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Introduction: Leukemia, a heterogeneous group of hematological malignancies,

is characterized by abnormal proliferation of immature hematopoietic cells.

Current diagnostics primarily rely on morphological evaluation for subtype

classification, methods that are subjective and labor-intensive. To overcome

these limitations, a High-Content Spectral Raman Pathology Imaging platform

(H-SRPI) was introduced.

Methods: H-SRPI imaging enables profiling of proteins, nucleic acids, saturated

and unsaturated lipids in leukemia. We analyzed leukemia samples from 12

patients with six distinct subtypes, alongside CD34+, B, T cells, monocytes and

granulocytes from 3 healthy donors, by conducting high spatial resolution

Raman imaging on 324 cells. We developed a single-cell phenotyping

algorithm (incorporating cellular area, protein, nucleic acid, saturated and

unsaturated lipid content) to distinguish leukemia subtypes. Finally, using H-

SRPI and RNA-seq transcriptomics, we uncovered the critical role of lipid

composition in leukemia cells across subtype classifications.

Results: The single-cell phenotyping algorithm to distinguish leukemia subtypes,

achieving 88.21% accuracy. H-SRPI and RNA-seq transcriptomes revealed

elevated saturated and unsaturated lipid levels in acute myeloid leukemia

(AML); AML-M3 favored lipid desaturation, whereas AML-M5 upregulated

saturated lipid synthesis and elongation. ALL had weaker lipid metabolism

characteristics than AML.

Conclusions: Our study establishes H-SRPI as a label-free tool for metabolic

profiling, enabling precise leukemia subclassification and revealing lipid

metabolic heterogeneity as a potential therapeutic target.
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1 Introduction

Leukemia is a clonal malignancy of hematopoietic stem and

progenitor cells (HSPCs), characterized by uncontrolled proliferation,

differentiation arrest, and blast accumulation (1–3). It arises from

complex interactions between genetic and environmental factors. It

encompasses subtypes such as: AML, ALL, chronic myeloid leukemia

(CML), and chronic lymphocytic leukemia (CLL); Notably, rare

variants such as prolymphocytic leukemia (PLL), large granular

lymphocytic leukemia (LGL), also constitute this disease (4). AML

and ALL collectively account for more than 80% of leukemia cases

(5). Their heterogeneity necessitates subtype-specific management to

optimize clinical outcomes. Definitive diagnosis relies on the

integration of morphological, immunophenotypic, and genetic

analyses (6, 7). While immunophenotypic profiling and genetic

assays refine diagnostic precision, the initial morphological

evaluation of bone marrow (BM) smears remains a critical starting

point (3). However, morphological assessment remains inherently

subjective and labor-intensive, with significant inter-observer

variability—particularly when analyzing cells of identical lineage or

comparable maturation stages. Therefore, it is an urgent need to

develop standardized systems for precise and reproducible

leukemia classification.

Raman spectroscopy is a robust label-free technique for non-

destructive biomolecular characterization, enhancing analytical

consistency by avoiding staining procedures (8, 9). Various

studies have demonstrated the application of Raman spectroscopy

in leukemia research (10–18). Some focus on elucidating metabolic

changes in leukemia subtypes caused by chromosomal

rearrangements and somatic mutations, while others develop

novel detection platforms for subtype discrimination. Renzo et al.

characterized over 300 patient-derived leukemia cells from nine

subtypes using high-resolution Raman imaging (10). Our team

conducted a systematic comparative analysis of leukemia subtypes

versus normal cells (14). Conventional Raman systems provide both

biochemical and morphological profiles for leukemia diagnostics,

but they are time-consuming and limited spatial resolution.

Moreover, their inherently weak scattering efficiency limits rapid

imaging for clinical applications.

Stimulated Raman scattering (SRS) enables label-free chemical

mapping with submicron spatial and millisecond temporal

resolution by amplifying coherent anti-Stokes signals (19–22). It

has been used for cancer histology, including brain, laryngeal,

gastric, prostate, and breast cancer (22–26). Recent studies have

demonstrated that SRS enables simultaneous detection of multiple

biomolecular species, which support both precise cancer subtype

classification and personalized therapy (24, 27, 28). Lipid metabolic

dysregulation is proposed to underline changes in cancer cell

function (29, 30). Raman imaging enables comprehensive

characterization of lipid architecture, including structure,

functional dynamics, and molecular composition (19, 31–33).

