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Objective: In malignant tumors, a hypercoagulable state is frequently observed and

is intricately intertwined with cancer development and the remodeling of the

immune microenvironment. Recently, the coagulation-related genes (CRGs)

signature has emerged as highly significant for the prognosis and immunotherapy

of patients with various cancers. Nevertheless, their application in esophageal

squamous cell carcinoma (ESCC) remains uninvestigated. Here, our objective is to

explore the role of the CRGs signature in forecasting prognosis and predicting

patient’s response to immunotherapy.

Methods: According to the prognostic CRGs, consensus clustering was utilized

to stratify ESCC patients in the GSE53625 cohort into two subgroups.

Subsequently, difference analysis and univariate cox analysis were conducted

on the two subgroups, and a CRGs signature was constructed by leveraging

these genes. Next, multiple RNA transcriptome cohorts were utilized to validate

the signature. Moreover, functional enrichment, tumor mutation burden (TMB),

tumor infiltration, immune function, and immunotherapy response of this

signature were investigated.

Results: A CRGs signature composed of six genes (PTX3, CILP, CFHR4, SULT1B1,

IL5RA, and FAM151A) was constructed. This signature serves as an independent

and reliable prognostic factor. Additionally, when compared with the 32

prognostic signatures previously reported, the CRGs signature exhibited

superior performance in the ESCC prognostic cohorts. Additionally, we found

that high-risk ESCC exhibited higher immune infiltration, lower TMB, higher TIDE,

and a lower proportion of immunotherapy response. In vitro experiments have

shown that the gene SULT1B1, which exhibits the highest accuracy in predicting

tumor status, significantly inhibited the proliferation and metastasis.
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Conclusions: We constructed and validated a robust CRGs signature. Moreover,

as one of the model CRGs, the tumor-suppressive role of SULT1B1 in ESCC was

experimentally verified in vitro. These results provide novel insights into

enhancing the prognosis of ESCC and formulating treatment strategies.
KEYWORDS

esophageal squamous cell carcinoma, coagulation-related genes, immune infiltration,
prognosis signature, immunotherapy
1 Introduction

With a high incidence worldwide, esophageal cancer (EC) is a

major cause of deaths associated with cancer (1–3). Esophageal

squamous cell carcinoma (ESCC) constitutes the prevailing type,

comprising nearly 90% of cases (4). Despite the progress in

treatments, the accessible treatment options for advanced ESCC

remain limited, and the cure rates are comparatively low (3, 5, 6).

Recently, with the deepening comprehension of tumor immune

microenvironment (TME), immunotherapy has witnessed rapid

development (7). Nevertheless, due to the significant heterogeneity

in ESCC, merely a small proportion of cases exhibited a favorable

response to immunotherapy (8). The TME exists within a complex

and dynamic multicellular environment (9, 10). Conducting a

thorough and detailed investigation of the TME in ESCC patients

is instrumental to elucidating the immune landscape of ESCC. This

has important practical significance for evaluating patients’

responsiveness to immunotherapy and formulating new strategies

in immunotherapy (11).

The coagulation system, a sophisticated biological process,

guarantees efficient hemostasis, maintains blood flow, and

simultaneously prevents excessive bleeding (12–15). In malignant

tumors, a hypercoagulable state is often observed (16, 17). This state

may give rise to venous thromboembolism, thereby inducing local

hypoxia and necrosis. Subsequently, it further triggers the proliferation

of microvascular, the migration of tumor cells, and the remodeling of

the TME (18–21). Recently, the significance of coagulation-related

genes (CRGs) in prognostic prediction and predicting the response to

immunotherapy has drawn attention (15, 16, 21–27). For instance, Wu

et al. (15) constructed a CRGs signature for colon adenocarcinoma that

reliably predicted both prognosis and treatment outcomes. He et al.

(27) formulated a CRGs signature in hepatocellular carcinoma and

analyzed its role in prognosis, immunotherapy, and chemotherapy

response. Nevertheless, its role in ESCC remains unknown. Hence, it is

essential to further explore the effects of the CRGs signature on ESCC,

especially the prognosis prediction potential and its influence on

clinical treatment decisions.

In this study, six transcriptome cohorts from TCGA and GEO

databases were obtained for analysis. Subsequently, machine

learning algorithms were employed to construct a CRGs

prognostic signature, and the role of potential intervention targets
02
in ESCC was verified through in vitro experiments. Our findings

contributed to the advancement of prognostic biomarkers, offered a

novel perspective on the involvement of CRGs in ESCC, and

furnished new information for precision treatment.
2 Materials and methods

2.1 Samples and data collection

Figure 1 exemplified the investigation process. In this study, four

transcriptome cohorts encompassing complete overall survival rate

(OS) information and clinical information (TCGA-ESCC, GSE53625,

GSE53624, and GSE53622) were obtained from TCGA and GEO

databases. Besides, two other transcriptome cohorts from the GEO

database were included (GSE20347and GSE38129). All the six

transcriptome cohorts undergo a log-2 transformed to ensure

normalization. Subsequently, to eliminate the batch effect, the

ComBat algorithm was employed, and the extent of correction was

examined via principal component analysis (PCA, Supplementary

Figures 1A, B).

The pre-preprocessing of ESCC single-cell data (with a sample

size of n = 7 for ESCC)) from the GSE145370 dataset was conducted

using the Seurat v4 and Harmony (version 1.0). Low-quality cells

with a mitochondrial gene proportion >20% and a gene count of

<200 and >6000 were removed. To visualize the cell clusters, the t-

distributed random neighbor embedding (t-SNE) was employed.

