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Objective: In malignant tumors, a hypercoagulable state is frequently observed and
is intricately intertwined with cancer development and the remodeling of the
immune microenvironment. Recently, the coagulation-related genes (CRGs)
signature has emerged as highly significant for the prognosis and immunotherapy
of patients with various cancers. Nevertheless, their application in esophageal
squamous cell carcinoma (ESCC) remains uninvestigated. Here, our objective is to
explore the role of the CRGs signature in forecasting prognosis and predicting
patient’s response to immunotherapy.

Methods: According to the prognostic CRGs, consensus clustering was utilized
to stratify ESCC patients in the GSE53625 cohort into two subgroups.
Subsequently, difference analysis and univariate cox analysis were conducted
on the two subgroups, and a CRGs signature was constructed by leveraging
these genes. Next, multiple RNA transcriptome cohorts were utilized to validate
the signature. Moreover, functional enrichment, tumor mutation burden (TMB),
tumor infiltration, immune function, and immunotherapy response of this
signature were investigated.

Results: A CRGs signature composed of six genes (PTX3, CILP, CFHR4, SULT1B1,
IL5RA, and FAM151A) was constructed. This signature serves as an independent
and reliable prognostic factor. Additionally, when compared with the 32
prognostic signatures previously reported, the CRGs signature exhibited
superior performance in the ESCC prognostic cohorts. Additionally, we found
that high-risk ESCC exhibited higher immune infiltration, lower TMB, higher TIDE,
and a lower proportion of immunotherapy response. In vitro experiments have
shown that the gene SULT1B1, which exhibits the highest accuracy in predicting
tumor status, significantly inhibited the proliferation and metastasis.
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Conclusions: We constructed and validated a robust CRGs signature. Moreover,
as one of the model CRGs, the tumor-suppressive role of SULT1B1 in ESCC was
experimentally verified in vitro. These results provide novel insights into
enhancing the prognosis of ESCC and formulating treatment strategies.

esophageal squamous cell carcinoma, coagulation-related genes, immune infiltration,
prognosis signature, immunotherapy

1 Introduction

With a high incidence worldwide, esophageal cancer (EC) is a
major cause of deaths associated with cancer (1-3). Esophageal
squamous cell carcinoma (ESCC) constitutes the prevailing type,
comprising nearly 90% of cases (4). Despite the progress in
treatments, the accessible treatment options for advanced ESCC
remain limited, and the cure rates are comparatively low (3, 5, 6).
Recently, with the deepening comprehension of tumor immune
microenvironment (TME), immunotherapy has witnessed rapid
development (7). Nevertheless, due to the significant heterogeneity
in ESCC, merely a small proportion of cases exhibited a favorable
response to immunotherapy (8). The TME exists within a complex
and dynamic multicellular environment (9, 10). Conducting a
thorough and detailed investigation of the TME in ESCC patients
is instrumental to elucidating the immune landscape of ESCC. This
has important practical significance for evaluating patients’
responsiveness to immunotherapy and formulating new strategies
in immunotherapy (11).

The coagulation system, a sophisticated biological process,
guarantees efficient hemostasis, maintains blood flow, and
simultaneously prevents excessive bleeding (12-15). In malignant
tumors, a hypercoagulable state is often observed (16, 17). This state
may give rise to venous thromboembolism, thereby inducing local
hypoxia and necrosis. Subsequently, it further triggers the proliferation
of microvascular, the migration of tumor cells, and the remodeling of
the TME (18-21). Recently, the significance of coagulation-related
genes (CRGs) in prognostic prediction and predicting the response to
immunotherapy has drawn attention (15, 16, 21-27). For instance, Wu
etal. (15) constructed a CRGs signature for colon adenocarcinoma that
reliably predicted both prognosis and treatment outcomes. He et al.
(27) formulated a CRGs signature in hepatocellular carcinoma and
analyzed its role in prognosis, immunotherapy, and chemotherapy
response. Nevertheless, its role in ESCC remains unknown. Hence, it is
essential to further explore the effects of the CRGs signature on ESCC,
especially the prognosis prediction potential and its influence on
clinical treatment decisions.

In this study, six transcriptome cohorts from TCGA and GEO
databases were obtained for analysis. Subsequently, machine
learning algorithms were employed to construct a CRGs
prognostic signature, and the role of potential intervention targets

Frontiers in Immunology

in ESCC was verified through in vitro experiments. Our findings
contributed to the advancement of prognostic biomarkers, offered a
novel perspective on the involvement of CRGs in ESCC, and
furnished new information for precision treatment.

2 Materials and methods
2.1 Samples and data collection

Figure 1 exemplified the investigation process. In this study, four
transcriptome cohorts encompassing complete overall survival rate
(OS) information and clinical information (TCGA-ESCC, GSE53625,
GSE53624, and GSE53622) were obtained from TCGA and GEO
databases. Besides, two other transcriptome cohorts from the GEO
database were included (GSE20347and GSE38129). All the six
transcriptome cohorts undergo a log-2 transformed to ensure
normalization. Subsequently, to eliminate the batch effect, the
ComBat algorithm was employed, and the extent of correction was
examined via principal component analysis (PCA, Supplementary
Figures 1A, B).

The pre-preprocessing of ESCC single-cell data (with a sample
size of n = 7 for ESCC)) from the GSE145370 dataset was conducted
using the Seurat v4 and Harmony (version 1.0). Low-quality cells
with a mitochondrial gene proportion >20% and a gene count of
<200 and >6000 were removed. To visualize the cell clusters, the t-
distributed random neighbor embedding (t-SNE) was employed.

