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Background: BRAF mutations are prevalent in colorectal cancer (CRC) and

generally confer a poor prognosis. Tertiary lymphoid structures (TLS), a critical

component of the tumor immune microenvironment, exist in various

malignancies and often correlate with improved immunotherapy response and

survival. However, whether TLS can counteract the adverse prognostic effects of

BRAF mutations in CRC remains unexplored. This study characterizes TLS

features (location, number, maturity) as well as correlation to the BRAF

mutation status and clinicopathological characteristics in CRC, and specifically

evaluates the potential role of TLS in mitigating the negative prognostic impact of

BRAF mutations.

Methods: Single-cell RNA sequencing data from GSE146771, GSE146771,

GSE200997, GSE205506, and GSE231559, along with bulk RNA-seq data from

the TCGA CRC cohort, were analyzed. Prognostic genes were identified using

univariate Cox regression and least absolute shrinkage and selection operator

(LASSO) regression, and subsequently used to construct TLS-related prognostic

signatures. Kaplan-Meier survival analysis and receiver operating characteristic

(ROC) curve analysis were used to evaluate the predictive performance of the

signature. Immune infiltration was assessed using the ESTIMATE and CIBERSORT

algorithms. Histopathological evaluation of TLS was conducted in tissue sections

from 200 CRC patients. Clinicopathological features were compared between the

BRAFwild-type (BRAFWT) and BRAFmutant (BRAFMT) groups. Associations between
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BRAF mutation status and TLS location, number, maturity, as well as overall survival

(OS), were analyzed.

Results: TLS displayed distinct expression patterns within the CRC tumor

microenvironment. A 10-gene prognostic model was developed based on

LASSO regression analysis. Patients with BRAFMT CRC exhibited unfavorable

clinicopathological characteristics, including poor differentiation, advanced T

stage, and lymph node metastasis. Meanwhile, BRAFWT CRC was associated

with a greater number and higher maturity of TLS. Notably, patients with BRAFWT,

TLS-high (TLSHigh), and BRAFWT-TLSHigh subgroups showed significantly

improved OS compared to other groups.

Conclusion: TLS-related prognostic signatures serve as effective tools for

predicting CRC outcomes. Moreover, intratumorally TLS may enhance the

prognosis of patients with BRAFMT CRC, highlighting its potential as a therapeutic

and prognostic biomarker. Colorectal cancer, BRAF mutation, tertiary lymphoid

structures, tumor microenvironment, prognosis.
KEYWORDS

colorectal cancer, BRAFmutation, tert iary lymphoid structures, tumor
microenvironment, prognosis
1 Introduction

Colorectal cancer (CRC) is one of the most common malignant

tumors worldwide, and the incidence of new CRC cases is projected

to reach 3.15 million by 2040 (1, 2). Currently, the treatments for

CRC patients mainly include surgery, chemotherapy, immune

check point inhibitors and targeted therapy (3, 4). Anti-EGFR

antibody is now recommended as first-line therapy for patients

possessing wild-type oncogenes of the RAS-MAPK pathway, such

as KRAS, NRAS, and/or BRAF (5). About 8%-15% of CRC patients

carry BRAF mutations, with BRAFV600E being the most common

subtype (6–8). Despite considerable advances in CRC treatment,

efficient management of advanced-stage CRC, particularly in

patients carrying BRAF mutations, remains a major challenge.

The BRAF oncogene encodes BRAF protein, which is localized

downstream of RAS, leading to the activation of the mitogen-activated

protein kinase (MAPK) pathway. Several hot spots were identified in

BRAFmutations, with V600E (a substitution of valine by glutamic acid

at codon 600) accounting for up to 80% of all BRAF mutations (9, 10).

It was reported that CRC patients with BRAFV600E mutation have a

poorer prognosis and require more intensive chemotherapy or

combination therapy with targeted drugs (11–13).

The tumor microenvironment (TME) is the “soil” for tumor

genesis, progression, and metastasis. TME usually includes immune

cells, fibroblasts, blood vessels, and stromal components (14).

Tertiary lymphoid structure (TLS) is an acquired ectopic

organized immune cell aggregation structure in non-lymphoid

organs, which usually occurs in chronic inflammatory diseases,

such as autoimmune diseases, infectious diseases, and tumors. TLSs

are usually composed of B-cell follicles with germinal centers,
02
dendritic cells, hyperendothelial venules, and T-cell zones, and

are spontaneously formed by lymphocytes at inflammatory sites

(15, 16). As an important part of the immune microenvironment,

TLS is closely associated with immunotherapy efficacy and cancer

patient prognosis (17). Recent studies have demonstrated a positive

prognostic correlation between TLS and various tumors, including

non-small cell lung cancer (18), melanoma (19), sarcoma (20),

breast cancer (21), and prostate cancer (22).

To date, there are few studies on the association between BRAF

gene mutation and TLS signatures in CRC (23). In this study, we

analyzed single-cell RNA sequencing (scRNA-seq) data of CRC to

explore the expression patterns of TLSs across different cell types.

Based on these data, we developed a new TLS-associated prognostic

signature. Furthermore, we divided patients into high-risk and low-

risk groups according to the score of the prognostic signature, and

then explored the contrast of BRAF mutation status and other

biological characteristics between the two groups. Our findings

reveal a potential connection between TLS signatures and BRAF

mutations in CRC, providing new insights into CRC prognosis and

treatment strategies.
2 Materials and methods

2.1 Dataset source and preprocessing

The RNA expression data of colorectal cancer, including clinical

information, were obtained from the Cancer Genome Atlas Program

(TCGA) database (https://portal.gdc.cancer.gov/). The scRNA-Seq

sequencing data sets GSE146771 (n = 20), GSE166555 (n = 13),
frontiersin.org
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GSE200997 (n = 16), GSE205506 (n = 27), and GSE231559 (n = 6)

were obtained from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/), and all tumor samples were

included in the analysis. The 121 TLS-related gene set was

employed from the integration of published articles (19, 24–30).
2.2 Unsupervised clustering of TLS

We used the “ConsensusClusterPlus” package (31) to classify

patients into different molecular subtypes by unsupervised

clustering techniques based on the expression matrix and clinical

information of the TCGA colorectal cancer cohort. The optimal

number of clusters (k = 2) was determined by the consensus matrix,

cumulative distribution function (CDF), and relative changes in the

area under the CDF curve. After clustering, the cluster assignments

were validated by t-distributed stochastic neighbor embedding (t-

SNE). The survival associated with each molecular subtype was

evaluated by Kaplan-Meier survival analysis.
2.3 Construction and validation of TLS
prognostic signature

