Supplementary Table SI.

2.14 Real-time quantitative PCR

Following established methodology, total RNA was isolated
with TRIzol (Invitrogen, USA) (20). After quantification, RNA
underwent reverse transcription using EasyQuick RT MasterMix
(EasyQuick RT MasterMix, CW2019S, CWBIO, China).
Quantitative PCR employed TB Green® Premix Ex TaqTM
(Takara Bio, Japan) with GAPDH normalization, applying the 2
—AACt method for expression quantification. Primer sequences are
provided in Supplementary Table S1.

2.15 CCK8 assay

CAL27 cells (2x10°/well) were plated in 96-well plates with
100ul complete medium. Cell proliferation was assessed at 0, 24 and
48hours post-seeding by adding 10l CCK-8 reagent (E-CK-A362,
Elabscience Biotechnology Co., Ltd., China) to each well. Post-2h
incubation (37°C and 5% CO,), 450 nm absorbance was quantified
via microplate reader.
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2.16 Colony formation assays

For colony formation assays, CAL27 cells were seeded in 6-well
plates at 1.5x10% cells/well and cultured in DMEM/10% FEBS,
refreshed every 72 h. Post-10-day incubation, cells underwent
PBS washing, 4% paraformaldehyde fixation, and 0.1% crystal
violet staining (G1059, Beijing Solarbio Science & Technology
Co., Ltd., China). Following three PBS washes, plates were imaged
under bright-field microscopy. Colony numbers were quantified
using the cell counting module in Image].

2.17 Transwell assay

For migration and invasion assays, resuspended in serum-free
DMEM, 50,000 CAL27 cells were placed in Transwell upper
chambers (NEST Biotechnology Co.,Ltd., China). Lower
chambers held 10% FBS-complete medium as chemoattraction
source. Post-48h incubation (37 °C and 5% CO,), migrated cells
underwent 4% paraformaldehyde fixation and 0.1% crystal violet
staining. After three PBS washes, non-migrated cells were cleared
from membrane surfaces with cotton swabs. Cells were documented
by inverted microscopy and quantified via the cell counting module
in Image].

2.18 Macrophage stimulation and
co-culture assay

THP-1 cells (1x106) were treated with 320 nmol/L PMA for
24h. The treated THP-1 cells were then seeded into 6-well plates,
with 5x105 CAL27 cells inoculated in the upper chamber. After 48h
of culture, macrophages were collected for qRT-PCR.

2.19 Data statistics

Bivariate group comparisons used Wilcoxon tests, with
Spearman correlations assessing variable associations. Survival
outcomes were evaluated by Kaplan-Meier curves and log-rank
testing. Cox proportional hazards modeling (“survival” R package)
generated hazard ratios (HRs) and 95% confidence intervals (CIs).
Statistical significance was defined as two-tailed P < 0.05. All
analyses implemented R (v4.2.2).

3 Results
3.1 Single cell sequencing analysis

Firstly, a flowchart was created to illustrate the study’s design,
implementation, and result analysis processes, enhancing readers’
understanding of the research’s significance (Figure 1A). The GEO
repository (GSE172577) provided single-cell transcriptomes from
OSCC patients, and after data organization, six OSCC samples were
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included for subsequent analysis. Initially, analysis of nFeature (the
number of detected genes) and nCount (the gene expression count
per cell), including mitochondrial read fraction per cell, was
performed. (Supplementary Figures S1A-C). Cells were then
filtered based on nFeature_ RNA > 50 and percent_MT < 5% for
quality control. Additionally, a correlation of 0.89 between nFeature
and nCount was observed (Supplementary Figure S1D). Following
this, genes with significant coefficients of variation between cells
were extracted and used for subsequent PCA and tSNE
dimensionality reduction analysis, resulting in the classification of
samples into 27 clusters (Figure 1B, Supplementary Figure S1E).
These cells were further annotated, revealing distinct categories
such as T cells, Keratinocytes, Epithelial cells, Macrophages, DCs,
Fibroblasts, Endothelial cells, Neutrophils, NK cells, and Tissue
stem cells (Figure 1C). Next, we further presented the cell ratios of
different samples (Figure 1D). Additionally, the main differentially
expressed genes among different cell types were displayed
(Figures 1E-N, Supplementary Figure SIF). To delineate pathway
heterogeneity among distinct cellular populations, we performed
gene set enrichment analysis using the “irGSEA” algorithm. The
resultant enrichment profiles revealed cell type-specific activation
patterns, with quantitative evaluation of pathway distribution and
engagement magnitude across subtypes (Figures 10, P). To
interrogate cell cycle deregulation in OSCC, we implemented the
“Tricycle” algorithm for cell cycle phase projection. This
computational framework accurately mapped single-cell
transcriptomes onto a cell cycle phase continuum, enabling
systematic classification of proliferative states across the tumor
ecosystem (Figure 2A). Subsequently, we further demonstrated
the different cell cycle ratios of different cell types (Figures 2B, C).

