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Targeting innate and adaptive
immunity to suppress lung
cancer metastasis
Rong Qin*

Department of Pathology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine,
Xiangyang, China
Lung cancer remains the leading cause of cancer-related mortality globally, with

metastasis and recurrence as the primary determinants of poor prognosis. Despite

advances in immunotherapy, intrinsic and acquired resistance to immune

checkpoint inhibitors (ICIs) underscores the need to explore alternative

immunomodulatory strategies. Emerging evidence highlights the critical yet dual

roles of innate and adaptive immune cells within the tumormicroenvironment (TME)

in either restraining or facilitating metastatic dissemination. Adaptive immunity,

dominated by T and B cells, orchestrates context-dependent antitumor responses

or immunosuppression, while innate immune dysregulation fosters metastatic

niches. We highlight translational opportunities, such as natural killer (NK) cell

activation, macrophage reprogramming, and dendritic cell (DC)-based vaccines,

alongside prognostic biomarkers like peripheral NK activity and tryptase+ mast cell

infiltration. This review summarizes the interplay of immune cell subsets, including T

and B lymphocytes, macrophages, DCs, NK cells, and mast cells, in lung cancer

progression. By synthesizing preclinical and clinical insights, this review identifies

unresolved challenges and proposes targeting innate immunity as a promising

avenue to augment current therapies and mitigate metastasis.
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lung cancer, adaptive immune cells, innate immune cells, immune dysregulation,
metastasis, therapeutic target
1 Introduction

Primary lung cancer remains one of the most prevalent and lethal malignancies

worldwide (1, 2). Although recent data indicate a decline in its proportional

contribution to overall cancer mortality attributed to advances in surgery, radiotherapy,

chemotherapy, targeted therapies, and immunotherapy (3, 4), lung cancer continues to lead

in both incidence and mortality. Metastasis and recurrence remain the dominant causes of

poor outcomes, yet widely accepted theoretical frameworks and effective strategies for

preventing dissemination are still lacking. The advent of immune checkpoint inhibitors

(ICIs) has transformed clinical care, offering durable responses in some patients. However,

many individuals exhibit primary resistance or develop immune escape over time, limiting

therapeutic efficacy (5).
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Emerging evidence suggests that adaptive immune cells

predominate within the lung cancer microenvironment, while

innate immune components such as natural killer cells,

macrophages, granulocytes, monocytes, dendritic cells, and mast

cells are significantly underrepresented compared to non-tumor

lung tissue. This relative depletion implies a role for innate immune

dysfunction in facilitating metastasis (6). This review systematically

summarizes the roles of diverse immune subsets in lung cancer

invasion and dissemination, aiming to uncover novel

immunological targets for therapeutic development.
2 Adaptive immune cells in the lung
cancer microenvironment