To establish a TLS-related prognostic signature, we subjected a

121-relevant-gene set to univariate Cox proportional hazards

regression analysis to screen genes associated with survival (P<

0.05). Subsequently, LASSO regression (10-fold cross-validation,

“glmnet” package) was performed to select the optimal penalty

parameter l according to the 1-SE (standard error) criterion to

minimize the prediction error. Finally, the gene set was streamlined

to ten core genes (CCL19, CCL22, ICOS, IGHG1, JCHAIN, CD37,

XBP1, FCMR, TNFRSF13C, and FCRLA). The risk score of each

patient was calculated based on the expression levels of these genes

and weighted by their corresponding LASSO coefficients as follows:

Risk Score  =  o(Expressioni � Coefficienti) :

According to the median risk score, patients were divided into

high-risk and low-risk groups. The overall survival between the two

risk groups was compared using Kaplan-Meier survival analysis.

The predictive accuracy of the prognostic model at 1, 3, and 5 years

was evaluated using time-dependent receiver operating

characteristic (ROC) analysis with the area under the curve

(AUC) as an indicator. In addition, we compared the risk

grouping with other clinical indicators to demonstrate the

reliability of the prognostic signature. A nomogram model based

on clinicopathological features and prognostic scores was

constructed using the “rms” R package.
2.4 Differential expression and functional
enrichment between clusters

Differentially expressed genes (DEGs) between two molecular

clusters based on TLS-related gene sets were identified using
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“limma” (|log2FC| > 1, adjusted P< 0.05). Functional enrichment

analysis of these DEGs, including Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG), was performed

using the R package “clusterprofiler” (version 4.2.2) (32)to

explore the biological functions of the DEGs.
2.5 Tumor microenvironment
characterization of clusters

To investigate the differences in tumor microenvironment

between TLS-based molecular clusters, immune cell infiltration

was quantified using the CIBERSORT deconvolution algorithm.

The signature matrix of 22 immune cell types (LM22) was used as a

reference; 1,000 permutations were performed, and quantile

normalization was enabled (perm = 1000, QN = TRUE). The

normalized gene expression data (after log transformation) were

input as a mixing matrix. Spearman correlation analysis was

performed to explore the potential association between risk score

and immune infiltrating cells. In addition, the ESTIMATE score

(stromal/immune score) and Tumor Immune Dysfunction and

Exclusion (TIDE) score (http://tide.dfci.harvard.edu/) were

evaluated to assess differences in immunogenicity.
2.6 Analysis of genetic variation in different
TLS risk groups in COAD

The mutation data and clinical information of the COAD

dataset in MAF format were downloaded from the TCGA

database using the R package TCGAbiolinks, and the R package

maftools was used to compare the differences in mutation spectra

between TLSHigh and TLSLow subgroups, including mutation

burden (TMB), high-frequency mutation genes, and mutation

patterns, to evaluate the impact of TLS status on the genomic

characteristics of patients with BRAF mutations.
2.7 Gene set enrichment analysis

To explore the potential biological mechanism of TLS risk

grouping in BRAF-mutated colorectal cancer, we used the R package

“clusterProfiler” to perform gene set enrichment analysis (GSEA).

DESeq2 was used to perform differential analysis between TLSHigh

and TLSLow groups in BRAF mutation samples, and the screening

criteria were genes with p-value< 0.05 and |log2FoldChange| > 1. The

gene set used for enrichment analysis was from the HALLMARK

collection of the MSigDB database (https://www.gsea-msigdb.org/gsea/

msigdb) in the “msigdbr” package.
2.8 Drug sensitivity analysis

We used the R package “oncoPredict” to perform drug sensitivity

prediction analysis. First, we obtained the standardized cell line expression
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matrixandthecorrespondingdrugresponse(IC50)data fromtheGDSC2

database (https://www.cancerrxgene.org/) as the training set. Then,

the transcriptome expression data of our TCGA-COAD cohort

were formatted and aligned with the gene names before being input

into the model. The “calcPhenotype()” function was used to predict

the sensitivity of the samples to multiple drugs included in GDSC2.

During the prediction process, the Empirical Bayes method was

used to correct the batch effect (batchCorrect = “eb”), and

removeLowVaryingGenes = 0.2 was set to remove low-variance

genes to optimize model performance. Finally, the predicted drug

IC50 values were integrated with clinical information and visually

compared in different risk groups (TLSHigh and TLSLow) to evaluate

the potential response differences between the two groups to

different drugs.
2.9 Patients and specimens

200 CRC patients were enrolled, who primarily underwent their

first surgical resection at Sun Yat-sen Memorial Hospital, and were

pathologically diagnosed with CRC from 2016 to 2018. The study

was approved by the Ethics Committee of Sun Yat-sen Memorial

Hospital (SYSKY - 2024-098-01), and all patients recruited in the

study signed informed consent.
2.10 Immunohistochemical staining

IHC was performed to analyze the mutation of the BRAF

protein (V600E) in all CRC cases. CD3, CD20, and CD21 were

performed to analyze the TLS maturity. The sections used for IHC

were obtained from paraffin-embedded tissues of CRC patients and

stained. Briefly, paraffin-embedded tissues were cut into 4mm
sections and were first dewaxed with xylene 3 times, followed by

gradient rehydration with different concentrations of ethanol,

followed by epitope repair by boiling the sections in citrate buffer

(pH 6.0) or Tris-EDTA (pH 9.0) under high pressure for 10 min.