Furthermore, a curated list of 203 CRGs (Supplementary Table 1),
such as SERPINEL, F3, and THBD, were obtained from the Gene Set
Enrichment Analysis (GSEA) database. These genes originated from
the hsa04610 pathway (complement and coagulation cascade) and the
hsa04611 pathway (platelet activation). Both of these pathways are
closely linked to coagulation and relevant processes.

2.2 Construction and validation of the
CRGs signature

Initially, a univariate cox analysis of 203 CRGs in the GSE53625

cohort was conducted to identify prognostic CRGs. Next, the
‘ConsensusCluster Plus’ R package was utilized for consensus
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FIGURE 1

The flow chart of research design. ESCC, esophageal squamous cell carcinoma; PCA, principal component analysis; ROC, receiver operating

characteristic; TMB, tumor mutational burden.

clustering with these prognostic CRGs. The optimal cluster count was
determined by making use of the CDF curve, consensus score matrix,
and PAC score. To detect prognostic DEGs between clusters, the
‘Jlimma’ package (with a [logFC| > 0.585 and a p-value < 0.05) and
univariate cox regression were utilized (28). In this research, the
samples from the GSE53625 cohort were randomly assigned to a
training cohort with 90 samples and a testing cohort encompassing 89
samples through the utilization of the R package ‘caret’. The clinical
information of the two cohorts was shown in Table 1. Here, the CRGs
signature was formulated with GSE53625 training cohort and verified
in diverse cohorts, including the GSE53625 testing, the entire
GSE53625, the GSE53624, the GSE53622, and the TCGA-ESCC
cohorts. In the GSE53625 training cohort, hub prognostic DEGs
were screened out through univariate cox regression, LASSO
regression, and multiple cox regression analysis with a stepwise
approach. Each sample’s risk score was evaluated utilizing the
formula: Risk score =Yi=EXP (i) xCoef (i). Next, the median score of
each cohort was tallied, and each ESCC sample was categorized as
high- or low-risk based on the median score. We utilized the ‘Survival’
R package and employed the ‘survival ROC’ package to evaluate the
predictive capability (29). Additionally, cox regression and nomogram
analysis were performed in conjunction with the clinical features.

2.3 Functional enrichment analysis

Researchers executed relevant enrichment analysis on DEGs
utilizing ‘clusterProfiler’ R package (30), encompassing GO and
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KEGG analyses. Moreover, to analyze potential modifications in
signaling pathways, Hallmark gene sets were applied in GSEA.

2.4 Prediction of immunotherapy response
and analysis of gene mutation data and
drug sensitivity

To analyze the differences between risk groups, the immune,
estimate, stromal, and tumor purity scores were calculated by
utilizing the ESTIMATE method. Moreover, ssGSEA algorithms
were utilized to assess both the overall immune function and the
immune cell infiltration.

Furthermore, the software package “maftools” was utilized to
obtain tumor mutation burden (TMB) data (31). Meanwhile, the
microsatellite instability (MSI) score was retrieved from the public
data of TCGA (Supplementary Table 2). Besides, each patient’s
TIDE scores were from the online website (32). Moreover,
“oncoPredict” package was utilized to perform drug sensitivity
analysis (p < 0.05) (33).

2.5 Cell lines

Three ESCC cell lines, KYSE30, KYSE150, and KYSE410, were
sourced from Pricella (Wuhan, China), and cultured in RPMI-1640
(Pricella) supplemented with 10% FBS (Pricella) and 1% penicillin-
streptomycin (Pricella). These cells were cultured at 37 °C in 5%
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CO2. The siRNAs for SULT1B1 (si- SULT1B1-1/-2/-3/-4, details in
Supplementary Table 3), negative control (si-NC), and SULT1B1
overexpression plasmid were provided by GenePharma (Shanghai,
China). And to transfect the cells, Lipofectamine 3000 regent
(L3000015, Invitrogen, USA) was employed. Forty-eight hours
post-transfection, cells were harvested to analyze the proteins
levels, apoptosis, and cell cycle. Annexin V-FITC Apoptosis
Detection Kit (Beyotime, C1062, China) and Cell cycle Analysis
Kit (Beyotime, C1052, China) were used for apoptosis and cell
cycle assay.

2.6 Western blotting

To prepare protein extracts, cells were lysed with a mixture of
RIPA buffer (Beyotime, P0013B, China) and 1% PMSF (Beyotime,
ST505, China). The protein samples were then denatured, and the
proteins were resolved by SDS-PAGE gel. Subsequently, the proteins
were transferred onto a PVDF membrane, which was blocked with
5% skim milk for 2 hours. Next, the membrane was incubated with
primary antibodies, namely SULT1B1 (1:500; Proteintech, 16050-1-
AP, China), E-cadherin (1:5000; Proteintech, 20874-1-AP, China),
Vimentin (1:1000; Beyotime, AF1975, China), and GAPDH (1:1000;
Servicebio, GB15004-100, China). After incubation with the
secondary antibody, the bands were developed by means of the
ECL developer (Beyotime, E422-01, China).

2.7 CCK-8 assay

A density of 2000 cells per well was utilized for seeding in 96-
well plates. After that, to each well, 10 pL of CCK-8 solution in a
serum-free medium was added and incubated at 37 °C for one hour.
Next, measurements of absorbance were conducted at a wavelength
of 450 nm, with the optical density (OD) being recorded at the same
daily interval.