Furthermore, a curated list of 203 CRGs (Supplementary Table 1),

such as SERPINE1, F3, and THBD, were obtained from the Gene Set

Enrichment Analysis (GSEA) database. These genes originated from

the hsa04610 pathway (complement and coagulation cascade) and the

hsa04611 pathway (platelet activation). Both of these pathways are

closely linked to coagulation and relevant processes.
2.2 Construction and validation of the
CRGs signature

Initially, a univariate cox analysis of 203 CRGs in the GSE53625

cohort was conducted to identify prognostic CRGs. Next, the

‘ConsensusCluster Plus’ R package was utilized for consensus
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clustering with these prognostic CRGs. The optimal cluster count was

determined by making use of the CDF curve, consensus score matrix,

and PAC score. To detect prognostic DEGs between clusters, the

‘limma’ package (with a |logFC| > 0.585 and a p-value < 0.05) and

univariate cox regression were utilized (28). In this research, the

samples from the GSE53625 cohort were randomly assigned to a

training cohort with 90 samples and a testing cohort encompassing 89

samples through the utilization of the R package ‘caret’. The clinical

information of the two cohorts was shown in Table 1. Here, the CRGs

signature was formulated with GSE53625 training cohort and verified

in diverse cohorts, including the GSE53625 testing, the entire

GSE53625, the GSE53624, the GSE53622, and the TCGA-ESCC

cohorts. In the GSE53625 training cohort, hub prognostic DEGs

were screened out through univariate cox regression, LASSO

regression, and multiple cox regression analysis with a stepwise

approach. Each sample’s risk score was evaluated utilizing the

formula: Risk score =∑i=EXP (i) ×Coef (i). Next, the median score of

each cohort was tallied, and each ESCC sample was categorized as

high- or low-risk based on the median score. We utilized the ‘Survival’

R package and employed the ‘survival ROC’ package to evaluate the

predictive capability (29). Additionally, cox regression and nomogram

analysis were performed in conjunction with the clinical features.
2.3 Functional enrichment analysis

Researchers executed relevant enrichment analysis on DEGs

utilizing ‘clusterProfiler’ R package (30), encompassing GO and
Frontiers in Immunology 03
KEGG analyses. Moreover, to analyze potential modifications in

signaling pathways, Hallmark gene sets were applied in GSEA.
2.4 Prediction of immunotherapy response
and analysis of gene mutation data and
drug sensitivity

To analyze the differences between risk groups, the immune,

estimate, stromal, and tumor purity scores were calculated by

utilizing the ESTIMATE method. Moreover, ssGSEA algorithms

were utilized to assess both the overall immune function and the

immune cell infiltration.

Furthermore, the software package “maftools” was utilized to

obtain tumor mutation burden (TMB) data (31). Meanwhile, the

microsatellite instability (MSI) score was retrieved from the public

data of TCGA (Supplementary Table 2). Besides, each patient’s

TIDE scores were from the online website (32). Moreover,

“oncoPredict” package was utilized to perform drug sensitivity

analysis (p < 0.05) (33).
2.5 Cell lines

Three ESCC cell lines, KYSE30, KYSE150, and KYSE410, were

sourced from Pricella (Wuhan, China), and cultured in RPMI-1640

(Pricella) supplemented with 10% FBS (Pricella) and 1% penicillin-

streptomycin (Pricella). These cells were cultured at 37 °C in 5%
FIGURE 1

The flow chart of research design. ESCC, esophageal squamous cell carcinoma; PCA, principal component analysis; ROC, receiver operating
characteristic; TMB, tumor mutational burden.
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CO2. The siRNAs for SULT1B1 (si- SULT1B1-1/-2/-3/-4, details in

Supplementary Table 3), negative control (si-NC), and SULT1B1

overexpression plasmid were provided by GenePharma (Shanghai,

China). And to transfect the cells, Lipofectamine 3000 regent

(L3000015, Invitrogen, USA) was employed. Forty-eight hours

post-transfection, cells were harvested to analyze the proteins

levels, apoptosis, and cell cycle. Annexin V-FITC Apoptosis

Detection Kit (Beyotime, C1062, China) and Cell cycle Analysis

Kit (Beyotime, C1052, China) were used for apoptosis and cell

cycle assay.
2.6 Western blotting

To prepare protein extracts, cells were lysed with a mixture of

RIPA buffer (Beyotime, P0013B, China) and 1% PMSF (Beyotime,

ST505, China). The protein samples were then denatured, and the

proteins were resolved by SDS-PAGE gel. Subsequently, the proteins

were transferred onto a PVDF membrane, which was blocked with

5% skim milk for 2 hours. Next, the membrane was incubated with

primary antibodies, namely SULT1B1 (1:500; Proteintech, 16050-1-

AP, China), E-cadherin (1:5000; Proteintech, 20874-1-AP, China),

Vimentin (1:1000; Beyotime, AF1975, China), and GAPDH (1:1000;

Servicebio, GB15004-100, China). After incubation with the

secondary antibody, the bands were developed by means of the

ECL developer (Beyotime, E422-01, China).
2.7 CCK-8 assay

A density of 2000 cells per well was utilized for seeding in 96-

well plates. After that, to each well, 10 µL of CCK-8 solution in a

serum-free medium was added and incubated at 37 °C for one hour.

Next, measurements of absorbance were conducted at a wavelength

of 450 nm, with the optical density (OD) being recorded at the same

daily interval.
2.8 Cell migration assay

A volume of 100 µL of serum-free medium, which contained 5 ×

104 cells, was seeded on the top chamber of the transwell.

Concurrently, 600 µL of complete medium was inoculated into

the bottom chamber. Following 24 hours of incubation, the cells

were stained with a 0.5% crystal violet solution and then counted

under a microscope.
2.9 Scratch wound healing assay

Utilize the sterile plastic pipette to scrape the transfected cells.

