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RNA methylation modification has always been a research hotspot. RNA
methylation modification can regulate processes such as transcription,
translation, splicing, stability, and degradation of RNA, in which effector
proteins play an important role, including ‘writers’, ‘erasers’, and ‘readers’.
There are various types of proteins involved in cancer progression, and in
recent years, research on their mechanisms of action has been increasing,
providing new ideas for targeted cancer therapy. By regulating the expression
of related genes and affecting signaling pathways, protein writing plays a role in
promoting or inhibiting cancer in the proliferation, invasion, migration, and
metastasis of different tumors, providing direction for the treatment of
malignant tumors. This article reviews the mechanisms of common RNA
methylation modified writers and their prospects in targeted cancer therapy.

KEYWORDS

RNA methylation modification, writer, malignant tumor, mechanism of action,
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1 Introduction

RNA modification was first discovered and recorded in the 1950s, and now over 170 types
of RNA modifications have been discovered, which are commonly present in both coding and
non-coding RNA. RNA modification is mostly reversible and has functions such as splicing,
localization, transport, translation, and degradation, which are crucial for regulating various
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types of RNA (1, 2). At the cellular level, RNA modification is involved
in various cellular processes including cell death, proliferation, aging,
differentiation, migration, metabolism, autophagy, DNA damage
response, and liquid-liquid phase separation (3). The abnormal
expression of RNA modification can serve as a signal for the
occurrence of malignant tumors, and is related to the functions of
malignant tumor cell growth, proliferation, self-renewal, stress
adaptation, invasion, and resistance to therapy. RNA methylation is
the most common characteristic modification of RNA modification.
According to the methylation sites, RNA methylation can be classified
into various forms, including N6-methyladenosine (m6A), 5-
methylcytosine (m5C), Nl1-methyladenosine (mlA), N7-
methylguanosine(m7G), N6,2’-O-dimethyladenosine (m6Am), N4-
acetylcytosine (ac4C), Pseudouridine (V). N6 methyladenosine
(m6A) modification is a common RNA methylation modification
that was first discovered in research in the 1970s and has been a hot
topic in disease mechanism studies both domestically and
internationally in recent years (4, 5). Many studies have shown that
m6A plays an important role in human cancer development and
tumorigenesis (6, 7). It is mainly related to three regulatory factors,
which are the methyltransferase (writers), demethylase (erasers), and
binding proteins (readers) (8, 9). Writers, also known as m6A
methyltransferase complex, are composed of a variety of
components, mainly including methyltransferase-like 3 (METTL3)
and methyltransferase-like 14 (METTL14) with some regulatory
subunits such as the Wilms’ tumor 1 (WT1) associated protein
(WTAP) (8). METTL3 is a 70 kda protein that is one of the
important components of writers and belongs to a conserved family
of methyltransferases (10). Structurally, METTL3 contains 580 amino
acids in its full length and is composed of a methyltransferase domain
(MTD)and a zinc finger domain (ZFD) (11). Besides, it contains S-
adenosylmethionine (SAM) to catalyze methyl transfer (12). METTL3
is a monomer with catalytic activity, while METTL14 plays a structural
role in RNA substrate recognition (13), and the two can form stable
heterodimers (14). The heterodimers are called M6A-METTL
Complex (MAC) (15) and formed by the MTDs of both. The
solution structure of the ZFD of METTL3 provides
methyltransferase activity of METTL3-METTL14 (16). METTL3 (11)
and METTL14 (17) play a crucial role in the progression of human
malignant tumors and provide new ideas for the treatment of
malignant tumors, such as immunotherapy (18). WTAP can interact
with METTL3 and METTLI14 to regulate the nuclear speckle
localization of methyltransferases and their catalytic activity in vivo
(19). Tt can also regulate recruitment of the m6A methyltransferase
complex to mRNA targets (19). Based on its multiple functions and its
close relationship with the cyclical activity, metabolism and autophagy
of tumor cells, WTAP has great potential in clinical cancer treatment
and prognosis (20). The methyltransferase complex is also composed of
KIAA1429 (17, 21), METTL5, tRNA methyltransferase activator
subunit 11-2(TRMT112), Cbl proto-oncogene like 1 (CBLLI), zinc
finger protein 217 (ZFP217), RNA binding motif protein 15 (RBM15),
RNA binding motif protein 15B (RBMI15B), vir-like m6A
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methyltransferase-associated protein (VIRMA), zinc finger CCCH-
type containing 13 (ZC3H13), and methyltransferase-like protein 6
(METTLI16) (9). METTL5 can modify 18S rRNA (22) and interact with
SAM (23),which is associated with the occurrence of pancreatic cancer
(24). ZC3H13 has the effect of inducing the translocation of methylase
complexes into the nucleus (25). METTLI6 can regulate bone marrow
cell differentiation, and the absence of red blood cells can cause
apoptosis, which may be associated with malignant hematologic
tumors (12). In recent years, researchers have also discovered that
ZCCHCH4 acts as an m6A methyltransferase to modify 28S rRNA (22)
and plays an important role in the translation process (26). 5-
methylcytosine (m5C) is also a common RNA methylation
modification, widely present in tRNA, mRNAs, rRNAs, and
enhancer RNA (eRNA) (27, 28). It involves adding a methyl group
to the fifth carbon atom of cytosine, including the seven members of
the NOL1/NOP2/Sun domain family (NSUN) NSUN1 to NSUN7 and
DNA methyltransferase like 2 (DNMT2) (29). N1 methyladenosine
(m1A) is the addition of a methyl group to the nitrogen atom at the
first position of adenosine (30, 31), and has been found in transfer
RNAs (tRNAs), rRNAs, mRNAs, IncRNAs, and mitochondrial RNAs
(32, 33). MIA mainly exists in tRNA and rRNA, first identified in
tRNA, usually located at positions 9, 14 and 58 of tRNA (34)(Figure 1).
The methyltransferase TRMT6/61A present in tRNA recognizes the T-
Loop like structure (35). Another methyltransferase responsible for
mlA modification in tRNA is tRNA methyltransferase 10 homolog A
(TRMT10) (36). M7G is an RNA modification that adds a methyl
group to the N7 position of the nucleoside (37, 38), and is widely
present in the 5CAP structure of eukaryotic mRNA and pre tRNA
(39). It plays an important role in affecting processing maturation (40),
nuclear cytoplasmic transport (41), stability (42), transcription, and
translation (43, 44). The methyltransferases responsible for m7G
modification are mainly methyltransferase like 1 (METTLI) and its
cofactor WD repeat domain 4 (WDR4) (45, 46). M5C, m1A, and m7G
modifications can also play a role in the progression of malignant
tumors. NSUN2 promotes the progression of lung cancer and
hepatocellular carcinoma by affecting cellular metabolism (47, 48).
The TRMT6/TRMT61A driving signaling pathway affects the
progression of malignant tumors (49, 50). METTL1 and WDR4
promote cancer progression and poor prognosis by synergistically
regulating the translation process (42, 51, 52). This review focuses on
the mechanism of action of RNA writer in malignant tumors and
provides inspiration and assistance for targeted therapy (Figure 1).

2 RNA methylation modification

More and more studies have shown that RNA methylation
modified writers are closely related to the occurrence and
development of various malignant tumors (53, 54), but their
mechanisms of action varied in different malignant tumors. The
following will discuss the mechanisms of action in different
malignant tumors and thoughts on targeted therapy.
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FIGURE 1

This demonstrates the distribution of different RNA methylation modifications in tRNA and the mechanism and principles of how some
methyltransferases affect the development of malignant tumors. Common methylation sites include N1 methyladenosine (m1A), N3 methylcytosine
(m3C), N5 methylcytosine (m5C), N1 methylguanosine (m1G), N2 methylguanosine (m2G), and N7 methylguanosine (m7G).