2.8 Cell migration assay

A volume of 100 pL of serum-free medium, which contained 5 x
10* cells, was seeded on the top chamber of the transwell.
Concurrently, 600 pL of complete medium was inoculated into
the bottom chamber. Following 24 hours of incubation, the cells
were stained with a 0.5% crystal violet solution and then counted

under a microscope.

2.9 Scratch wound healing assay

Utilize the sterile plastic pipette to scrape the transfected cells.
Subsequently, wash the cells twice with PBS, and then replenish the
culture with fresh medium. Images of the scratch were captured
under a microscope at 0 and 24 hours post-treatment.
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2.10 Statistical analysis

For statistical analysis and graphing, R 4.3.1 and GraphPad
Prism 8 were utilized. Differences between two groups were
analyzed utilizing Student’s t-test or Wilcoxon’s rank sum test.
For statistical analysis above two groups, a one-way ANOVA test
was performed. A p < 0.05 was considered statistically significant.

3 Results

3.1 Identification and establishment of
CRGs signature

Univariate cox regression was performed on 203 CRGs, and 19
prognostic CRGs were filtered out (Figure 2A). We then proceeded
with a consensus cluster analysis, and identified the optimal number k
was 2 (Figures 2B, C). The differences between the two consensus
clusters (C1 and C2) in terms of 19 prognostic CRGs and clinical
characteristics were illustrated in Figure 2D. According to the KM
analysis, there were marked prognostic differences between the two
clusters (Figure 2E). Next, 1025 DEGs (Figure 2F; Supplementary
Table 4) and 215 prognostic DEGs were filtered out. No notable
variations were observed between the two cohorts. Figure 2G illustrated
the 36 prognostic DEGs in the training cohort. Subsequently, six model
DEGs were screened out through the utilization of LASSO regression
(Figures 2H, I) and multivariate Cox regression. Supplementary
Table 5 presented the univariate and multivariate results of these six
model DEGs. Thereafter, a CRGs signature was established (Figure 2])
according to the formula: Risk score = PTX3* 0.18815 + CILP *
0.14112 + CFHR4* (-0.17575) + SULTIBI* (-0.19359) + IL5RA *
(-0.29789) + FAM151A * (-0.49759).

3.2 Evaluation of the CRGs signature

The OS status and risk score distribution for GSE53625 training,
testing, and entire cohorts were depicted in Figures 3D-1. Besides,
within the aforementioned three cohorts, notably poorer prognosis
was detected in high-risk group (Figures 3A-C). Additionally, the
validity of signature prediction was corroborated by the TCGA-
ESCC, GSE53624, and GSE53622 cohorts (Figures 3M-0). The time-
dependent ROC of the signature was plotted (Figures 3]-L, P-R). The
results indicated that across all cohorts, the AUC values at 1-5 years
all exceeded 0.6. This observation evidenced high specificity and
sensitivity. Furthermore, a random-effects meta-analysis was
conducted on the hazard ratios (HR) across the above four cohorts
(GSE53625, TCGA-ESCC, GSE53624, and GSE53622), and the
results showed that the CRGs signature was a risk factor for OS in
ESCC (HR = 1.73, 95% CI = 152 - 1.97, I = 0, illustrated in
Supplementary Figure 1C).

Figures 4A-C illustrated that the CRGs signature shows a clear
grouping effect as revealed by PCA. Moreover, we investigated the
influence of clinical features on the CRGs signature, as depicted in
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FIGURE 2

Identification and construction of the CRGs signature. (A) 19 prognostic CRGs were identified through univariate cox analysis (p < 0.05). (B) The
consensus score matrix of the GSE53625 cohort when k = 2. (C) The CDF curves of consensus matrix for each k, where k ranges from 2 to 6.

(D) A heatmap depicted the expression levels of 19 prognostic CRGs, accompanied by clinical characteristic annotations for each cluster.

(E) The Kaplan-Meier survival curve depicted significant different overall survival between the two clusters (p = 0.018). (F) A volcano plot depicted
DEGs between the two clusters with criteria of |logFC| > 0.585 and p value < 0.05. (G) Univariate cox regression analysis was conducted to identify
prognostic DEGs with a significance level of p < 0.05. (H, 1) The coefficient profile of prognostic DEGs was determined by Lasso regression analysis.
The optimal A was achieved when the partial likelihood deviance reached the minimum value. (J) The coefficients of the 6 prognostic DEGs (PTX3,
CILP, CFHR4, SULT1B1, IL5RA and FAM151A), which were utilized to construct the CRGs signature, were obtained from multivariate cox analysis.

CRGs, coagulation-related genes; DEGs, different expression genes.