Subsequently, wash the cells twice with PBS, and then replenish the

culture with fresh medium. Images of the scratch were captured

under a microscope at 0 and 24 hours post-treatment.
Frontiers in Immunology 04
2.10 Statistical analysis

For statistical analysis and graphing, R 4.3.1 and GraphPad

Prism 8 were utilized. Differences between two groups were

analyzed utilizing Student’s t-test or Wilcoxon’s rank sum test.

For statistical analysis above two groups, a one-way ANOVA test

was performed. A p < 0.05 was considered statistically significant.
3 Results

3.1 Identification and establishment of
CRGs signature

Univariate cox regression was performed on 203 CRGs, and 19

prognostic CRGs were filtered out (Figure 2A). We then proceeded

with a consensus cluster analysis, and identified the optimal number k

was 2 (Figures 2B, C). The differences between the two consensus

clusters (C1 and C2) in terms of 19 prognostic CRGs and clinical

characteristics were illustrated in Figure 2D. According to the KM

analysis, there were marked prognostic differences between the two

clusters (Figure 2E). Next, 1025 DEGs (Figure 2F; Supplementary

Table 4) and 215 prognostic DEGs were filtered out. No notable

variations were observed between the two cohorts. Figure 2G illustrated

the 36 prognostic DEGs in the training cohort. Subsequently, six model

DEGs were screened out through the utilization of LASSO regression

(Figures 2H, I) and multivariate Cox regression. Supplementary

Table 5 presented the univariate and multivariate results of these six

model DEGs. Thereafter, a CRGs signature was established (Figure 2J)

according to the formula: Risk score = PTX3* 0.18815 + CILP *

0.14112 + CFHR4* (-0.17575) + SULT1B1* (-0.19359) + IL5RA *

(-0.29789) + FAM151A * (-0.49759).
3.2 Evaluation of the CRGs signature

The OS status and risk score distribution for GSE53625 training,

testing, and entire cohorts were depicted in Figures 3D–I. Besides,

within the aforementioned three cohorts, notably poorer prognosis

was detected in high-risk group (Figures 3A–C). Additionally, the

validity of signature prediction was corroborated by the TCGA-

ESCC, GSE53624, and GSE53622 cohorts (Figures 3M–O). The time-

dependent ROC of the signature was plotted (Figures 3J–L, P–R). The

results indicated that across all cohorts, the AUC values at 1–5 years

all exceeded 0.6. This observation evidenced high specificity and

sensitivity. Furthermore, a random-effects meta-analysis was

conducted on the hazard ratios (HR) across the above four cohorts

(GSE53625, TCGA-ESCC, GSE53624, and GSE53622), and the

results showed that the CRGs signature was a risk factor for OS in

ESCC (HR = 1.73, 95% CI = 1.52 - 1.97, I2 = 0, illustrated in

Supplementary Figure 1C).

Figures 4A–C illustrated that the CRGs signature shows a clear

grouping effect as revealed by PCA. Moreover, we investigated the

influence of clinical features on the CRGs signature, as depicted in
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Figures 4D–K, within subgroups including age, T, N and stage, the

prognosis of the low-risk group was better. Furthermore, we

conducted a comparison of the CRGs signature with 32

previously published prognostic signatures. The findings indicated

that in the GSE53625, TCGA-ESCC, GSE53624, and GSE53622

cohorts, the CRGs signature was more effective in comparison to

other published signatures (Figures 4L–O). In conclusion, these

above results emphasized the remarkable predictive accuracy of

CRGs signature in forecasting the prognosis of ESCC patients.
Frontiers in Immunology 05
3.3 Independent prognosis analysis of
CRGs signature and establishment of the
Nomogram model

We utilized univariate and multivariate cox analyses in the

GSE53625 (Figures 5A, B), GSE53624 (Figures 5C, D), and

GSE53622 (Figures 5E, F) cohorts to explore the prognostic

implications of CRGs signature alongside various clinical features.

In the cohorts mentioned above, the CRGs signature
FIGURE 2

Identification and construction of the CRGs signature. (A) 19 prognostic CRGs were identified through univariate cox analysis (p < 0.05). (B) The
consensus score matrix of the GSE53625 cohort when k = 2. (C) The CDF curves of consensus matrix for each k, where k ranges from 2 to 6.
(D) A heatmap depicted the expression levels of 19 prognostic CRGs, accompanied by clinical characteristic annotations for each cluster.
(E) The Kaplan-Meier survival curve depicted significant different overall survival between the two clusters (p = 0.018). (F) A volcano plot depicted
DEGs between the two clusters with criteria of |logFC| > 0.585 and p value < 0.05. (G) Univariate cox regression analysis was conducted to identify
prognostic DEGs with a significance level of p < 0.05. (H, I) The coefficient profile of prognostic DEGs was determined by Lasso regression analysis.
The optimal l was achieved when the partial likelihood deviance reached the minimum value. (J) The coefficients of the 6 prognostic DEGs (PTX3,
CILP, CFHR4, SULT1B1, IL5RA and FAM151A), which were utilized to construct the CRGs signature, were obtained from multivariate cox analysis.
CRGs, coagulation-related genes; DEGs, different expression genes.
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was demonstrated to be an independent prognostic risk factor (p <