2.1 m6A

2.1.1 METTL3

In recent years, a number of studies have found that METTLS3 is
involved in cancer development as a cancer promoting factor.
METTL3 can promote the proliferation and metastasis of esophageal
cancer cells (55) and renal cell carcinoma (RCC) cells (56). In addition,
researchers have provided a new direction for cancer treatment
through continuous exploration of its mechanism(Table 1). EPPKI is
a gene which inhabits the proliferation of esophageal cells obviously.
METTL3, as a m6A writer, its deficiency can down-regulate the
expression of EPPK1 and thereby inhibit the PI3K/AKT pathway,
then curbing the development of esophageal cancer (57). METTL3
promotes cancer stem-like cell (CSC) phenotype in oral squamous cell
carcinoma(OSCC) by targeting SALL4 through the Wnt/B-catenin
signaling pathway (58). METTL3 mediates miR-99a-5p to drive OSCC
cell metastasis through targeting ZBTB7A (59). METTL3 can also
promote the occurrence of OSCC via m6A modification-dependent
stabilization of LAMA3 transcripts (60). There are many kinds of
IncRNAs, including LINC00894 (61), HOXA10-AS (62) and more. In
papillary thyroid carcinoma (PTC), METTL3 can improve and
enhance the stability of LINC00894 and thus promote the
development of PTC through the m6A-YTHDC2-dependent
pathway (61). METTL3 can modify IncRNA DSCAM-AS1 to
enhance the stability of endogenous antioxidant factor SLC7All,
thereby inhibiting iron death and promoting the poor prognosis of
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breast cancer (63). In addition, METTL3 can promote the m6A
modification of HOXA10-AS and enhance its RNA stability, thereby
driving the malignant progression of laryngeal squamous cell
carcinoma (LSCC) (62). LncRNA and related genes and their
signaling pathways may be effective mechanistic targets for cancer
treatment targeting METTL3. MicroRNAs also play a role in
tumorigenesis. MiR-1908-5p is a type of microRNA that plays a role
in the progression of nasopharyngeal carcinoma (NPC). METTL3
mediates the m6A modification of miR-1908-5p by targeting HOPX,
thereby promoting the occurrence of NPC (64). METTL3 is involved in
the m6A modification of the nuclear protein DEK, which improves the
stability and expression of DEK, thereby promoting the proliferation
and migration of gastric cancer (GC) cells (65). METTL3 mediates
STAT5A regulation of KLF4 to promote proliferation and migration of
GC cells (66). METTL3 promotes the development of ovarian cancer
(OC) by increasing the mRNA level of oncogene MALAT]1 through
RNA binding protein ELAVLI (67). METTL3 mediates HSPA9 m6A
modification to promote the malignant development of cervical cancer
(CC) (68). In another mechanism, METTL3 promotes the malignant
progression of CC by up-regulating the expression of NEK2 (69).
METTL3 can also enhance the stability of the glutamine transporter
SLC38A1 mRNA, drive the growth of CC cells, and inhibit their
apoptosis (70). METTL3 mediates Ran GTPase activating protein 1
(RanGAP1) to contribute to the progress of colorectal cancer (CRC)
(71). METTL3 can promote the senescence of CRC cells through the
mediator CDKN2B, providing a new target for the treatment of CRC

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1663423
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Chen et al.

(72). METTL3 mediated m6A modification of matrix
metalloproteinase-9 (MMP9) mRNA promotes tumorigenicity of
CRC (73). METTL3 can mediate the expression of circular RNA
circ_0008345, which can bind to miR-182-5p and prevent miR-182-
5p from inhibiting the oncogene CYP1A2, thereby contributing to the
malignant progression of CRC (74). Meanwhile, METTL3 promotes
epithelial-mesenchymal transition in CRC through m6A modification
of SNAIL mRNA, where SNAIL enhances CXCL2 secretion through
the NF-«kB pathway to recruit M2 macrophages and promote CRC
lung metastasis (75). METTL3 mediates m6A modification of
exonuclease DCLRE1B to promote the development of pancreatic
cancer (PC) (76). METTL3 induces m6A modification of FBXO31
and enhances its mRNA translation, thereby promoting the occurrence
of PC (77). METTL3 mediates MiR-589-5p maturation and expression,
which is positively correlated and over-expression can promote the
deterioration of liver cancer (78). METTL3 promotes the proliferation
and stemness of liver cancer stem cells (LCSCs) by targeting SOCS3
mRNA through the JAK2/STAT3 pathway (79). METTL3 mediates
m6A modification of Inc-TSPAN12 to drive migration and invasion of
hepatocellular carcinoma(HCC) cells, which in turn promotes hepatic
metastasis (80). The transcription factor RELA can bind to the
METTL3 promoter region to promote the transcription of METTL3,
thereby promoting the malignant growth of HCC cells (81). Another
circular RNA also plays a role in METTL13’s involvement in tumor
progression. In prostate cancer (PCa), METTL3 induces homeobox C6
(HOXC6) m6A modification to stabilize its expression and promote
cancer cell proliferation, invasion, migration, stemness, and glycolysis
(82). METTL3 mediates CircGlis3 (HSA_CIRC_0002874) to up-
regulate MDM2 and regulate the p53 signaling pathway, promoting
PCa cell proliferation, migration, and invasion (83). Aromatase
(CYPI19A1) is an enzyme involved in limiting the rate of estrogen
biosynthesis. METTL3 promotes estrogen production by enhancing
CYPI9AL1 translation and mediates miR-196a, thereby driving non-
small cell lung cancer (NSCLC) metastasis (84). In another mechanism,
METTL3 promotes the occurrence and metastasis of NSCLC by
inhibiting FDX1 by promoting the maturation of miR-21-5p (85).
Due to different mechanisms, METTL3 can also play different roles in
the same cancer. The over-expression of SH3 domain binding protein 5
(SH3BP5) can inhibit the invasion ability of lung cancer cells, METTL3
can mediate m6A modification to promote its expression, and
METTLS3 itself also has the function of inhibiting the migration and
invasion of lung cancer cells, thereby METTL3 can inhibit the
deterioration of lung cancer (86). METTL3 inhibits malignant
progression of lung adenocarcinoma by blocking the PI3K/AKT/NEF-
KB signaling pathway (87). METTL3 exhibits a dual role in cancer,
highlighting its highly environmentally dependent function. This
contradictory phenomenon may stem from METTL3’s ability to
modify various RNA substrates, including transcripts of oncogenes
and tumor suppressor genes. The ultimate effect is likely to be the result
of the combined effects of specific cellular backgrounds, tumor
microenvironments, and transcriptome landscapes. This reminds us
that strict biomarker stratification is necessary when applying METTL3
inhibitors in clinical practice to achieve precise treatment (Table 1).
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2.1.2 METTL14