Figures 4D-K, within subgroups including age, T, N and stage, the
prognosis of the low-risk group was better. Furthermore, we
conducted a comparison of the CRGs signature with 32
previously published prognostic signatures. The findings indicated
that in the GSE53625, TCGA-ESCC, GSE53624, and GSE53622
cohorts, the CRGs signature was more effective in comparison to
other published signatures (Figures 4L-O). In conclusion, these
above results emphasized the remarkable predictive accuracy of
CRGs signature in forecasting the prognosis of ESCC patients.
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3.3 Independent prognosis analysis of
CRGs signature and establishment of the
Nomogram model

We utilized univariate and multivariate cox analyses in the
GSE53625 (Figures 5A, B), GSE53624 (Figures 5C, D), and
GSE53622 (Figures 5E, F) cohorts to explore the prognostic
implications of CRGs signature alongside various clinical features.
In the cohorts mentioned above, the CRGs signature
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FIGURE 3

Establishment and validation of the CRGs signature in both internal and external cohorts. (A—C) Overall survival of patients in different risk groups in
the GSE53625 training (n = 90, p < 0.001), testing (n = 89, p = 0.026), and entire (n = 179, p < 0.001) cohorts was analyzed, with low CRGs group
showing better outcomes. (D-I) The distribution of risk scores (D—F) and OS status (G-I) for each patients in the GSE53625 training, testing, and
entire cohorts. (J-L) Time-dependent ROC curves for predicting 1-, 2-, 3-, 4-, and 5-year OS in the GSE53625 training, testing, and entire cohorts.
(M—R) Kaplan—Meier analysis and time-dependent ROC curves in three external validation cohorts: TCGA-ESCC, GSE53624, and GSE53622. CRGs,
coagulation-related genes; OS, overall survival; ROC, Receiver operating characteristic; ESCC, esophageal squamous cell carcinoma.

was demonstrated to be an independent prognostic risk factor (p <
0.05), emphasizing its significant prognostic potential. Next, a
nomogram was developed that integrates risk scores with several
clinical features, illustrated in Figure 5G. Time-dependent ROC
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analysis indicated that this nomogram possessed high sensitivity
and specificity (Figure 5H). The calibration curve verified the
feasibility of this nomogram in practical settings (Figure 5I). The
outcomes of DCA indicated and the C index indicated that, in
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Evaluation of the CRGs signature performance. (A—C) PCA analyses for the CRGs signature were conducted in the GSE53625 training (n = 90),
testing (n = 89), and entire (n = 179) cohorts. (D—K) Kaplan—Meier curves of OS according to the CRGs score in the GSE53625 subgroup (D) patients
with Age < 60 years, p < 0.001; (E) patients with Age > 60 years, p < 0.001; (F) patients with T1-2, p = 0.016; (G) patients with T3-4, p = 0.001;

(H) patients with NO, p = 0.003; (I) patients with N1-3, p < 0.001; (J) patients with Stage I- II, p < 0.001; (K) patients with Stage Ill, p < 0.001, with
low CRGs group showing better outcomes. (L—O) C-index analysis CRGs and 32 previously published signatures in GSE53625 (n = 179), TCGA-ESCC
(n = 81), GSE53624 (n = 119), and GSE53622 (n = 60) cohorts. CRGs, coagulation-related genes; PCA, principal component analysis; OS, overall

survival; ESCC, esophageal squamous cell carcinoma.
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FIGURE 5

Independent prognostic analysis and construction of a nomogram. (A—F) Based on univariate and multivariate cox analysis, CRGs signature was an
independent prognostic risk factor in the GSE53625 (A, B, n =179), GSE53624 (C, D, n =119), and GSE53622 (E, F, n = 60) cohorts. (G) A nomogram
was established based on the CRGs signature in the GSE53625 cohort. (H) ROC curves presenting the prediction performance of the nomogram in
1-, 2-, 3-, 4-, and 5-year OS. (I) The calibration curve of the nomogram for OS at 1, 3, and 5 year (J) A comparison of the C index was made
between the nomogram and other clinical features. (K) Decision curve analysis presented the net benefit by applying the nomogram and other
clinical features. CRGs, coagulation-related genes; OS, overall survival; ROC, Receiver operating characteristic. ***p <0.001.

comparison to other clinical features, this nomogram possessed
stronger predictive power and a higher net clinical benefit
(Figures 5], K). Overall, this nomogram holds the potential to
emerge as an effective instrument for the accurate prognosis of
patients with ESCC.

3.4 Function enrichment analysis

The DEGs (illustrated in Figure 6A and Supplementary Table 6)
were mainly concentrated in “Inflammatory mediator regulation of
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TRP channels” and “Complement and coagulation cascades” (as
shown in Figure 6B). GO analysis reveals a notable enrichment
within the domain of biological process (BP), specifically in relation
to “cellular developmental process” and “cell differentiation”
(Figure 6C). Additionally, the GSEA analysis revealed that the
high-risk groups predominantly display the activation of multiple
cancer-associated signaling pathways, such as “UV RESPONSE
DN” and “EPITHELIAL MESENCHYMAL TRANSITION”.
Alternatively, the low-risk group was predominantly marked by
“KRAS SIGNALING DN” and “P53 PATHWAY” (Figure 6D). The
correlation analysis between CRGs scores and hallmarks pathway
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Functional enrichment analyses. (A) The volcano plot showing the DEGs between different risk groups in the GSE53625 cohort (n = 179) with criteria
of [logFC| > 0.585 and FDR < 0.05. (B, C) KEGG and GO enrichment analyses revealing the potential pathways enriched by the DEGs between
different risk groups. (D) The differences in hallmark pathway activities scored by GSEA between different risk groups. (E) The correlation between
the risk score and hallmark pathway activities scored by GSEA. DEGs, different expression genes. KEGG, Kyoto Encyclopedia of Genes and Genomes;

GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis.

scores further indicated that CRGs scores was strongly associated
with cancer-related biological processes and metabolic pathways
(Figure 6E). To sum up, these results suggested that the activation
or inhibition of these pathways might give rise to distinct prognostic
outcomes observed in different CRGs signature subgroups.