Until now, SRS has not been applied to leukemia research.

We introduce a SRS platform in leukemia cells. By integrating

SRS imaging within the C-H vibrational region (2800–3050 cm-1)
Frontiers in Immunology 02
with sparsity-constrained spectral unmixing, we mapped four major

biomolecular components in leukemia cells: protein, nucleic acids,

saturated lipids, and unsaturated lipids. Alterations in their absolute

abundance and relative proportions were closely associated with

cancer progression (22, 27, 34). In our research, high-content

biochemical mapping was accomplished by a least absolute

shrinkage and selection operator (LASSO) regression algorithm

for spectral unmixing (22, 32). Using SRS, we examined metabolic

features in leukemia blasts compared with normal counterparts.

Critically, we have established a novel method for rapidly

distinguishing leukemia subtypes. This suggests that cellular

morphology and composition are essential for accurate diagnosis.

Furthermore, we analyzed the differences in lipid metabolism

between AML and ALL, as well as the lipid characteristics of

different AML subtypes. Taken together, our method may enable

new opportunities for accurate, rapid detection of leukemia

subtypes. These findings reveal that subtype-specific dysregulation

of lipid metabolism occurs and suggest potential metabolic targets

for enhancing chemotherapy efficacy.
2 Methods and materials

2.1 Patients’ enrolment and standard
diagnosis.

All samples were obtained from the Blood Diseases Hospital,

Chinese Academy of Medical Sciences under following acquisition

of informed consent from their legal guardians and/or patients

authorizing the use of surplus specimens for research purposes. The

study protocols were approved by the Institutional Review Board of

the Institute of Hematology, Blood Diseases Hospital, PUMC/

CAMS (Approval Number: NSFC2022035-EC-2). Patient

characteristics are summarized in Supplementary Table S1. All

enrolled patients underwent standardized diagnostic evaluation in

accordance with the most recent WHO guidelines. To enhance

morphological characterization, samples were further classified

using the French-American-British (FAB) classification system.

The cohort comprised 12 patients, including 4 AML subtypes

(M2, M3, M4, M5) and 2 ALL subtypes: Philadelphia

chromosome-negative B-cell ALL (Ph-) and Philadelphia

chromosome-positive B-cell ALL (Ph+). Cellular morphology was

visualized via MGG staining. We sorted HSPCs cells, B cells, T

Cells, monocytes, and granulocytes as normal controls.
2.2 Leukemia BM samples preparation

The cell processing protocol was implemented according to our

previously established methodology (14). Briefly, BM were

processed to isolate mononuclear cells by density gradient

centrifugation. Before use, cells were washed, viability assessment,

and fixation in 1% paraformaldehyde (w/v).
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2.3 Umbilical cord blood samples
preparation

Samples were obtained from healthy donors (aged 20–40 years;

no comorbidities) under ethical approval. Mononuclear cells were

isolated by density gradient centrifugation. Following

centrifugation, lymphocytes and monocytes were localized at the

plasma-Ficoll-Paque interface, while granulocytes and erythrocytes

were on the bottom. Monocytes were purified using magnetic bead-

based separation (Miltenyi Biotec 130-050-201) according to the

manufacturer instructions. We sorted HSPCs cells (CD34+, APC-

CY7 anti-Human CD34, Biolegend 343513), B cells (CD19+, APC

anti-Human CD19, Biolegend 302212) and T Cells (CD3+, FITC

anti-Human CD3, BD Biosciences, 555916) by flow cytometry (BD

FACSAria III). Granulocytes were isolated through hypotonic lysis

using ammonium chloride solution.
2.4 Stimulated raman imaging

The SRS imaging experiments were performed using a

multimodal nonlinear optical microscopy system (Model:

UltraView MK-II, Zhendian (Suzhou) Medical Technology Co.,

Ltd., China). Prior to analyzing samples, reference spectra were

collected from BSA, DNA, triolein, and palmitic acid samples. All

images processed and analyzed using ImageJ software. The details

are reported in the Supplementary Material.
2.5 Orthogonal partial least squares
discriminant analysis

OPLS-DA was performed using SIMCA 14.1 software for

multivariate statistical analysis. The data matrix consisted of SCR

features analyzed using ImageJ software on the X-axis and cell

populations on the Y-axis. Principal component analysis was

employed to reduce dimensionality while maximizing variance,

identifying distinct data clusters. Scores served as indispensable

parameters providing biochemical insights, including key factors

differentiating cell subtypes.
2.6 Bioinformation analysis

2.6.1 Transcriptomic data acquisition and
preprocessing

RNA-sequencing and microarray data of AML and ALL

patients, as well as normal controls, were retrieved from public

databases including TCGA, GTEx, GEO, and TARGET (see

Supplementary Methods for dataset IDs and inclusion criteria).

AML subtypes, CD34+ hematopoietic stem/progenitor cells

(HSPCs), and healthy BM samples were selected for

comparative analysis.
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2.6.2 Differential expression and pathway analysis
Differentially expressed genes (DEGs) were identified using the

limma package in R. Shared DEGs across AML subtypes and

between disease and control groups were intersected with

predefined metabolism-related gene sets. Functional enrichment

and pathway-level analysis were performed using Metascape,

GSVA, and GSEA platforms. Full parameter details are provided

in Supplementary Material.
2.7 Statistical analysis

Group comparisons were conducted using t-tests, ANOVA, or

non-parametric alternatives based on data distribution. P-values <

0.05 were considered statistically significant. Box-and-whisker plots

were used for data visualization. A detailed breakdown of statistical

tests applied is available in Supplementary Material.
3 Results

3.1 Establishing SRS spectral profiles of
hematopoietic cell populations

This study evaluated the feasibility of rapid histopathological

assessment of leukemic specimens using H-SRPI. As illustrated in

Figure 1A, Supplementary Figure 1, the H-SRPI system generated

multiplex chemical maps by targeting four key biomolecular

fingerprints. Supported by multiple literature sources (22, 27, 35,

36), we used BSA, DNA, triolein, and palmitic acid samples as

protein, nucleic acid, unsaturated lipid and saturated lipid

standards, respectively. Reference spectra (Figure 1A) were

derived from purified standards, and hyperspectral data were

processed using LASSO regression to estimate pixel-wise

biomolecular abundances. The resulting coefficients were spatially

mapped to generate single-cell resolution chemical images. Acute

leukemia was selected as the disease model. BM were collected with

six distinct subtypes: AML-M2, M3, M4, M5 and B-ALL Ph-, Ph+

(Figure 1B), all of which are believed to originate from leukemic

stem cells (LSCs). The healthy controls were containing: HSPCs,

granulocytes, monocytes, B cells, and T cells (Figure 1C). As shown

in Figure 1D, the workflow of H-SRPI is described.
3.2 H-SRPI imaging enables profiling of
proteins, nucleic acids, and lipids in AML

Metabolic reprogramming and epigenetic remodeling are

hallmarks of leukemogenesis and AML disease progression (37,

38). These alterations are often genotype-specific and accompanied

by epigenetic and functional changes that promote oncogenic

pathway activation (39, 40). To evaluate the utility of H-SRPI in
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capturing these metabolic shifts, cross-comparative analysis

between leukemia blasts and their normal counterparts was to

conduct delineate malignancy-associated biochemical signatures.