METTL14, as one of the main members of m6A writers, plays
an important role in the mechanisms related to malignant tumors
(Table 2). METTLI14 enhances the m6A modification of CDKN2A,
inhibits the activation of p53 pathway, and promotes
retinoblastoma (RB) progression (88). In nasopharyngeal
carcinoma, METTL14 promotes cancer progression by regulating
the stability of AOC1 mRNA (89). METTL14 catalyzes m6A
modification of ANKRD22 mRNA to improve mRNA stability
and translation efficiency. At the same time, ANKRD22 interacts
with SLC25A1 to increase intracellular acetyl-CoA content,
promoting lipid metabolism reprogramming and cellular lipid
synthesis, thereby advancing the progression of nasopharyngeal
carcinoma (90). METTLI14 can up-regulate the expression of
IncRNA MSTRG.292666.16 and enhance the level of m6A
modification, which can promote the development of NSCLC
(91). In another mechanism, METTLI14 increases miR-93-5p
expression and matures pri-miR-93-5p through m6A alteration to
target and inhibit TXNIP, thereby inhibiting NSCLC cell apoptosis
and promoting cancer development and metastasis (92). Moreover,
METTL14 can target CSFIR to accelerate the proliferation,
migration, and invasion of NSCLC cells (93). METTL14 activates
miR-29¢-3p through m6A and regulates the ubiquitination of
pyruvate kinase isoform M2 (PKM2) mediated by the tripartite
motif containing 9 (TRIMY), driving aerobic glycolysis of glucose
and promoting the progression of triple-negative breast cancer
(TNBC) (94). METTL14 mediates IncRNA RP1-228H13.5 to
promote the development of liver cancer through targeting hsa-
miR-205 and regulating the expression of zinc finger protein
interacting with K protein 1 (ZIK1) (95). In glioma cells,
downregulation of METTL14 induces down-regulation of m6A
modification and expression of circRNA_103239, driving up-
regulation of miR-182-5p and down-regulation of MTSSI,
thereby promoting EMT in glioma and promoting tumor
progression (96). METTL14 targets downstream gene MNI1 to
enhance its stability and translation efficiency, thereby promoting
malignant progression of OC (97). METTL14, by forming the
METTL3-METTL14 complex, enhances the m6A modification of
SETBP1 mRNA, thereby increasing the stability of SETBP1 mRNA
and subsequently activating the PI3K-AKT signaling pathway to
promote cell proliferation in myelodysplastic tumors (98). In
addition, METTL14 also plays an equally important role in
inhibiting the progression of malignant tumors. METTL14
promotes autophagy in OSCC cells and inhibits its progression by
targeting the autophagy related gene RBICC1 through m6A
modification (99). METTL14 mediates miR-30c-1-3p maturation,
and miR-30c-1-3p targets MARCKSLI to inhibit its expression,
thereby suppressing the development of lung cancer through this
mechanism (100). METTL14 up-regulates the m6A level of Inc-
PLCBI to enhance its stability and inhibit the migration and
invasion of GC cells (101). METTL14 promotes the degradation
of ATF5 mRNA, reduces WDR74 transcription and B - catenin
nuclear translocation, thereby inhibiting GC cell stemness and
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TABLE 1 The mechanism of METTL3 in malignant tumors. TABLE 1 Continued
Malignant Mechanism Malignant Mechanism
tumors (target/signaling References tumors (target/signaling References
types pathway) types pathway)
esophageal tumor tumor
EPPK1/PI3K/AKT (57) HCC Inc-TSPAN12 (80)
cancer promoter promoter
0sce tumor SALL4/Wnt/B-catenin (59) HCC tumor RELA 81)
promoter promoter
0scC tumor miR-99a-5p/ZBTB7A (59) PCa tumor HOXC6 (82)
promoter promoter
0scC tumor LAMA3 (60) PCa tumor CircGlis3/MDM2/p53 (83)
promoter promoter
tumor LINC00894/m6A- tumor B
pre promoter YTHDC2-dependent 1 NSCLC promoter CYPI9AL/miR-196a &)
LscC tumor HOXA10-AS (62) NSCLC tumor FDX1/miR-21-5p (85)
promoter promoter
breast cancer tumor DSCAM-AS1/SLC7A11 (63) lung cancer tumor SH3BP5 (86)
promoter suppressor
NPC tumor miR-1908-5p/HOPX (64) lung cancer tumor PI3K/AKT/NF-kB (87)
promoter suppressor
Ge tumor DEK (65)
promoter slowing down cancer progression (102). In colon cancer, METTL14
Ge tumor STATSA/KLEA (66) targets SCD1, and its over-expression significantly enhances the
promoter m6A modification of SCD1 mRNA and reduces SCD1 mRNA
levels, possibly through SCD1 mediated Wnt/- Catenin signalin.
oc tumor MALATI/ELAVLI (67) eves, p Y & i B shaing
promoter inhibits the stemness and metastasis of colon cancer cells, thereby
cc tumor HSPAS . hindering the tumorigenic process of colon cancer (103). METTL14
promoter inhibits the expression of transcription factors NANOG and f3-
o tumor N " catenin in CRC cells, thereby inhibiting the phenotype of CRC stem
promoter ©9) cells and hindering cancer progression (104). METTLI14 targets
rumor FTHI to reduce its mRNA stability, thereby enhancing sorafenib
ce promoter SLC38AL 0 induced ferroptosis and helping to inhibit CC progression through
. the PI3K/Akt signaling pathway (105). Similar to METTL3,
umor
CRC promoter | ANGAPL @1 METTLI14 also exhibits dual functionality. The role of METTL14
may be related to its cooperative relationship with METTL3 and
t o
CRC Pt?rz;ter CDKN2B (72) other co factors. When dissociated from METTL3, METTL14 may
be more inclined to stabilize tumor suppressor RNA. This suggests
CRC ;tzlrzzter MMP9 (73) that targeting the METTL3-METTL14 interaction interface may be
a more precise strategy than comprehensive inhibition (Table 2).
CRC tumor miR-182-5p/CYP1A2 (74)
promoter
2.1.3 WTAP
CRC ;‘;ﬁ;ter SNAIL/CXCL2/NF-kB/M2 | (75) The high expression of WTAP is closely related to the poor
prognosis caused by many malignant tumors such as NSCLC (106),
PC tumort DCLREIB (76) CRC (107). Therefore, targeted therapy research can be conducted
promoter X . .
based on the development mechanism of WTAP in different
pC t‘i’:;i o | FBXO31 o7 malignant tumors (Table 3). WTAP increases the stability of
P plasminogen activator urokinase (PLAU) and promotes the
iver cancer tumort miR-589-5p 78) migration, invasion, and proliferation of LSCC cells (108). WTAP
ositively regulates the expression of m6A targe , activates
promoter positively regulates the expression of m6A target PTP4A1, activat
iver cancer tumor SOCS3/JAK2/STAT3 79 the AKT mTOR pathway, and promotes esophageal squamous cell

promoter

carcinoma (ESCC) cell proliferation (109). WTAP can also promote

(Continued)  the growth and metastasis of ESCC tumors by reducing the
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TABLE 2 The mechanism of METTL14 in malignant tumors.

Malignant Mechanism

tumors (target/signaling References

types pathway)
t

RB Hmor CDKN2A/p53 (88)
promoter

nast)-pharyngea.l tumor AOCI (89)

carcinoma promoter

h 1

nasopharyngeal | tumor ANKRD22/SLC25A1 (90)

carcinoma promoter
ti

NSCLC Hmor MSTRG.292666.16 ©1)
promoter
t

NSCLC Hmor miR-93-5p/TXNIP (92)
promoter
t

NSCLC umor CSFIR (93)
promoter

TNBC tumor miR-29¢-3p/TRIM9/PKM2  (94)
promoter

. tumor RP1-228H13.5/hsa-miR-

liver cancer (95)
promoter 205/ZIK1
tumor circRNA_103239/miR-

i 96
gliorma promoter 182-5p/MTSS1 (56)

tumor

oc MNI1 97)

promoter
Jodysplasti

myelodysplastic | tumor SETBP1/PI3K/AKT ©7)