The sections were treated with 3% hydrogen peroxide for 15min to

eliminate endogenous peroxidase and then blocked with 5% bovine

serum albumin (BSA) for 30min. The sections were incubated with

primary antibody overnight in a chamber at 4°C. On the second

day, the slides were taken out and washed with PBS 3 times, 5

minutes each time, and then incubated with HRP-conjugated

secondary antibody at 37°C for 30 minutes. Finally, the slides

were washed with PBS 3 times, then incubated with DAB, and

followed by counterstaining using hematoxylin.
2.11 Hematoxylin and eosin

H&E staining was performed to identify TLS characteristics in

all CRC cases. The sections used for H&E staining were obtained

from paraffin-embedded tissues of CRC patients, stained, and
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evaluated by two pathologists. Paraffin-embedded sections were

dewaxed and rehydrated as described in “immunohistochemical

staining (IHC)”, then stained with hematoxylin, rinsed with

running tap water, re-stained with eosin, and finally dehydrated

and sealed.
2.12 BRAF mutational status and TLS
quantification

The whole section was scanned by OLYMPUS BX53 (Olympus,

JAPAN) and double-blind evaluated by two independent

pathologists. IHC staining was used to verify the mutation status

of BRAF, and H&E staining was used to reveal the presence of TLS

in CRC. TLS can be divided into 3 types according to the different

anatomical subregions (intra-tumor, invasive margin, and peri-

tumor). According to their maturity, TLSs can be classified as

lymphoid aggregates (Agg) and lymphoid follicles (Fol); Fol can

be further subdivided into Fol-I (lymphoid follicles without

germinal centers) and Fol-II (with germinal centers).

The TLS scoring system was established based on the

abundance of TLSs in different subregions. TLS abundance was

divided into 4 groups: (a) score 0 indicates no TLS, which is

equivalent to TLS negative CRC; (b) score 1 represents 1 – 5

TLSs; (c) score 2 represents 6 – 10 TLSs; (d) score 3 represents

over 10 TLSs.
2.13 Single-cell RNA analysis

For each scRNA-seq dataset (GSE146771, GSE166555,

GSE200997, GSE205506, and GSE231559), we retained genes

detected in at least three cells and excluded cells with

mitochondrial gene content exceeding 10%. Cells with fewer than

300 or more than 5,000 detected genes were also removed. After

quality control, the five datasets were integrated, and batch effects

were mitigated using the “Harmony” algorithm (33). Cell types were

manually annotated based on canonical marker gene expression

profiles. Cell-cell communication was inferred using the “CellChat”

package (34), which utilizes a curated ligand-receptor interaction

database. In addition, the “AddModuleScore” function was applied to

score each cell for a predefined TLS-related gene signature.
2.14 Statistical analysis

GraphPad Prism software (version 9.3.2) and SPSS software

V.23.0 (IBM) were used to perform statistical analysis. The chi-

square test is used to compare counted data. The overall survival

(OS) time was defined as the time in months from operation to death.

Kaplan-Meier was used to plot survival curves, and progression-free

survival was compared using the Log-rank test. A two-tailed p-value

less than 0.05 was considered statistically significant.
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3 Results

3.1 Construction of COAD prognostic risk
score model based on TLS-related gene
sets

We first analyzed the expression profiles of 121 TLS-related genes

(Supplementary Table 1) in tumor tissues and adjacent normal

tissues from the TCGA-COAD cohort. Differential expression

analysis revealed that 82.6% of TLS-related genes (100 genes) were

significantly dysregulated in tumor tissues (Supplementary

Figure 1A). To further investigate TLS-related transcriptional

patterns, we applied unsupervised clustering to 442 tumor samples

w i t h comp l e t e c l i n i c a l d a t a u s i ng th e R packag e

ConsensusClusterPlus. Based on the empirical cumulative

distribution function (CDF) curves, k = 2 was selected as the

optimal number of clusters, providing the highest intra-cluster

correlation and lowest inter-cluster correlation (Supplementary

Figures 1B-D). Two different TLS-related gene expression patterns,

designated as TLS-related clusters 1 and 2, were observed. t-SNE

analysis demonstrated clear separation between the two clusters

(Supplementary Figure 1E), supporting the reliability of the

clustering. Kaplan-Meier (KM) survival analysis showed that the

patients in cluster 2 had significantly shorter overall survival (OS)

compared to those in cluster 1 (Supplementary Figure 1F). These

findings suggest that TLS-related gene expression patterns are closely

associated with the CRC prognosis and may serve as a potential

indicator for patient stratification.

To further study the expression pattern of TLS-related genes

associated with CRC prognosis, we first performed univariate Cox

regression analysis on the 121 TLS-related genes and identified 18

genes with significant prognostic value (p< 0.05, Table 1). Using

LASSO penalized Cox regression analysis, we refined these to 10 key

prognostic genes (CCL19, CCL22, ICOS, IGHG1, JCHAIN, CD37,

XBP1, FCMR, TNFRSF13C, and FCRLA) based on the minimum

criterion penalty parameter (Figures 1A-C). The prognostic score

was calculated based on the expression levels of these genes, and the

formula was as follows:

Risk score = 2.59e-02*TNFRSF13C + 9.61e-03*FCMR + 5.67e-

03*CD37 + 3.25e-05*CCL19 + 3.50e-06*IGHG1 - 4.43e-

05*JCHAIN –2.13e-04*XBP1 - 8.25e-03*CCL22 - 2.07e-02*ICOS

- 4.00e-02*FCRLA.

Based on the median risk score, we divided the dataset into high-

risk (TLSLow) and low-risk (TLSHigh) groups. Patients in the TLSLow

group exhibited significantly shorter OS than those in the TLSHigh

group (Figure 1D). The prognostic model demonstrated high stability

and accuracy, with the ROC curve (AUC) of 0.7 for 1-year survival

prediction, 0.71 for 3-year survival prediction, and 0.7 for 5-year

survival prediction (Figure 1E). Consistent with this, patients in the

high-risk score group exhibited a higher probability of death as

shown in the survival distribution diagram (Figure 1F, G). The heat

map further illustrated the association between the 10 genes and the
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prognostic scores (Figure 1H). The forest plot combined with clinical

parameters and the TLS risk model showed that the risk group had a

higher hazard ratio (Figure 1I). Finally, a nomogram was constructed

to predict the overall survival of the TCGA-COAD cohort (Figure 1J).
3.2 Immune profiles of colorectal cancer
patients with divergent prognostic
outcomes

To explore the different biological behaviors of each TLS cluster,

we performed differential analysis using the limma package and

identified 174 DEGs associated with the TLS clusters (Figure 2A).

GO enrichment analysis results revealed that these differential genes

were significantly enriched in biological processes and molecular

functions such as RNA splicing and complex assembly, nucleosome

structure and nuclear RNA binding activity, and protein-protein

interactions (Figure 2B). KEGG pathway analysis further indicated

that these differential genes were mainly enriched in viral oncogenic

pathways and immune-related response pathways (Figure 2C).