0.05), emphasizing its significant prognostic potential. Next, a

nomogram was developed that integrates risk scores with several

clinical features, illustrated in Figure 5G. Time-dependent ROC
Frontiers in Immunology 06
analysis indicated that this nomogram possessed high sensitivity

and specificity (Figure 5H). The calibration curve verified the

feasibility of this nomogram in practical settings (Figure 5I). The

outcomes of DCA indicated and the C index indicated that, in
FIGURE 3

Establishment and validation of the CRGs signature in both internal and external cohorts. (A–C) Overall survival of patients in different risk groups in
the GSE53625 training (n = 90, p < 0.001), testing (n = 89, p = 0.026), and entire (n = 179, p < 0.001) cohorts was analyzed, with low CRGs group
showing better outcomes. (D–I) The distribution of risk scores (D–F) and OS status (G–I) for each patients in the GSE53625 training, testing, and
entire cohorts. (J–L) Time-dependent ROC curves for predicting 1-, 2-, 3-, 4-, and 5-year OS in the GSE53625 training, testing, and entire cohorts.
(M–R) Kaplan–Meier analysis and time-dependent ROC curves in three external validation cohorts: TCGA-ESCC, GSE53624, and GSE53622. CRGs,
coagulation-related genes; OS, overall survival; ROC, Receiver operating characteristic; ESCC, esophageal squamous cell carcinoma.
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FIGURE 4

Evaluation of the CRGs signature performance. (A–C) PCA analyses for the CRGs signature were conducted in the GSE53625 training (n = 90),
testing (n = 89), and entire (n = 179) cohorts. (D–K) Kaplan–Meier curves of OS according to the CRGs score in the GSE53625 subgroup (D) patients
with Age ≤ 60 years, p < 0.001; (E) patients with Age > 60 years, p < 0.001; (F) patients with T1-2, p = 0.016; (G) patients with T3-4, p = 0.001;
(H) patients with N0, p = 0.003; (I) patients with N1-3, p < 0.001; (J) patients with Stage I- II, p < 0.001; (K) patients with Stage III, p < 0.001, with
low CRGs group showing better outcomes. (L–O) C-index analysis CRGs and 32 previously published signatures in GSE53625 (n = 179), TCGA-ESCC
(n = 81), GSE53624 (n = 119), and GSE53622 (n = 60) cohorts. CRGs, coagulation-related genes; PCA, principal component analysis; OS, overall
survival; ESCC, esophageal squamous cell carcinoma.
Frontiers in Immunology frontiersin.org07
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comparison to other clinical features, this nomogram possessed

stronger predictive power and a higher net clinical benefit

(Figures 5J, K). Overall, this nomogram holds the potential to

emerge as an effective instrument for the accurate prognosis of

patients with ESCC.
3.4 Function enrichment analysis

The DEGs (illustrated in Figure 6A and Supplementary Table 6)

were mainly concentrated in “Inflammatory mediator regulation of
Frontiers in Immunology 08
TRP channels” and “Complement and coagulation cascades” (as

shown in Figure 6B). GO analysis reveals a notable enrichment

within the domain of biological process (BP), specifically in relation

to “cellular developmental process” and “cell differentiation”

(Figure 6C). Additionally, the GSEA analysis revealed that the

high-risk groups predominantly display the activation of multiple

cancer-associated signaling pathways, such as “UV RESPONSE

DN” and “EPITHELIAL MESENCHYMAL TRANSITION”.

Alternatively, the low-risk group was predominantly marked by

“KRAS SIGNALING DN” and “P53 PATHWAY” (Figure 6D). The

correlation analysis between CRGs scores and hallmarks pathway
FIGURE 5

Independent prognostic analysis and construction of a nomogram. (A–F) Based on univariate and multivariate cox analysis, CRGs signature was an
independent prognostic risk factor in the GSE53625 (A, B, n = 179), GSE53624 (C, D, n = 119), and GSE53622 (E, F, n = 60) cohorts. (G) A nomogram
was established based on the CRGs signature in the GSE53625 cohort. (H) ROC curves presenting the prediction performance of the nomogram in
1-, 2-, 3-, 4-, and 5-year OS. (I) The calibration curve of the nomogram for OS at 1, 3, and 5 year (J) A comparison of the C index was made
between the nomogram and other clinical features. (K) Decision curve analysis presented the net benefit by applying the nomogram and other
clinical features. CRGs, coagulation-related genes; OS, overall survival; ROC, Receiver operating characteristic. ***p < 0.001.
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scores further indicated that CRGs scores was strongly associated

with cancer-related biological processes and metabolic pathways

(Figure 6E). To sum up, these results suggested that the activation

or inhibition of these pathways might give rise to distinct prognostic

outcomes observed in different CRGs signature subgroups.
3.5 Analysis of tumor microenvironment

Patients with high-risk ESCC exhibited notably elevated

immune, stromal, and estimate scores, in conjunction with

decreased tumor purity score (Figures 7A, C, E, G). Besides, the

risk score was positively correlated with immune, estimate, and

stromal scores (Figures 7B, D, F). In contrast, a negative correlation

was observed in tumor purity (Figure 7H). By utilizing the ssGSEA

algorithm and the Wilcoxon test, notable differences were found

(Figure 7I). Specifically, activated dendritic cells, fibroblasts, and

macrophages M0 were notably more common in patients with

high-risk ESCC. In contrast, in low-risk ESCC patients, there was a

higher abundance of activated mast cells, naive CD4 T cells, and

plasma cells. Besides, Pearson correlation analysis pinpointed 8
Frontiers in Immunology 09
immune cells (p < 0.05, Figure 7J). Moreover, five intersecting

immune cell types were identified (Figure 7K). Then, researchers

evaluated the associations among the 6 CRGs and immune cells

(Figure 7L). Thereafter, the two risk groups exhibited disparities in

HLA enrichment (Figure 7M). Finally, an analysis of immune

checkpoints (ICs) was performed, and seventeen ICs exhibited

notable (p < 0.05, Figure 7N). These findings underscored the

distinctions in immune cell infiltration between CRGs

signature subgroups.
3.6 Comparison of TMB and
Immunotherapy response in high- and
low-risk groups

Initially, in the TCGA-ESCC cohort, the waterfall plot was

employed to depict the somatic mutation landscape (Figure 8A).

