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Introduction: Leukemia, a heterogeneous group of hematological malignancies,
is characterized by abnormal proliferation of immature hematopoietic cells.
Current diagnostics primarily rely on morphological evaluation for subtype
classification, methods that are subjective and labor-intensive. To overcome
these limitations, a High-Content Spectral Raman Pathology Imaging platform
(H-SRPI) was introduced.

Methods: H-SRPI imaging enables profiling of proteins, nucleic acids, saturated
and unsaturated lipids in leukemia. We analyzed leukemia samples from 12
patients with six distinct subtypes, alongside CD34%, B, T cells, monocytes and
granulocytes from 3 healthy donors, by conducting high spatial resolution
Raman imaging on 324 cells. We developed a single-cell phenotyping
algorithm (incorporating cellular area, protein, nucleic acid, saturated and
unsaturated lipid content) to distinguish leukemia subtypes. Finally, using H-
SRPI and RNA-seq transcriptomics, we uncovered the critical role of lipid
composition in leukemia cells across subtype classifications.

Results: The single-cell phenotyping algorithm to distinguish leukemia subtypes,
achieving 88.21% accuracy. H-SRPI and RNA-seq transcriptomes revealed
elevated saturated and unsaturated lipid levels in acute myeloid leukemia
(AML); AML-M3 favored lipid desaturation, whereas AML-M5 upregulated
saturated lipid synthesis and elongation. ALL had weaker lipid metabolism
characteristics than AML.

Conclusions: Our study establishes H-SRPI as a label-free tool for metabolic
profiling, enabling precise leukemia subclassification and revealing lipid
metabolic heterogeneity as a potential therapeutic target.
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1 Introduction

Leukemia is a clonal malignancy of hematopoietic stem and
progenitor cells (HSPCs), characterized by uncontrolled proliferation,
differentiation arrest, and blast accumulation (1-3). It arises from
complex interactions between genetic and environmental factors. It
encompasses subtypes such as: AML, ALL, chronic myeloid leukemia
(CML), and chronic lymphocytic leukemia (CLL); Notably, rare
variants such as prolymphocytic leukemia (PLL), large granular
lymphocytic leukemia (LGL), also constitute this disease (4). AML
and ALL collectively account for more than 80% of leukemia cases
(5). Their heterogeneity necessitates subtype-specific management to
optimize clinical outcomes. Definitive diagnosis relies on the
integration of morphological, immunophenotypic, and genetic
analyses (6, 7). While immunophenotypic profiling and genetic
assays refine diagnostic precision, the initial morphological
evaluation of bone marrow (BM) smears remains a critical starting
point (3). However, morphological assessment remains inherently
subjective and labor-intensive, with significant inter-observer
variability—particularly when analyzing cells of identical lineage or
comparable maturation stages. Therefore, it is an urgent need to
develop standardized systems for precise and reproducible
leukemia classification.

Raman spectroscopy is a robust label-free technique for non-
destructive biomolecular characterization, enhancing analytical
consistency by avoiding staining procedures (8, 9). Various
studies have demonstrated the application of Raman spectroscopy
in leukemia research (10-18). Some focus on elucidating metabolic
changes in leukemia subtypes caused by chromosomal
rearrangements and somatic mutations, while others develop
novel detection platforms for subtype discrimination. Renzo et al.
characterized over 300 patient-derived leukemia cells from nine
subtypes using high-resolution Raman imaging (10). Our team
conducted a systematic comparative analysis of leukemia subtypes
versus normal cells (14). Conventional Raman systems provide both
biochemical and morphological profiles for leukemia diagnostics,
but they are time-consuming and limited spatial resolution.
Moreover, their inherently weak scattering efficiency limits rapid
imaging for clinical applications.

Stimulated Raman scattering (SRS) enables label-free chemical
mapping with submicron spatial and millisecond temporal
resolution by amplifying coherent anti-Stokes signals (19-22). It
has been used for cancer histology, including brain, laryngeal,
gastric, prostate, and breast cancer (22-26). Recent studies have
demonstrated that SRS enables simultaneous detection of multiple
biomolecular species, which support both precise cancer subtype
classification and personalized therapy (24, 27, 28). Lipid metabolic
dysregulation is proposed to underline changes in cancer cell
function (29, 30). Raman imaging enables comprehensive
characterization of lipid architecture, including structure,
functional dynamics, and molecular composition (19, 31-33).
Until now, SRS has not been applied to leukemia research.