The purity of the three populations exceeded 95% by flow

cytometry, as reported in Supplementary Figure 2. We first
Frontiers in Immunology 04
compared granulocyte-matched cells. Given the granulocytic

dominance in AML M2, M3, and M4, these subtypes were

analyzed against normal granulocytes. H-SRPI imaging

(Figure 2A) revealed leukemic cells exhibited significantly elevated

protein and lipid signals, suggesting enhanced biosynthetic activity,
FIGURE 1

Overview of the H-SRPI principles and schematics of the experimental design. (A) Schematic illustration of H-SRPI mapping. Pixel-wise LASSO
spectral unmixing was used to generate chemical maps based on the reference spectra of proteins, nucleic acids, saturated and unsaturated lipids.
(B) Selected representative leukemia samples of the 6 different leukemia subtypes: AML-M2, M3, M4, M5, ALL B Ph-, and Ph+. (C) Selected
representative normal hematopoietic samples: HSPCs, granulocytes, monocytes, T cells, and B cells. (D) Schematics of the experimental design.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1662281
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Cheng et al. 10.3389/fimmu.2025.1662281
MGG staining (Figure 2B) confirmed the presence of abnormal

myeloid blasts. And quantitative analysis (Figure 2C) showed

significantly higher levels of proteins and lipids in AML-M2,

M3, M4 cells. Notably, the increase in unsaturated lipids exceeded
Frontiers in Immunology 05
that of saturated lipids, indicating a preferential shift toward

unsaturated lipid biosynthesis. In contrast, nucleic acid content

was significantly decreased, consistent with reduced DNA

abundance during leukemogenesis.
RE 2FIGU

H-SRPI and MGG imaging reveal distinct intracellular carbohydrates in AML cells. (A) Representative H-SRPI images showing the distribution of proteins
(blue), nucleic acids (yellow), unsaturated lipids (red), and saturated lipids (green) in AML-M2, M3, M4 cells and normal granulocytes. (B) MGG staining of
corresponding cells highlights morphological differences between leukemic blasts and granulocytes. (C) Quantitative analysis of H-SRPI mapped signal
of proteins, nucleic acids, unsaturated lipids, and saturated lipids between leukemic blasts and granulocytes. (D, E) Representative H-SRPI and MGG
images of AML M5 cells and monocytes. (F) Quantitative analysis of H-SRPI mapped signal from (D). *P < 0.05, **P < 0.01; a.u., arbitrary units.
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We next compared M5 cells with monocytes, given their shared

monocytic lineage. H-SRPI imaging (Figure 2D) revealed

consistently elevated levels of proteins, nucleic acids, and lipids in

M5 cells. These differences were further supported by MGG

staining of both monoblasts and monocytes (Figure 2E).

Quantitative analysis (Figure 2F) demonstrated a substantial

increase in all four biomolecular components in AML M5 cells,

reflecting robust metabolic reprogramming characterized by

enhanced protein synthesis and lipid accumulation.
3.3 H-SRPI imaging discloses metabolic
features in B-ALL cells

To systematically compare biomolecular profiles between ALL

and normal B cells, we compared ALL B cells with healthy donors

(HD) B cells. H-SRPI revealed distinct intracellular distributions:

both Ph+ and Ph- B-ALL cells exhibited elevated proteins, nucleic

acids, and unsaturated lipids compared to HD B cells, with the Ph+

group showing the highest enrichment of unsaturated lipids

(Figures 3A, C). These molecular distinctions were corroborated

by MGG staining, which highlighted clear morphological
Frontiers in Immunology 06
distinctions across groups (Figure 3B). However, in comparison

to AML cells, ALL cells demonstrated weaker Raman signals and

markedly reduced lipid content, suggesting that protein and nucleic

acid metabolism dominate in ALL cell physiology.
3.4 Identification of leukemia subtypes by
OPLS-DA algorithm

We quantitatively characterized 174 individual cells obtained

from 12 leukemia patients. 5 features of cellular area and chemical

composition (protein, nucleic acid, saturated and unsaturated lipid

content) were extracted by ImageJ software. Nevertheless, the

differences of composition and morphology features between

leukemia subtypes were not very evident, which was likely due to

the existence of heterogeneous populations in each specimen.