Subsequent analysis unveiled patients within low-risk subgroup

possessed higher TMB levels (Figure 8B), and the risk score was

inversely related to TMB (R = -0.25, p = 0.025, Figure 8C).

Moreover, the results suggested that patients in the “high risk +
FIGURE 6

Functional enrichment analyses. (A) The volcano plot showing the DEGs between different risk groups in the GSE53625 cohort (n = 179) with criteria
of |logFC| > 0.585 and FDR < 0.05. (B, C) KEGG and GO enrichment analyses revealing the potential pathways enriched by the DEGs between
different risk groups. (D) The differences in hallmark pathway activities scored by GSEA between different risk groups. (E) The correlation between
the risk score and hallmark pathway activities scored by GSEA. DEGs, different expression genes. KEGG, Kyoto Encyclopedia of Genes and Genomes;
GO, Gene Ontology; GSEA, Gene Set Enrichment Analysis.
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high TMB” category exhibited the poorest prognosis (Figure 8D, p

= 0.031). Furthermore, we assessed the MSI score between different

risk groups. No significant disparity in MSI score between different

risk groups was detected (Supplementary Figure 1D), and no

significant correlation existed between the risk score and the MSI

score (Supplementary Figure 1E).

We employed TIDE to assess the potential of the immunotherapy

response between different risk groups. Analyses of the GSE53625,

GSE53624, GSE53622, and TCGA-ESCC cohorts revealed that, when

compared with low-risk ESCC patients, the TIDE score in high-risk

ESCC patients was relatively higher. (Figures 8E, I, M, Q). Moreover,

as opposed to the responder group, the average risk score of the non-

responder group exhibited an upward tendency (Figures 8G, J, N, R).

Additionally, a positive correlation was identified (Figures 8F, K, O, S).

Furthermore, in the aforementioned four cohorts, a higher proportion

of patients in the low-risk group were predicted to respond effectively
Frontiers in Immunology 10
to immunotherapy (Figures 8H, L, P, T). These findings indicated that

the CRGs signature hold substantial potential in predicting the

response to immunotherapy.
3.7 Drug sensitivity analysis

Through Pearson correlation analysis, nine drugs with the

strongest correlation between IC50 values and risk scores were

screened out. Patients with high-risk ESCC showed higher

sensitivity to Erlotinib, Acetalax, Gefitinib, Afatinib, Ibrutinib,

Sapitinib, AZD3759, Lapatinib, and SCH772984 (Figures 9A–I).

The results of the Wilcoxon test revealed that notable statistical

differences were identified (p < 0.05). The findings may provide

insights into the selection of potential treatment options to inhibit

the malignant progression of cancer.
FIGURE 7

The immune landscape associated with the CRGs signature in ESCC. In the GSE53625 cohort (n = 179), (A–H) the Wilcoxon’s rank sum test and
correlation analysis were employed to quantitatively assess the distinct immune statuses between risk groups in terms of the immune score, stromal
score, estimate score, and tumor purity. (I) The ssGSEA algorithm was employed to analyze the differences in immune cells between different risk
groups. (J) Pearson correlation analysis was conducted to evaluate the correlations between immune cells and risk scores. (K) A Venn plot depicted
the intersection of the ssGSEA algorithm and correlation analysis. (L) Pearson correlation analysis was conducted to evaluate the correlations
between immune cells and 6 model CRGs. (M) The ssGSEA algorithm was used to analyze differences in immune functions between different risk
groups. (N) Box plot of expression difference of 17 immune checkpoints between different risk groups. CRGs, coagulation-related genes; ESCC,
esophageal squamous cell carcinoma; ssGSEA, single sample gene set enrichment analysis. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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3.8 Identification of model CRGs in single
−cell transcriptome

Figure 10A depicted the integration results of 7 ESCC patients

after eliminating the batch effect. Subsequently, the cells were

classified into nine clusters (Figure 10B), and Figure 10D

illustrated the three marker genes in each cell clusters. Moreover,

the histogram presented the proportions of cell clusters in the 7

samples (Figure 10C). Finally, the expression patterns of five model

CRGs were analyzed (Figures 10E–J), and FAM151A was not
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detected in this dataset. The research findings showed that the

expressions of five model CRGs exhibited significant differences.

Specifically, SULT1B1 was predominantly expressed in fibroblasts.
3.9 SULT1B1 inhibits ESCC tumor
proliferation and migration

In the GSE53625 cohort, consisting of 179 tumor samples and

179 normal adjacent samples, the capacity of six model CRGs to
FIGURE 8

Evaluation of TMB and responsiveness to immunotherapy between different risk groups. (A) The waterfall plot of the somatic mutation landscape
within high- and low-risk patients in the TCGA-ESCC cohort (n = 81). (B) Boxplots depicted the difference in TMB between high- and low-risk
groups. (C) The correlation scatter plot depicted the relationship between TMB and risk score. (D) The Kaplan-Meier survival curve depicted different
overall survival (p = 0.031) across four subgroups (high-risk and high-TMB, high-risk and low-TMB, low-risk and high-TMB, low-risk and low-TMB).
(E, I, M, Q) Boxplots of the difference in TIDE between the high- and low-risk groups across GSE53625 (n = 119), GSE53624 (n = 119), GSE53622
(n = 60), and TCGA-ESCC (n = 81) cohorts. (F, K, O, S) The scatter plot showed the correlation between risk score and TIDE across GSE53625,
GSE53624, GSE53622, and TCGA-ESCC cohorts. (G, J, N, R) Boxplots of the difference in risk score between non-response and response groups
across GSE53625, GSE53624, GSE53622, and TCGA-ESCC cohorts. (H, L, P, T) The percentages of immunotherapy responders in the high-risk
group compared to the low-risk group across GSE53625, GSE53624, GSE53622, and TCGA-ESCC cohorts. TMB, tumor mutational burden; ESCC,
esophageal squamous cell carcinoma; TIDE, tumor immune dysfunction and exclusion. *: p < 0.05, **: p < 0.01.
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predict tumor states was assessed utilizing ‘pROC’ R package. The

