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Lung cancer remains the leading cause of cancer-related mortality globally, with
metastasis and recurrence as the primary determinants of poor prognosis. Despite
advances in immunotherapy, intrinsic and acquired resistance to immune
checkpoint inhibitors (ICls) underscores the need to explore alternative
immunomodulatory strategies. Emerging evidence highlights the critical yet dual
roles of innate and adaptive immune cells within the tumor microenvironment (TME)
in either restraining or facilitating metastatic dissemination. Adaptive immunity,
dominated by T and B cells, orchestrates context-dependent antitumor responses
or immunosuppression, while innate immune dysregulation fosters metastatic
niches. We highlight translational opportunities, such as natural killer (NK) cell
activation, macrophage reprogramming, and dendritic cell (DC)-based vaccines,
alongside prognostic biomarkers like peripheral NK activity and tryptase™ mast cell
infiltration. This review summarizes the interplay of immune cell subsets, including T
and B lymphocytes, macrophages, DCs, NK cells, and mast cells, in lung cancer
progression. By synthesizing preclinical and clinical insights, this review identifies
unresolved challenges and proposes targeting innate immunity as a promising
avenue to augment current therapies and mitigate metastasis.

lung cancer, adaptive immune cells, innate immune cells, immune dysregulation,
metastasis, therapeutic target

1 Introduction

Primary lung cancer remains one of the most prevalent and lethal malignancies
worldwide (1, 2). Although recent data indicate a decline in its proportional
contribution to overall cancer mortality attributed to advances in surgery, radiotherapy,
chemotherapy, targeted therapies, and immunotherapy (3, 4), lung cancer continues to lead
in both incidence and mortality. Metastasis and recurrence remain the dominant causes of
poor outcomes, yet widely accepted theoretical frameworks and effective strategies for
preventing dissemination are still lacking. The advent of immune checkpoint inhibitors
(ICIs) has transformed clinical care, offering durable responses in some patients. However,
many individuals exhibit primary resistance or develop immune escape over time, limiting
therapeutic efficacy (5).
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Emerging evidence suggests that adaptive immune cells
predominate within the lung cancer microenvironment, while
innate immune components such as natural killer cells,
macrophages, granulocytes, monocytes, dendritic cells, and mast
cells are significantly underrepresented compared to non-tumor
lung tissue. This relative depletion implies a role for innate immune
dysfunction in facilitating metastasis (6). This review systematically
summarizes the roles of diverse immune subsets in lung cancer
invasion and dissemination, aiming to uncover novel
immunological targets for therapeutic development.

2 Adaptive immune cells in the lung
cancer microenvironment

2.1 T lymphocyte subsets

Patients with cancer exhibit impaired immune surveillance,
enabling tumor immune evasion through diverse mechanisms (7). In
lung cancer, T lymphocytes dominate the tumor microenvironment
(TME), where CD4" T cells coordinate immune responses via cytokine
secretion, while CD8" cytotoxic T lymphocytes (CTLs) eliminate
neoplastic cells expressing tumor neoantigens (8). In the pulmonary
TME, dysregulated immune profiles—marked by decreased CD4",
increased CD8", and a reduced CD4"/CD8" ratio—are observed in
lung cancer patients (9, 10). Regulatory T cells (Tregs), a CD4" subset
defined by CD4"/CD25"¢"/FoxP3*/CD127" markers, play a key
immunosuppressive role by inhibiting T, dendritic, and natural killer
(NK) cell functions (11, 12). Tregs are significantly enriched in the
BALF of lung cancer patients—particularly those with non-squamous
subtypes such as adenocarcinoma—compared to benign conditions
(13). Clinically, an elevated Treg/CD8" ratio has been consistently
associated with poorer overall survival and reduced responses to ICIs
(14, 15), underscoring the prognostic value of T-cell profiling in both
early- and late-stage lung cancer (16). Moreover, variations in T-cell
infiltration and exhaustion signatures across ethnic and histological
subgroups suggest that population diversity may influence immune
responsiveness and therapeutic benefit. Thus, Treg quantification may
reflect local immunosuppression, informing prognosis and
immunotherapy stratification (17). Beyond diagnostics, T cells offer
therapeutic potential. Xiao et al. (18) reviewed four generations of
chimeric antigen receptor T (CAR-T) cell therapy in lung cancer,
highlighting key targets including EGFR, EphA2, MUCI, and HER2,
along with associated toxicities. These insights underscore the
diagnostic, prognostic, and therapeutic utility of T lymphocytes in
lung cancer immuno-oncology.