3.2 Model construction and validation with
LASSO-COX algorithm

Given the pivotal role of T cells in oral cancer progression, we
extracted 3860 key genes closely associated with T cells, paralleled
with a focus on ubiquitination, incorporating 797 key
ubiquitination genes. Through the intersection of these two gene
sets, we identified a total of 191 key genes (Figure 2D).
Subsequently, WGCNA analysis was performed, revealing the
effective clustering of samples into three modules (Figures 2E-G).
Tumor stemness index, indicative of tumor cell similarity to stem
cells and correlated with enhanced biological activities in stem cells
and heightened tumor dedifferentiation, was assessed (21). To
probe genes related to this index, we selected the pertinent cluster
MEdarkseagreenl (Figure 2H). Further, KM analysis conducted on
this gene set unveiled 349 genes significantly associated with
prognosis (Figure 2I). Following this, differential analysis was
executed, culminating in the identification of 455 genes through
volcano plots and heatmaps (Figures 2], K). Subsequent gene
intersection from WGCNA, differential analysis, and KM analysis
yielded a set of 37 genes (Figure 2L).

We initiated a comprehensive analysis to explore potential
interactions among intersecting genes, leveraging the STRING
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FIGURE 1

Single-cell sequencing analysis for screening T cell-related genes. (A) A flowchart of manuscript. (B) PCA and tSNE clustering divided cells into 27
clusters. (C) The singleR package annotated cells and categorized them into 10 major cell groups. (D) the cell ratios of different samples. (E-N) Violin
plots illustrate the expression patterns of key genes across distinct cellular subpopulations. (O, P) Enrichment analysis via the irGSEA algorithm

quantifies dominant signaling pathways within each cell subtype.

database (Figure 3A). Subsequently, A potent prognostic signature
was constructed from the 37 candidate genes using Lasso Cox
regression. This method enhances model generalizability by
automatically selecting predictive features and regularizing
coefficients to prevent overfitting. The optimal model, determined
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by the A criterion, comprised three genes (MNAT1, PSMD10, and
EIF3F), which yielded the best predictive performance (Figures 3B,
C). To validate the model’s predictive performance, we utilized
three datasets. The TCGA dataset was partitioned into training and
validation subsets via the “caret” R package, while the GSE41613
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FIGURE 2

WGCNA combined with differential and prognosis analysis to identify key genes. (A) Cell cycle analysis visualizing the phase distribution for each
single cell. (B, C) Bar plots depicting the proportional representation of distinct cell cycle phases across cellular subpopulations. (D) The Venn
diagram illustrates the intersection of T cell marker genes and ubiquitin proteasome system genes. (E, F) The WGCNA algorithm demonstrates the
optimal soft threshold. (G) The gene dendrogram displays genes are well clustered into 3 categories. (H) MEdarkseagreenl module genes are found
to be closely associated with the tumor stemness index. (I) KM analysis shows 349 genes with prognostic value. (3, K) The volcano plot and heatmap
display 455 differentially expressed genes between cancer tissues and normal tissues. (L) The UpSet plot shows the intersection of differential
analysis, KM analysis, and WGCNA analysis with 37 genes.
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FIGURE 3

LASSO-COX algorithm constructs a risk prognosis model and validation. (A) The PPl network shows the correlation and importance of key genes.
(B, C) Genes suitable for constructing the optimal model were selected using the LASSO-COX algorithm. (D-F) KM analysis revealed that patients in
the high-risk group had a worse prognosis than those in the low-risk group in different datasets. (G-I) Survival analysis revealed a higher mortality
rate in the high-risk group, and the heatmap demonstrated higher expression levels of MNAT1, PSMD10 and EIF3F in the high-risk group.

oral cancer dataset provided an additional validation set.  risk cohort. Expression heatmaps further identified markedly higher
Consistently across these datasets, patients assigned high-  levels of MNATI, PSMDI10, and EIF3F in the high-risk group
riskScore demonstrated a poorer prognosis. (Figures 3D-F).  relative to the low-risk group (Figures 3G-I). To evaluate the link
Additionally, survival analysis comparing patient groups stratified ~ between the riskScore and clinical characteristics, univariate and
by risk revealed a significantly elevated mortality rate in the high-  multivariate Cox regression analyses were performed. Univariate
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analysis identified age, N stage, and riskScore as significant
prognostic indicators. Importantly, multivariate Cox regression
confirmed the riskScore as a valuable independent prognostic
factor (Figures 4A, B). Furthermore, assessment of clinical
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indicators across the high- and low-risk groups showed no
significant differences in these parameters between the cohorts
(Figure 4C). Recognizing the potential enhancement in prognosis
prediction accuracy through the integration of clinical indicators
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FIGURE 4

The efficacy validation of the riskScore model and the construction and validation of clinical predictive models. (A, B) Univariate and multivariate
COX analyses revealed that the riskScore is a valuable independent prognostic factor. (C) Heatmap analysis revealed that the high and low risk
groups were not related to the patients’ clinical characteristics. (D) The nomogram was constructed by integrating the riskScore and clinical factors
to predict patient survival at 1, 3, and 5 years. (E) The calibration curve illustrates that the model can reasonably predict patient survival. (F) The ROC

curves displayed the AUC value of the nomogram score. (G) DCA curve s
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and risk scores, we built a nomogram for 1-, 3-, and 5-year
prognosis prediction (Figure 4D). Calibration curves
demonstrated the nomogram’s favorable predictive performance.
ROC curve analysis further validated the effectiveness of the
nomogram score, with AUC values at three years of 0.677, 0.680,
and 0.675. Moreover, DCA analysis affirmed the nomogram score’s
efficacy in predicting prognosis (Figures 4E-G).