ROC results indicated that among the six model CRGs, SULT1B1

exhibited the highest accuracy in predicting the tumor status

(Figure 11A). Consequently, we selected it as the focal point and

investigated its role in ESCC. Initially, by accessing various online

databases, such as GEPIA (http://gepia.cancer-pku.cn/), TNMplot

(https://tnmplot.com), and Kaplan-Meier plotter (http://

kmplot.com), we analyzed the expression level and prognosis of

SULT1B1 in ESCC patients. The analysis revealed that, in

comparison with normal tissues, a notable down-regulation of

SULT1B1 was detected in ESCC cancer tissues (Figures 11B, D).

Additionally, when compared with the SULT1B1-lower group,

higher SULT1B1 patients expression presented better OS

(Figure 11C). Furthermore, we conducted a comparison of the

expression of SULT1B1 across five transcriptome cohorts retrieved

from the GEO databases. The findings indicated that, in

comparison with normal tissues, SULT1B1 was significantly

down-regulated in ESCC cancer tissues (Figures 11E–I).

Moreover, in the four prognostic cohorts, it was noted that, in

compared to the SULT1B1-lower group, ESCC patients with higher

SULT1B1 expression demonstrated better OS (Figures 11J–M).

Subsequently, we examined three pairs of clinical ESCC tissue
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samples. The results showed that compared to the paired normal

tissues, ESCC cancer tissues demonstrated decreased SULT1B1

expression (Figure 12A). The collected data proposed that

SULT1B1 might have a tumor-suppressing function in the

progression of ESCC.

To investigate the role of SULT1B1, we initially assessed the

basal protein expression levels of SULT1B1 in KYSE150, KYSE30,

and KYSE410 (Figure 12B). The results indicated that SULT1B1

exhibited high expression in KYSE150 cell line, moderate

expression in KYSE410 cell line, and low expression in the

KYSE30 cell line. Subsequently, SULT1B1 was knocked down in

the KYSE150 and KYSE410 cell lines (Figure 12C), while it was

overexpressed in the KYSE30 and KYSE410 cell lines (Figure 12D).

The efficiency of overexpression and knockdown was substantiated

by western Blot analysis. Here, the subsequent experiments utilized

si-SULT1B1#4, as it exhibited a higher level of knockdown efficacy.

The CCK8 assay results demonstrated that the knockdown of

SULT1B1 was capable of promoting the tumor cell proliferation

of KYSE150 and KYSE410 cells (Figures 12E, H). Conversely, the

overexpression of SULT1B1 was able to suppress the proliferation

of KYSE30 and KYSE410 cells (Figures 12N, Q). Flow cytometry

analysis revealed that upon knockdown of SULT1B1 in KYSE150
FIGURE 9

Exploration of drug compounds targeting the CRGs. In the GSE53625 cohort (n = 179), (A–I) correlation scatter plot depicting the relationship of
IC50 of the top 9 candidate drugs and risk score, and boxplots depicting the difference in IC50 of candidate drugs between high- and low-risk
groups, with statistical significance assessed via the Wilcoxon rank sum test. Pearson correlation analysis was performed to assess the correlations
between risk score and candidate drugs. CRGs, coagulation-related genes; IC50, the half-maximal inhibitory concentration. ****: p < 0.0001.
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and KYSE410 cells, the proportion of cells in the G0/G1 phase

showed a decline, whereas the proportion of cells in the S phase

exhibited an increase (Figures 12F, I). Additionally, the apoptosis

rate decreased (Figures 12G, J). Conversely, after the overexpression

of SULT1B1 in KYSE30 and KYSE410 cells, the proportion of cells

in the G0/G1 phase showed an upward trend, whereas the

proportion of cells in the S phase declined (Figures 12O, R).

Moreover, the apoptosis rate increased (Figures 12P, S). Results

from the scratch assay and transwell invasion experiments

confirmed that knockdown of SULT1B1 promoted the migration

of KYSE150 and KYSE410 cells (Figures 12K, L), while

overexpression of SULT1B1 inhibited the migration of KYSE30

and KYSE410 cells (Figures 12T, U). The findings of western Blot

analysis indicated that upon the knockdown of SULT1B1, the

expression of E-cadherin significantly decreased, while that of

Vimentin significantly increased (Figure 12M). Conversely, when

SULT1B1 was overexpressed, an opposite outcome was observed

(Figure 12V). In summary, the findings of our research indicated

that SULT1B1 is capable of effectively suppressing the proliferation
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and migration of ESCC cells. Further mechanistic investigations

confirmed that its tumor-suppressing function is achieved through

promoting cell cycle arrest at the G0/G1 phase, inducing apoptosis,

and suppressing the epithelial-mesenchymal transition

(EMT) process.
4 Discussion

ESCC is a kind of malignant tumor characterized by a high

incidence and mortality rate. Given the complexity and high

heterogeneity of ESCC, solely relying on the clinical and

histopathological characteristics of patients does not adequately

predict the prognosis of ESCC patients. Due to the remarkable

progress of bioinformatics technology, it has now become

practicable to predict the prognosis of patients via genetic analysis

(34, 35). Hypercoagulable state is highly prevalent in malignant

tumors (16, 17). This state facilitates the proliferation and migration

of tumor cells, along with the remodeling of the immune
FIGURE 10

Single-cell sequencing data analysis. In the GSE145370 dataset (n = 7), (A) tSNE plot of cell distribution in 7 patients with ESCC. (B) tSNE plot for
visualizing clustering profiles. (C) Proportion of each cell population in different samples. (D) Heatmap showing the top 3 unique marker genes in
each cellular subpopulation. (E–J) The five model CRGs levels in each cellular subpopulation. ESCC, esophageal squamous cell carcinoma; t-SNE,
t-distributed stochastic neighbor embedding.
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microenvironment (18–21). Recent studies indicate that the CRGs