2.1 T lymphocyte subsets

Patients with cancer exhibit impaired immune surveillance,

enabling tumor immune evasion through diverse mechanisms (7). In

lung cancer, T lymphocytes dominate the tumor microenvironment

(TME), where CD4+ T cells coordinate immune responses via cytokine

secretion, while CD8+ cytotoxic T lymphocytes (CTLs) eliminate

neoplastic cells expressing tumor neoantigens (8). In the pulmonary

TME, dysregulated immune profiles—marked by decreased CD4+,

increased CD8+, and a reduced CD4+/CD8+ ratio—are observed in

lung cancer patients (9, 10). Regulatory T cells (Tregs), a CD4+ subset

defined by CD4+/CD25high/FoxP3+/CD127− markers, play a key

immunosuppressive role by inhibiting T, dendritic, and natural killer

(NK) cell functions (11, 12). Tregs are significantly enriched in the

BALF of lung cancer patients—particularly those with non-squamous

subtypes such as adenocarcinoma—compared to benign conditions

(13). Clinically, an elevated Treg/CD8+ ratio has been consistently

associated with poorer overall survival and reduced responses to ICIs

(14, 15), underscoring the prognostic value of T-cell profiling in both

early- and late-stage lung cancer (16). Moreover, variations in T-cell

infiltration and exhaustion signatures across ethnic and histological

subgroups suggest that population diversity may influence immune

responsiveness and therapeutic benefit. Thus, Treg quantification may

reflect local immunosuppression, informing prognosis and

immunotherapy stratification (17). Beyond diagnostics, T cells offer

therapeutic potential. Xiao et al. (18) reviewed four generations of

chimeric antigen receptor T (CAR-T) cell therapy in lung cancer,

highlighting key targets including EGFR, EphA2, MUC1, and HER2,

along with associated toxicities. These insights underscore the

diagnostic, prognostic, and therapeutic utility of T lymphocytes in

lung cancer immuno-oncology.
2.2 B lymphocytes

Tumor-infiltrating B lymphocytes (TIL-Bs) represent a crucial

adaptive immune component in lung cancer, exhibiting dual,

context-dependent functions in both tumor suppression and

promotion (19). Circulating B cells secrete cytokines and

differentiate into Be1/Be2 subsets, paralleling Th1/Th2 profiles
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and shaping immune polarization (20–22). In lung squamous

carcinoma, tumor-associated antigens such as SCCA can drive B-

cell-mediated antibody production and formation of circulating

immune complexes (CICs), which activate FcgR signaling in

myeloid cells, thereby recruiting leukocytes into the TME and

facilitating progression and metastasis (23). Pharmacological

inhibition of B-cell activation or interference with B-cell-driven

innate responses may thus curb malignant transformation of

precancerous lesions. Conversely, TIL-Bs can elicit potent

antitumor responses through enhancing CD4+ memory T-cell

formation, supporting cytotoxic T-cell function, and orchestrating

TLS, which are associated with improved prognosis and immune

activation. Local delivery of cytokines such as CXCL13 or

lymphotoxin enhances TLS formation and TIL-B recruitment,

strengthening vaccine responses (24). In certain NSCLC subtypes,

TIL-Bs may differentiate into IgG4-secreting plasma cells

contributing to tumor control (25). They also generate tumor-

specific antibodies forming in situ immune complexes with direct

cytotoxicity. Intratumoral germinal centers identified by Michael

et al. (26) suggest B-cell-driven local immunity, with memory B-

cell-derived antibody cloning offering therapeutic potential (27).

Furthermore, some evidence suggests that TIL-Bs possess direct

cytotoxic capacity against tumor cells via the TRAIL/Apo1 signaling

pathway (28). High TLS density correlates with improved survival,

notably in female patients and adenocarcinoma subtypes,

underscoring sex- and histology-dependent differences in B-cell-

mediated immunity (29, 30).
3 Innate immune cells in the lung
cancer microenvironment

Innate immune dysregulation is pivotal in lung cancer

recurrence and metastasis. Clinical studies link peripheral

monocyte and neutrophil counts, as well as cytotoxic receptor

transcripts, to overall survival (31). Notably, NK-cell dynamics

illustrate this complexity: in early-stage disease, expansion of

peripheral cytotoxic CD56dim NK subsets expressing CD16 and

NCRs signals active immune surveillance (32, 33). However, as the

disease advances, NK cells fail to maintain immune clearance and

homeostasis, resulting in immune escape and subsequent metastasis

(34). Importantly, reduced intratumoral NK-cell density has been

linked with shorter disease-free survival and diminished response to

immunotherapy, whereas higher baseline NK activity in peripheral

blood correlates with improved outcomes, highlighting their

translational value as predictive biomarkers across diverse patient

populations (35, 36). High density of CD68+ macrophages/

monocytes has a positive correlation with reduced mortality in

lung cancer patients. Beyond the primary tumor, innate immune

cells are critical in establishing pre-metastatic niches. Primary

tumor cells reprogram distant organs by recruiting myeloid

progenitor cells and modulating the secretion of cytokines,

soluble factors, and extracellular vesicles, thereby fostering a

permissive microenvironment enriched with neutrophils and

alveolar macrophages conducive to metastatic colonization (37).
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3.1 Macrophages in the lung cancer
microenvironment

Macrophages, key constituents of the innate immune system, are

broadly categorized into classically activated (M1) and alternatively

activated (M2) phenotypes (38). M1macrophages, induced by IFN-g,
TNF, or LPS, secrete high levels of TNF, IL-12, and IL-23, driving

Th1-mediated inflammation and exerting antitumor effects.