We next evaluated the infiltration of stromal cells and immune

cells in the TCGA-COAD cohort using the ESTIMATE algorithm.

The results revealed that the immune score, stromal score, and

ESTIMATE score were significantly lower in the TLSLow group

compared to the TLSHigh group (Figure 2D), indicating a lower level

of immune and stromal cell infiltration in TME and suggesting an

immunologically “cold” phenotype. To further characterize the

immune landscape, we applied the CIBERSORT algorithm to

assess the composition of immune cells in each sample. The

TLSLow group showed significantly higher proportions of

regulatory T cells (Tregs), resting NK cells, and M0 macrophages

compared to the TLShigh group, suggesting an immunosuppressive

state. In contrast, the TLSHigh group showed significantly increased

proportions of plasma, CD4 memory resting T, DC resting,

eosinophils, and neutrophils, indicating a more active immune state

(Figure 2E). Moreover, we observed a distinct correlation between the

risk score and immune cell composition (Supplementary Figure 2).

The proportion of T cells CD4 memory resting cells decreased with a

correlation coefficient of -0.22 (p = 8.44e-06) (Figure 2F), while the

proportion of Tregs increased with a correlation coefficient of 0.22

(p = 9.16e-06) (Figure 2G). In addition, the expression of genes

included in the prognostic score model was significantly associated

with the abundance of various immune cell types (Figure 2H).

TIDE analysis showed that the TLSLow group exhibited

significantly higher total TIDE score, Exclusion (immune

rejection score), and Dysfunction (immune dysfunction score)

compared to the TLSHigh group, while the MSI score was

significantly lower. These findings indicate that tumor cells in the

TLSLow CRC group have a stronger immune escape ability than

those in the TLShigh group. Moreover, the elevated TIDE scores and

reduced MSI scores in TLSLow patients suggest a poorer response to

immune checkpoint inhibitor (ICI) treatment (Figure 2I).
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3.3 TLS can improve the prognosis of
patients with BRAF mutations in COAD

In colorectal cancer, about 10%-20% of patients carry BRAF

mutations, which are usually associated with strong invasiveness

and poor prognosis (7). One aim of our study is to investigate

whether TLS could offset the adverse effects of BRAF mutations. In

the TCGA-COAD cohort, we observed that the frequency of BRAF

mutations was significantly lower in the TLSHigh group compared to

the TLSLow group (8% vs. 11%, Figures 3A, B), suggesting a

potential biological relevance between TLS and BRAF status.

Stratified survival analysis by AJCC pathological stage revealed

stage-specific patterns: BRAF mutated type (BRAFMT) TLSHigh

patients were significantly higher than BRAF wild type (BRAFWT)

TLSLow patients in both stage II and stage IV (Figures 3C, D). In

addition, there were significant differences in gender and age (Chi-

square test, Supplementary Figures 6B,C). This stage-specific

benefit implies that TLS may selectively ameliorate BRAF

mutation-driven pathology, which provides a theoretical basis for

implementing immune-centric treatment strategies in BRAF

mutation subgroups.

We further conducted survival analysis in BRAFMT samples

from the TCGA dataset, which confirmed that the TLSHigh patients

showed significantly better survival than their TLSLow counterparts

(Figure 3E). Differential expression analysis identified 613 DEGs

between the two groups (Figure 3F). GSEA analysis (Supplementary
Frontiers in Immunology 06
Table 2) revealed that these DEGs were significantly enriched in

pathways such as “HALLMARK COMPLEMENT” (NES = 2.27,

p=1.09e-03), “HALLMARK INFLAMMATORY RESPONSE”

(NES = 1.76, p=2.74e-02), “HALLMARK APICAL JUNCTION”

(NES = 2.80, p=3.48e-05), and “HALLMARK KRAS SIGNALING

DN” (NES = 1.87, p=1.35e-02). These results suggest that TLS may

offset the adverse prognosis caused by BRAF mutation by activating

the anti-tumor immune microenvironment and inhibiting

oncogenic signaling pathways.
3.4 Prognostic significance of BRAF
mutation and TLS in CRC tissues

A total of 200 CRC patients were enrolled, among whom 40

(20%) harbored the BRAFV600Emutation (Supplementary Figure 3A).

Clinicopathologic features, including sex, age (≤ or >50), degree of

tumor differentiation (poor, moderate, well), T stage, and lymphatic

metastasis, were analyzed (Supplementary Figures 3B-F). The CRC

patients ranged in age from 25 to 85 years, with a mean of 57 years,

and a male-to-female ratio of 1.5:1. Pathological analysis revealed that

42 cases (21%) were well-differentiated, 135 (68%) moderately

differentiated, and 23 (11%) poorly differentiated. According to the

AJCC TNM staging system (8th Ed), 24 patients (12%) were classified

as T1 stage, 74 (37%) as T2 stage, 73 (37%) as T3 stage, and 29 (14%)

as T4 stage. Among them, 94 patients were found with lymph node
TABLE 1 Univariate Cox regression analysis of TLS-related genes in TCGA-COAD.

Gene HR L95CI H95CI pvalue

CCL19 1.00589247 1.00206682 1.00973273 0.00251145

CCL22 0.95057001 0.90675333 0.99650402 0.03525527

ICOS 0.87576979 0.77273276 0.99254588 0.0377904

MS4A1 1.0315384 1.00605165 1.05767082 0.01498931

CD19 1.07853845 1.03461233 1.12432953 0.0003654

CD79B 1.05767187 1.01030279 1.1072619 0.01646626

CXCR5 4.39559267 1.38351826 13.9652908 0.01206023

IGHG1 1.00005747 1.0000041 1.00011083 0.03480252

JCHAIN 0.99944999 0.99904272 0.99985742 0.00815264

XBP1 0.99849552 0.99702143 0.99997179 0.04578355

CD22 1.05410256 1.01537389 1.09430842 0.00580126

CD37 1.02506493 1.00160806 1.04907114 0.03608188

FCMR 1.04182798 1.0156864 1.0686424 0.00157544

TNFRSF13C 1.11473158 1.04576756 1.1882435 0.00085794

FCRLA 1.08703668 1.00686991 1.17358631 0.03275098

NIBAN3 1.2202592 1.07341334 1.38719397 0.00234327

RASGRP2 1.10636989 1.03657976 1.1808588 0.0023607

TCL1A 1.04051128 1.00710998 1.07502035 0.01705325
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metastasis. Statistical analysis showed that the BRAFV600E mutation

was significantly correlated with tumor differentiation, T stage, and

lymph node metastasis. The characteristics of the patients are

summarized in Supplementary Table 3.
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We analyzed the distribution, quantity, and maturity of TLS

in CRC and their correlation with BRAF mutational status.