tumor promoter

0sce tumor RBICCI 99)
SupPrCSSOr
11

lung cancer Hmor miR-30¢-1-3p/MARCKSLL | (100)
suppressor
1

GC umor Inc-PLCBI (101)
suppressor
1

GC mor ATES5/WDR74/B - catenin | (102)
SuppfeSSOr
t

colon cancer umor SCD1/Wnt/B- Catenin (103)
SuppfeSSOr
1

CRC Hmor NANOG/B - catenin (104)
suppressor
1

cc Hmor FTH1/PI3K/Akt (105)
suppressor

expression of CPSF4 (110). WTAP can affect the progression of
malignant tumors by mediating circular RNAs (circRNAs). WTAP
mediates circEEF2 to regulate the expression of CANTI1 and
promote the occurrence of lung adenocarcinoma (LUAD) (111).
WTAP can promote the expression of NUPRI, eliminate the role of
WTAP knockdown in promoting iron death and inhibiting the
malignant behavior of TNBC cells, while up-regulating LCN2 can
inhibit iron death and promote the progress of TNBC (112). WTAP
mediated FAM83H-AS1 promotes GC cell migration, proliferation,
and invasion through m6A modification, thereby promoting cancer
development (113). The Warburg effect is an abnormal energy
metabolism in which cancer cells obtain energy through oxidative
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glycolysis, thereby promoting proliferation and cancer progression
(114, 115). WTAP can enhance the stability of HK2, accelerate the
Warburg effect of GC, and promote GC progression (116). WTAP
can also accelerate the migration and epithelial mesenchymal
transition of GC cells by promoting the expression of
transforming growth factor-beta (TGF-B) (117). WTAP inhibits
downstream gene FLNA, enhances the proliferation of colon cancer
cells, and inhibits cancer cell autophagy (118). Meanwhile, WTAP
mediates downstream molecule VEGFA activation of MAPK
signaling, accelerating CRC cell proliferation, migration, invasion,
and angiogenesis (119). WTAP also mediates PDK4 and inhibits its
expression to drive the proliferation, migration, and invasion of
CRC cells (120). In addition, WTAP has also become an important
target and research direction in immunotherapy for tumors. PD-L1
(121), as an immunosuppressive checkpoint, can promote immune
escape, while WTAP can enhance its expression, strengthen the
immune escape mechanism, prevent the anti-tumor effect caused by
T cell proliferation (122), and promote the progression of CRC
(123) (Figure 2). The decreased expression of the tumor suppressor
gene PTEN leads to cellular dysregulation and loss, thereby
promoting the characteristics of endometrial cancer (EC) stem
cells. The reason for this is that down-regulation of WTAP
reduces m6A modification of EGR1 mRNA and lowers EGRI
levels (124). Moreover, WTAP can also down-regulate the
expression of CAV-1, activate the nuclear factor kappa B (NF-«B)
signaling pathway in EC cells, promote EC cell proliferation,
migration, and invasion, and accelerate cancer progression (125).
WTAP can increase the stability of GBE1 mRNA, and over-
expression of GBE1 promotes PC cell proliferation and stemness-
like properties (126). Overexpression of WTAP can counteract the
tumor suppressive effect of miR-455-3p in PCa cells, thereby
promoting PCa progression (127). WTAP can target NRF2 to
inhibit iron death and accelerate the malignant progression of
bladder cancer(BLCA) (128). In addition, the mRNA of WTAP
can interact with long non-coding RNAs (IncRNA) to promote the
migratory progression of malignant tumors, such as breast cancer
(129). WTAP can also target IncRNA DIAPHI-AS]1 to enhance its
stability and promote the progression of NPC (130). In renal cell
carcinoma (RCC), WTAP regulates the m6A modification of long
non coding RNA TEX41 to promote cancer cell proliferation and
metastasis (131). WTAP often promotes cancer progression
through mechanisms involving immune escape, metabolic
reprogramming, and RNA stability. The stabilizing effect of
WTAP on PD-L1 mRNA under hypoxic conditions reveals a
noteworthy association between m6A modification and immune
therapy resistance. Targeting WTAP may enhance the efficacy of
immune checkpoint blockade therapy, especially in hypoxic tumors
(Figure 2, Table 3).

2.1.4 METTL16

Current research indicates that METTL16 plays a dual role in
cancer biology, either promoting or inhibiting tumor progression
depending on the context. In lung cancer, METTL16 interacts with
eIF4E2 to enhance the translation of key oncogenes, thereby driving
tumor development (132). In breast cancer, METTL16 regulates
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TABLE 3 The mechanism of WTAP in malignant tumors.

Malignant .
9 Mechanism(target/
tumors Roles signaling pathway) References
types Y
t

LSCC Hmor PLAU (108)
promoter
t

ESCC Hmer PTP4A1/AKT mTOR (109)
promoter

ESCC tumor CPSF4 (110)
promoter
t

LUAD Hmor circEEF2/CANT1 (111)
promoter
t

TNBC umor NUPR1/LCN2 (112)
promoter
t

GC umor FAMS3H-ASI (113)
promoter

GC tumor HK2 (116)
promoter

GC tumor TGE-B (117)
promoter
t

colon cancer umor FLNA (118)
promoter
t

CRC Hmer VEGFA/MAPK (119)
promoter

CRC tumor PDK4 (120)
promoter

CRC tumor PD-L1 (123)
promoter
t

EC Hmor EGRI/PTEN (124)
promoter
t

EC umor CAV-1/NF-xB (125)
promoter

PC tumor - oppy (126)
promoter

PCa tumor miR-455-3p (127)
promoter
t

BLCA mor NREF2 (128)
promoter
t

NPC mor DIAPHI-AS1 (130)
promoter

RCC mor vy (131)
promoter

GPX4 expression, inhibiting ferroptosis and promoting cancer cell
proliferation (133). In HCC, METTL16 targets the eukaryotic
translation initiation factor 3 subunit a (eIF3a) to promote rRNA
maturation and enhance mRNA translation efficiency, thereby
facilitating the self-renewal and carcinogenesis of liver cancer
stem cells (134). Additionally, METTL16 regulates the stability of
SENP3 mRNA, with which it is positively correlated, and promotes
the malignant progression of HCC through the METTL16-SENP3-
LTF signaling axis by modulating ferroptosis (135). In lung cancer
metastasis, METTLI16 regulates the stability of SYNPO2L, mediates
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the secretion of COL10A1 by cancer-associated fibroblasts (CAFs),
and promotes epithelial-mesenchymal transition (EMT), making
tumor cells more prone to metastasis (136). Furthermore,
METTLI16 is implicated in metal carcinogenesis; it targets
glutamate-ammonia ligase (GLUL) to regulate glutamine
metabolism, thereby promoting chromium (VI) exposure-induced
tumorigenesis (137). In osteosarcoma, METTLI6 targets vacuolar
protein sorting protein 33b (VPS33B) for degradation, driving
tumor progression (138). In CRC, METTL16 up-regulates
pyruvate dehydrogenase kinase 4 (PDK4) by targeting suppressor
of glucose by autophagy (SOGAL), thereby promoting CRC
progression (139). In acute myeloid leukemia (AML), METTLI16
drives tumor development by promoting the expression of
branched-chain amino acid (BCAA) transaminases BCAT1 and
BCAT?2, reprogramming BCAA metabolism (140). In
cholangiocarcinoma (CCA), METTL16 targets PRDMI15 to
regulate FGFR4 expression, promoting cell proliferation and
malignant progression (141). These mechanisms collectively
highlight the tumor-promoting role of METTLI6 in various
cancers. Conversely, METTL16 also exhibits tumor-suppressive
functions in certain contexts. In PTC, METTLI6 increases m6A
abundance in SCDI, activates lipid metabolism, and inhibits tumor
progression (142). In BLCA, METTL16 reduces the stability of
prostate transmembrane protein androgen-induced 1 (PMEPAL)
mRNA4, inhibiting cell proliferation and cisplatin chemoresistance,
thus offering a potential therapeutic strategy for BLCA (143). In
epithelial ovarian cancer (EOC), METTL16 negatively correlates
with IncRNA MALAT]I, and their interaction up-regulates [3-
catenin, thereby inhibiting the growth, migration, and invasion of
EOC cells (144). These findings underscore the dual role of
METTL16 in cancer biology and provide valuable insights for
clinical interventions and targeted cancer therapies. METTLI16 is
emerging as an environmentally dependent regulatory factor,
playing a role in translation, metabolism, and ferroptosis. It
participates in rRNA methylation, which extends the research
scope of m6A beyond mRNA. The effect of METTL16 on
ferroptosis suggests that it may regulate therapeutic responses,
particularly to drugs that induce oxidative stress.