3.3 Immune landscape of RiskScore model

Utilizing the “CIBERSORT” algorithm, we characterized the
composition of 21 distinct immune cell populations. Analysis
revealed a significant inverse relationship for B cells naive, Mast
cells resting, and regulatory T cells (Tregs) with the riskScore;
conversely, Dendritic cells resting, Macrophages M1, Mast cells
activated, and NK cells activated showed a positive association
(Figure 5A). To further validate this finding, we performed an in-
depth analysis focusing on immune cells displaying P-values below
0.01, demonstrating the association of B cells naive, Mast cells
resting, Dendritic cells resting, and Mast cells activated with the
riskScore (Figures 5B-E). TME as the peripheral environment of
tumor cell growth contains various complex components, such as
blood vessels, immune cells, fibroblasts, inflammatory cells of bone
marrow origin, signaling molecules, and the extracellular matrix
(22). Employing the Estimate algorithm, we observed significantly
depressed immune, stromal, and ESTIMATE score in the high-risk
group compared to the low-risk group (Figure 5F). Additionally,
further analysis of MSI scores revealed elevated levels in the high-
risk group (Figure 5G). We utilized MMR and immune checkpoint
analysis to predict the potential association between riskScore and
immune therapy. EPCAM, MSH2, and PMS2 expression levels
showed a positive association with the riskScore based on MMR
analysis (Figure 5H). Assessment of immune checkpoints further
revealed associations between the riskScore and multiple
checkpoint indicators. Notably, CTLA4 and PD1 exhibited a close
correlation with the riskScore, while PDL1 did not show significant
correlation when the p-value threshold was set to 0.001 (Figure 5I).
We then further evaluated TIDE scores in the high-low risk group,
and the results showed that patients in the low-risk group had
higher TIDE scores (Figure 5]). To assess the therapeutic response
among patients stratified by riskScore, we conducted an immune
therapy score analysis. The results revealed better treatment
outcomes in patients from the high-risk group after receiving
immune therapy (Figures 5K-M).

3.4 Risk model mutation analysis and drug
sensitivity analysis

We conducted a thorough analysis of TCGA-derived mutation
data for oral cancer patients. Through variant classification analysis,
we found that the main mutation category was Missense Mutation
(Figure 6A). Further variant type analysis revealed single nucleotide
polymorphisms as the predominant variant class, revealing an
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average of 87 mutations per sample (Figures 6B-D). For single
nucleotide variations, the main type was the C>T transition
(Figure 6E). To gain deeper insight into the mutational landscape
of key model genes, the somatic mutation rate for each gene was
separately analyzed. It is worth noting that the mutation rates of
MNAT1 and PSMDI10 were both 0.2% (Figure 6F). Comparative
analysis of mutated genes across risk groups revealed significantly
elevated mutation frequencies for CSMD3, LRP1B, SYNE1, CASPS,
and PCLO in high-risk patients (Figures 6G, H). Subsequent
assessment of chemotherapy drug sensitivity identified differential
responses: The low-risk group demonstrated reduced sensitivity to
5-Fluorouracil, Paclitaxel, and Docetaxel, evidenced by higher IC50
values. Conversely, Entinostat showed diminished efficacy in the
high-risk group, reflected in elevated IC50 values (Figures 61-P).

3.5 Functional enrichment analysis

In order to deeply understand the differences between high and
low-risk groups, we conducted molecular function (MF), biological
process (BP), and cellular component (CC) analyses within the
Gene Ontology (GO) enrichment framework. In the BP analysis,
significantly enriched terms were mainly associated with the
biogenesis of ribonucleoprotein complexes, ribosome biogenesis,
and cytoplasmic translation (Supplementary Figure S2A). MF
analysis mainly revealed structural constituent of ribosome,
ribonucleoprotein complex binding, and cadherin binding
(Supplementary Figure S2B). In the CC analysis, significantly
enrichments comprised ribosomal subunit, ribosome, and
mitochondrial protein-containing complex (Supplementary
Figures S2C, D). To identify mechanisms underlying prognostic
disparities, we conducted KEGG enrichment analysis. The analysis
results showed that the main enriched pathways included ribosome,
cell cycle, cGMP-PKG signaling pathway, and Rapl signaling
pathway (Supplementary Figure S2E). In addition, we also
performed hallmark analysis, revealing multiple significantly
enriched pathways, including complement system, upregulation
of KRAS signaling pathway, PI3K-AKT-MTOR signaling
pathway, TGF-f signaling pathway, and TNFo signaling pathway
via NFKB (Supplementary Figure S2F).

3.6 Epithelial cell heterogeneity and
pseudo-temporal analysis

To delineate the functional heterogeneity of epithelial cells in
OSCC, we performed single-cell transcriptomic analysis on purified
epithelial populations. Unsupervised clustering partitioned these
cells into eight distinct clusters(Epi0-Epi7), each exhibiting unique
marker gene signatures (Figure 7A). Functional enrichment analysis
revealed significant activation of oxidative phosphorylation and
interferon alpha/gamma response pathways across subsets
(Figure 7B). Pseudotime trajectory reconstruction uncovered a
differentiation continuum spanning these clusters (Figures 7C, D).
Epil, Epi2, Epi4, and Epi5 localized to the early pseudotemporal

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663487
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1663487