3.5 Analysis of tumor microenvironment

Patients with high-risk ESCC exhibited notably elevated
immune, stromal, and estimate scores, in conjunction with
decreased tumor purity score (Figures 7A, C, E, G). Besides, the
risk score was positively correlated with immune, estimate, and
stromal scores (Figures 7B, D, F). In contrast, a negative correlation
was observed in tumor purity (Figure 7H). By utilizing the ssGSEA
algorithm and the Wilcoxon test, notable differences were found
(Figure 7I). Specifically, activated dendritic cells, fibroblasts, and
macrophages M0 were notably more common in patients with
high-risk ESCC. In contrast, in low-risk ESCC patients, there was a
higher abundance of activated mast cells, naive CD4 T cells, and
plasma cells. Besides, Pearson correlation analysis pinpointed 8

Frontiers in Immunology

immune cells (p < 0.05, Figure 7]). Moreover, five intersecting
immune cell types were identified (Figure 7K). Then, researchers
evaluated the associations among the 6 CRGs and immune cells
(Figure 7L). Thereafter, the two risk groups exhibited disparities in
HLA enrichment (Figure 7M). Finally, an analysis of immune
checkpoints (ICs) was performed, and seventeen ICs exhibited
notable (p < 0.05, Figure 7N). These findings underscored the
distinctions in immune cell infiltration between CRGs

signature subgroups.

3.6 Comparison of TMB and
Immunotherapy response in high- and
low-risk groups

Initially, in the TCGA-ESCC cohort, the waterfall plot was
employed to depict the somatic mutation landscape (Figure 8A).
Subsequent analysis unveiled patients within low-risk subgroup
possessed higher TMB levels (Figure 8B), and the risk score was
inversely related to TMB (R = -0.25, p = 0.025, Figure 8C).
Moreover, the results suggested that patients in the “high risk +
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The immune landscape associated with the CRGs signature in ESCC. In the GSE53625 cohort (n = 179), (A—H) the Wilcoxon’s rank sum test and
correlation analysis were employed to quantitatively assess the distinct immune statuses between risk groups in terms of the immune score, stromal
score, estimate score, and tumor purity. (I) The ssGSEA algorithm was employed to analyze the differences in immune cells between different risk

groups. (J) Pearson correlation analysis was conducted to evaluate the corre

lations between immune cells and risk scores. (K) A Venn plot depicted

the intersection of the ssGSEA algorithm and correlation analysis. (L) Pearson correlation analysis was conducted to evaluate the correlations
between immune cells and 6 model CRGs. (M) The ssGSEA algorithm was used to analyze differences in immune functions between different risk
groups. (N) Box plot of expression difference of 17 immune checkpoints between different risk groups. CRGs, coagulation-related genes; ESCC,
esophageal squamous cell carcinoma; ssGSEA, single sample gene set enrichment analysis. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.

high TMB” category exhibited the poorest prognosis (Figure 8D, p
=0.031). Furthermore, we assessed the MSI score between different
risk groups. No significant disparity in MSI score between different
risk groups was detected (Supplementary Figure 1D), and no
significant correlation existed between the risk score and the MSI
score (Supplementary Figure 1E).

We employed TIDE to assess the potential of the immunotherapy
response between different risk groups. Analyses of the GSE53625,
GSE53624, GSE53622, and TCGA-ESCC cohorts revealed that, when
compared with low-risk ESCC patients, the TIDE score in high-risk
ESCC patients was relatively higher. (Figures 8E, I, M, Q). Moreover,
as opposed to the responder group, the average risk score of the non-
responder group exhibited an upward tendency (Figures 8G, ], N, R).
Additionally, a positive correlation was identified (Figures 8F, K, O, S).
Furthermore, in the aforementioned four cohorts, a higher proportion
of patients in the low-risk group were predicted to respond effectively
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to immunotherapy (Figures 8H, L, P, T). These findings indicated that
the CRGs signature hold substantial potential in predicting the

response to immunotherapy.

3.7 Drug sensitivity analysis

Through Pearson correlation analysis, nine drugs with the
strongest correlation between IC50 values and risk scores were
screened out. Patients with high-risk ESCC showed higher
sensitivity to Erlotinib, Acetalax, Gefitinib, Afatinib, Ibrutinib,
Sapitinib, AZD3759, Lapatinib, and SCH772984 (Figures 9A-I).
The results of the Wilcoxon test revealed that notable statistical
differences were identified (p < 0.05). The findings may provide
insights into the selection of potential treatment options to inhibit

the malignant progression of cancer.
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FIGURE 8

Evaluation of TMB and responsiveness to immunotherapy between different risk groups. (A) The waterfall plot of the somatic mutation landscape
within high- and low-risk patients in the TCGA-ESCC cohort (n = 81). (B) Boxplots depicted the difference in TMB between high- and low-risk
groups. (C) The correlation scatter plot depicted the relationship between TMB and risk score. (D) The Kaplan-Meier survival curve depicted different
overall survival (p = 0.031) across four subgroups (high-risk and high-TMB, high-risk and low-TMB, low-risk and high-TMB, low-risk and low-TMB).
(E, I, M, Q) Boxplots of the difference in TIDE between the high- and low-risk groups across GSE53625 (n = 119), GSE53624 (n = 119), GSE53622
(n = 60), and TCGA-ESCC (n = 81) cohorts. (F, K, O, S) The scatter plot showed the correlation between risk score and TIDE across GSE53625,
GSE53624, GSE53622, and TCGA-ESCC cohorts. (G, J, N, R) Boxplots of the difference in risk score between non-response and response groups
across GSE53625, GSE53624, GSE53622, and TCGA-ESCC cohorts. (H, L, P, T) The percentages of immunotherapy responders in the high-risk
group compared to the low-risk group across GSE53625, GSE53624, GSE53622, and TCGA-ESCC cohorts. TMB, tumor mutational burden; ESCC,
esophageal squamous cell carcinoma; TIDE, tumor immune dysfunction and exclusion. *: p < 0.05, **: p < 0.01.