2.1.5 RBM15

RBMLI5 plays a pivotal role in the progression of various cancers
through diverse molecular mechanisms. In triple-negative breast
cancer, RBM15 facilitates tumor growth by enhancing serine and
glycine metabolism (145). In LSCC, RBM15 mediates m6A
modification of TMBIM6 mRNA, increasing its stability and
contributing to poor prognosis (146). In CRC, RBM15 binds to
E2F2 and stabilizes its mRNA, thereby promoting malignant
cellular processes (147). In CC, RBM15 drives m6A modification
and protein translation of EZH2, leading to enhanced cancer cell
proliferation, invasiveness, and epithelial-mesenchymal transition
(EMT) (148). Additionally, RBM15 stabilizes the expression of the
oncogenic IncRNA HEIH, promoting the proliferation, metastasis,
and stemness of CC cells (149). In NSCLC, RBM15 up-regulates
Kruppel-like factor 1 (KLF1), which suppresses the expression of
TRIM13, a member of the tripartite motif (TRIM) family, and
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The mechanism of action of WTAP in cancer immunotherapy. In CRC, hypoxia can increase the expression of WTAP, and PUM1 can directly bind to
WTAP to inhibit ubiquitin mediated degradation of WTAP under hypoxic conditions, thereby enhancing the expression of PD-L1 and the stability of
IGF2BP2 and PD-L1 mRNA binding, inhibiting the anti-tumor activity of T cells, in other words, promoting cancer progression.

promotes ANXAS8, a member of the annexin A (ANXA) family,
thereby accelerating cancer progression (150). In LUAD, RBM15
enhances the stability of LDHA mRNA, further supporting tumor
progression (151). Moreover, RBM15 up-regulates TGF-3/Smad2
expression, promoting the growth, invasion, and migration of lung
cancer cells (152). In CC, RBM15 activates the AKT/mTOR
signaling pathway to promote the expression of the oncogene
OTUB2, driving malignant progression (153). Conversely,
knockdown of RBM15 suppresses CC tumorigenesis by inhibiting
the JAK-STAT pathway (154). In paclitaxel resistant ovarian cancer,
silencing RBM15 down-regulates multidrug resistance 1 (MDR1)
expression and inhibits malignant progression (155). Furthermore,
RBMI15-mediated m6A modification of MyD88 mRNA promotes
CRC occurrence and metastasis, while its knockdown inhibits these
processes (156). In clear cell renal cell carcinoma (ccRCC), RBM15
stabilizes CXCL11 mRNA, enhancing cell proliferation, colony
formation, macrophage infiltration, and EMT (157). Interestingly,
RBM15 exhibits a contrasting role in certain cancers. For instance,
its elimination inhibits PC progression and enhances macrophage
infiltration and phagocytosis, offering a novel direction for PC
immunotherapy (158). The above mechanism suggests that
RBMI5 may serve as a “core stabilizer” for malignant tumors,
generating diverse phenotypes in different cancer backgrounds by
regulating the basic mechanism of transcriptional stability.
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Targeting RBM15 may simultaneously disrupt the energy supply
and biosynthetic ability of tumors. In addition, the regulation of
tumor immune microenvironment by RBMI15 is highly
environment dependent, and future immune combination
strategies require precise tumor typing guidance. RBM15
inhibitors may have a synergistic effect with traditional
chemotherapy drugs and serve as an important strategy for future
clinical treatment.

2.1.6 KIAA1429

KIAA1429 plays a significant role in cancer progression
through its regulation of m6A modification and mRNA stability.
In nasopharyngeal carcinoma, KIAA1429 mediates m6A
modification of PTGS2, enhancing its mRNA stability and
promoting cancer cell growth, proliferation, migration, and
invasion (159). In LUAD, KIAA1429 increases m6A levels in
ARHGAP30 mRNA, thereby driving tumor proliferation and
metastasis (160). Additionally, KIAA1429 mediates LINC01106 to
enhance its expression, increasing phosphorylated JAK2 and
STATS3 levels, which further promotes LUAD development (161).
KIAA1429 also up-regulates BTG2 expression and enhances its
stability, contributing to LUAD progression (162). Furthermore,
KIAA1429 promotes LUAD cell proliferation, migration, and
invasion by up-regulating MUC3A expression (163). In GC,
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The role of ZC3H13 in the progression of malignant tumors. Among many mechanisms, ZC3H13 can promote or inhibit the progression of malignant

tumors by affecting the targeted gene m6A modification.

KIAA1429 down-regulates RASD1 expression by destabilizing its
mRNA, thereby facilitating tumor growth and metastasis (164).
KIAA1429 also enhances GC resistance to oxaliplatin (OXA)
chemotherapy by targeting FOXM1 and stabilizing its mRNA
(165). Moreover, KIAA1429 induces LINC00958 to promote
aerobic glycolysis in GC cells, leading to poor prognosis (166). In
HCC, KIAA1429 inhibits the expression of the tumor suppressor
RND3, exerting oncogenic effects and promoting metastasis (167).
Additionally, KIAA1429 targets HK1 to regulate the Warburg effect,
reducing the sensitivity of liver cancer cells to the chemotherapy
drug sorafenib (168). In CRC, KIAA1429 regulates IncRNA
POUG6F2-ASI to promote malignant behavior (169) and reduces
WEEL stability, inhibiting its expression and driving CRC
proliferation and progression (170). In colon adenocarcinoma
(COAD), KIAA1429 activates the HIF-1 signaling pathway to
promote tumor development (171). In ovarian cancer, KIAA1429
enhances ENOI mRNA stability, promoting tumor progression and
aerobic glycolysis (172). Finally, in multiple myeloma, KIAA1429
increases FOXM1 expression and stabilizes its mRNA, driving
aerobic glycolysis and malignant behavior (173). From the above
research, it can be seen that unlike some m6A writers with dual
roles, KIAA1429 plays a strong pro cancer role in various types of
cancer. It participates in almost all known malignant features of
tumors, including proliferation, metastasis, metabolic
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reprogramming, and chemotherapy resistance, by regulating
different downstream targets.

2.1.7 Others

The expression of zinc finger CCCH-type containing 13
(ZC3H13) plays a crucial role in the development of malignant
tumor (Figure 3). ZC3H13 promotes the malignant progression of
CC by mediating CKAP2 m6A modification (174). ZC3H13
mediated circRNA hsa_circ_0081723 m6A modification promotes
CC progression by regulating the AMPK/p53 pathway (175).
ZC3H13 reverses the increase in iron content in LSCC cells by
inhibiting the double oxidase 1 (DUOX1) gene, thereby reducing iron
death (176). And, ZC3H13 can mediate m6A modification of
centromere protein K (CENPK) to promote the progression of
cervical cancer (177). In addition to promoting the development of
malignant tumors, ZC3H13 also has inhibitory effects on them.
ZC3H13 can inhibit the migration and invasion of hepatocellular
carcinoma cells (178). ZC3H13 inhibits the proliferation, invasion,
and migration of PTC cells by promoting the degradation of IQGAP1
mRNA (179). ZC3H13 can degrade KSR1, increase the stability of
PJA2 mRNA, promote autophagy in BLCA cells, and inhibit BLCA
progression (180). As one of the m6A writers, VIRMA also affects the
progression of malignant tumors (Figure 4). VIRMA promotes
the progression of TNBC by up regulating the expression of KIF15
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TABLE 4 The mechanism of NSUN2 in malignant tumors.

Malignant Mechanism (target/
Roles . . References

tumors types signaling pathway)

breast cancer tumor HGH1 (186)
promoter

lung cancer tumor ME1/GLUT3/CDK2 (47)
promoter

I t

e Hmor PIK3R2/PI3K-AKT (187)

adenocarcmoma promoter
t

HCC Hmor PKM2 (48)
promoter
t

HCC umor Wat (188)
promoter

CRC tUmor Y pX1/M5C-ENO1 (190)
promoter

CRC tumor SKIL (191)
promoter
t

0s umor FABP5 (192)
promoter

(181). VIRMA can up-regulate the expression of E2F7 and maintain
the stability of E2F7 mRNA, promoting the occurrence and
metastasis of nasopharyngeal carcinoma (182). VIRMA can
maintain the stability of TMED2 and PARD3B through m6A HuR
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mediation, activate the Akt/GSK/B- catenin and MEK/ERK/Slug
signaling pathways, thereby promoting further deterioration of
intrahepatic cholangiocarcinoma (ICC) (183). VIRMA promotes
the progression of head and neck squamous cell carcinoma by
upregulating the m6A level of UBR5 (184). VIRMA promotes
NSCLC cell proliferation and malignant progression through mé6A
dependent degradation of DAPK3 mRNA (185). The mechanisms of
these relatively less studied writers often involve the stability of
IncRNA/circRNA, metabolic reprogramming, and immune
regulation, often exhibiting pro cancer effects, but there are
exceptions. They participate in stress adaptation, whether it is
metabolic, oxidative, or immune related stress, making them
potential targets for combination therapies aimed at disrupting
tumor tolerance (Figures 3, 4).