2.2 B lymphocytes

Tumor-infiltrating B lymphocytes (TIL-Bs) represent a crucial
adaptive immune component in lung cancer, exhibiting dual,
context-dependent functions in both tumor suppression and
promotion (19). Circulating B cells secrete cytokines and
differentiate into Bel/Be2 subsets, paralleling Th1/Th2 profiles
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and shaping immune polarization (20-22). In lung squamous
carcinoma, tumor-associated antigens such as SCCA can drive B-
cell-mediated antibody production and formation of circulating
immune complexes (CICs), which activate FcyR signaling in
myeloid cells, thereby recruiting leukocytes into the TME and
facilitating progression and metastasis (23). Pharmacological
inhibition of B-cell activation or interference with B-cell-driven
innate responses may thus curb malignant transformation of
precancerous lesions. Conversely, TIL-Bs can elicit potent
antitumor responses through enhancing CD4" memory T-cell
formation, supporting cytotoxic T-cell function, and orchestrating
TLS, which are associated with improved prognosis and immune
activation. Local delivery of cytokines such as CXCL13 or
lymphotoxin enhances TLS formation and TIL-B recruitment,
strengthening vaccine responses (24). In certain NSCLC subtypes,
TIL-Bs may differentiate into IgG4-secreting plasma cells
contributing to tumor control (25). They also generate tumor-
specific antibodies forming in situ immune complexes with direct
cytotoxicity. Intratumoral germinal centers identified by Michael
et al. (26) suggest B-cell-driven local immunity, with memory B-
cell-derived antibody cloning offering therapeutic potential (27).
Furthermore, some evidence suggests that TIL-Bs possess direct
cytotoxic capacity against tumor cells via the TRAIL/Apol signaling
pathway (28). High TLS density correlates with improved survival,
notably in female patients and adenocarcinoma subtypes,
underscoring sex- and histology-dependent differences in B-cell-
mediated immunity (29, 30).

3 Innate immune cells in the lung
cancer microenvironment

Innate immune dysregulation is pivotal in lung cancer
recurrence and metastasis. Clinical studies link peripheral
monocyte and neutrophil counts, as well as cytotoxic receptor
transcripts, to overall survival (31). Notably, NK-cell dynamics
illustrate this complexity: in early-stage disease, expansion of
peripheral cytotoxic CD56%™
NCRs signals active immune surveillance (32, 33). However, as the

NK subsets expressing CD16 and

disease advances, NK cells fail to maintain immune clearance and
homeostasis, resulting in immune escape and subsequent metastasis
(34). Importantly, reduced intratumoral NK-cell density has been
linked with shorter disease-free survival and diminished response to
immunotherapy, whereas higher baseline NK activity in peripheral
blood correlates with improved outcomes, highlighting their
translational value as predictive biomarkers across diverse patient
populations (35, 36). High density of CD68" macrophages/
monocytes has a positive correlation with reduced mortality in
lung cancer patients. Beyond the primary tumor, innate immune
cells are critical in establishing pre-metastatic niches. Primary
tumor cells reprogram distant organs by recruiting myeloid
progenitor cells and modulating the secretion of cytokines,
soluble factors, and extracellular vesicles, thereby fostering a
permissive microenvironment enriched with neutrophils and

alveolar macrophages conducive to metastatic colonization (37).
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3.1 Macrophages in the lung cancer
microenvironment