signature is highly significant in forecasting the outcomes for

patients with diverse cancers, such as colon adenocarcinoma (15),

hepatocellular carcinoma (21), and lung adenocarcinoma (16), as

well as the responses to immunotherapy. Nevertheless, the role it

plays ESCC remains elusive. In this study, we carried out

comprehensive analyses and validations across multiple ESCC

cohorts, and successfully developed a novel CRGs prognostic

signature. When compared with the previously reported 32

prognostic signatures, the CRGs signature demonstrated superior

performance over most of the other published signature in ESCC

prognostic cohorts. In summary, this signature has been utilized

across multiple cohorts, and its effectiveness as a prognostic marker

and for examining the efficacy of immunotherapy responses has

been preliminarily verified, with the ultimate goal of enhancing the

OS of ESCC patients.

In this research, we initially identified prognostic CRGs in

patients with ESCC. Next, patients were sorted into two different

clusters with cluster 1 having a poorer prognosis. By analyzing the
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DEGs between different clusters, we constructed a CRGs signature

composed of six genes: PTX3, CILP, CFHR4, SULT1B1, IL5RA, and

FAM151A. The efficacy of CRGs signature as prognostic predictors

was validated in the training and multiple validation cohorts. Among

the six model CRGs, SULT1B1 demonstrates the highest accuracy in

predicting the tumor status. The SULT family of enzymes is involved

in catalyzing the sulfonation process for a wide range of internal,

medicinal, and foreign compounds (36). This family encompasses

three subfamilies, namely SULT1, SULT2, and SULT4, encompassing

a total of 13 distinct members (37). SULT1B1 is a member of the

SULT1 family. Research has revealed that the expression level of

SULT1B1 is highest in the human intestine. Moreover, it is

moderately expressed in the human liver, kidney, lung, and white

blood cells (38–40). Despite the role of SULT1B1 in ESCC remains

uninvestigated, it is postulated to be associated with carcinogenesis

(41). Moreover, numerous studies conducted in recent years have

revealed that SULT1B1 might exhibit tumor suppressive activity in a

diverse range of cancers. For instance, Eskandarion, M. R. et al. (42)

discovered that SULT1B1 exhibited downregulation in gastric cancer
FIGURE 11

Low expression of SULT1B1 is associated with poor prognosis in ESCC. (A) In the GSE53625 cohort (tumor samples = 179 and normal samples = 179),
the six model CRGs were analyzed with the ‘pROC’ R package. (B, D) The mRNA expression level of SULT1B1 in esophageal cancerous tissues and
normal tissues were assessed using the GEPIA and TNMplot databases. (C) The Kaplan-Meier survival curve depicted different overall survival
(p = 0.00021) between the high- and low-SULT1B1 groups using Kaplan-Meier plotter database. (E–I) Boxplots of the difference in the mRNA expression
level of SULT1B1 between tumor and normal groups across the GSE20347, GSE38129, GSE53625, GSE53624, and GSE53622 cohorts.
(J–M) The Kaplan-Meier survival curve depicted different overall survival between the high- and low-SULT1B1 groups across the TCGA-ESCC,
GSE53625, GSE53624, and GSE53622 cohorts. ESCC, esophageal squamous cell carcinoma. *: p < 0.05, **: p < 0.01, ****: p < 0.0001.
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FIGURE 12

Effects of SULT1B1 on cell proliferation and migration in ESCC cell lines. (A) The expression of SULT1B1 protein in ESCC tissues and
pericarcinomatous tissues was detected via western blot. (B) The protein expression levels of SULT1B1 in various ESCC cell lines with statistical
analysis. (C) Western blot experiment validated the siRNA knockdown effect in KYSE150 and KYSE410 cells with statistical analysis. (D) Western blot
experiment validated the SULT1B1 overexpression in KYSE30 and KYSE410 cells with statistical analysis. (E, H, N, Q) The results of CCK-8 assay in
ESCC cells. (F, I, O, R) The effect of knockdown and overexpression of SULT1B1 on the cell cycle of ESCC was detected by flow cytometry.
(G, J, P, S) The effect of knockdown and overexpression of SULT1B1 on the apoptosis of ESCC was detected by flow cytometry. (K) The results of
scratch wound healing assay of KYSE150 and KYSE410 cells treated with siRNA or negative control of SULT1B1. (L) The results of transwell assay
carried out in KYSE150 and KYSE410 cells treated with siRNA or negative control of SULT1B1. (M) Expression of E-cad and Vimentin in si-Ctrl group
and si-SULT1B1 group in KYSE150 and KYSE410 cells via western blot. (T) The results of scratch wound healing assay of KYSE30 and KYSE410 cells
with SULT1B1 overexpression. (U) The results of transwell assay carried out in KYSE30 and KYSE410 cells with SULT1B1 overexpression. (V)
Expression of E-cad and Vimentin in vector group and SULT1B1-OE group in KYSE30 and KYSE410 cells via western blot. ESCC, esophageal
squamous cell carcinoma. E-cad, E-cadherin. *: p < 0.05, **: p < 0.01, ***: p < 0.001, ****: p < 0.0001.
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and upregulation in intestinal metaplasia. This finding implies that