We introduce a SRS platform in leukemia cells. By integrating
SRS imaging within the C-H vibrational region (2800-3050 cm™)
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with sparsity-constrained spectral unmixing, we mapped four major
biomolecular components in leukemia cells: protein, nucleic acids,
saturated lipids, and unsaturated lipids. Alterations in their absolute
abundance and relative proportions were closely associated with
cancer progression (22, 27, 34). In our research, high-content
biochemical mapping was accomplished by a least absolute
shrinkage and selection operator (LASSO) regression algorithm
for spectral unmixing (22, 32). Using SRS, we examined metabolic
features in leukemia blasts compared with normal counterparts.
Critically, we have established a novel method for rapidly
distinguishing leukemia subtypes. This suggests that cellular
morphology and composition are essential for accurate diagnosis.
Furthermore, we analyzed the differences in lipid metabolism
between AML and ALL, as well as the lipid characteristics of
different AML subtypes. Taken together, our method may enable
new opportunities for accurate, rapid detection of leukemia
subtypes. These findings reveal that subtype-specific dysregulation
of lipid metabolism occurs and suggest potential metabolic targets
for enhancing chemotherapy efficacy.

2 Methods and materials

2.1 Patients’ enrolment and standard
diagnosis.

All samples were obtained from the Blood Diseases Hospital,
Chinese Academy of Medical Sciences under following acquisition
of informed consent from their legal guardians and/or patients
authorizing the use of surplus specimens for research purposes. The
study protocols were approved by the Institutional Review Board of
the Institute of Hematology, Blood Diseases Hospital, PUMC/
CAMS (Approval Number: NSFC2022035-EC-2). Patient
characteristics are summarized in Supplementary Table SI. All
enrolled patients underwent standardized diagnostic evaluation in
accordance with the most recent WHO guidelines. To enhance
morphological characterization, samples were further classified
using the French-American-British (FAB) classification system.
The cohort comprised 12 patients, including 4 AML subtypes
(M2, M3, M4, M5) and 2 ALL subtypes: Philadelphia
chromosome-negative B-cell ALL (Ph") and Philadelphia
chromosome-positive B-cell ALL (Ph™). Cellular morphology was
visualized via MGG staining. We sorted HSPCs cells, B cells, T
Cells, monocytes, and granulocytes as normal controls.

2.2 Leukemia BM samples preparation

The cell processing protocol was implemented according to our
previously established methodology (14). Briefly, BM were
processed to isolate mononuclear cells by density gradient
centrifugation. Before use, cells were washed, viability assessment,
and fixation in 1% paraformaldehyde (w/v).
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2.3 Umbilical cord blood samples
preparation

Samples were obtained from healthy donors (aged 20-40 years;
no comorbidities) under ethical approval. Mononuclear cells were
isolated by density gradient centrifugation. Following
centrifugation, lymphocytes and monocytes were localized at the
plasma-Ficoll-Paque interface, while granulocytes and erythrocytes
were on the bottom. Monocytes were purified using magnetic bead-
based separation (Miltenyi Biotec 130-050-201) according to the
manufacturer instructions. We sorted HSPCs cells (CD34*, APC-
CY7 anti-Human CD34, Biolegend 343513), B cells (CD19", APC
anti-Human CD19, Biolegend 302212) and T Cells (CD3", FITC
anti-Human CD3, BD Biosciences, 555916) by flow cytometry (BD
FACSAria IIT). Granulocytes were isolated through hypotonic lysis
using ammonium chloride solution.

2.4 Stimulated raman imaging

The SRS imaging experiments were performed using a
multimodal nonlinear optical microscopy system (Model:
UltraView MK-II, Zhendian (Suzhou) Medical Technology Co.,
Ltd., China). Prior to analyzing samples, reference spectra were
collected from BSA, DNA, triolein, and palmitic acid samples. All
images processed and analyzed using Image] software. The details
are reported in the Supplementary Material.