Gao et al.
A Correlation
S N AEE m —F
0.1
K \ K o
&0606\40 40@5 (}\o%(&e 9\‘9 N (}3' & (}\oq’ Gig? Q,Q\\" < &eb é"& c'0\\94.@ &‘9 & & b‘?’*@ &Q‘) 0.0
Co & €& &5 F T & o & &9 & o & -0.1
\e& &\\ £ @ 0,9\0 ‘@Q ‘@9 ‘@9 £ @ x“é\ e& Ko @ ‘z?& o @ o\é &e Q
& o 0\\6 2 & @Q ‘OQ @Q é\‘) \c? 0\\': ARSI S RO \0\0 -0.2
® O & FEE O G & e © ¥ 8 -0.3
& @ N S N AP AR
& & ¥ & & & *** $<0.001
00 \(’0 0\\’9 A «o ** p<0.01
°e> © * p<0.05
B C “ E
218 26 2% Z10
10 4 340 k]
55 ¥ g N 820\ 8 \k
Co c0 0 o
R=0.3,P=8.1e- R=0.18.P=0. R=0.18,P=0. R=0.19, P= 0.00096
4! 0.3,P=8.1e-08 4 0.18:P=0.0016 4, R=018,p=0.0021 Pk 0.19, P
o.l° o . o . o .
g : SR : g% L. 83,
B2 ¢ G2 5, 3. 62| 228 7 LU e
= = B 3«8 H =
1 1 +
& dR%e. IRy
000 010 020 **%aw® 00 01 02 0.3 °%33%°0.00 0.05 0.10 0.15 0.20%%% 0.00 0.05 0.0 0.15 % 2%
B cells naive “¥ " Dendritic cells resting " Mast cells act(i)vated censy Mast celis resting ~ *™"
coos 3B
hight o % o
2500 i9 °. ‘@- o
o
: . =k .
9 g low *
O A
4 high o ®
w 0 E3 hig s O :.o
2 low % 5
F 3%,% S
-2500 0.25 0.30 0.35 0.40
StromalScore ImmuneScore ESTIMATEScore MSI
H - - - TNERSFO™ TNERSE 14" J Risk [ high [B] low
riskScore- CD8B G200 TAIR -
CD274 06 TNFSF4**
. eI O Czag: 2- : .
PSMD10- TNFRSF18 1COS***
CD40 CD40LG***
o e TNFRSF4*** CTLA4** ;
VSIR CD48*** -
MNAT1- TNFRSF25 cD2g* W
= CD27*** 00200R1*"E
TNFRSF8*** HAVCR2***
EIF3F- ' TNFSFe™* ADORA2A™+ 0~
CD276
i . : . . BTNL2 KIR3DL1***
0@ \3:\ %Q(L ‘_52@ @%"1’ TNFSF 187 oS80 - ’
gg AR\ RN S PDCD1LH%V%r) g,“'SE)SLGT';&IIDS'%EI‘f‘?m 4 .
Cor W -log10(p) TMICD2+IDESes S ,
0.40.200-0.2-04 100 50 0.0 high low
K . i M IMvigor210
IMvigor210. Risk = High risk = Low risk IMvigor210 — =
1.00 .
2
3 575 6e-05
®0.75 K] o q
3 . 5 .
g_ = trait S i
= g 50 Il CRIPR @ 4e-05 .
20.50f - £ [ SDPD 2 &
(',5) ' o .-. ...g
i 25 2e-05 S .
i 0
0.00 : : 0e+00
0 8§ 12 16 20 24 low ~_high CRIPR SDIPD
Time(years) Anti-PD-L1 Response clinical [JJj CR/PR [H] SD/PD
FIGURE 5
Analysis of RiskScore and immune landscape. (A) The correlation between riskScore and 21 immune cells was calculated using the ssGSEA algorithm.
(B-E) Correlation analysis found that B cells naive, Mast cells resting, Dendritic cells resting, and Mast cells activated had the highest correlation with
riskScore (P<0.01). (F) Differential analysis found that the high-risk group had lower immune scores, stromal scores, and total scores. (G) Differential
analysis found that the MSI score was higher in the high-risk group. (H) MMR genes were found to be closely associated with riskScore. (I) Radar
plots showed the correlation between riskScore and multiple immune checkpoints. (J) Differential analysis found that the TIDE score was higher in
the low-risk group. (K-M) Patients with higher riskScore were more likely to experience remission according to the IMvigor210 dataset.

Frontiers in Immunology

11

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663487
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gao et al.