SULT1B1 may possess tumor-suppressive activity during GC

progression. In Cholangiocarcinoma, SULT1B1 is closely associated

with tumor differentiation. Notably, in CCA, SULT1B1 is lowly

expressed (43). Regarding colorectal cancer, the suppression of

SULT1B1 is closely linked to tissue dedifferentiation. Moreover, the

low expression level of SULT1B1 is associated with a poor survival

rate (40, 44–46). In our investigation, through online databases and

multiple cohorts, we discovered that the mRNA level of SULT1B1 in

ESCC tissues was decreased, and low SULT1B1 was linked to poor

survival rates. Correspondingly, the experimental findings indicated

that, in ESCC tissues, the SULT1B1 protein levels were remarkably

lower. Additionally, our cell-based experiments demonstrated that

SULT1B1 exerts a tumor-suppressing effect by modulating cell

proliferation and migration.

Recently, immunotherapy has emerged as an effective and

highly promising treatment modality for cancer therapy (47, 48).

Notwithstanding, only a limited number of patients derive benefits

from it (49). Consequently, accurate prediction is of crucial for

identifying those patients who are likely to respond favorably to

immunotherapy. Our findings indicated that immunotherapy is

more likely to elicit a positive response in patients with low-risk

ESCC. Additionally, numerous studies have indicated that TMB

levels could increase the potency of IC inhibitors (50–53). In this
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study, patients with low-risk ESCC exhibited higher TMB levels and

demonstrated a more robust response to immunotherapy. This

finding is in line with the conclusion mentioned above. Moreover,

considering the TME’s significant influence on tumor growth and

evolution (54, 55), a comprehensive investigation of the TME

associated with signature in ESCC is conducive to elucidating its

function in the anti-tumor immune response (10). The results

showed that, within high-risk subgroup, the level of immune

infiltration was higher, with a significant increase in fibroblasts

andM0 macrophages. Notably, Cancer-associated fibroblasts, as the

fundamental parts of TME, are vital to the development of cancer

(56). Research has repeatedly that Cancer-associated fibroblasts can

secrete various matrix metalloproteinases and other proteases to

remodel the extracellular matrix, thereby leading to tissue

hardening, promoting tumor survival, invasion and metastasis,

therapy resistance, and immune exclusion (57–62). Furthermore,

notable intergroup disparities in IC expression were observed.

Given that IC play a critical importance in determining the

efficacy of immunotherapy (10, 63), herein we postulate that this

could potentially be one of the contributing factors underlying the

differences in immunotherapy responses between risk groups. In

summary, multiple cohorts have confirmed that CRGs signature is

effective in predicting the response to immunotherapy. It should be

noted that there is a lack of relevant data regarding immunotherapy
TABLE 1 Comparisons of patient characteristics between training and testing cohorts.

Characteristics Total (n = 179) Training set (n = 90) Testing set (n = 89) P-value

Age

≤ 60 99 (55.31%) 48 (53.33%) 51 (57.30%) 0.593

> 60 80 (44.69%) 42 (46.67%) 38 (42.70%)

Gender

Male 146 (81.56%) 72 (80.00%) 74 (83.15%) 0.587

Female 33 (18.44%) 18 (20.00%) 15 (16.85%)

T stage

T1 12 (6.71%) 6 (6.67%) 6 (6.74%) 0.518

T2 27 (15.08%) 10 (11.11%) 17 (19.10%)

T3 110 (61.45%) 58 (64.44%) 52 (58.43%)

T4 30 (16.76%) 16 (17.78%) 14 (15.73%)

N stage

N0 83 (46.37%) 43 (47.78%) 40 (44.94%) 0.877

N1 62 (34.64%) 30 (33.33%) 32 (35.96%)

N2 22 (12.29%) 10 (11.11%) 12 (13.48%)

N3 12 (6.70%) 7 (7.78%) 5 (5.62%)

TNM stage

I 10 (5.59%) 7 (7.78%) 3 (3.37%) 0.438

II 77 (43.02%) 38 (42.22%) 39 (43.82%)

III 92 (51.39%) 45 (50.00%) 47 (52.81%)
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in the ESCC cohorts. The aforementioned conclusion was derived

through bioinformatics analysis and lacks comprehensive validation

in a real ESCC cohort.

Our research has certain limitations. First, in this study, the

immunotherapy response prediction is algorithmic. The effectiveness

of the CRGs signature in predicting the response to immunotherapy

in real clinical environment remains to be validated. Second, while

the predictive significance and effectiveness of the CRGs signature

have been validated, given that the sample size of the publicly

available dataset remains limited, it is essential in larger real-world

ESCC cohorts. Third, owing to the limited experimental conditions,

this study was unable to further elucidate the molecular mechanisms

of the model genes in ESCC. In subsequent research, additional

investigations are required to confirm the CRGs signature and delve

into the underlying mechanisms.

In conclusion, this study systematically analyzed CRGs related

to ESCC via a series of bioinformatics approaches. Subsequently, a

robust CRGs signature consisting of PTX3, CILP, CFHR4,

SULT1B1, IL5RA, and FAM151A was successfully constructed

and validated. Additionally, the CRGs signature is also closely

linked to the clinical features, TME, and immunotherapy

response of ESCC, holding potential guiding implications for

personalized clinical decision-making. Moreover, we have initially

elucidated the tumor-suppressing function of SULT1B1 in ESCC.

However, it should be noted that the immunotherapy response

prediction is algorithmic. Looking ahead, it is essential to validate

the prognostic accuracy and the efficacy of immunotherapy

responses of the CRGs signature in larger real-world ESCC cohorts.
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