2.2 m5C

2.2.1 NSUN2

NSUN?2 plays a pivotal role in the development and progression
of various cancers by regulating gene expression and enhancing
mRNA stability, serving as a key hub connecting m5C modification
with tumor malignancy phenotype (Table 4, Figure 5). In breast
cancer, NSUN2 promotes tumorigenesis by modulating the
expression of HGH1 and stabilizing its mRNA, suggesting that
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The role of NSUN2 in the progression of malignant tumors. The currently discovered roles of NSUN2 in malignant tumors are all promoting. VIRMA
promotes the progression of malignant tumors by regulating the expression of target genes, the stability of their transcripts, and signaling pathways.

HGH]1 could be a potential therapeutic target (186). Similarly, in
lung cancer, NSUN2 facilitates metabolic reprogramming and
drives Cr(VI)-induced malignant transformation by stabilizing
the mRNA of key genes such as ME1, GLUT3, and CDK2 (47).
Furthermore, NSUN2 up-regulates PIK3R2 and enhances its
mRNA stability, leading to the activation of the PI3K-AKT
signaling pathway and promoting the malignant progression of
lung adenocarcinoma, highlighting its potential as a therapeutic
target (187). In HCC, NSUN2 contributes to tumor progression by
up-regulating PKM2 and stabilizing its mRNA, thereby promoting
glycolysis and offering potential therapeutic avenues for HCC
patients (48). Additionally, NSUN2 regulates the Wnt signaling
pathway to enhance HCC cell proliferation and migration (188).
Notably, Niu et al. discovered that NSUN2 lactylation drives drug
resistance in cancer cells, suggesting that targeting NSUN2
lactylation could be an effective strategy to improve patient
outcomes (189). In CRC, NSUN2 exerts its oncogenic effects
through the NSUN2/YBX1/m5C-ENO1 signaling axis, providing
a rationale for combining NSUN2 inhibitors in CRC treatment
(190). Moreover, NSUN2 induces m5C modification of SKIL,
enhancing its mRNA stability and promoting CRC progression
(191). In OS, NSUN?2 up-regulates FABP5 expression and stabilizes
its mRNA, thereby promoting fatty acid metabolism in OS cells and
driving tumor progression (192). These mechanisms indicate that
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NSUN?2 acts as a metabolic core regulator, reshaping glycolysis and
fatty acid metabolism by stabilizing key metabolic enzymes such as
PKM2 and ENO1 mRNA. NSUN2 also mediates the malignant
transformation induced by environmental carcinogen Cr (VI),
revealing its special significance in the occurrence of environment
related tumors. These findings suggest its enormous potential as a
combination therapy target, but highly selective inhibitors need to
be developed to overcome the potential toxicity caused by its
underlying physiological functions (Figure 5, Table 4).

2.2.2 Others

Numerous m5C modification writers are implicated in the
progression of malignant tumors and offer potential therapeutic
insights (Table 5). For instance, knocking down NSUN3 increases
the infiltration of M1 macrophages while reducing M2
macrophages, thereby promoting the progression of head and
neck squamous cell carcinoma (193). In CRC, NSUN3
knockdown activates AMPK-related signaling and inhibits STAT3
signaling, leading to anti-phosphorylation and pro-apoptotic
effects, which suppress CRC cell proliferation and migration
(194). These findings suggest that NSUN3 inhibitors could serve
as a novel therapeutic strategy for malignant tumors. NSUN4
mediates m5C modification of Circacteri3, which targets DNA
binding protein 1 (DDBI1), affecting mitochondrial function and
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TABLE 5 The mechanism of other m5C writers in malignant tumors.

10.3389/fimmu.2025.1663423

Malignant tumors types RNA-modifying Mechanism(target/signaling References
proteins pathway)

heac? and neck squamous cell NSUNS3 tumor promoter | M1/M2 (193)
carcinoma

CRC NSUN3 ;3‘::;85“ AMPK/STAT3 (194)
lung cancer NSUN4 tumor promoter | DDBI1 (195)
gliomas NSUN4 tumor promoter | CDC42 (196)
HCC NSUN5 tumor promoter | ZBED3/WNT/B-catenin (198)
HCC NSUNS5 tumor promoter =~ WDR5/SMAD/H3K4me3/EMT (199)
GC NSUN5 tumor promoter = Wnt/B-catenin (200)
esophageal cancer NSUN5 tumor promoter | METTL1 (201)
lung cancer NSUN6 tumor promoter | NM23-H1 (203)
COAD NSUN6 tumor promoter | METTL3 (204)
cervical cancer NSUN6 tumor promoter =~ NDRGI (205)
hepatocellular carcinoma DNMT2 tumor promoter | TNEFSF10 (206)

energy metabolism, and thereby promoting lung cancer
development (195). In gliomas, NSUN4 drives malignant
progression by increasing the stability of CDC42 mRNA (196).
Additionally, NSUN4 exacerbates liver cancer and may serve as a
new prognostic marker for liver cancer (197). NSUN5 promotes
HCC cell proliferation through the ZBED3/WNT/B-catenin
signaling pathway (198). It also recruits WDR5 to enrich
trimethylated histone H3 at lysine 4 (H3K4me3) in the SMAD3
promoter region, where SMAD3 mediates the EMT pathway,
further promoting HCC progression (199). In GC, NSUN5
activates the Wnt/B-catenin signaling pathway, promoting
immune escape and malignant progression (200). Moreover,
NSUNS5 directly binds to METTLI transcripts, enhancing their
m5C modification and driving the malignant progression of
esophageal cancer (201). In glioblastoma (GBM), NSUN5
enhances protein synthesis necessary for tumor progression,
thereby promoting malignancy (202). In lung cancer, NSUN6
regulates the expression of NM23-H1, promoting cancer cell
proliferation, migration, and EMT (203). In COAD cells, NSUN6
up-regulates METTL3 expression and mediates its m5C
modification, facilitating cancer progression (204). Additionally,
NSUNG6 promotes m5C modification of NDRG1 mRNA, driving
resistance to radiotherapy in cervical cancer (205). Targeting
NSUNG6 through these mechanisms may represent a promising
approach to improve the poor prognosis of malignant tumors.
Lastly, DNMT?2 targets the pro-apoptotic gene TNFSF10 (TRAIL),
promoting the proliferation of hepatocellular carcinoma cells (206).
The above mechanism indicates that different m5C writers play
highly specialized roles in tumorigenesis by regulating the fate of
specific RNAs. NSUN4 can affect energy metabolism through
mitochondrial associated RNA (such as circERI3), revealing the
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unique function of m5C at the subcellular level. NSUN3 and
NSUNS5 have begun to demonstrate their ability to regulate the
tumor immune microenvironment, affecting macrophage
polarization and T cell function, providing new targets for
combined immunotherapy. In the future, it is necessary to
continue exploring effective strategies targeting m5C modification
to reverse tumor metabolic abnormalities and overcome immune
resistance (Table 5).