In contrast, M2 macrophages, stimulated by IL-4 or IL-13, release

IL-10 and various chemokines that promote Th2 responses, tissue

remodeling, angiogenesis, and immunosuppression (39). In lung

cancer, tumor-associated macrophages (TAMs) are predominantly

M2-like, supporting tumor progression. Studies suggest that M2-

polarized TAMs enhance tumor invasion and metastasis by

upregulating VEGF-C and its receptor VEGFR3, thereby driving

angiogenesis and lymphangiogenesis (40). Additionally, M2-polarized

TAMs secrete matrix-remodeling enzymes such as MMP-2, which

facilitate tumor dissemination (41), while their production of IL-10

suppresses pro-inflammatory cytokines (TNF-a, IL-12, IL-1) and
promotes tumor immune escape (42, 43). Quantification and

classification of TAMs, particularly CD163+ M2 macrophages, are

useful prognostic indicators in NSCLC. Elevated CD163+ cell

counts are associated with disease progression. Moreover, NSCLC

cells may recruit M2-like TAMs via VEGF, and this axis can be

interrupted using anti-VEGFmonoclonal antibodies (bevacizumab)

(44). Therapeutic interventions against M2-polarized TAMs

encompass the inhibition of chemokines, including CCL2, CCL7,

and CCL8, to limit their recruitment, suppression of M2

polarization pathways, and reprogramming of M2-like TAMs into

pro-inflammatory M1-like phenotypes (45–47).
3.2 Mast cells

Mast cells, another integral component of innate immunity,

contribute to tumor growth and metastasis across multiple cancer

types. In lung cancer, mast cells promote tumor progression via

pro-angiogenic signaling, autocrine hormone production, and

release of growth factors (48–51). Degranulation products

facilitate cervical cancer metastasis (52), and histamine release has

been linked to colorectal cancer severity (53). In NSCLC,

intratumoral mast cells are prevalent within tumor stroma and

correlate with patient survival (54). Human mast cells exhibit two

phenotypes: MCT (tryptase-positive) and MCTC (tryptase- and

chymase-positive). MCT predominates in mucosal tissues, while

MCTC localizes to dermal and connective tissues. Both subtypes are

associated with improved NSCLC prognosis, suggesting a potential

antitumor role. Mast cells may enhance antitumor immunity by

secreting TNF-a, which promotes T-cell proliferation, and in turn,

TNF-a-stimulated T cells support mast cell expansion through a

positive feedback loop (55). Furthermore, proteases released during

degranulation disrupt the tumor extracellular matrix, thereby

restraining tumor growth (54).
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3.3 Dendritic cells