Therefore, we proposed to analyze the features by OPLS-DA. The

resulting scatter plots, reporting the scores of the first two canonical

variables, are shown in Figures 4A–C. As shown in Figures 4A and

Supplementary Figure 3A, representing scores of “AMLs+ALLs”, a

certain degree of separation was obtained between AML and ALL
FIGURE 3

H-SRPI and MGG imaging reveal biomolecular composition in ALL cells. (A) Representative H-SRPI and multichannel images showing distributions of
proteins (blue), nucleic acids (yellow), unsaturated lipids (red), and saturated lipids (green) in Ph+ and Ph- B-ALL, and HD B cells. Merged images
demonstrate intracellular localization patterns. (B) MGG staining reveals morphological differences among the three groups. (C) Quantitative analysis
of H-SRPI signal intensities for proteins, nucleic acids, unsaturated lipids, and saturated lipids. *P < 0.05, **P < 0.01; a.u., arbitrary units.
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subtypes (AML: 90% precision and 90% sensitivity; ALL: 81%

precision and 80% sensitivity).

When only AML subtypes are considered, OPLS-DA can

separate AML M2 (100% precision and 77% sensitivity), M3 (85%

precision and 89% sensitivity), M4 (92% precision and 63%

sensitivity), and M5 (72% precision and 96% sensitivity) cells

(Figures 4B; Supplementary Figure 3B). The confusion matrix

resulting shows very good accuracy for the classification of M5

and other subtypes. M2, M3, and M4 cluster together due to their

similarity as granulocytes. When only ALL subtypes are analyzed, a

very good separation can be seen between Ph− and Ph+ (100%

precision and 100% sensitivity) (Figures 4C; Supplementary

Figure 3C). The total accuracy is 88.21%. These results suggest

that our H-SRPI imaging method is capable to detect leukemia cells

with high sensitivity and specificity.
3.5 Differences in lipid metabolism
characteristics between AML and ALL
Fron
To investigate lipid compositional alterations in AML, we

analyzed the transcriptomes of AML samples. Gene

enrichment analysis using Metascape and GSEA revealed

significant upregulation of lipid-associated pathways in

AML, including lipid metabolism, biosynthesis, and

modification, along with carbohydrate and small molecule

metabolic processes (Figure 5A; Supplementary

Figures 4A–D). By contrast, genes enriched in normal

samples were mainly associated with protein and nucleic

acid-related pathways. Notably, none of the top ten

pathways in normal cells were lipid-related.
To further characterize these metabolic changes, we identified

281 significantly upregulated genes in AML cells (Figure 5B). Venn

diagram analysis revealed overlapping genes involved in lipid

metabolism, lipid biosynthesis, and lipid modification

(Figure 5C), suggesting their involvement in AML-specific lipid
tiers in Immunology 07
reprogramming. 20 upregulated genes were identified within the

intersection of lipid metabolism-related pathways in AML cells

(Figure 5D). Among them, ACSS1, HACD4, LIPA, SLC44A1, and

CD36 were particularly notable due to their central roles in lipid

synthesis, elongation, degradation, and transport. ACSS1 and

HACD4 mediate acetate utilization and very long-chain fatty acid

elongation, respectively, reflecting enhanced anabolic lipid

metabolism in AML (41, 42). CD36, a key fatty acid transporter

(43), was significantly upregulated and correlated with the elevated

unsaturated lipid levels observed by H-SRPI imaging. These

findings underscore the role of lipid metabolic reprogramming in

AML, as the 20 upregulated genes enhanced metabolic flexibility

and leukemic progression, and may facilitate drug resistance and

immune evasion.

Next, we analyzed the metabolic characteristics of ALL cells. It

showed enrichment in pathways such as the carboxylic acid

metabolic process, metapathway biotransformation Phase I and

II, whereas normal B cells were enriched in energy-generating and

biosynthetic pathways (Figure 5E). Notably, lipid metabolism–

related pathways were absent from the top enriched terms in both

groups. Consistently, GSEA results indicated lipid-associated

pathways remained non-enriched (Supplementary Figure 4E),

while significant upregulation of cyclic nucleotide metabolic

process and CGMP metabolic process (Supplementary Figure 4F).