10.3389/fimmu.2025.1663487

A Variant Classification B Variant Type C 100
Missense_Mutation [N
) SNP
Nonsense_Mutation ||
Frame_Shift_Del | w7
Splice_Site | ONP s
Frame_Shift_Ins | ©
In_Frame_Del INS § 50
Translation_Start_Site N
Nonstop_Mutation DEL
In_Frame_lIns 257
rrr 71711 rrr17r17 1711
OO0 QOO0 OOO
SSSSSS SOSSSSS
SS8558 SSSSSsS
—AHBIOO —AOTOHONK (Vo
E F MNAT1 [Somatic Mutation Rate: 0.2 %]
Variants per sample 100 NM_002431 . Missense_Mutation
Median: 87 $ 1]
2634~ , I
o 0]
c
Re) T T T T T T ™
17564 T 50 . 0 50 100 150 200 250 300
= ° PSMD10[Somatic Mutation Rate: 0.2%]
= . NM_002814 - Missense_Mutation
® 25 f
878 N
0 - * % Ank_ 2A K
0- C>T C>G C>A T>C T>A T>G 50 100 150 200226
Gn 1407, Altered in 142 (94.04%) of 151 samples. H 281 Altered in 128 (90.14%) of 142 samples.
= N0 of samples @ No of samples
0 L 113 98
T;’53 WF\IIIIIIIIII\IIIIIIII 75% TP53 WWIIIIII IIlIIIIIIIIIIIII. 69"- I |
299N
CDKN2A|| hl I 6:/0 CDKN2A 22;!|
FAT1 ‘ I II\I I|| 26Avl l FAT1 | ||||| 219
NOTCH1]| || 7 NOTCH1 || | | W 20w
CSMD3 II 60/ PIK3CA| | [ I 17
LRP1B | ol I II o | MUC16 || | | | |
swer )] | Vil s CAsre | '| I |14 |
CASPg [ %1l SYNET|| | | ||| |
oo ol A O T N 27 comoanl I |'| I o
. Missense_Mutati_on Frame_Shift_Ins . Translation_Start_Site » Missense_Mutation Spllce Site = Multi_Hit
- Nonsense_Mutation . Splice_: “Site = In_Frame_Tns - Nonsense_Mutation . In_Frame_Del -
Frame_Shift_Del - In_Frame_Del . Multi_Hit Frame_Shift_Del . Frame Shift Ins
| o 1000 * J 0.5 il K ns L 1000 ns
N~ . . . .
=] ! o ¢ ©
Ti7s0l | g04 I §15° i 8 750 s
5] - . . |
I . & _10.3 * . N . c Cluster
3 500{ . 2 : 1001 i = 500 & high
g H £o02 ! 5 : : = & low
=] [3) . ©
i, 250 o1 250 & 250
[te}
0 0.0 0 0
high low high low high low high low
M N Q 500 s P 1250 =
X 0.06 ! 290 o S1000{ -
=3 g g|400 . ggl i
7 2 2 . H o 750 i Cluster
50.04 560 § 300 £ & high
3 g 7 5200 2 500 = low
o— . E
80.02 230 : 2 S
=} L * H 8‘100 8 250
0.00 0 -,- (% 0 0
high low high low high low high low

FIGURE 6

Analysis of Mutation and Drug Sensitivity in RiskScore. (A-C) Mutation analysis shows the type of gene mutation in OSCC patient. (D) Mutation
analysis showed that the median mutation in OSCC patients was 87. (E) Mutation analysis showed the type and number of point mutations in OSCC
patients. (F) Mutation analysis showed the mutation sites of 2 key genes in the model. (G, H) The waterfall plot revealed different mutated genes and
mutation rates between the high and low-risk groups. (I-P) The IC50 of Entinostat was lower in the low-risk group, while it was lower for 5-
Fluorouracil, Paclitaxel, and Docetaxel in the high-risk group. There was no significant difference in the IC50 between the two groups for Oxaliplatin,

Carmustine, Cyclophosphamide and Cisplatin.

Frontiers in Immunology

12 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663487
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gao et al.

10.3389/fimmu.2025.1663487

KRT13 IGFBFS B o N WS
® Epi0 60 60
® it . pirection [IFIEIEICCCNCN
© Epi2 4
HALLUARK-ADIPOGENESSS. .
® Epi3 3
® Epid 2
o s " ) HALLMARK-TNFA-SIGNALING-VIA-NFIG. .
Epi6 0
® e HALLMARK-PEROXISONE] . o o
50
HALLMARK-FATTY-ACID-VETABOLISH, - @ - - o
HALLMARK-PS3-PATHAY] . o o .o
s 40 ) s
" oo -.‘.ﬁ: e ]  PALLUARK-REACTIVE-OXYGEN-SPECIES-PATHAAY, - © ° o0
38 4% 3
2 @ @ 0 o 2 HALLMARK-CHOLESTEROL-HOMEOSTASIS] - o . .
1 h 2" -20 « ‘41:‘ ) !
0 S ? s momoruon] 0. ee 8- o0
50 -50 - 0 50
tSNE_1 HALLMARK-INTERFERON-GAMMA-RESFONSE. - @ - 0 @ o--00
o MYLPF HALLMARK-INTERFERON-ALPHA-RESPONSE{ - @ - ® @ 0 00
N
5 40 8 40 6
sy " O R XL up down
2 3 o Je 0 L FREERIELR
1
o -20 0o 0 . 52005 -
-40 -40. PValue o <005 ® <0001 no significant
50 - [ 50 50 - [ 50 . <0'01 ® <0.0001 o significant
E tSNE_1 tSNE_1 :
Epi0 I Epi1 I Epi2 I Epi3
-
o~
s P
5 2
c
o o
g £
Eo0 0
3 S -
-5 cluster
8 4 0 4 - = + Epi0
D Component 1 8 -4 0 4 8 4 0 4 -8 -4 [} 4 -8 4 0 4, Epit
e Epi0 « Epi2 » Epi4 - Epi6 | Epi4 ” Epi5 “ Epi6 “ Epi7 I' Ep?Z
cluster | g0t o Epia o Epi5 o Epi7 « Epi3
. . - Epi4
~ 5 - Epi5
b = Epi6
o ..
= o - Epi7
O s}
o Q
g §o -
£0 S
o
[$)
-5, -5
8 4 0 -8 -4 0 4 -8 -4 0 4 -8 -4 0 4 -8 -4 0 4
F Component 1 G Component 1
E.I'FBF." L MNATT R PSMD10 time
.
10.0 :‘:&.‘sﬁ,t..gt‘:‘.‘_ '_5 2100 |- - ~ v.—.—:..‘ -5
O P X % *, .
18 e di=n atmeas 00 0
—_—— —e's o
10 cooemm . 10| . .
g —_—
]
01 | e 0.1 || e — 0
o 0 5 10 15 5 10 15 0 5 10 15
H Pseudo-time Pseudo-time Pseudo-time
PSMD10
5 EIF3F MNAT1 p .
o s ~ s N & Expr
€ z S8 4 0
2 I3 ! € 4
£ = g} o .
g g | . ] 8 9 !
0 3 £ 0] ‘ClahL e £ o] SRysigmeie®
L — — —— © 8 < K A 2
00 02 04 06 % L N
density -5 -5 Q
2 -8 -4 0 4 -8 -4 0 4
cluster 3 | Component 1 Component 1 Component 1
FIGURE 7
Single-cell transcriptomics reveals epithelial heterogeneity, pathway activation, and pseudotemporal dynamics in OSCC. (A) Eight distinct epithelial
subpopulations (EpiO-Epi7) were identified from OSCC cellular subpopulations. (B) Functional enrichment analysis shows significant activation of
oxidative phosphorylation (OXPHOS) and interferon-o/y response pathways in epithelial subpopulations. (C, D) Pseudotime trajectory reconstruction
reveals a continuous differentiation continuum across epithelial subpopulations. (E, F) Pseudotemporal ordering and density plots position Epil, Epi2,
Epi4 and Epi5 in early pseudotime domains, with EpiO located in terminal branches. (G, H) Expression dynamics of key regulators (EIF3F, MNATZ,
PSMD10) along pseudotime, showing high expression in early phases followed by progressive downregulation.