There were 64 (40%) and 13 (8%) patients who were classified

as grade 2 and grade 3 intra-tumor TLS in BRAFWT CRC, while
FIGURE 1

Construction of prognostic features for colorectal cancer based on TLS-related genes. (A) Coefficient profile of TLS-related gene sets. (B)
Determination of the optimal parameter (Lambda) in LASSO. (C) Construction of a risk model with the determined 10 genes. (D) Kaplan-Meier
analysis of survival rate. (E) ROC curve analysis of 1-year, 3-year, and 5-year survival rates of the risk model. (F, G) Ranking and scatter plots of
prognostic score distribution and patient survival status. (H) Heat map of 10 OS-related gene expressions. (I) Forestplotter displays the hazard ratio
of each clinical indicator. (J) Nomogram for predicting 1-year, 3-year, and 5-year survival rates of colorectal cancer.
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there were only 5 (13%) and 1 (3%) in BRAFMT CRC. These

findings indicate a significant correlation between BRAF

mutational status and the abundance of the intra-tumor TLSs.

However, no significant differences were observed between
Frontiers in Immunology 08
BRAF mutational status and TLS grade in the invasive margin

or peri-tumor (Figures 4A, B).

Next, we examined the correlation between the maturity of

intra-tumor TLS and BRAF mutational status. We found that 16
FIGURE 2

Immune microenvironment and TMB of COAD with different prognostic scores. (A) Volcano plot of differentially expressed genes between the two
groups with different prognostic scores. KEGG (B) and GO (C) enrichment analysis of DEGs between the two groups. (D) ESTIMATE score between
the two risk groups. (E) CIBERSORT immune cell infiltration ratio between the low-risk and high-risk groups. Correlation between the changes in the
ratio of T cells CD4 memory resting cells (F) and T cells regulatory (Tregs) cells (G) and risk score. (H) Correlation between prognostic score gene
expression and immune cells. (I) TIDE score between the two risk groups.
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(10%) of BRAFWT CRCs and 12 (30%) of BRAFMT CRCs had

zero intra-tumor AGG TLS. Among BRAFWT cades, 138 (86%)

patients had FOL-I TLS, which were further classified into grades 1,

2, and 3. In contrast, only 15 (38%) patients with BRAFMT

CRCs harbored FOL-I TLS, and none were categorized as
Frontiers in Immunology 09
grade 2 or 3. These findings indicate that intra-tumoral AGG

and FOL-I are significantly correlated with BRAF mutation

status, whereas FOL-II showed no significant correlation

(Figures 4C, D). The statistics are shown in Supplementary

Tables 4, Supplementary Tables 5.
FIGURE 3

Analysis of BRAF mutations in COAD patients with different prognostic scores. (A, B) Mutation profiles between the TLSHigh and TLSLow groups. (C)
Survival analysis of BRAF mutations (MT) and wild-type (WT) at different AJCC pathological stages. (D) Survival analysis of BRAF mutations combined
with TLSHigh/Low groups at different AJCC pathological stages. Survival (E) and DEGs analysis (F) of TLS groups within BRAF mutation samples. (G-J.)
GSEA enrichment analysis of DEGs.
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FIGURE 4

Intra-tumoral TLS with greater quantity and maturity in colorectal cancer may counteract the poor prognosis caused by BRAF mutations. (A) H&E
and IHC staining of two CRC patients, showing BRAF status and TLS in different subregions, intra-tumor, invasive margin, and peri-tumor. (B)
Percentage of TLS numbers between BRAFWT and BRAFMT CRCs at intra-tumor, invasive margin, and peri-tumor subregions. ns: no statistically
significant difference. (C) H&E and IHC staining of two CRC patients, showing TLS with different maturity, AGG, FOL-I, and FOL-II TLS. (D) Statistical
analysis of intra-tumor AGG, Fol-I, and FOL-II TLS between BRAFWT and BRAFMT CRCs. (E) Analysis of the probability of survival between BRAFWT and
BRAFMT CRC patients, TLSHigh and TLSLow CRC patients. BRAFWT-TLSHigh, BRAFWT-TLSLow, BRAFMT-TLSHigh, and BRAFMT-TLSLow CRC patients. TLS
abundance was divided into 4 groups: score 0 indicates no TLS, score 1 represents 1 – 5 TLSs, score 2 represents 6 – 10 TLSs, and score 3
represents over 10 TLSs. ns, no statistically significant difference; **p<0.01; ***p<0.001.
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Based on BRAF mutational status, CRC patients were classified

into BRAFWT and BRAFMT groups. According to the median

number of intra-tumoral TLS, they were further stratified into

TLSHigh (>5) and TLSLow (≤5) groups. Kaplan-Meier survival

analysis revealed significant differences in OS between BRAFMT

and BRAFWT (P<0.0001) and between TLSHigh and TLSLow

(P<0.0001, Figures 4D, E). Subsequently, these patients were

categorized into four groups based on both BRAF mutational

status and intra-tumor TLS (BRAFWTTLSHigh, BRAFWTTLSLow,

BRAFMTTLSHigh, and BRAFMTTLSLow). Prognostic analysis

showed that patients in the BRAFWTTLSHigh group had the most

favorable survival outcome, with a median survival of 65 months

(P<0.0001, Figure 4E).
3.5 TLS profiles in colorectal cancer
scRNA-seq datasets

To validate and extend our findings from the TCGA-COAD

cohort, we further investigated the single-cell RNA sequencing

(scRNA-seq) datasets of GSE146771, GSE166555, GSE200997,

GSE205506, and GSE231559. Following quality, control

integration, and removal of batch effects, a total of 113,379 cells

were retained for further analysis (Supplementary Figure 4A).

Dimensionality reduction and clustering analysis identified 14 cell

lineages, including CD4 memory T cells, CD8 T cells, Plasma,

Tregs, Epithelial tumor cells, activated B, Macro_Mono, Endothelial

Cell, CAFs, T cells, B cells, MEP, Memory B cells, and DC cells

(Supplementary Figure 4B). The number and proportion of these

cell types varied across datasets (Supplementary Figures 4C, D). The

heat map shows the top five marker genes for each cell type

(Supplementary Figure 4E).