2.5 Orthogonal partial least squares
discriminant analysis

OPLS-DA was performed using SIMCA 14.1 software for
multivariate statistical analysis. The data matrix consisted of SCR
features analyzed using Image] software on the X-axis and cell
populations on the Y-axis. Principal component analysis was
employed to reduce dimensionality while maximizing variance,
identifying distinct data clusters. Scores served as indispensable
parameters providing biochemical insights, including key factors
differentiating cell subtypes.

2.6 Bioinformation analysis

2.6.1 Transcriptomic data acquisition and
preprocessing

RNA-sequencing and microarray data of AML and ALL
patients, as well as normal controls, were retrieved from public
databases including TCGA, GTEx, GEO, and TARGET (see
Supplementary Methods for dataset IDs and inclusion criteria).
AML subtypes, CD34" hematopoietic stem/progenitor cells
(HSPCs), and healthy BM samples were selected for
comparative analysis.
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2.6.2 Differential expression and pathway analysis

Differentially expressed genes (DEGs) were identified using the
limma package in R. Shared DEGs across AML subtypes and
between disease and control groups were intersected with
predefined metabolism-related gene sets. Functional enrichment
and pathway-level analysis were performed using Metascape,
GSVA, and GSEA platforms. Full parameter details are provided
in Supplementary Material.

2.7 Statistical analysis

Group comparisons were conducted using t-tests, ANOVA, or
non-parametric alternatives based on data distribution. P-values <
0.05 were considered statistically significant. Box-and-whisker plots
were used for data visualization. A detailed breakdown of statistical
tests applied is available in Supplementary Material.

3 Results

3.1 Establishing SRS spectral profiles of
hematopoietic cell populations

This study evaluated the feasibility of rapid histopathological
assessment of leukemic specimens using H-SRPIL As illustrated in
Figure 1A, Supplementary Figure 1, the H-SRPI system generated
multiplex chemical maps by targeting four key biomolecular
fingerprints. Supported by multiple literature sources (22, 27, 35,
36), we used BSA, DNA, triolein, and palmitic acid samples as
protein, nucleic acid, unsaturated lipid and saturated lipid
standards, respectively. Reference spectra (Figure 1A) were
derived from purified standards, and hyperspectral data were
processed using LASSO regression to estimate pixel-wise
biomolecular abundances. The resulting coefficients were spatially
mapped to generate single-cell resolution chemical images. Acute
leukemia was selected as the disease model. BM were collected with
six distinct subtypes: AML-M2, M3, M4, M5 and B-ALL Ph’, Ph*
(Figure 1B), all of which are believed to originate from leukemic
stem cells (LSCs). The healthy controls were containing: HSPCs,
granulocytes, monocytes, B cells, and T cells (Figure 1C). As shown
in Figure 1D, the workflow of H-SRPI is described.

3.2 H-SRPI imaging enables profiling of
proteins, nucleic acids, and lipids in AML

Metabolic reprogramming and epigenetic remodeling are
hallmarks of leukemogenesis and AML disease progression (37,
38). These alterations are often genotype-specific and accompanied
by epigenetic and functional changes that promote oncogenic
pathway activation (39, 40). To evaluate the utility of H-SRPI in
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capturing these metabolic shifts, cross-comparative analysis
between leukemia blasts and their normal counterparts was to
conduct delineate malignancy-associated biochemical signatures.
The purity of the three populations exceeded 95% by flow
cytometry, as reported in Supplementary Figure 2. We first
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compared granulocyte-matched cells. Given the granulocytic
dominance in AML M2, M3, and M4, these subtypes were
analyzed against normal granulocytes. H-SRPI imaging
(Figure 2A) revealed leukemic cells exhibited significantly elevated
protein and lipid signals, suggesting enhanced biosynthetic activity,

04 frontiersin.org


https://doi.org/10.3389/fimmu.2025.1662281
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