Macrophages, key constituents of the innate immune system, are
broadly categorized into classically activated (M1) and alternatively
activated (M2) phenotypes (38). M1 macrophages, induced by IFN-v,
TNEF, or LPS, secrete high levels of TNF, IL-12, and IL-23, driving
Thl-mediated inflammation and exerting antitumor effects.
In contrast, M2 macrophages, stimulated by IL-4 or IL-13, release
IL-10 and various chemokines that promote Th2 responses, tissue
remodeling, angiogenesis, and immunosuppression (39). In lung
cancer, tumor-associated macrophages (TAMs) are predominantly
M2-like, supporting tumor progression. Studies suggest that M2-
polarized TAMs enhance tumor invasion and metastasis by
upregulating VEGF-C and its receptor VEGFR3, thereby driving
angiogenesis and lymphangiogenesis (40). Additionally, M2-polarized
TAMs secrete matrix-remodeling enzymes such as MMP-2, which
facilitate tumor dissemination (41), while their production of IL-10
suppresses pro-inflammatory cytokines (TNF-o, IL-12, IL-1) and
promotes tumor immune escape (42, 43). Quantification and
classification of TAMs, particularly CD163" M2 macrophages, are
useful prognostic indicators in NSCLC. Elevated CD163" cell
counts are associated with disease progression. Moreover, NSCLC
cells may recruit M2-like TAMs via VEGF, and this axis can be
interrupted using anti-VEGF monoclonal antibodies (bevacizumab)
(44). Therapeutic interventions against M2-polarized TAMs
encompass the inhibition of chemokines, including CCL2, CCL7,
and CCLS8, to limit their recruitment, suppression of M2
polarization pathways, and reprogramming of M2-like TAMs into
pro-inflammatory M1-like phenotypes (45-47).

3.2 Mast cells

Mast cells, another integral component of innate immunity,
contribute to tumor growth and metastasis across multiple cancer
types. In lung cancer, mast cells promote tumor progression via
pro-angiogenic signaling, autocrine hormone production, and
release of growth factors (48-51). Degranulation products
facilitate cervical cancer metastasis (52), and histamine release has
been linked to colorectal cancer severity (53). In NSCLC,
intratumoral mast cells are prevalent within tumor stroma and
correlate with patient survival (54). Human mast cells exhibit two
phenotypes: MCT (tryptase-positive) and MCTC (tryptase- and
chymase-positive). MCT predominates in mucosal tissues, while
MCTC localizes to dermal and connective tissues. Both subtypes are
associated with improved NSCLC prognosis, suggesting a potential
antitumor role. Mast cells may enhance antitumor immunity by
secreting TNF-o, which promotes T-cell proliferation, and in turn,
TNEF-a-stimulated T cells support mast cell expansion through a
positive feedback loop (55). Furthermore, proteases released during
degranulation disrupt the tumor extracellular matrix, thereby
restraining tumor growth (54).
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3.3 Dendritic cells