Single-cell sequencing data revealed different expression

patterns of TLS-related genes in different cell types (Figure 5A).

We used the AddModuleScore algorithm to merge all 121 TLS

genes into a gene set and calculated the TLS score for each cell type.

Consistent with the TCGA-COAD cohort, activated B cells and

memory B cells showed the highest TLS scores, while tumor cells

and stromal cells (e.g., CAFs) had lower scores (Figure 5B). To

explore the functional differences associated with TLS status, based

on the risk score model constructed by the TCGA-COAD cohort,

we stratified single cells into TLSHigh and TLSLow groups and

identified differentially expressed genes (DEGs) between the two

groups in each cell subtype. Differential expression analysis showed

that in TLSHigh tumors, various immune cells and structural cells

exhibited distinct pro-inflammatory and immune activation

properties. Specifically, CD4 memory T cells highly expressed

TNF, while CD8 T cells upregulated TNF, IFNG, GZMK,

PDCD1, and CTLA4, indicating that T cells were in an activated

but partially exhausted state. Activated B cells and memory B cells

significantly upregulated CD80, CD86, and CD40, reflecting their

enhanced antigen presentation and co-stimulatory capabilities.

Macrophage/monocyte TNF, IL1b, and IL6 expression increased,

suggesting an enhanced proinflammatory response. Endothelial

cells upregulated ICAM1 and VCAM1, which may promote
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immune cell recruitment and angiogenesis (Figure 5C). These

results are very similar to those observed in bulk RNA sequencing

data (e.g., enhanced immune infiltration, antigen presentation, and

T cell activation in TLSHigh tumors), thus strengthening the

consistency between multi-omics datasets. In summary, the

TLSHigh state is achieved not only by immune cell enrichment but

also by enhanced antigen presentation, T cell activation, and

proinflammatory responses, which provides a basis for the

improved prognosis of patients with BRAF mutant COAD.

To further explore the differences in immune microenvironment

and functional pathways between TLSHigh and TLSLow groups, we

stratified the samples accordingly. The analysis revealed different cell

type compositions. The proportions of CD4 memory T cells, CD8 T

cells, activated B cells, Memory B cells, and Macro_Mono in the

TLSHigh group were significantly increased, while the proportions of

epithelial tumor cells and CAF were notably decreased (Figure 5D).

Differential gene expression analysis between the two groups is shown

in the volcano plot (Figure 5E). GSEA enrichment analysis indicated

that the TLSLow group was enriched in multiple pathways related to

immunosuppression and tumor progression (Figure 5F), including

“HALLMARK KRAS SIGNALING UP”, “HALLMARK HYPOXIA”,

“HALLMARK GLYCOLYSIS”, “HALLMARK TGF BETA

SIGNALING”, and “HALLMARK NOTCH SIGNALING”. These

results are consistent with those obtained in our previous GSEA

analysis in the TCGA-COAD cohort (Figure 3J), indicating that the

TLSLow group may exhibit stronger immune escape and metabolic

reprogramming compared to the TLShigh group. In addition,

enrichment of “HALLMARK EPITHELIAL MESENCHYMAL

TRANSITION” and “HALLMARK COAGULATION” pathways in

the TLSLow group implies stronger invasiveness and angiogenesis

compared to the TLShigh group.

Collectively, our scRNA-seq analyses independently confirmed

the bulk RNA-seq findings from the TCGA-COAD cohort,

demonstrating that TLSHigh tumors are characterized by

enhanced immune activation, antigen presentation, and improved

prognostic features. These consistent observations across bulk and

single-cell levels underscore the robustness and clinical relevance of

TLS-related gene expression patterns in colorectal cancer.
3.6 TLS regulates the microenvironment by
enhancing cellular communication

To further explore the potential mechanism by which TLS

modulates TME in colorectal cancer, we performed a systematic

cell communication analysis comparing TLSHigh and TLSLow groups

using single-cell transcriptomic data. The results showed that both

the number of cell-to-cell interactions and the overall signal

transmission intensity were markedly higher than those in the

TLSHigh group (Figures 6A, B), suggesting that TLS may facilitate

the remodeling of the immune microenvironment by enhancing

immune communication and signal exchange between cells.

Subsequent heat map analysis (Figures 6C, D) further highlighted

the differences in the number and intensity of interactions between

various cell subsets in the TLSHigh and TLSLow groups. In the
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TLSHigh group, the interaction between immune cells was

remarkably enhanced, especially the frequency and intensity of

interactions between CD4 memory T cells, CD8 T cells, B activated,

and Macro_Mono, indicating that a closer signal network was

formed among immune cells in the context of TLS enrichment.
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Interestingly, the number of interactions among epithelial tumor

cells, CAFs, and immune cells (such as CD4 memory T cells,

Macro_Mono, activated B cells, etc.) also increased significantly

within the TME of the TLShigh group, suggesting that tumor cells

and matrix components may try to establish more connections with
FIGURE 5

Single-cell analysis of TLS in colorectal cancer. (A) Heat map of TLS-related gene set expression in each cell type. (B) Violin plot of TLS scores in
each cell type. (C) Differential expression analysis of TLSHigh and low groups in each cell type. (D) Histogram of cell proportions in different TLS
groups. (E) Volcano plot of differential expression analysis in different TLS groups. (F) GSEA ridge plot of different TLS groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1662573
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Qin et al. 10.3389/fimmu.2025.1662573
immune cells in an immune-active environment to regulate their

own behavior. However, the signal transmission intensity of these

interactions was weakened in the TLSHigh group, suggesting that

under high TLS, tumor cells and stromal cells may change from the

original immunosuppression or escape state toward a more mild

and even regulatory interaction mode that potentially facilitates
Frontiers in Immunology 13
local immune response. This observation further underscores the

key regulatory role of TLS in shaping the anti-tumor

immune microenvironment.