10.3389/fimmu.2025.1662281

Cheng et al.
A 0.15 SRS Protein Nucleic acid Unsaturated Saturated lipid Merge
. &
=
-
= ”
< i '
(a2}
=
-
=
<
<
=
-
=
<
" A' o
2 -,
) ats
o .
3
c
Jud Fy p
o . 20um
c SRS intensity
= Protein Nucleic acid Unsaturated lipid Saturated lipid
<08 05 0.6 —
g o _ = 0.15 *
> o 05! ——— =
= — 04 — _—= o —_—
S 0.6 o 0.4 hid 0.10 -
E 0.3 :
2] . ° —L
o 04 02] .. o =
7] =S : T T
c - o
el AL
= 0.0L1l=
M3 M4 M4 €% M2 M3 M4
©
& o
@ @
D
Protein Nucleic acid Unsaturated Saturated lipid
w0
|
=
<
73 4 3 ,‘ 3
L .
> -
153 g
g :
c
§ i % 'l_'." 4
.... ] . B 20m
WS -
SRS intensity
FA Protein Nucleic acid Unsaturated lipid Saturated lipid
3 0.6 0.5 0.20
815 - 04 " >
> haind . -
K] e 0.4 - 0.15
o 1.0 B - + . 0.3 =
g F SR I o] | 010
(%] —— ) o
0.2
% 0.5 0.1 . 0.05 ‘
S —m r g * B 0.00 T
3 0.0 [ 1 0.0 0.0 [_
= Monocyte M5 Monocyte M5 Monocyte M5 Monocyte M5
FIGURE 2

H-SRPI and MGG imaging reveal distinct intracellular carbohydrates in AML cells. (A) Representative H-SRPI images showing the distribution of proteins
(blue), nucleic acids (yellow), unsaturated lipids (red), and saturated lipids (green) in AML-M2, M3, M4 cells and normal granulocytes. (B) MGG staining of
corresponding cells highlights morphological differences between leukemic blasts and granulocytes. (C) Quantitative analysis of H-SRPI mapped signal
of proteins, nucleic acids, unsaturated lipids, and saturated lipids between leukemic blasts and granulocytes. (D, E) Representative H-SRPI and MGG
images of AML M5 cells and monocytes. (F) Quantitative analysis of H-SRPI mapped signal from (D). *P < 0.05, **P < 0.01; a.u., arbitrary units.

MGG staining (Figure 2B) confirmed the presence of abnormal  that of saturated lipids, indicating a preferential shift toward
myeloid blasts. And quantitative analysis (Figure 2C) showed  unsaturated lipid biosynthesis. In contrast, nucleic acid content
significantly higher levels of proteins and lipids in AML-M2, was significantly decreased, consistent with reduced DNA
M3, M4 cells. Notably, the increase in unsaturated lipids exceeded  abundance during leukemogenesis.
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H-SRPI and MGG imaging reveal biomolecular composition in ALL cells. (A) Representative H-SRPI and multichannel images showing distributions of
proteins (blue), nucleic acids (yellow), unsaturated lipids (red), and saturated lipids (green) in Ph™ and Ph™ B-ALL, and HD B cells. Merged images
demonstrate intracellular localization patterns. (B) MGG staining reveals morphological differences among the three groups. (C) Quantitative analysis
of H-SRPI signal intensities for proteins, nucleic acids, unsaturated lipids, and saturated lipids. *P < 0.05, **P < 0.01; a.u., arbitrary units.

We next compared M5 cells with monocytes, given their shared
monocytic lineage. H-SRPI imaging (Figure 2D) revealed
consistently elevated levels of proteins, nucleic acids, and lipids in
M5 cells. These differences were further supported by MGG
staining of both monoblasts and monocytes (Figure 2E).
Quantitative analysis (Figure 2F) demonstrated a substantial
increase in all four biomolecular components in AML M5 cells,
reflecting robust metabolic reprogramming characterized by
enhanced protein synthesis and lipid accumulation.