These findings verified that ALL cells rely more heavily on protein

and nucleic acid metabolism than on lipid metabolism.
3.6 H-SRPI discloses metabolic profile
reprogramming of lipid unsaturation in
AML

Accumulating evidence indicates that AML cells undergo

extensive lipid metabolic reprogramming to sustain malignant

proliferation and survival (44). To investigate subtype-specific

lipid metabolic adaptations, we performed GSVA across four

AML subtypes. M5 showed the highest scores in overall lipid
FIGURE 4

Measurement and dimension reduction of five SRS features (cellular area, protein, nucleic acid, saturated and unsaturated lipid content) of
hematopoietic cells. The scores plot of OPLS model for (A) AMLs+ALLs, (B) AMLs, and (C) ALLs.
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metabolism, while M3 displayed the strongest enrichment in lipid

biosynthetic and modification pathways (Figures 6A-C), indicating

distinct metabolic strategies. To elucidate underlying mechanisms,

we analyzed the expression of genes involved in fatty acid transport,
Frontiers in Immunology 08
activation, synthesis, desaturation, and elongation. M3 cells showed

high expression of SLC27A2,SLC27A3, fatty acid transport protein

(FATP) family that mediate FA uptake for b-oxidation (45), along

with elevated ELOVL3 (46) (Figure 6D). In contrast, M5 cells
FIGURE 5

Transcriptomic analysis of AML and ALL cells from the TCGA datasets. (A) Heatmap showing gene expression in AML subtypes and normal cells.
Lipid-related pathways specifically activated in AML are highlighted in red). (B) A volcano plot of differentially expressed genes between AML and
normal samples. (C) Venn diagram identifying 20 upregulated genes involved in lipid metabolism, biosynthesis, and modification. (D) Heatmap of the
20 genes, categorized by function: lipid metabolism, transport, signaling, immunity, and antioxidant activity (color-coded). (E) Heatmap showing
differentially expressed genes between B-ALL and HD B cells, with enrichment analysis of top 10 pathways in each group (Metascape). P < 0.01, P <
0.001, by one-way ANOVA with post hoc test.
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upregulated lipogenic genes (Figure 6E), including FADS1, SREBF1

(lipogenesis regulator driving ACLY, FASN, ACACA, and SCD

(47)). SCD facilitates FA desaturation to support membrane

dynamics (48). ELOVL5/6 extend PUFA and SFA chains to
Frontiers in Immunology 09
modulate lipid composition (46). Taking together, these results

demonstrate distinct lipid metabolic programs in AML. The M3

favors lipid desaturation and unsaturation, whereas the M5

upregulates saturated lipid synthesis and elongation, forming a
FIGURE 6

Comparison of lipid metabolism pathways and gene expression across the four AML subtypes. (A) GSVA scores for lipid-associated pathways across
AML subtypes (M2–M5). Quantification of unsaturated (B) and saturated (C) lipid levels in AML cells by H-SRPI imaging. (D) Expression levels of fatty
acid transport and elongation genes (SLC27A2, SLC27A3, and ELOVL3). (E) Expression levels of genes involved in fatty acid synthesis, desaturation,
and elongation (FADS1, SREBF1, SCD, ELOVL5, and ELOVL6). Statistical comparisons were performed using one-way ANOVA with post hoc tests. *P
< 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001. (F) Schematic of the lipid metabolism model of AML. Schematic representation of altered lipid
metabolism in AML, highlighting subtype-specific differences in saturated and unsaturated lipid content. Key regulatory genes involved in lipid
synthesis (FADS1, SCD, ELOVL5/6, SREBF1), transport (SLC27A2/3, ELOVL3), and uptake (CD36, INPP5D, GPX1) are indicated. Enriched pathways
include lipid biosynthesis, modification, and immune regulation.
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metabolic axis linked to leukemic progression and therapeutic

response. To investigate lipid metabolism during AML

progression process, we analyzed HSPCs and aberrant

promyelocytes from M3-AML. M3 exhibited significantly higher

levels of unsaturated lipids content and metabolism features

(Supplementary Figure 5).
4 Discussion

Through multimodal integration of H-SRPI, MGG staining,

and RNA-seq transcriptomics across six leukemia subtypes and five

normal hematopoietic cell types, we uncovered the critical role of

lipid composition remodeling in leukemia subtype differentiation.

As the first application of H-SRPI in leukemia research, our

approach enabled high-resolution imaging with clear

morphological distinction, establishing a novel framework for

precise subtype identification. Multimodal imaging of both

saturated and unsaturated lipids improved diagnostic sensitivity

and revealed distinct lipid metabolic patterns across subtypes.