Dendritic cells (DCs) are the most potent professional antigen-

presenting cells, capable of antigen uptake, processing, and

presentation to initiate adaptive immunity. Immature DCs exhibit

strong migratory capabilities, while mature DCs efficiently prime

naive T cells, orchestrating immune responses. DCs are found in

epithelial tissues interfacing with the environment, including the

skin, nasal mucosa, lungs, and gastrointestinal tract, and in

circulation as precursors. Activated DCs migrate to lymphoid

organs to interact with T and B cells. Genetically modified DCs

expressing CCL21 can recruit naive T cells and promote their

differentiation into tumor-specific cytotoxic lymphocytes (56). In

addition, DCs secrete chemokines such as CCL1 and CCL17 to

enhance CD8+ T-cell activation (57). Plasmacytoid dendritic cells

(pDCs), a distinct subset, bridge innate and adaptive immunity

through antigen presentation and modulation of NK-, T-, and B-

cell activity. pDCs can either induce immune tolerance or stimulate

immunity depending on cytokine signals. Stimulation of pDCs with

CTLA4-Ig or OX2 (CD200) induces indoleamine 2,3-dioxygenase

expression, suppressing T-cell proliferation and promoting

tolerance (58). Many tumors harbor abundant immature DCs and

pDCs, which contribute to tumor metastasis and recurrence. In

breast cancer, pDC-expressed ICOS ligand facilitates CD4+ T-cell-

mediated immunosuppression and tumor growth (59). Conversely,

TLR agonists can trigger pDCs to secrete type I interferons, activate

intratumoral immature DCs, and initiate anti-angiogenic, tumor-

specific T-cell responses. Imiquimod-stimulated pDCs have

demonstrated efficacy in melanoma by enhancing T-cell-mediated

immunity (60). However, research on pDCs in lung cancer remains

limited and warrants further investigation.
3.4 Natural killer cells

NK cells are large granular lymphocytes that mediate cytotoxicity

against tumor and pathogen-infected cells without prior sensitization

and independently of MHC restriction. In lung cancer, the extent of

NK-cell infiltration correlates with tumor subtype, smoking history,

tumor size, and prognosis (61). Greater NK-cell presence is observed

in squamous cell carcinoma relative to adenocarcinoma (62). Non-

smokers show higher NK infiltration than smokers, and tumors with

greater NK density exhibit improved clinical outcomes (63). In the

lung tumor microenvironment, inhibitory NK receptors are

upregulated, while activating receptors are downregulated. Murine

models suggest that downregulation of stimulatory receptors NKG2D

and Ly49I, along with upregulation of inhibitory NKG2A, may

underlie tumor-induced immune tolerance. NKG2D enhances

antitumor immunity through perforin-mediated apoptosis, while

Ly49I aids NK-mediated cytolysis. In NSCLC patients, combined

chemotherapy and NK-cell reinfusion prolonged median survival

compared to chemotherapy alone (64). Tumoral expression of

NKG2D ligand MICA may predict response to NK-based
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immunotherapy. Moreover, gefitinib has been shown to enhance NK

cytotoxicity against lung cancer cells (65). Previous IL-2-based NK

therapies were limited by toxicity and Treg expansion (66). Recent

advances have enabled NK-cell engineering with tumor-specific

chimeric antigen receptors, yielding promising antitumor effects

(67). Additionally, bispecific proteins targeting both tumor antigens

and NK-activating receptors have demonstrated targeted cytotoxicity

through antibody-dependent cellular cytotoxicity (ADCC)

(68) (Figure 1).
3.5 Neutrophils

Neutrophils are among the earliest responders in the tumor

microenvironment and have emerged as critical regulators of lung

cancer metastasis as well as metastatic colonization within the lung

(69). Tumor-associated neutrophils (TANs) display functional

plasticity, broadly polarized into antitumor (N1) and protumor (N2)

phenotypes (70, 71). While N1 neutrophils exert cytotoxic activity

through ROS, TNF-a, and direct tumor cell killing, N2 neutrophils

promote angiogenesis, extracellular matrix remodeling, and

immunosuppression, thereby facilitating metastatic dissemination

(72–75). A particularly important mechanism is the formation of

neutrophil extracellular traps (NETs), which create a fibrous scaffold

that captures CTCs, enhancing their adhesion and colonization in

distant sites such as the lung (76–78). Preclinical studies have shown

that tumor-derived factors, including G-CSF, IL-8, and TGF-b, drive
neutrophil mobilization and N2 polarization, supporting metastatic

niche formation (70, 79, 80). Clinically, an elevated neutrophil-to-
Frontiers in Immunology 04
lymphocyte ratio has been consistently associated with poor outcomes

in NSCLC, reinforcing its prognostic value (81–83). Therapeutic

strategies targeting neutrophils include inhibition of CXCR1/2 to

block IL-8-mediated recruitment, disruption of NETs with DNase or

PAD4 inhibitors, and reprogramming TANs toward antitumor

phenotypes with TGF-b blockade (84, 85). These approaches, in

combination with ICIs or NK-based therapies, may synergistically

suppress metastatic spread by dismantling neutrophil-driven pre-

metastatic niches (86, 87). Collectively, neutrophils represent both

biomarkers of disease progression and actionable targets within

innate immune-based therapeutic strategies.
4 Clinical applications of innate
immune cells in lung cancer