2.3 mlA

MIA modification is an emerging but highly promising field in
the tumor epigenetic transcriptome. There is not much research on
the mechanism of m1lA writer in tumors, and currently only the
following studies provide new strategies for the treatment of
malignant tumors. TRMT6 promotes cell proliferation in HCC
through the PI3K/AKT signaling pathway, providing direction for
the treatment of HCC (49). In addition, TRMT6/TRMT61A can
drive cholesterol synthesis to activate hedgehog signaling, promoting
the occurrence of HCC (50). Another type of m1A writer TRMT10C
can promote the malignant development of certain gynecological
cancers and may become an effective target for treating gynecological
cancers (207). Overall, ml1A modification finely regulates protein
translation by modifying tRNA, thereby affecting key oncogenic
pathways. M1A modification may not directly cause drastic
transcriptome changes, but rather exert an impact by optimizing
the synthesis efficiency of specific oncogenic proteins, acting as a
“translation level” amplifier. In the future, we can further explore the
modification of m1A on ribosomal RNA (rRNA) and its regulation of
the translation machine’s own function. Based on the discovered
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TABLE 6 The mechanism of m7G writers in malignant tumors.

10.3389/fimmu.2025.1663423

. RNA-modifyin Mechanism(target/signalin
Malignant tumors types . BT ey 9 9 References
proteins pathway)
h k 11 PI3K/AKT,
eac? and neck squamous ce METTLI1 tumor promoter 3K/ / (208)
carcinoma mTOR
t
breast cancer METTLI Hmor GADDA45A/RB1 (209)
suppressor
lung adenocarcinoma METTL1 tumor promoter | FOXM1 (210)
PKM/PKM2/
CRC METTL1 t 1 211
umor promoter CD155 (211)
HCC WDR4 tumor promoter = CCNBI1/EIF2A (213)

TRMT6/TRMT61A small molecule inhibitors, we can promote their
translation into preclinical therapeutic research.

2.4 m7G

METTLI plays a significant role in the progression of various
cancers by regulating key signaling pathways, mRNA translation,
and immune modulation (Table 6, Figure 6). In head and
neck squamous cell carcinoma, METTL1 promotes tumor
progression by regulating the PI3K/AKT/mTOR signaling
pathway, enhancing mRNA translation, and influencing the
immune microenvironment (208). Conversely, in breast cancer,
METTL] mediates m7G modification to regulate cell cycle arrest
and the translation of genes such as GADD45A and RB1, thereby
inhibiting cancer cell proliferation (209). In LUAD, METTLI
enhances the RNA stability of FOXMI1 and upregulates its
expression. FOXM1, in turn, inhibits PTPN13 expression,
reducing the sensitivity of LUAD cells to gefitinib and driving
cancer progression (210). In CRC, METTL1 mediates m7G
methylation of PKM mRNA, enhancing PKM2 expression. PKM2
activates CD155 expression, inducing immune evasion and
promoting CRC progression, which provides a potential direction
for CRC immunotherapy (211). Additionally, METTLI1 and WDR4
collaborate to promote the malignant progression of lung cancer by
mediating m7G tRNA modification and regulating mRNA codon
composition to enhance mRNA translation (51). In HCC, WDR4
interacts with METTL1 to synergistically regulate m7G mRNA
modification, thereby promoting cancer progression (212). WDR4
also enhances the stability of CCNB1 mRNA and facilitates the
binding of EIF2A to CCNB1 mRNA, enhancing CCNBI translation
and driving HCC progression (213). Similarly, in intrahepatic
cholangiocarcinoma, METTL1 and WDR4 mediate m7G tRNA
modification to enhance mRNA translation, promoting cancer
progression and contributing to poor prognosis (42). In
osteosarcoma, METTL1 and WDR4 mediate m7G modification of
tRNA, enhancing mRNA translation and promoting cancer cell
proliferation, migration, and chemoresistance (52). In summary,
m7G modification globally reshapes the proteome at the translation
level by altering tRNA abundance and codon preference, thereby
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simultaneously coordinating the cell cycle, driving chemotherapy
resistance, and promoting immune escape (Figure 6, Table 6).

3 Potential clinical treatment of
malignant tumors by RNA methylation
modified writers

Based on the impact and molecular mechanisms of RNA
methylation modification on malignant tumors mentioned above,
clinical research on the treatment of malignant tumors targeting
RNA methylation modification authors is becoming increasingly
popular. At present, researchers are exploring the treatment of
various malignant tumors related to RNA methylation modification
in clinical practice through the development of metabolic therapy,
immunotherapy, and targeted therapy. RNA methylation modification
writer is currently involved in regulating the resistance of various
malignant tumor drugs. METTL3 can promote CRC resistance to 5-FU
by activating the [ - catenin signaling pathway through the promotion
of SEC62 protein expression (214). Under hypoxic conditions,
METTL3 deficiency leads to a decrease in FOXO3 expression,
promoting autophagy and angiogenesis, thereby promoting the
progression of HCC and sorafenib resistance (215). On the contrary,
METTL3, as a sensitizer in PC, can enhance the sensitivity of
gemcitabin (GEM) and achieve anti-cancer effects through the DBH-
AS1/miR-3163/USP44 pathway (216). In HCC, METTL14 can reduce
hepatocyte nuclear factor 3- ¥ (HNF3y) and inhibit the activation of
drug transporters OATP1B1/OATP1B3, leading to resistance to
sorafenib (217). In addition, METTL14, as a resistance factor, can
upregulate the expression of cytidine deaminase (CDA) to metabolize
and inactivate GEM, promoting the progression of PC (218). In
NSCLC, the interaction between m5C writer NSUN2 and YBXI can
enhance the translation of QSOX1 mRNA and promote intrinsic
resistance to gefitinib (219). The m6A writer is a key regulator of
tumor immune therapy response, particularly in immune checkpoint
blockade therapy (ICB) and adoptive cell therapy (ACT). PD-LI is a
key protein used by tumor cells to suppress T cells and achieve immune
escape. In the vast majority of cases, inhibiting METTL3 can enhance
the efficacy of anti-PD-1 therapy. For example, knocking out METTL3
in NSCLC and non-alcoholic fatty liver cancer-related liver cancer
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The role of m7G writers in the progression of malignant tumors. Most of the m7G writers currently discovered have a promoting effect in malignant tumors.
METTLL and WDR4 affect the progression of malignant tumors by regulating the expression of target genes, transcriptional stability, and signaling pathways.

(NAFLD-HCCQC) increases PD-L1 expression and immune cell
infiltration, ultimately enhancing the anti-PD-1 effect and achieving
anti-tumor efficacy (220, 221). Knocking down METTL3/14 enhances
the infiltration and function of cytotoxic T cells (CTLs) through the
YTHDEF2/STAT1/IRF1 axis, thereby enhancing the anti-PD-1 efficacy
of CRC, which also has the same effect in melanoma (222). On the
contrary, in certain situations, high expression of METTLS3 is beneficial
for immunotherapy. For example, in thyroid cancer, high expression of
METTL3 inhibits CD70 and maintains its degradation, instead
relieving the inhibition of T cells and enhancing PD-1 efficacy (223).
The same effect is also observed in macrophages of melanoma and lung
cancer (224). In addition, METTL14 may downregulate the expression
of SIAH2, making cholangiocarcinoma sensitive to ICB (225). There is
relatively little research on the clinical treatment of malignant tumors
with ACT, and further exploration is needed. At present, progress has
shown that METTL3 can enhance the proliferation and cytotoxicity of
NK cells, providing direction for future research (226). In addition, due
to the correlation between m6A modified regulatory factors and T cell
function, CAR-T cell therapy is also worth looking forward to (227,
228). Researchers have studied the inhibitory effect of m6A writers on
certain malignant tumors in the development of targeted agents. Li
et al. utilized the protein-protein interaction at the METTL3-
METTLI14 binding interface to select a candidate peptide RM3 with
high anti-cancer activity, and then designed a fixed peptide inhibitor
(RSM3) to enhance the stability of RM3, thereby achieving the anti-
cancer effect of targeting carcinogenic METTL3 (229). Small molecule
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inhibition is an important anti-cancer strategy. STM2457, as a highly
effective catalytic inhibitor, targets METTL3 to promote AML
apoptosis (230). In addition, STM2457 can also inhibit the
progression of PCa (231) and neuroblastoma (232). STM2457 can
provide new insights into the treatment of OSCC in conjunction with
Anlotinib (233). There are two other METTL3 inhibitors that can also
be effective in clinical treatment. UZH1a has been shown to reduce
m6A/A levels in the mRNA component of leukemia cell line MOLM-
13, thereby inhibiting tumor cell proliferation and exhibiting the same
effect in osteosarcoma U20S cells (234). UZH2 can also reduce the
m6A/A levels of polyadenylation RNA in MOLM-13 (acute myeloid
leukemia) and PC-3 (prostate cancer) cell lines (235). In addition to
m6A writers’ research on the clinical treatment of malignant tumors,
other RNA methylation modifications also provide direction for the
clinical treatment of malignant tumors. M5C writer NSUN2 can
regulate the expression of TREX2 and inhibit the cGAS/STING
pathway, thereby developing resistance to PD-1 blockade and
providing new ideas for immunotherapy (236). In addition,
researchers have identified a potent inhibitor thiram for m1A writer
TRMT6/TRMT61A, which exhibits significant therapeutic effects in
liver cancer treatment. Thiram inhibits TRMT6/TRMT61A in liver
cancer, increases the methylation level of some tRNAs, triggers
cholesterol synthesis, activates the Hedgehog signaling pathway, and
promotes the process of liver cancer formation (50). At present, there is
not much research on other RNA writer inhibitors, and targeting RNA
methylation modified writers with inhibitors for malignant tumor
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Clinical study on the treatment of malignant tumors using RNA methylation modified writers. There are currently three types of therapies, namely metabolic
therapy, immunotherapy, and targeted therapy. Preliminary studies have shown that it is effective for malignant tumors such as CRC, HCC, and NSCLC.