Simultaneously, we systematically profiled AML lipid metabolism

(Figure 6F), highlighting lipid metabolic reprogramming as a

hallmark of leukemia progression and a promising target for

translational therapy.

First, our study established a stain-free H-SRPI platform for in

situ pathological diagnosis of leukemia cells at single-cell resolution.

Compared to the conventional MGG staining, H-SRPI provided

rich chemical information, particularly enabling clear distinction

between saturated and unsaturated lipids profiles. H-SRPI holds

promise for enhancing leukemia classification accuracy, achieving

84.21% accuracy, which is essential for guiding clinical

decision-making.

Second, our study highlights the metabolic reprogramming of

lipid concentrations in leukemia cells. Altered lipid metabolism has

been implicated in leukemia cell function (49), our results showed

that AML cells exhibit elevated levels of both saturated and

unsaturated lipids to support increased demands for membrane

synthesis and remodeling, disrupting lipid and membrane

homeostasis. In contrast to AML cells, ALL cells exhibited

markedly altered lipid composition, suggesting a distinct metabolic

profile. This discrepancy may be driven by higher fatty acid synthase

(FASN) expression and activation of lipid synthesis pathways (e.g.,

PI3K/AKT/mTOR) in AML (50), which are comparatively less active

or absent in ALL, resulting in reduced lipid biosynthesis. Our study

highlights the therapeutic potential of regulating lipid homeostasis for

leukemia treatment. Investigating lipid metabolic heterogeneity

across leukemia subtypes may inform the development of lipid-

targeted therapies with translational relevance.

Third, our platform can accurately quantify MPO, an oxidative

enzyme constituting 3-5% of total protein in mature granulocytes

(51). Given the prognostic relevance of antioxidant enzymes in

leukemia, we compared MPO levels across granulocytes,

monocytes, B cells, and T cells (Supplementary Figure 6). As
Frontiers in Immunology 10
expected, MPO is highly expressed in granulocytes, with minimal

expression observed in other cell types, confirming the high

sensitivity of H-SRPI for detecting low-abundance, labile enzymes

and expanding its potential applications. Furthermore, MPO may

serve as an additional marker for leukemia classification to improve

the accuracy of pathological detection.

In this study, we identified four major components to capture

the major Raman signals within a cell. Since BSA exhibits methyl

and methylene group vibrational frequencies similar to those found

in vertebrate proteomes (20), it was used as a protein reference.

Purified DNA from normal BM cells served as the nucleic acid

reference. Triolein and palmitic acid, which are abundant and

biologically significant cellular lipids, were employed as lipid

references, consistent with their common use in SRS imaging

studies (22, 27). We acknowledge that these standard molecules

may not perfectly reflect the diversity of molecular subtypes present

in the sample. Therefore, more precise spectral isolation techniques

will be employed for further refinement. On the other hand, we note

that the 2800–3050 cm-1 region exhibits substantial peak overlap

between proteins and nucleic acids, which can blur nuclear–

cytoplasmic boundaries in SRS images. Although Raman

fingerprint bands are information-rich, their small cross sections

result in noisy measurements, making it difficult to distinguish less

abundant metabolites from background noise. The high

wavenumber C–H bands (2800–3050 cm-1) can mitigate this

sensitivity issue due to their significantly larger cross sections

compared to fingerprint bands. However, all major metabolic

species—proteins, nucleic acids, and lipids—exhibit essential yet

overlapping Raman peaks in this region. Existing hyperspectral data

analysis methods cannot fully capture the rich information content

of C–H vibrations due to significant cross-talk among the resulting

chemical maps (22, 27).

Collectively, our work demonstrates the potential of H-SRPI to

reveal biological heterogeneity in leukemia cells, elucidate the role

of altered lipid composition in leukemogenesis, and provide a novel

approach to leukemia diagnosis and treatment. In summary, we

propose that Raman spectroscopy has evolved into an increasingly

powerful toolkit for biologists and clinicians, delivering molecule-

specific insights at the single-cell level with expanding capabilities at

the subcellular scale.
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