Systematic evaluation of signal transmission (outgoing) and

reception (incoming) capabilities of cells in the TLSHigh and TLSLow

groups revealed that CD4 memory T cells, CD8 T cells, and
FIGURE 6

Analysis of cell communication between TLS high and low groups. Bar graphs of the total number of interactions (A) and interaction strength
(B) of intercellular communication networks of TLS high and low groups. Heat map of the degree of change in the number of interactions (C) or
interaction strength (D) of the high TLS group compared with the low group. Scatter plots of signal emission and reception of the low TLS group
(E) and the high TLS group (F, G) Information flow diagram of the signal pathway. (H) Comparative scatter plots of signal transduction ligand-
receptor pairs.
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Macro_Mono in the TLSHigh group exhibited bidirectional

enhancement in signal activity, demonstrating strong transmission

and reception capabilities simultaneously (Figures 6E, F). This

suggests they are not only active information transmitters in the cell

communication network but also may serve as important immune

signal integration nodes. Activated B cells mainly act as signal

transmitters, promoting immune activation. In contrast, epithelial

tumor cells and CAFs showed significantly reduced signaling

capability in the TLSHigh group, suggesting a decline in their

immune regulatory control, which may promote immune cell

dominance and microenvironmental reprogramming.

Further analysis of the information flow distribution of signal

pathways showed that the TLSHigh group significantly enhanced the

activity of multiple key signal pathways, including CD86, MHC-II,

IL16, TNF, and WNT, which are widely involved in immune-

related processes such as T cell activation, antigen presentation, and

inflammation regulation. In contrast, the TLSLow group was

enriched for pathways such as SEMA6, FGF, GDF, and VCAM

(Figure 6G), which are primarily related to tumor progression,

immunosuppression, and angiogenesis, suggesting that TLS

deficiency may contribute to immune escape or the establishment

of a tumor-promoting environment. The bubble chart further

identified ligand-receptor pairs that were specifically upregulated

in the TLSHigh group (Figure 6H), such as the self-feedback

activation between CD4 memory T cells → CD4 memory T cells,

and the enhancement of CD86–CTLA4 and CD86–CD28 pairing

signals in Macro_Mono, indicating robust activation of T cell co-

stimulatory signals. In addition, enhanced signal transduction from

CD8 T cells and epithelial tumor cells to activated B cells, along with

the upregulation of HLA-II class molecules in Macro_Mono and

CD8 T cells, pointed to elevated antigen presentation and immune

recognition capability in the TLSHigh group.

In summary, the TLS structure may enhance the anti-tumor

immune response by promoting the communication and

coordinat ion between immune ce l l s , mi t iga t ing the

immunosuppressive properties of tumor and stromal cells, and

reshaping the signal network pattern within TME. These results

support TLS as a potential immunotherapy target in improving the

poor prognosis context, such as BRAF mutations.
3.7 Prediction of anticancer treatment
response in CRC patients with BRAF
mutations with TLS high and low
prognostic scores

We further evaluated the differences in anticancer drug

response between TLSLow and TLSHigh groups harboring BRAF

mutations. The results showed that the estimated IC50 values in the

TLSLow group were generally higher than those in the TLSHigh group

(Figure 7A), indicating stronger resistance to multiple drugs.

Notably, the TLSlow group exhibited significantly higher IC50

values for both targeted therapy drugs (such as AZD4547,

GSK591, EPZ5676) and chemotherapy drugs (such as

Cyclophosphamide, Vinblastine), suggesting a reduced drug
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sensitivity associated with low TLS activity (Figure 7B). TLS is

generally considered to play an active role in tumor immune

response, and its loss or inadequate function may lead to

increased resistance of tumor cells to chemotherapy and targeted

drugs. Based on current data, TLS may enhance the efficacy of drugs

by regulating the immune microenvironment, thereby reducing the

drug resistance of CRCs driven by BRAF mutation.
4 Discussion

BRAF is a member of the RAF kinase family (a serine/

threonine-protein kinase family), which transduces signals

downstream of RAS via the mitogen-activated protein kinase

(MAPK) pathway. About 200 BRAF mutations have been

identified, occurring in both functional and non-functional

regions. The most common and well-known BRAF mutation is

V600E (35), which has been detected in various cancers, such as

malignant melanoma (36, 37), papillary thyroid cancer (38, 39), and

colorectal cancer (11). Current clinical RAF inhibitors suppress

RAF activity and downstream ERK signaling selectively in cells

expressing mutant BRAF. Two BRAF inhibitors, vemurafenib and

dabrafenib, have been approved for the treatment of melanoma

(40–43). However, due to the activation of parallel oncogenic

pathways such as RAS-MAPK or PI3K/Akt/mTOR and other

reasons, resistance to these agents frequently develops (44, 45).

Patients with BRAFV600E-mutated CRC face a poor prognosis, with

a median OS of 11 months and a lack of response to standard

therapies. A phase I study in patients with metastatic CRC

harboring the BRAFV600E mutation demonstrated that the BRAF

inhibitor (BRAFi) vemurafenib has no clinical benefit when given as

monotherapy (44).

In recent years, increasing evidence has shown that the presence

of TLS generally confers a positive prognostic value in most solid

tumors (15, 21), such as lung cancer (46) and pancreatic cancer

(47). Experimental studies have successfully induced the formation

of TLS by local expression of TLS-associated cytokines or

chemokines, enhancing anti-tumor immune responses (48).

Notably, immune checkpoint blockade has also been shown to

induce the formation of TLS in tumors (49). Our study revealed that

while BRAFMT CRC patients showed worse prognosis than

BRAFWT cases, stratification by intratumoral TLS abundance

eliminated this survival disparity. Notably, BRAFWT patients with

low TLS (TLSLow) and BRAFMT patients with high TLS (TLSHigh)

demonstrated comparable OS, suggesting that robust TLS

formation may overcome the adverse prognostic impact of BRAF

mutations in CRC.

This study employed a multi-modal approach, integrating

RNA-Seq, scRNA-Seq data, clinical outcomes, and pathological

assessment to systematically explore the prognostic value and

immunological significance of TLS in CRC. Our analyses revealed

that TLS-associated gene expression profiles were not only

remarkably altered in COAD tumor tissues compared to normal

tissues, but also had significant potential in risk stratification and

prognostic prediction.
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Using unsupervised consensus cluster analysis, we identified

two distinct TLS-related clusters associated with different overall

survival outcomes. Patients in the TLSHigh cluster had significantly

longer survival than those in the TLSLow cluster, supporting the

view that TLS-rich tumors may promote more effective antitumor

immunity. Based on this observation, we constructed a robust

prognostic signature containing 10 key genes (CCL19, CCL22,

ICOS, IGHG1, JCHAIN, CD37, XBP1, FCMR, TNFRSF13C, and

FCRLA), using univariate and LASSO Cox regression. Among these,

CCL19 and CCL22 are chemokines involved in lymphocyte

recruitment and organization of the lymphoid microenvironment

in TME. ICOS is a key co-stimulatory molecule for T cell activation,

while IGHG1, JCHAIN, and FCRLA reflect B cell maturation and

antibody production, which are hallmarks of active humoral

immunity. Genes such as CD37, XBP1, and FCMR are involved in

B cell receptor signaling, plasma cell differentiation, and

immunoglobulin homeostasis, respectively. In addition,

TNFRSF13C (also known as BAFFR) plays a key role in B cell

survival and TLS maintenance. The model demonstrated consistent

prognostic performance across multiple time points, with clear

survival differences between TLSHigh and TLSLow groups.