3.3 H-SRPI imaging discloses metabolic
features in B-ALL cells

To systematically compare biomolecular profiles between ALL
and normal B cells, we compared ALL B cells with healthy donors
(HD) B cells. H-SRPI revealed distinct intracellular distributions:
both Ph* and Ph™ B-ALL cells exhibited elevated proteins, nucleic
acids, and unsaturated lipids compared to HD B cells, with the Ph*
group showing the highest enrichment of unsaturated lipids
(Figures 3A, C). These molecular distinctions were corroborated
by MGG staining, which highlighted clear morphological
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distinctions across groups (Figure 3B). However, in comparison
to AML cells, ALL cells demonstrated weaker Raman signals and
markedly reduced lipid content, suggesting that protein and nucleic
acid metabolism dominate in ALL cell physiology.

3.4 |dentification of leukemia subtypes by
OPLS-DA algorithm

We quantitatively characterized 174 individual cells obtained
from 12 leukemia patients. 5 features of cellular area and chemical
composition (protein, nucleic acid, saturated and unsaturated lipid
content) were extracted by Image] software. Nevertheless, the
differences of composition and morphology features between
leukemia subtypes were not very evident, which was likely due to
the existence of heterogeneous populations in each specimen.
Therefore, we proposed to analyze the features by OPLS-DA. The
resulting scatter plots, reporting the scores of the first two canonical
variables, are shown in Figures 4A-C. As shown in Figures 4A and
Supplementary Figure 3A, representing scores of “AMLs+ALLs”, a
certain degree of separation was obtained between AML and ALL
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FIGURE 4

Measurement and dimension reduction of five SRS features (cellular area, protein, nucleic acid, saturated and unsaturated lipid content) of
hematopoietic cells. The scores plot of OPLS model for (A) AMLs+ALLs, (B) AMLs, and (C) ALLs.

subtypes (AML: 90% precision and 90% sensitivity; ALL: 81%
precision and 80% sensitivity).

When only AML subtypes are considered, OPLS-DA can
separate AML M2 (100% precision and 77% sensitivity), M3 (85%
precision and 89% sensitivity), M4 (92% precision and 63%
sensitivity), and M5 (72% precision and 96% sensitivity) cells
(Figures 4B; Supplementary Figure 3B). The confusion matrix
resulting shows very good accuracy for the classification of M5
and other subtypes. M2, M3, and M4 cluster together due to their
similarity as granulocytes. When only ALL subtypes are analyzed, a
very good separation can be seen between Ph™ and Ph* (100%
precision and 100% sensitivity) (Figures 4C; Supplementary
Figure 3C). The total accuracy is 88.21%. These results suggest
that our H-SRPI imaging method is capable to detect leukemia cells
with high sensitivity and specificity.

3.5 Differences in lipid metabolism
characteristics between AML and ALL

To investigate lipid compositional alterations in AML, we
analyzed the transcriptomes of AML samples. Gene
enrichment analysis using Metascape and GSEA revealed
significant upregulation of lipid-associated pathways in
AML, including lipid metabolism, biosynthesis, and
modification, along with carbohydrate and small molecule
metabolic processes (Figure 5A; Supplementary
Figures 4A-D). By contrast, genes enriched in normal
samples were mainly associated with protein and nucleic
acid-related pathways. Notably, none of the top ten
pathways in normal cells were lipid-related.

To further characterize these metabolic changes, we identified
281 significantly upregulated genes in AML cells (Figure 5B). Venn
diagram analysis revealed overlapping genes involved in lipid
metabolism, lipid biosynthesis, and lipid modification
(Figure 5C), suggesting their involvement in AML-specific lipid
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reprogramming. 20 upregulated genes were identified within the
intersection of lipid metabolism-related pathways in AML cells
(Figure 5D). Among them, ACSS1, HACD4, LIPA, SLC44A1, and
CD36 were particularly notable due to their central roles in lipid
synthesis, elongation, degradation, and transport. ACSS1 and
HACD4 mediate acetate utilization and very long-chain fatty acid
elongation, respectively, reflecting enhanced anabolic lipid
metabolism in AML (41, 42). CD36, a key fatty acid transporter
(43), was significantly upregulated and correlated with the elevated
unsaturated lipid levels observed by H-SRPI imaging. These
findings underscore the role of lipid metabolic reprogramming in
AML, as the 20 upregulated genes enhanced metabolic flexibility
and leukemic progression, and may facilitate drug resistance and
immune evasion.