4.1 Targeting innate immune cells to
suppress lung cancer metastasis

NK-cell-based immunotherapies are central to modulating

metastasis, with significant progress in hematologic malignancies,

though efficacy in solid tumors like lung cancer remains under

investigation (88). Among cytokines, IL-15 and its receptor

agonists show high clinical safety, while monoclonal antibodies

targeting NK inhibitory receptors—anti-KIR (IPH2101, lirilumab) and

anti-NKG2A (monalizumab)—are in clinical trials (89). Adoptive NK

therapies, including NK-92 and CAR-NK cells, demonstrate efficacy in

suppressing lung cancer metastasis. Similarly, gd T- and iNKT-cell

therapies exhibit antitumor effects in animal models, though clinical
FIGURE 1

Roles of innate and adaptive immunity in lung cancer.
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benefits are limited (90). TAMs suppress CD8+ T-cell cytotoxicity via

physical interactions, making TAM-targeting strategies—through

depletion, reprogramming, or blockade of functional molecules—

attractive for metastasis control (91). Antibodies against CCR2, CSF1R,

and IL-1b reduce TAM recruitment, survival, and polarization,

improving the immunosuppressive tumor microenvironment (92).

DCs, as key APCs, are being leveraged to enhance antigen

presentation and elicit robust T-cell responses. Personalized DC

vaccines transfected with tumor-associated antigen (TAA) mRNAs

have shown favorable survival benefits in advanced lung cancer

patients without adverse effects (93).

In addition to these approaches, neoantigen-based vaccines and

adoptive cell transfer (ACT) therapies have emerged as critical

components of next-generation immunotherapy in lung cancer (94–

96). Neoantigen vaccines, derived from tumor-specific mutations, can

induce highly personalized T-cell responses with minimal risk of

autoimmunity (97). Early-phase clinical trials have demonstrated that

neoantigen-pulsed dendritic cells or peptide vaccines can elicit durable

antitumor immunity in subsets of patients with NSCLC (97, 98).

Likewise, ACT therapies, including TILs, CAR-T cells, and CAR-NK

cells, have shown encouraging activity in targeting lung cancer-

associated antigens such as EGFR, MUC1, and mesothelin (99–102).

Although challenges such as antigen heterogeneity, limited trafficking

into solid tumors, and immune-related toxicities remain, combinatorial

strategies integrating ACT with innate immune modulation (NK

activation or TAM reprogramming) represent a promising avenue to

overcome resistance and suppress metastasis (103–105).
4.2 Innate immune cells as prognostic
biomarkers in lung cancer

Monitoring innate immune cell populations and related mediators

in peripheral blood provides novel avenues for prognostic assessment

in lung cancer (106). For example, baseline NK-cell activity in

peripheral blood prior to immunotherapy has demonstrated

predictive value for therapeutic response in NSCLC, with higher NK-

cell activity positively correlating with progression-free survival. This

metric exhibits a sensitivity of 80% and a specificity of 68.4%, making it

a robust predictive tool for immunotherapeutic outcomes (35).