Dendritic cells (DCs) are the most potent professional antigen-
presenting cells, capable of antigen uptake, processing, and
presentation to initiate adaptive immunity. Immature DCs exhibit
strong migratory capabilities, while mature DCs efficiently prime
naive T cells, orchestrating immune responses. DCs are found in
epithelial tissues interfacing with the environment, including the
skin, nasal mucosa, lungs, and gastrointestinal tract, and in
circulation as precursors. Activated DCs migrate to lymphoid
organs to interact with T and B cells. Genetically modified DCs
expressing CCL21 can recruit naive T cells and promote their
differentiation into tumor-specific cytotoxic lymphocytes (56). In
addition, DCs secrete chemokines such as CCL1 and CCL17 to
enhance CD8" T-cell activation (57). Plasmacytoid dendritic cells
(pDCs), a distinct subset, bridge innate and adaptive immunity
through antigen presentation and modulation of NK-, T-, and B-
cell activity. pDCs can either induce immune tolerance or stimulate
immunity depending on cytokine signals. Stimulation of pDCs with
CTLA4-Ig or OX2 (CD200) induces indoleamine 2,3-dioxygenase
expression, suppressing T-cell proliferation and promoting
tolerance (58). Many tumors harbor abundant immature DCs and
pDCs, which contribute to tumor metastasis and recurrence. In
breast cancer, pDC-expressed ICOS ligand facilitates CD4" T-cell-
mediated immunosuppression and tumor growth (59). Conversely,
TLR agonists can trigger pDCs to secrete type I interferons, activate
intratumoral immature DCs, and initiate anti-angiogenic, tumor-
specific T-cell responses. Imiquimod-stimulated pDCs have
demonstrated efficacy in melanoma by enhancing T-cell-mediated
immunity (60). However, research on pDCs in lung cancer remains
limited and warrants further investigation.

3.4 Natural killer cells

NK cells are large granular lymphocytes that mediate cytotoxicity
against tumor and pathogen-infected cells without prior sensitization
and independently of MHC restriction. In lung cancer, the extent of
NK-cell infiltration correlates with tumor subtype, smoking history,
tumor size, and prognosis (61). Greater NK-cell presence is observed
in squamous cell carcinoma relative to adenocarcinoma (62). Non-
smokers show higher NK infiltration than smokers, and tumors with
greater NK density exhibit improved clinical outcomes (63). In the
lung tumor microenvironment, inhibitory NK receptors are
upregulated, while activating receptors are downregulated. Murine
models suggest that downregulation of stimulatory receptors NKG2D
and Ly49I, along with upregulation of inhibitory NKG2A, may
underlie tumor-induced immune tolerance. NKG2D enhances
antitumor immunity through perforin-mediated apoptosis, while
Ly491 aids NK-mediated cytolysis. In NSCLC patients, combined
chemotherapy and NK-cell reinfusion prolonged median survival
compared to chemotherapy alone (64). Tumoral expression of
NKG2D ligand MICA may predict response to NK-based
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immunotherapy. Moreover, gefitinib has been shown to enhance NK
cytotoxicity against lung cancer cells (65). Previous IL-2-based NK
therapies were limited by toxicity and Treg expansion (66). Recent
advances have enabled NK-cell engineering with tumor-specific
chimeric antigen receptors, yielding promising antitumor effects
(67). Additionally, bispecific proteins targeting both tumor antigens
and NK-activating receptors have demonstrated targeted cytotoxicity
through antibody-dependent cellular cytotoxicity (ADCC)
(68) (Figure 1).

3.5 Neutrophils

Neutrophils are among the earliest responders in the tumor
microenvironment and have emerged as critical regulators of lung
cancer metastasis as well as metastatic colonization within the lung
(69). Tumor-associated neutrophils (TANs) display functional
plasticity, broadly polarized into antitumor (N1) and protumor (N2)
phenotypes (70, 71). While N1 neutrophils exert cytotoxic activity
through ROS, TNF-0, and direct tumor cell killing, N2 neutrophils
promote angiogenesis, extracellular matrix remodeling, and
immunosuppression, thereby facilitating metastatic dissemination
(72-75). A particularly important mechanism is the formation of
neutrophil extracellular traps (NETSs), which create a fibrous scaffold
that captures CTCs, enhancing their adhesion and colonization in
distant sites such as the lung (76-78). Preclinical studies have shown
that tumor-derived factors, including G-CSF, IL-8, and TGF-3, drive
neutrophil mobilization and N2 polarization, supporting metastatic
niche formation (70, 79, 80). Clinically, an elevated neutrophil-to-
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lymphocyte ratio has been consistently associated with poor outcomes
in NSCLC, reinforcing its prognostic value (81-83). Therapeutic
strategies targeting neutrophils include inhibition of CXCR1/2 to
block IL-8-mediated recruitment, disruption of NETs with DNase or
PAD4 inhibitors, and reprogramming TANs toward antitumor
phenotypes with TGF-B blockade (84, 85). These approaches, in
combination with ICIs or NK-based therapies, may synergistically
suppress metastatic spread by dismantling neutrophil-driven pre-
metastatic niches (86, 87). Collectively, neutrophils represent both
biomarkers of disease progression and actionable targets within
innate immune-based therapeutic strategies.