3.8 Identification of model CRGs in sing[e detected in this dataset. The research findings showed that the
—cell tra nscriptome expressions of five model CRGs exhibited significant differences.

Specifically, SULT1B1 was predominantly expressed in fibroblasts.
Figure 10A depicted the integration results of 7 ESCC patients
after eliminating the batch effect. Subsequently, the cells were
classified into nine clusters (Figure 10B), and Figure 10D 3.9 SULT1B1 inhibits ESCC tumor
illustrated the three marker genes in each cell clusters. Moreover, proliferation and mlg ration
the histogram presented the proportions of cell clusters in the 7
samples (Figure 10C). Finally, the expression patterns of five model In the GSE53625 cohort, consisting of 179 tumor samples and
CRGs were analyzed (Figures 10E-J), and FAM151A was not 179 normal adjacent samples, the capacity of six model CRGs to
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Exploration of drug compounds targeting the CRGs. In the GSE53625 cohort (n = 179), (A-1) correlation scatter plot depicting the relationship of
IC50 of the top 9 candidate drugs and risk score, and boxplots depicting the difference in IC50 of candidate drugs between high- and low-risk
groups, with statistical significance assessed via the Wilcoxon rank sum test. Pearson correlation analysis was performed to assess the correlations
between risk score and candidate drugs. CRGs, coagulation-related genes; IC50, the half-maximal inhibitory concentration. ****: p < 0.0001.

predict tumor states was assessed utilizing ‘pROC’ R package. The
ROC results indicated that among the six model CRGs, SULT1B1
exhibited the highest accuracy in predicting the tumor status
(Figure 11A). Consequently, we selected it as the focal point and
investigated its role in ESCC. Initially, by accessing various online
databases, such as GEPIA (http://gepia.cancer-pku.cn/), TNMplot
(https://tnmplot.com), and Kaplan-Meier plotter (http://
kmplot.com), we analyzed the expression level and prognosis of
SULTI1BI1 in ESCC patients. The analysis revealed that, in
comparison with normal tissues, a notable down-regulation of
SULT1B1 was detected in ESCC cancer tissues (Figures 11B, D).
Additionally, when compared with the SULT1B1-lower group,
higher SULT1B1 patients expression presented better OS
(Figure 11C). Furthermore, we conducted a comparison of the
expression of SULT1B1 across five transcriptome cohorts retrieved
from the GEO databases. The findings indicated that, in
comparison with normal tissues, SULT1B1 was significantly
down-regulated in ESCC cancer tissues (Figures 11E-I).
Moreover, in the four prognostic cohorts, it was noted that, in
compared to the SULT1B1-lower group, ESCC patients with higher
SULTI1BI1 expression demonstrated better OS (Figures 11J-M).
Subsequently, we examined three pairs of clinical ESCC tissue
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samples. The results showed that compared to the paired normal
tissues, ESCC cancer tissues demonstrated decreased SULT1B1
expression (Figure 12A). The collected data proposed that
SULT1B1 might have a tumor-suppressing function in the
progression of ESCC.

To investigate the role of SULT1B1, we initially assessed the
basal protein expression levels of SULT1B1 in KYSE150, KYSE30,
and KYSE410 (Figure 12B). The results indicated that SULT1B1
exhibited high expression in KYSE150 cell line, moderate
expression in KYSE410 cell line, and low expression in the
KYSE30 cell line. Subsequently, SULT1B1 was knocked down in
the KYSE150 and KYSE410 cell lines (Figure 12C), while it was
overexpressed in the KYSE30 and KYSE410 cell lines (Figure 12D).
The efficiency of overexpression and knockdown was substantiated
by western Blot analysis. Here, the subsequent experiments utilized
si-SULT1B1#4, as it exhibited a higher level of knockdown efficacy.
The CCKS8 assay results demonstrated that the knockdown of
SULT1B1 was capable of promoting the tumor cell proliferation
of KYSE150 and KYSE410 cells (Figures 12E, H). Conversely, the
overexpression of SULT1B1 was able to suppress the proliferation
of KYSE30 and KYSE410 cells (Figures 12N, Q). Flow cytometry
analysis revealed that upon knockdown of SULT1BI in KYSE150
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FIGURE 10

Single-cell sequencing data analysis. In the GSE145370 dataset (n = 7), (A) tSNE plot of cell distribution in 7 patients with ESCC. (B) tSNE plot for
visualizing clustering profiles. (C) Proportion of each cell population in different samples. (D) Heatmap showing the top 3 unique marker genes in
each cellular subpopulation. (E-J) The five model CRGs levels in each cellular subpopulation. ESCC, esophageal squamous cell carcinoma; t-SNE,

t-distributed stochastic neighbor embedding.