Next, we analyzed the metabolic characteristics of ALL cells. It
showed enrichment in pathways such as the carboxylic acid
metabolic process, metapathway biotransformation Phase I and
11, whereas normal B cells were enriched in energy-generating and
biosynthetic pathways (Figure 5E). Notably, lipid metabolism-
related pathways were absent from the top enriched terms in both
groups. Consistently, GSEA results indicated lipid-associated
pathways remained non-enriched (Supplementary Figure 4E),
while significant upregulation of cyclic nucleotide metabolic
process and CGMP metabolic process (Supplementary Figure 4F).
These findings verified that ALL cells rely more heavily on protein
and nucleic acid metabolism than on lipid metabolism.

3.6 H-SRPI discloses metabolic profile
reprogramming of lipid unsaturation in
AML

Accumulating evidence indicates that AML cells undergo
extensive lipid metabolic reprogramming to sustain malignant
proliferation and survival (44). To investigate subtype-specific
lipid metabolic adaptations, we performed GSVA across four
AML subtypes. M5 showed the highest scores in overall lipid
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0.001, by one-way ANOVA with post hoc test.

metabolism, while M3 displayed the strongest enrichment in lipid
biosynthetic and modification pathways (Figures 6A-C), indicating
distinct metabolic strategies. To elucidate underlying mechanisms,
we analyzed the expression of genes involved in fatty acid transport,

Frontiers in Immunology

08

activation, synthesis, desaturation, and elongation. M3 cells showed
high expression of SLC27A2,SLC27A3, fatty acid transport protein
(FATP) family that mediate FA uptake for B-oxidation (45), along
with elevated ELOVL3 (46) (Figure 6D). In contrast, M5 cells
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FIGURE 6

Comparison of lipid metabolism pathways and gene expression across the four AML subtypes. (A) GSVA scores for lipid-associated pathways across

AML subtypes (M2-M5). Quantification of unsaturated (B) and saturated (C) li

pid levels in AML cells by H-SRPI imaging. (D) Expression levels of fatty

acid transport and elongation genes (SLC27A2, SLC27A3, and ELOVL3). (E) Expression levels of genes involved in fatty acid synthesis, desaturation,

and elongation (FADS1, SREBF1, SCD, ELOVLS, and ELOVL6). Statistical comp

arisons were performed using one-way ANOVA with post hoc tests. *P

< 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (F) Schematic of the lipid metabolism model of AML. Schematic representation of altered lipid
metabolism in AML, highlighting subtype-specific differences in saturated and unsaturated lipid content. Key regulatory genes involved in lipid

synthesis (FADS1, SCD, ELOVL5/6, SREBF1), transport (SLC27A2/3, ELOVL3), a
include lipid biosynthesis, modification, and immune regulation.

upregulated lipogenic genes (Figure 6E), including FADS1, SREBF1
(lipogenesis regulator driving ACLY, FASN, ACACA, and SCD
(47)). SCD facilitates FA desaturation to support membrane
dynamics (48). ELOVL5/6 extend PUFA and SFA chains to
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nd uptake (CD36, INPP5D, GPX1) are indicated. Enriched pathways

modulate lipid composition (46). Taking together, these results
demonstrate distinct lipid metabolic programs in AML. The M3
favors lipid desaturation and unsaturation, whereas the M5
upregulates saturated lipid synthesis and elongation, forming a
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metabolic axis linked to leukemic progression and therapeutic
response. To investigate lipid metabolism during AML
progression process, we analyzed HSPCs and aberrant
promyelocytes from M3-AML. M3 exhibited significantly higher
levels of unsaturated lipids content and metabolism features
(Supplementary Figure 5).

4 Discussion

Through multimodal integration of H-SRPI, MGG staining,
and RNA-seq transcriptomics across six leukemia subtypes and five
normal hematopoietic cell types, we uncovered the critical role of
lipid composition remodeling in leukemia subtype differentiation.
As the first application of H-SRPI in leukemia research, our
approach enabled high-resolution imaging with clear
morphological distinction, establishing a novel framework for
precise subtype identification. Multimodal imaging of both
saturated and unsaturated lipids improved diagnostic sensitivity
and revealed distinct lipid metabolic patterns across subtypes.
Simultaneously, we systematically profiled AML lipid metabolism
(Figure 6F), highlighting lipid metabolic reprogramming as a
hallmark of leukemia progression and a promising target for
translational therapy.