4 Clinical applications of innate
immune cells in lung cancer

4.1 Targeting innate immune cells to
suppress lung cancer metastasis

NK-cell-based immunotherapies are central to modulating
metastasis, with significant progress in hematologic malignancies,
though efficacy in solid tumors like lung cancer remains under
investigation (88). Among cytokines, IL-15 and its receptor
agonists show high clinical safety, while monoclonal antibodies
targeting NK inhibitory receptors—anti-KIR (IPH2101, lirilumab) and
anti-NKG2A (monalizumab)—are in clinical trials (89). Adoptive NK
therapies, including NK-92 and CAR-NK cells, demonstrate efficacy in
suppressing lung cancer metastasis. Similarly, ¥ T- and iNKT-cell
therapies exhibit antitumor effects in animal models, though clinical
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FIGURE 1
Roles of innate and adaptive immunity in lung cancer.
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benefits are limited (90). TAMs suppress CD8" T-cell cytotoxicity via
physical interactions, making TAM-targeting strategies—through
depletion, reprogramming, or blockade of functional molecules—
attractive for metastasis control (91). Antibodies against CCR2, CSFIR,
and IL-1B reduce TAM recruitment, survival, and polarization,
improving the immunosuppressive tumor microenvironment (92).
DCs, as key APCs, are being leveraged to enhance antigen
presentation and elicit robust T-cell responses. Personalized DC
vaccines transfected with tumor-associated antigen (TAA) mRNAs
have shown favorable survival benefits in advanced lung cancer
patients without adverse effects (93).

In addition to these approaches, neoantigen-based vaccines and
adoptive cell transfer (ACT) therapies have emerged as critical
components of next-generation immunotherapy in lung cancer (94-
96). Neoantigen vaccines, derived from tumor-specific mutations, can
induce highly personalized T-cell responses with minimal risk of
autoimmunity (97). Early-phase clinical trials have demonstrated that
neoantigen-pulsed dendritic cells or peptide vaccines can elicit durable
antitumor immunity in subsets of patients with NSCLC (97, 98).
Likewise, ACT therapies, including TILs, CAR-T cells, and CAR-NK
cells, have shown encouraging activity in targeting lung cancer-
associated antigens such as EGFR, MUCI, and mesothelin (99-102).
Although challenges such as antigen heterogeneity, limited trafficking
into solid tumors, and immune-related toxicities remain, combinatorial
strategies integrating ACT with innate immune modulation (NK
activation or TAM reprogramming) represent a promising avenue to
overcome resistance and suppress metastasis (103-105).