Frontiers in Immunology

13

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663487
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Gao et al.

domain, whereas Epi0 occupied terminal positions, suggesting
distinct maturation state (Figures 7E, F). Notably, critical
regulators including EIF3F, MNATI, and PSMDI10 demonstrated
stage-specific expression patterns. These genes exhibited peak
transcriptional activity in early pseudotime compartments with
progressive downregulation along the trajectory, implicating their
potential roles in initiating malignant transformation
(Figures 7G, H).

3.7 Functional validation of MNAT1 in
OSCC pathogenesis

To substantiate the oncogenic role of MNATI in oral
carcinogenesis, we first conducted multi-cohort validation across
three independent transcriptomic datasets. Consistently, MNAT1
exhibited significant upregulation in tumor tissues compared to
normal counterparts (Figures 8A-C). Furthermore, elevated
MNAT1 expression correlated with poorer patient prognosis
(Figure 8D). To validate MNAT1’s oncogenic function, we
employed the CAL27 OSCC cell line model. Efficient MNATI
silencing was achieved through shRNA-mediated knockdown
(Figure 8E). Subsequent CCK-8 proliferation assays revealed a
time-dependent attenuation of cell viability, with optical density
(OD450) decreasing at 48 hours post-transfection compared to
scramble controls (Figure 8F). This anti-proliferative effect was also
corroborated by colony formation assays (Figure 8G). Furthermore,
Transwell migration and invasion assays exhibited significant
decreases respectively upon MNAT]1 suppression (Figure 8H).

3.8 Macrophage-epithelial crosstalk in
OSCC progression

To further investigate the functional interplay between tumor
cells and macrophages, we moved beyond the conventional M1/M2
classification paradigm. Using unsupervised single-cell clustering,
we resolved macrophage heterogeneity into six transcriptionally
distinct subsets (Macro0-Macro5), with MacroO representing the
predominant population (Figures 9A, B). Subtype-specific marker
gene signatures were systematically annotated (Figures 9C-H).
CellChat analysis revealed intensive bidirectional communication
between epithelial and macrophage subsets, with quantitative
mapping of interaction number and strength network
(Figures 9L, J).

Intercellular communication networks were revealed through
ligand-receptor pair analysis, revealing bidirectional signaling
between epithelial and macrophage subsets (Figures 9K, L). It can
be seen that the main pathway from epithelial cells to macrophages
is the MIF signaling network, while the main pathway from
macrophages to epithelial cells is the IEN-II signaling pathway
(Figures 9M, N, Supplementary Figures S3A, B). Moreover, the
main ligand-receptor pairs in the MIF pathway are the MIF - (CD74
+CXCR4) signaling network, while the main ligand-receptor pairs
in the IFN-II pathway are the IFN-(IFNGRI+IFNGR2) signaling
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pathway (Supplementary Figures S3C, D). Specifically, in the MIF -
(CD74+CXCR4) signaling network, it can be seen that the
interactions mainly occur between EpiO, Epil, Epi2, Epi4, Epi5
and Macro0, Macrol, Macro2, Macro3, whereas in the IFN-
(IFNGRI1+IFNGR2) signaling pathway, the interactions primarily
involve Macro0, Macrol, Macro3, Macro4 and Epi0, Epil, Epi2,
Epi4, Epi5, Epi6 (Figures 90, P, Supplementary Figures S3E-H).
We made an interesting observation through cell-cell
communication analysis: compared to other clusters of tumor
epithelial cells, clusters EPI12, EPI4, and EPI5 prominently
interact with macrophages via the MIF signaling pathway.
Notably, MNATI1 is highly expressed precisely in these
subpopulations, suggesting that MNATI may facilitate crosstalk
with macrophages through the MIF pathway. To test whether
MNATI1 functionally influences this interaction, we knocked
down MNATI1 and observed a significant decrease in MIF
expression (Supplementary Figure S4A). We next explored the
functional consequence of this regulation using a co-culture
system. THP-1 cells were first differentiated into MO macrophages
by PMA treatment for 24 hours, and then co-cultured with tumor
cells. Following co-culture, macrophages were collected and
analyzed. Strikingly, macrophages co-cultured with MNATI-
knockdown tumor cells showed reduced expression of the M2
markers CD206 and CDI163 (Supplementary Figures S4B, C),
indicating that MNATI knockdown suppresses M2 polarization
of macrophages, thereby impeding tumor progression.