Importantly, the strength of this association appears highly context-

dependent: enhanced NK-cell activity correlates more consistently with

clinical benefit in tumors exhibiting immunogenic characteristics, such

as elevated PD-L1 expression or high tumor mutational burden, and in

histological subtypes characterized by greater NK infiltration, which is

more frequently observed in squamous carcinoma than in

adenocarcinoma (107, 108). Radiotherapeutic efficacy in lung cancer

is also influenced by circulating neutrophil counts. Although pre-

radiotherapy neutrophil levels are not directly associated with

prognosis, elevated neutrophil populations can contribute to

radiotherapy resistance (109). In clinical practice, neutrophil-forward

composite indices (neutrophil-to-lymphocyte ratio) often co-vary with

M2-like macrophage signatures and systemic inflammation; together,

these profiles align with inferior PFS/OS and reduced ICI

responsiveness, reinforcing their utility as low-cost risk stratifiers that
Frontiers in Immunology 05
complement tumor-intrinsic markers (110, 111). Furthermore,

infiltration of tryptase+ MCs has been proposed as a potential

prognostic biomarker for lung cancer metastasis. High intratumoral

densities of tryptase+ MCs correlate significantly with lymph node

metastasis and are associated with both overall and progression-free

survival (112). These findings collectively highlight the emerging utility

of innate immune cells as biomarkers for lung cancer metastasis.

However, further mechanistic and clinical investigations are

warranted to validate their prognostic value.
5 Limitations and challenges

Despite the rapid advances in antigen presentation immunotherapy

for lung cancer, several limitations constrain its clinical efficacy. First,

ICIs are effective only in a subset of patients, with intrinsic and acquired

resistance remaining prevalent (113, 114). Mechanisms underlying

resistance include impaired upregulation of alternative inhibitory

pathways and recruitment of immunosuppressive cells such as Tregs

and myeloid-derived suppressor cells (115, 116). Second, patient

heterogeneity—arising from diverse genetic, epigenetic, and

immunological profiles—limits the predictive accuracy of current

biomarkers such as PD-L1 expression and tumor mutational burden

(117, 118). This variability complicates patient stratification and

response prediction. Third, immunotherapy is often accompanied by

immune-related adverse events, including pneumonitis, colitis, and

endocrinopathies, which can significantly affect patient quality of life

and limit treatment continuity (119, 120). Overcoming these challenges

will require rational combination strategies (ICIs with TAM or NK-

targeted therapies), integration of precision biomarkers, and the

development of novel immunomodulatory agents that minimize

toxicity while enhancing efficacy (102, 121). Addressing these barriers

is critical for optimizing the therapeutic potential of immune-based

interventions in metastatic lung cancer.
6 Conclusion

The immune landscape of lung cancer is a dynamic interplay of

pro- and anti-metastatic signals mediated by diverse immune cell

populations. While adaptive immunity, particularly cytotoxic T

cells and tertiary lymphoid structure-associated B cells, forms the

backbone of antitumor responses, innate immune cells are

increasingly recognized as pivotal regulators of metastatic

dissemination. Key findings reveal that NK-cell dysfunction, M2

macrophage polarization, and tolerogenic DC activity contribute to

immune evasion, whereas reinvigorating innate cytotoxicity or

reprogramming immunosuppressive niches may offer therapeutic

leverage. Clinically, innate immune biomarkers such as peripheral

NK-cell activity and mast cell density exhibit prognostic potential,

though their mechanistic underpinnings require further validation.

Future investigations should prioritize integrated preclinical and

clinical approaches to validate these strategies. At the experimental

level, murine lung cancer models and patient-derived xenografts could

be used to test macrophage-reprogramming interventions or NK-cell
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engineering platforms. Multi-omics technologies, including single-cell

and spatial transcriptomics, may further dissect the crosstalk between

innate and adaptive compartments during metastasis. At the clinical

level, early-phase trials combining CAR-NK therapy or DC-based

vaccines with immune checkpoint inhibitors should be explored to

assess synergistic efficacy. Additionally, longitudinal biomarker studies

measuring peripheral NK activity, TAM phenotypes, and mast cell

infiltration could refine patient stratification and therapeutic

monitoring. Addressing these gaps will be essential to translate innate

immune insights into effective therapies for metastatic lung cancer.
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