In addition to these 10 key feature genes, we examined the

broader set of 121 TLS-related genes. Among these, 110 genes

showed significant differential expression between TLSHigh and

TLSLow groups (Supplementary Figure 5A). Notably, these 10

feature genes were significantly enriched in several key pathways

related to immune regulation, inflammation, and cellular stress

responses, such as “the interleukin-10 signaling pathway”,

“chemokine receptor and ligand binding”, “peptide ligand-

receptor interaction”, “TNF receptor superfamily members

mediating non-canonical NF-kB signaling”, “the unfolded protein

response (UPR) “, and “the PI3K/AKT signaling pathway in cancer”

(Supplementary Figure 5B, Supplementary Table 6).
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These pathways suggest that the feature genes play a critical role

in immune homeostasis, cell survival under stress conditions, and

the resolution of inflammation, which is consistent with their

prognostic value in our model. For example, XBP1 is a core

regulator of the UPR pathway, and its activation reflects

endoplasmic reticulum stress and immune regulation; meanwhile,

TNFRSF13C and FCMR are involved in B cell survival and

differentiation through non-canonical NF-kB signaling.

In contrast, enrichment analysis of the remaining 111 genes

revealed that, although they were involved in a broader range of

immune and metabolic pathways, many of these pathways (e.g.,

“integrin interactions”, “vitamin metabolism”, “platelet activation”)

showed less direct association with disease prognosis and more

reflected general immune or cellular functions (Supplementary

Figure 5C, Supplementary Table 7).

Importantly, there were some overlapping pathways between

the two gene groups, such as “chemokine signaling,” “interleukin

signaling,” and “scavenger receptor binding,” suggesting that

although many genes participate in immune-related processes, the

10 feature genes represent core components or regulators of these

pathways, which may explain their stronger prognostic relevance.

Therefore, our selection strategy appears to have captured genes

that are not only statistically significant but also biologically core to

key immune-related pathways.

Importantly, our immunological profiles revealed significant

differences between the two risk groups. The TLSLow group was

characterized by a “cold” immune phenotype with low stromal and

immune scores and was enriched in immunosuppressive cells, such

as Tregs and M0 macrophages. In contrast, the TLSHigh group

exhibited a more immunoreactive microenvironment, with higher

infiltration of effector immune cells, including memory CD4+ T

cells, dendritic cells, and neutrophils. These findings are consistent

with previous studies suggesting that TLS functions as a local
FIGURE 7

Analysis of drug sensitivity in TLSHigh and TLSLow groups in patients with BRAF mutations. (A) Heat map of drug-scaled IC50 in TLSHigh group and
TLSLow group. (B) Box plot of drug lod (limit of detection) IC50 in TLSHigh group and TLSLow group.
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immune hub that recruits and activates immune cells within TME,

thereby enhancing anti-tumor immune surveillance. Furthermore,

TIDE analysis indicated that TLSLow patients were more prone to

immune evasion and exhibited a reduced MSI score, suggesting

poor responsiveness to ICI treatment. Collectively, these results

highlight the potential of TLS-based profiling not only for

prognostic evaluation but also for predicting the efficacy

of immunotherapies.

Notably, our study also explored the interaction between TLS

and BRAF mutation status, a well-recognized adverse prognostic

factor in COAD. Stratified survival analysis showed that TLSHigh

patients had significantly better survival outcomes than TLSLow

patients carrying BRAF mutations. These findings suggest that TLS

may partially offset the pro-tumor effects of BRAF mutations,

potentially by reshaping the immune environment to promote

anti-tumor responses. Supporting this hypothesis, transcriptome

analysis of CRC carrying BRAFmutations showed that complement

pathways, inflammatory response genes, and epithelial junction

integrity were all upregulated in TLSHigh tumors.

Histopathological analysis of 200 clinical CRC specimens

reinforced the association between BRAF mutation and TLS

inhibition. Tumors harboring BRAFMT had significantly fewer

and less mature intratumoral TLS compared to BRAFWT tumors,

suggesting that BRAF mutations may actively suppress TLS

formation or maturation. This is consistent with previous findings

showing that inhibition of the MAPK pathway elevated the immune

signatures (T cell, cytotoxic T cell, and phagocytes) in BRAF V600E

mutation CRC (13). This provides new mechanistic insights into

how oncogenic pathways modulate the tumor immune landscape to

escape immune surveillance.

In conclusion, our findings highlight the dual prognostic and

immunological relevance of TLS in COAD. TLS-based risk

stratification not only provides prognostic value but also reflects

key features of the tumor immune microenvironment, shedding

light on immune escape mechanisms and therapeutic

vulnerabilities. Moreover, TLS may mitigate BRAF-driven tumor

progression, highlighting its potential as a promising therapeutic

target or biomarker in the context of precision oncology.

However, the limitations of our study include that, firstly, most

analyses were based on retrospective datasets. Secondly, as BRAF

mutation and TLS high are a relatively rare combination, our results

would need to be further validated using large-scale samples.

Thirdly, the mechanistic association between TLS inhibition and

BRAF signaling requires in-depth investigation in experimental

models, and future studies integrating spatial transcriptomics,

multiplex immunohistochemistry, and functional analysis should

clarify the causal relationship between BRAF mutation and TLS

formation/maturation while unraveling the interaction mechanisms

among TLS, tumor cells, and immune components.

In conclusion, TLS-related gene signatures establish a novel

framework for prognostic prediction and immunological

stratification of COAD, particularly in patients with high-risk

BRAF mutations. TLS profiling holds potential to refine
Frontiers in Immunology 16
immunotherapy strategies and to identify patient subgroups most

likely to benefit from immune-enhancing interventions.
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