4.2 Innate immune cells as prognostic
biomarkers in lung cancer

Monitoring innate immune cell populations and related mediators
in peripheral blood provides novel avenues for prognostic assessment
in lung cancer (106). For example, baseline NK-cell activity in
peripheral blood prior to immunotherapy has demonstrated
predictive value for therapeutic response in NSCLC, with higher NK-
cell activity positively correlating with progression-free survival. This
metric exhibits a sensitivity of 80% and a specificity of 68.4%, making it
a robust predictive tool for immunotherapeutic outcomes (35).
Importantly, the strength of this association appears highly context-
dependent: enhanced NK-cell activity correlates more consistently with
clinical benefit in tumors exhibiting immunogenic characteristics, such
as elevated PD-L1 expression or high tumor mutational burden, and in
histological subtypes characterized by greater NK infiltration, which is
more frequently observed in squamous carcinoma than in
adenocarcinoma (107, 108). Radiotherapeutic efficacy in lung cancer
is also influenced by circulating neutrophil counts. Although pre-
radiotherapy neutrophil levels are not directly associated with
prognosis, elevated neutrophil populations can contribute to
radiotherapy resistance (109). In clinical practice, neutrophil-forward
composite indices (neutrophil-to-lymphocyte ratio) often co-vary with
M2-like macrophage signatures and systemic inflammation; together,
these profiles align with inferior PFS/OS and reduced ICI
responsiveness, reinforcing their utility as low-cost risk stratifiers that
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complement tumor-intrinsic markers (110, 111). Furthermore,
infiltration of tryptase”™ MCs has been proposed as a potential
prognostic biomarker for lung cancer metastasis. High intratumoral
densities of tryptase”™ MCs correlate significantly with lymph node
metastasis and are associated with both overall and progression-free
survival (112). These findings collectively highlight the emerging utility
of innate immune cells as biomarkers for lung cancer metastasis.
However, further mechanistic and clinical investigations are
warranted to validate their prognostic value.

5 Limitations and challenges

Despite the rapid advances in antigen presentation immunotherapy
for lung cancer, several limitations constrain its clinical efficacy. First,
IClIs are effective only in a subset of patients, with intrinsic and acquired
resistance remaining prevalent (113, 114). Mechanisms underlying
resistance include impaired upregulation of alternative inhibitory
pathways and recruitment of immunosuppressive cells such as Tregs
and myeloid-derived suppressor cells (115, 116). Second, patient
heterogeneity—arising from diverse genetic, epigenetic, and
immunological profiles—limits the predictive accuracy of current
biomarkers such as PD-L1 expression and tumor mutational burden
(117, 118). This variability complicates patient stratification and
response prediction. Third, immunotherapy is often accompanied by
immune-related adverse events, including pneumonitis, colitis, and
endocrinopathies, which can significantly affect patient quality of life
and limit treatment continuity (119, 120). Overcoming these challenges
will require rational combination strategies (ICIs with TAM or NK-
targeted therapies), integration of precision biomarkers, and the
development of novel immunomodulatory agents that minimize
toxicity while enhancing efficacy (102, 121). Addressing these barriers
is critical for optimizing the therapeutic potential of immune-based

interventions in metastatic lung cancer.

6 Conclusion

The immune landscape of lung cancer is a dynamic interplay of
pro- and anti-metastatic signals mediated by diverse immune cell
populations. While adaptive immunity, particularly cytotoxic T
cells and tertiary lymphoid structure-associated B cells, forms the
backbone of antitumor responses, innate immune cells are
increasingly recognized as pivotal regulators of metastatic
dissemination. Key findings reveal that NK-cell dysfunction, M2
macrophage polarization, and tolerogenic DC activity contribute to
immune evasion, whereas reinvigorating innate cytotoxicity or
reprogramming immunosuppressive niches may offer therapeutic
leverage. Clinically, innate immune biomarkers such as peripheral
NK-cell activity and mast cell density exhibit prognostic potential,
though their mechanistic underpinnings require further validation.

Future investigations should prioritize integrated preclinical and
clinical approaches to validate these strategies. At the experimental
level, murine lung cancer models and patient-derived xenografts could
be used to test macrophage-reprogramming interventions or NK-cell

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1662754
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Qin

engineering platforms. Multi-omics technologies, including single-cell
and spatial transcriptomics, may further dissect the crosstalk between
innate and adaptive compartments during metastasis. At the clinical
level, early-phase trials combining CAR-NK therapy or DC-based
vaccines with immune checkpoint inhibitors should be explored to
assess synergistic efficacy. Additionally, longitudinal biomarker studies
measuring peripheral NK activity, TAM phenotypes, and mast cell
infiltration could refine patient stratification and therapeutic
monitoring. Addressing these gaps will be essential to translate innate
immune insights into effective therapies for metastatic lung cancer.
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