First, our study established a stain-free H-SRPI platform for in
situ pathological diagnosis of leukemia cells at single-cell resolution.
Compared to the conventional MGG staining, H-SRPI provided
rich chemical information, particularly enabling clear distinction
between saturated and unsaturated lipids profiles. H-SRPI holds
promise for enhancing leukemia classification accuracy, achieving
84.21% accuracy, which is essential for guiding clinical
decision-making.

Second, our study highlights the metabolic reprogramming of
lipid concentrations in leukemia cells. Altered lipid metabolism has
been implicated in leukemia cell function (49), our results showed
that AML cells exhibit elevated levels of both saturated and
unsaturated lipids to support increased demands for membrane
synthesis and remodeling, disrupting lipid and membrane
homeostasis. In contrast to AML cells, ALL cells exhibited
markedly altered lipid composition, suggesting a distinct metabolic
profile. This discrepancy may be driven by higher fatty acid synthase
(FASN) expression and activation of lipid synthesis pathways (e.g.,
PI3K/AKT/mTOR) in AML (50), which are comparatively less active
or absent in ALL, resulting in reduced lipid biosynthesis. Our study
highlights the therapeutic potential of regulating lipid homeostasis for
leukemia treatment. Investigating lipid metabolic heterogeneity
across leukemia subtypes may inform the development of lipid-
targeted therapies with translational relevance.

Third, our platform can accurately quantify MPO, an oxidative
enzyme constituting 3-5% of total protein in mature granulocytes
(51). Given the prognostic relevance of antioxidant enzymes in
leukemia, we compared MPO levels across granulocytes,
monocytes, B cells, and T cells (Supplementary Figure 6). As
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expected, MPO is highly expressed in granulocytes, with minimal
expression observed in other cell types, confirming the high
sensitivity of H-SRPI for detecting low-abundance, labile enzymes
and expanding its potential applications. Furthermore, MPO may
serve as an additional marker for leukemia classification to improve
the accuracy of pathological detection.

In this study, we identified four major components to capture
the major Raman signals within a cell. Since BSA exhibits methyl
and methylene group vibrational frequencies similar to those found
in vertebrate proteomes (20), it was used as a protein reference.
Purified DNA from normal BM cells served as the nucleic acid
reference. Triolein and palmitic acid, which are abundant and
biologically significant cellular lipids, were employed as lipid
references, consistent with their common use in SRS imaging
studies (22, 27). We acknowledge that these standard molecules
may not perfectly reflect the diversity of molecular subtypes present
in the sample. Therefore, more precise spectral isolation techniques
will be employed for further refinement. On the other hand, we note
that the 2800-3050 cm™ region exhibits substantial peak overlap
between proteins and nucleic acids, which can blur nuclear—
cytoplasmic boundaries in SRS images. Although Raman
fingerprint bands are information-rich, their small cross sections
result in noisy measurements, making it difficult to distinguish less
abundant metabolites from background noise. The high
wavenumber C-H bands (2800-3050 ¢cm™) can mitigate this
sensitivity issue due to their significantly larger cross sections
compared to fingerprint bands. However, all major metabolic
species—proteins, nucleic acids, and lipids—exhibit essential yet
overlapping Raman peaks in this region. Existing hyperspectral data
analysis methods cannot fully capture the rich information content
of C-H vibrations due to significant cross-talk among the resulting
chemical maps (22, 27).

Collectively, our work demonstrates the potential of H-SRPI to
reveal biological heterogeneity in leukemia cells, elucidate the role
of altered lipid composition in leukemogenesis, and provide a novel
approach to leukemia diagnosis and treatment. In summary, we
propose that Raman spectroscopy has evolved into an increasingly
powerful toolkit for biologists and clinicians, delivering molecule-
specific insights at the single-cell level with expanding capabilities at
the subcellular scale.
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