treatment may become the most direct and convenient direction.
However, there are still several issues to be addressed on the future
research path. Firstly, the actual effect of using inhibitors to treat
patients is unknown, and currently it can only be the direction of
treatment rather than the exact treatment method. Secondly, patients
with malignant tumors may gradually develop resistance during the
treatment with RNA methylation modified writer inhibitors, which
cannot guarantee the expected therapeutic effect. Thirdly, due to
individual differences in constitution, inhibitor drugs are not suitable
for every patient with malignant tumors, which may narrow the scope
of treatment. Finally, the selection of inhibitors also needs further
evaluation to discover their potential effects. In addition, according to
the above report, the promotion or blockade of targeted genes and
signaling pathways within the mechanism can also become the
direction of future treatment, but more detailed and lengthy research
is needed, and the task is arduous and the road is long (Figure 7).

4 Conclusions and outlook

In this review, we mainly introduce and summarize common
RNA writers and their mechanisms of action in different malignant
tumors, providing direction for the treatment of malignant tumors.
Firstly, in many studies, we have found that m6A writers have a dual
role in the progression of malignant tumors, that is, m6A writers can
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promote or inhibit the progression of malignant tumors, and the
mechanisms exhibited in different malignant tumors are different. For
example, METTL3 can promote the progress of esophageal cancer,
colorectal cancer, pancreatic cancer and other cancers, and the
mechanisms of promoting the occurrence of different targets
among them are also different. More interestingly, the same m6A
writer within the same malignant tumor can regulate tumor
progression through different mechanisms, providing diverse
targeted therapies for cancer patients as much as possible. For
example, in cervical cancer, we identified three different
mechanisms of METTL3 that can promote the progression of
cervical cancer. HSPA9 (68), NEK2 (69), and SLC38A1 (70) are the
targets corresponding to these three mechanisms and may become
effective targets for cancer treatment in the future. We also found that
in some studies, the same m6A writer can have opposite effects on the
same cancer, such as METTL3 promoting non-small cell lung cancer
(84), while also inhibiting lung cancer cell migration and suppressing
lung adenocarcinoma progression (86, 87). In addition, there have
been many reports on the relationship between m6A writers and long
non coding RNAs in the study of their impact on the progression of
malignant tumors. For example, METTL3 can promote the
development of PTC by increasing the stability of LINC00894 (61),
and METTLI14 mediated IncRNA RP1-228H13.5 can promote the
development of liver cancer (95). However, there are few reports on
research related to circular RNA, only in colorectal cancer, prostate
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cancer, glioma, lung adenocarcinoma, and cervical cancer. Finally,
m6A writer plays a role in immunotherapy and drug-resistant
therapy for malignant tumors. WTAP can enhance the immune
escape mechanism and promote the occurrence of colorectal cancer
(123). KIAA1429 can reduce the sensitivity of liver cancer cells to the
chemotherapy drug sorafenib and enhance the resistance of gastric
cancer cells to oxaliplatin chemotherapy, thereby affecting the
development of cancer (237). The research on m6A writers can help
us explore the occurrence of malignant tumors and provide new
directions for the treatment of malignant tumors. Currently, there
have been breakthroughs in the treatment direction of METTL3
inhibitors, but other aspects of research have not yet been
discovered. The road to a comprehensive understanding of the
relationship between m6A writers and malignant tumors is still
long. In addition, the mechanisms of action of m5C, mlA, and
m7G modified writers in malignant tumors have also been
gradually studied, providing more possibilities for the treatment of
malignant tumors. We found that immunotherapy may play a better
role in exploring the treatment of m5C modified writers. For example,
in head and neck squamous cell carcinoma, it acts on M1 and M2
macrophages by affecting NSUN3 (193). NSUN5 can promote
immune escape in GC (200). At present, there is a lack of research
on writer inhibitors for these three modifications, but there are
already mechanism directions that provide inspiration. Meanwhile,
emerging treatment approaches such as mRNA therapy also require
RNA methylation modifications to enhance stability and avoid
immunogenicity (237). Despite significant progress in research,
there are still many challenges in this field: the functional
background of writers is dependent, and the same writer (such as
METTL3, METTLI14) can play completely opposite roles in different
tumors or even within the same tumor. The determining factors of
upstream regulation and downstream substrate selectivity are still
unclear. Writers have targeted specificity and toxicity, and they
typically modify a large number of RNA transcripts. How to
develop drugs that can specifically block carcinogenic modification
events without interfering with global RNA homeostasis and normal
physiological functions is a major challenge. Similar to other targeted
therapies, tumors may eventually develop resistance to writer
inhibitors. Is combination therapy strategy (such as combining with
immune checkpoint inhibitors) an inevitable choice? This issue also
needs to be considered. Although small molecule inhibitors such as
STM2457 have been studied, their in vivo delivery efficiency, tumor
targeting, and long-term safety still need to be further evaluated. Our
research on circRNA is insufficient. Compared with IncRNA, the
study of how writers affect tumor progression by regulating circular
RNA is still in its infancy, which is a huge potential unknown field.
Based on the above summary and challenges, we believe that future
research should prioritize deeper mechanism exploration: using
single-cell multi omics techniques to draw RNA modification
profiles in the tumor microenvironment, in order to analyze the
cellular background specificity of writer function. In addition, it is
necessary to develop new treatment strategies and explore
combination therapies, such as combining writer inhibitors with
chemotherapy, radiotherapy, immunotherapy, or metabolic drugs,
to overcome drug resistance. Develop new modal drugs such as
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protein degradation targeted chimeras to achieve more thorough and
precise clearance of writer proteins. Strengthen clinical translation and
promote the clinical validation of writers or their modified signatures as
predictive biomarkers to guide patient stratification and treatment
selection. Actively exploring the synergistic effect of mRNA based
therapy and RNA methylation modification, utilizing modification
techniques to enhance the stability and translation efficiency of
therapeutic mRNA. In summary, RNA methylation writers are a
dynamic but extremely complex link in the cancer regulatory
network. Looking ahead to the future, we hope to discover more
types of m6A writers, gain a deeper understanding of the structures
and mechanisms of existing molecules, closely integrate epigenetic
transcriptomics, functional genomics, and clinical data, develop
diversified targeted therapies for different cancers, and provide more
support and choices for patients with malignant tumors.
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