4 Discussion

OSCC, as a complex and variable disease, faces many challenges
in the fields of treatment and research (23). Although traditional
surgical, radiotherapy, and chemotherapy still dominate, with the
rapid development of medical technology, targeted therapy and
immunotherapy are gradually integrating into clinical practice,
bringing new treatment options for patients (24). However, the
diversity and heterogeneity of OSCC lead to significant differences
in the efficacy of targeted therapy and immunotherapy among
different patients (4). Therefore, we urgently need more accurate
methods to predict patient prognosis and formulate personalized
treatment plans (25). To this end, we have conducted in-depth
studies on the role of hub genes in OSCC and constructed a
prognosis model based on these genes. By analyzing patients’
gene expression data, we can more accurately predict patient
prognosis, provide more accurate survival predictions and
personalized treatment plans for clinical practice, thereby
potentially improving patient survival rates and quality of life.

In this study, given the close association between T cells and
oral cancer, we used single-cell sequencing analysis to screen T cell
marker genes. Additionally, considering the important role of
ubiquitination genes in oral cancer patients, we also included
ubiquitination modification genes, applying WGCNA integrated
with differential and prognostic approaches. This integrative
strategy enabled construction of a predictive model featuring key
genes such as MNAT1, PSMD10, and EIF3F. While the expression
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patterns, functional significance, and underlying mechanisms of
MNATI remain entirely unexplored in OSCC, it has been
demonstrated to promote proliferation and cisplatin resistance in
osteosarcoma by modulating the PI3K/Akt/mTOR pathway (26).
Furthermore, PSMDI0 is regarded as a biomarker for epithelial
carcinogenesis, and overexpression has been observed in human
oral cancer. And, consequently, HNSCC patients with relatively
high PSMD10 expression levels have a shorter survival period (27,
28). Although the relationship between EIF3F and OSCC is
similarly uninvestigated, its tumor-promotional functions are
emerging in other malignancies, where it has been shown to
enhance migration and invasion in lung cancer and to remodel
fatty acid biosynthesis to fuel malignancy in hepatocellular
carcinoma (29, 30). These studies have confirmed from multiple
perspectives the close relationship between these genes and cancer,
further validating the reliability of the selected genes in the
predictive model we established. The riskScore model
demonstrated favorable prognostic performance, offering valuable
clinical utility for treatment planning and patient management.
Given the significant impact of immune cells in the tumor
microenvironment of oral cancer, we conducted an in-depth
analysis of 21 immune cell subpopulations. Among them, the
subpopulations of B cells naive, Mast cells resting, Dendritic cells
resting, and Mast cells activated particularly attracted our attention.
Extensive research has confirmed that B cells, dendritic cells, and
mast cells are closely related to the development of OSCC (31-33).
Moreover, MSI, MMR, and immune checkpoints have become
significant predictors for immunotherapy (34, 35). In our study,
the high-risk group showed higher MSI scores. This finding piqued
our interest, as patients with high MSI expression often
demonstrate better treatment outcomes in immunotherapy (36).
It suggests that high-risk patients might have a poorer prognosis
without immunotherapy but could respond more positively to
immunotherapy. Further MMR correlation analysis revealed a
strong correlation between the riskScore and genes such as
EPCAM, MSH2, and PMS2, which further supports the potential
value of our riskScore in predicting patient responses to
immunotherapy. To validate this, we conducted an
immunotherapy response analysis, and the results indicated that
patients responsive to immunotherapy had higher riskScore,
consistent with our previous analysis. Therefore, we found that
OSCC patients with poorer prognosis might benefit more from
immunotherapy. These findings provide new perspectives and
evidence for personalized treatment strategies for oral cancer.
Given the established contribution of gene mutations to oral
cancer pathogenesis, comprehensive mutation profiling revealed
significantly elevated mutational frequencies for TP53, TTN, FAT1,
CSMD3, LRP1B, and PCLO in high-risk relative to low-risk
patients. Among these, mutations in the P53 gene have been
shown to regulate the immune microenvironment in OSCC (37),
underscoring its critical influence on the progression of oral cancer.
Additionally, mutations in the TTN gene were identified in
metastatic OSCC patients, suggesting its involvement in the
metastasis process (38). The FAT1 gene suppresses
carcinogenesis, modulates oxidative stress, and potentiates
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cisplatin response in OSCC via the LRP5/WNT2/GSS signaling
cascade (39). Similarly, mutations in CSMD3, LRP1B, and PCLO
are closely associated with tumor development and progression
(40-42). These findings deliver compelling insights into genetic
distinctions across risk-stratified cohorts, enhancing our
understanding of oral cancer pathogenesis while informing future
precision therapeutics.