and KYSE410 cells, the proportion of cells in the GO/G1 phase
showed a decline, whereas the proportion of cells in the S phase
exhibited an increase (Figures 12F, I). Additionally, the apoptosis
rate decreased (Figures 12G, ). Conversely, after the overexpression
of SULT1B1 in KYSE30 and KYSE410 cells, the proportion of cells
in the GO/G1 phase showed an upward trend, whereas the
proportion of cells in the S phase declined (Figures 120, R).
Moreover, the apoptosis rate increased (Figures 12P, S). Results
from the scratch assay and transwell invasion experiments
confirmed that knockdown of SULT1BI promoted the migration
of KYSE150 and KYSE410 cells (Figures 12K, L), while
overexpression of SULTI1BI inhibited the migration of KYSE30
and KYSE410 cells (Figures 12T, U). The findings of western Blot
analysis indicated that upon the knockdown of SULT1BI, the
expression of E-cadherin significantly decreased, while that of
Vimentin significantly increased (Figure 12M). Conversely, when
SULT1B1 was overexpressed, an opposite outcome was observed
(Figure 12V). In summary, the findings of our research indicated
that SULT1BI is capable of effectively suppressing the proliferation
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and migration of ESCC cells. Further mechanistic investigations
confirmed that its tumor-suppressing function is achieved through
promoting cell cycle arrest at the GO/G1 phase, inducing apoptosis,
and suppressing the epithelial-mesenchymal transition
(EMT) process.

4 Discussion

ESCC is a kind of malignant tumor characterized by a high
incidence and mortality rate. Given the complexity and high
heterogeneity of ESCC, solely relying on the clinical and
histopathological characteristics of patients does not adequately
predict the prognosis of ESCC patients. Due to the remarkable
progress of bioinformatics technology, it has now become
practicable to predict the prognosis of patients via genetic analysis
(34, 35). Hypercoagulable state is highly prevalent in malignant
tumors (16, 17). This state facilitates the proliferation and migration
of tumor cells, along with the remodeling of the immune
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Low expression of SULT1BL is associated with poor prognosis in ESCC. (A) In the GSE53625 cohort (tumor samples = 179 and normal samples = 179),
the six model CRGs were analyzed with the ‘pROC’ R package. (B, D) The mRNA expression level of SULT1B1 in esophageal cancerous tissues and
normal tissues were assessed using the GEPIA and TNMplot databases. (C) The Kaplan-Meier survival curve depicted different overall survival

(p = 0.00021) between the high- and low-SULT1B1 groups using Kaplan-Meier plotter database. (E-I) Boxplots of the difference in the mRNA expression
level of SULT1B1 between tumor and normal groups across the GSE20347, GSE38129, GSE53625, GSE53624, and GSE53622 cohorts.

(J—-M) The Kaplan-Meier survival curve depicted different overall survival between the high- and low-SULT1B1 groups across the TCGA-ESCC,
GSE53625, GSE53624, and GSE53622 cohorts. ESCC, esophageal squamous cell carcinoma. *: p < 0.05, **: p < 0.01, ****: p < 0.0001.

microenvironment (18-21). Recent studies indicate that the CRGs
signature is highly significant in forecasting the outcomes for
patients with diverse cancers, such as colon adenocarcinoma (15),
hepatocellular carcinoma (21), and lung adenocarcinoma (16), as
well as the responses to immunotherapy. Nevertheless, the role it
plays ESCC remains elusive. In this study, we carried out
comprehensive analyses and validations across multiple ESCC
cohorts, and successfully developed a novel CRGs prognostic
signature. When compared with the previously reported 32
prognostic signatures, the CRGs signature demonstrated superior
performance over most of the other published signature in ESCC
prognostic cohorts. In summary, this signature has been utilized
across multiple cohorts, and its effectiveness as a prognostic marker
and for examining the efficacy of immunotherapy responses has
been preliminarily verified, with the ultimate goal of enhancing the
OS of ESCC patients.

In this research, we initially identified prognostic CRGs in
patients with ESCC. Next, patients were sorted into two different
clusters with cluster 1 having a poorer prognosis. By analyzing the
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DEGs between different clusters, we constructed a CRGs signature
composed of six genes: PTX3, CILP, CFHR4, SULT1B1, IL5RA, and
FAMI51A. The efficacy of CRGs signature as prognostic predictors
was validated in the training and multiple validation cohorts. Among
the six model CRGs, SULT1B1 demonstrates the highest accuracy in
predicting the tumor status. The SULT family of enzymes is involved
in catalyzing the sulfonation process for a wide range of internal,
medicinal, and foreign compounds (36). This family encompasses
three subfamilies, namely SULT1, SULT2, and SULT4, encompassing
a total of 13 distinct members (37). SULT1B1 is a member of the
SULT1 family. Research has revealed that the expression level of
SULTI1BLI is highest in the human intestine. Moreover, it is
moderately expressed in the human liver, kidney, lung, and white
blood cells (38-40). Despite the role of SULT1BI1 in ESCC remains
uninvestigated, it is postulated to be associated with carcinogenesis
(41). Moreover, numerous studies conducted in recent years have
revealed that SULT1B1 might exhibit tumor suppressive activity in a
diverse range of cancers. For instance, Eskandarion, M. R. et al. (42)
discovered that SULT1B1 exhibited downregulation in gastric cancer
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TABLE 1 Comparisons of patient characteristics between training and testing cohorts.