Chemotherapy, a cornerstone in cancer treatment, has seen
significant advancements over the past few decades (43). To assess
differential chemotherapy responses across risk-stratified cohorts,
we performed a detailed analysis of eight common
chemotherapeutic agents used in oral cancer treatment. The
results indicated that the IC50 values for 5-Fluorouracil,
Paclitaxel, and Docetaxel were relatively higher in the low-risk
group. Conversely, in the high-risk group, the IC50 value for
Entinostat was notably higher. By systematically analyzing the
IC50 values of different chemotherapy drugs across the two
patient groups, we provided robust scientific evidence and
guidance for selecting the most appropriate chemotherapeutic
agents for distinct patient cohorts in future clinical practice.

To uncover molecular mechanisms driving prognostic
disparities in risk-stratified cohorts, we performed comprehensive
functional enrichment profiling. At the BP level, we observed
significant enrichment in cytoplasmic translation and rRNA
processing. At the CC level, ribosome and cell-substrate junction
were notably enriched, while at the MF level, cadherin binding,
translation factor activity, and RNA binding were prominently
highlighted. Current research substantiates the crucial roles of
ribosomes, rRNA processing, and cadherin binding in
tumorigenesis and cancer progression (44-46). Additionally, the
enrichment of cell-substrate junction and cadherin binding
functions suggests their potential involvement in tumor
metastasis (47, 48). KEGG pathway analysis revealed significant
enrichment in the Ribosome and Cell Cycle pathways, both
critically involved in OSCC pathogenesis (49, 50). Furthermore,
HALLMARK enrichment profiling demonstrated significant
enrichments in the TGF-B transduction pathway, PI3K/AKT/
mTOR signaling cascade, and TNFa-NFkB signaling axis.
Literature indicates that OSCC cells interact with cancer-
associated fibroblasts (CAFs) through the TGF-B/SOX9 axis
during cancer progression (51). Our study also found that tumor-
promoting CAFs with high itgb2 expression can activate the PI3K/
AKT/mTOR axis, thereby promoting OSCC tumor proliferation via
NADH-driven oxidative phosphorylation in mitochondria (52).
Additionally, TNF-o. and lipopolysaccharide (LPS) play critical
roles in inflammation regulation during tumorigenesis (53).These
findings not only reinforce our analysis results, providing strong
evidence for prognostic disparities across risk-stratified cohorts but
also offer valuable insights into potential mechanistic pathways,
guiding future research in exploring therapeutic targets.

Subsequently, to further clarify the role of key genes in tumor
epithelial cells, we performed pseudotime analysis. Typically,
pseudotime analysis transitions from a low differentiation state to
a high differentiation state. Our results suggest that MNAT1, EIF3F,
and PSMDI10 are all highly expressed in the low differentiation state,
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indicating these key genes are critical factors promoting tumor
malignancy. Through literature review, we found that MNATI
plays an important role in tumor development. Therefore, we
focused on MNATI1. Through CCKS, colony formation, and
Transwell experiments, we further confirmed that MNATI1
promotes OSCC proliferation and migration. Further cell
communication analysis suggests that tumor epithelial cells and
macrophages primarily interact through the MIF and IFN-II
pathways. Studies have shown that the importance of MIF and
IFN-IT in cancer has been confirmed in many clinically relevant
cancer models and is closely related to cancer development (54, 55).
These studies further support our findings, indicating that MNAT1
in tumor epithelial cells promotes M2 macrophage polarization via
the MIF-(CD74+CXCR4) pathway, thereby driving
OSCC progression.

Certainly, our study has several limitations. First, although we
utilized multiple public databases to construct and validate the
prediction model, some datasets may lack comprehensive clinical
details. To more accurately elucidate the nature of the disease and
its predictors, we plan to prospectively collect samples and data
from our hospital in future work, thereby filling this gap through in-
depth analysis. Second, while the model demonstrates excellent
performance within the current study cohort, its clinical
applicability requires further consideration. Specifically, our
cohort was derived from a single institution with a relatively
homogeneous ethnic background. Significant differences in
genetics, lifestyle, and environmental factors across different
ethnicities and regions may influence gene expression patterns
and, consequently, the performance of our gene signature. We
aim to further validate the model using local patient cohorts in
subsequent studies. Finally, our model is mainly based on patients
who have received initial treatment, rather than those who have
undergone multiple rounds of chemotherapy and immunotherapy.
This may impose limitations on the assessment of patients. In the
future, we hope to further collect data from patients with various
treatment backgrounds to build a more accurate model.

Overall, this study has important clinical application value. The
prognostic model constructed by multiple ubiquitination
modification and T cell-related genes can more accurately predict
the survival of patients, and this model can further predict the
efficacy of chemotherapy and immunotherapy, providing guidance
for the selection of clinical drugs. Through single-cell sequencing,
we identified MNAT1 as a master oncogenic driver that potentiates
OSCC proliferation and metastasis. Furthermore, we found that
MNAT]I directly influences macrophage polarization through MIF-
mediated epithelial-macrophage crosstalk, thereby impacting
OSCC progression.

5 Conclusion

We present a ubiquitination and T cell-based prognostic model
predicting OSCC survival and treatment response. We have further
validated MNAT1 as an oncogenic driver and defined its role in
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promoting macrophage M2 polarization through MIF-mediated
epithelial-macrophage crosstalk.
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