Characteristics Total (n = 179) Training set (n = 90) Testing set (n = 89) P-value

<60 99 (55.31%) 48 (53.33%) 51 (57.30%) 0.593
> 60 80 (44.69%) 42 (46.67%) 38 (42.70%)

Gender

Male 146 (81.56%) 72 (80.00%) 74 (83.15%) 0.587
Female 33 (18.44%) 18 (20.00%) 15 (16.85%)

T stage

T1 12 (6.71%) 6 (6.67%) 6 (6.74%) 0.518
T2 27 (15.08%) 10 (11.11%) 17 (19.10%)

T3 110 (61.45%) 58 (64.44%) 52 (58.43%)

T4 30 (16.76%) 16 (17.78%) 14 (15.73%)

N stage

NO 83 (46.37%) 43 (47.78%) 40 (44.94%) 0.877
N1 62 (34.64%) 30 (33.33%) 32 (35.96%)

N2 22 (12.29%) 10 (11.11%) 12 (13.48%)

N3 12 (6.70%) 7 (7.78%) 5 (5.62%)

TNM stage

I 10 (5.59%) 7 (7.78%) 3 (3.37%) 0.438
11 77 (43.02%) 38 (42.22%) 39 (43.82%)

11 92 (51.39%) 45 (50.00%) 47 (52.81%)

and upregulation in intestinal metaplasia. This finding implies that  study, patients with low-risk ESCC exhibited higher TMB levels and
SULT1B1 may possess tumor-suppressive activity during GC  demonstrated a more robust response to immunotherapy. This
progression. In Cholangiocarcinoma, SULT1BL1 is closely associated ~ finding is in line with the conclusion mentioned above. Moreover,
with tumor differentiation. Notably, in CCA, SULT1BI is lowly  considering the TME’s significant influence on tumor growth and
expressed (43). Regarding colorectal cancer, the suppression of  evolution (54, 55), a comprehensive investigation of the TME
SULT1BI is closely linked to tissue dedifferentiation. Moreover, the  associated with signature in ESCC is conducive to elucidating its
low expression level of SULT1BI is associated with a poor survival ~ function in the anti-tumor immune response (10). The results
rate (40, 44-46). In our investigation, through online databases and ~ showed that, within high-risk subgroup, the level of immune
multiple cohorts, we discovered that the mRNA level of SULT1B1lin  infiltration was higher, with a significant increase in fibroblasts
ESCC tissues was decreased, and low SULT1B1 was linked to poor =~ and M0 macrophages. Notably, Cancer-associated fibroblasts, as the
survival rates. Correspondingly, the experimental findings indicated =~ fundamental parts of TME, are vital to the development of cancer
that, in ESCC tissues, the SULT1B1 protein levels were remarkably ~ (56). Research has repeatedly that Cancer-associated fibroblasts can
lower. Additionally, our cell-based experiments demonstrated that  secrete various matrix metalloproteinases and other proteases to
SULTI1B1 exerts a tumor-suppressing effect by modulating cell —remodel the extracellular matrix, thereby leading to tissue
proliferation and migration. hardening, promoting tumor survival, invasion and metastasis,

Recently, immunotherapy has emerged as an effective and  therapy resistance, and immune exclusion (57-62). Furthermore,
highly promising treatment modality for cancer therapy (47, 48).  notable intergroup disparities in IC expression were observed.
Notwithstanding, only a limited number of patients derive benefits ~ Given that IC play a critical importance in determining the
from it (49). Consequently, accurate prediction is of crucial for  efficacy of immunotherapy (10, 63), herein we postulate that this
identifying those patients who are likely to respond favorably to  could potentially be one of the contributing factors underlying the
immunotherapy. Our findings indicated that immunotherapy is  differences in immunotherapy responses between risk groups. In
more likely to elicit a positive response in patients with low-risk ~ summary, multiple cohorts have confirmed that CRGs signature is
ESCC. Additionally, numerous studies have indicated that TMB effective in predicting the response to immunotherapy. It should be
levels could increase the potency of IC inhibitors (50-53). In this  noted that there is a lack of relevant data regarding immunotherapy
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in the ESCC cohorts. The aforementioned conclusion was derived
through bioinformatics analysis and lacks comprehensive validation
in a real ESCC cohort.

Our research has certain limitations. First, in this study, the
immunotherapy response prediction is algorithmic. The effectiveness
of the CRGs signature in predicting the response to immunotherapy
in real clinical environment remains to be validated. Second, while
the predictive significance and effectiveness of the CRGs signature
have been validated, given that the sample size of the publicly
available dataset remains limited, it is essential in larger real-world
ESCC cohorts. Third, owing to the limited experimental conditions,
this study was unable to further elucidate the molecular mechanisms
of the model genes in ESCC. In subsequent research, additional
investigations are required to confirm the CRGs signature and delve
into the underlying mechanisms.

In conclusion, this study systematically analyzed CRGs related
to ESCC via a series of bioinformatics approaches. Subsequently, a
robust CRGs signature consisting of PTX3, CILP, CFHR4,
SULT1BI, IL5RA, and FAMI151A was successfully constructed
and validated. Additionally, the CRGs signature is also closely
linked to the clinical features, TME, and immunotherapy
response of ESCC, holding potential guiding implications for
personalized clinical decision-making. Moreover, we have initially
elucidated the tumor-suppressing function of SULT1B1 in ESCC.
However, it should be noted that the immunotherapy response
prediction is algorithmic. Looking ahead, it is essential to validate
the prognostic accuracy and the efficacy of immunotherapy
responses of the CRGs signature in larger real-world ESCC cohorts.
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