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FCYRIIIA -activating antibodies
in dengue virus infection
reveals a distinct transient
cross-reactive profile
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Virology Section, Research Centre for Tropical Diseases and Faculty of Microbiology, University of
Costa Rica, San José, Costa Rica, 2Institute of Virology, University Medical Center, Faculty of
Medicine, University of Freiburg, Freiburg, Germany

Dengue viruses belong to the genus Flavivirus and consist of a serocomplex of
four serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). As arthropod-borne
viruses (arboviruses), their transmission is mediated primarily by the vector Aedes
aegypti. Antiviral immune response is one of the most crucial factors influencing
the progression from uncomplicated to severe dengue virus (DENV) infection.
Two types of antibody responses are elicited during a DENV infection: one
specific to the infecting serotype (serotype-specific or homotypic response) and
another that cross-reacts with other serotypes (cross-reactive or heterotypic
response). Both responses play roles in the protection against and in the
induction of immunopathogenesis of DENV disease. In the case of the
humoral immune response, the balance between protective and pathogenic
effects mediated by antibodies (antibody-dependent enhancement, ADE) is
highly dynamic and influenced by multiple factors. Although many
downstream effector mechanisms depend on antibody recognition by Fc-
gamma receptors (FcyRs) present on immune effector cells, this interaction is
traditionally not considered when evaluating antibody properties. Specifically,
FcyRIIIA has been implicated in both protection and immunopathogenesis of
virus infection. To assess its role within the humoral immune response to DENV,
we took advantage of FcyRIIIA-CD3L reporter cells and tested receptor activation
by polyclonal sera from individuals with past and acute DENV infections. In
addition, the neutralizing capacity and the potential enhancement of infection
were analyzed. The FcyRIIIA activation assay revealed a humoral profile distinct
from neutralization and immunopotentiation, primarily mediated by cross-
reactive antibodies. Notably, this profile increases during the post-acute period
but disappears within two years after infection. Because these two types of
antibodies are found during both the cross-protective and disease-enhancing
(immunopotentiation) phases, their exact function in each situation is still not
clearly understood. The results of this study provide a valuable measurement of
the effector function of anti-DENV antibodies, contributing to the understanding
of their role in both protective and disease enhancing courses of DENV infection.
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1 Introduction

Dengue virus (DENV) is an arthropod-borne virus (arbovirus)
transmitted by Aedes aegypti and Aedes albopictus, being the former
the most important vector. DENV is assigned to the family
Flaviviridae and the genus Orthoflavivirus and poses a major
global health burden in tropical and subtropical regions. The
World Health Organization (WHO) estimates that between 100
to 400 million infections occur yearly and that half the world
population is at risk of infection (1). Costa Rica is considered a
hyperendemic country for dengue, with co-circulation of all four
DENV serotypes and recurring outbreaks that continue to pose
major public health concerns (2). DENV infection is characterized
by an incubation period of 4 to 10 days after the mosquito bites and
produces a spectrum of clinical manifestations. Although many of
the infections are asymptomatic, it can produce a self-limited but
debilitating clinical presentation characterized by high fever,
headache, retroorbital pain, myalgia, arthralgia, nausea, vomiting,
lymphadenopathy and rash. The major risk of DENV infection is
for those patients who develop dengue-hemorrhagic fever (DHF)
which can be death threatening (3). DHF has three phases: febrile,
critical and recovery. In the critical phase the increase in capillary
permeability leads to plasma leakage and hypovolemic shock with
multiorgan failure, metabolic acidosis, disseminated intravascular
coagulation and hemorrhage (4). Some critical patients can develop
hepatitis, encephalitis, myocarditis, and severe hemorrhage without
plasma leakage. In these cases, intravenous rehydration treatment
can reduce mortality from 20% to 1% (3).

Four DENV serotypes (1-4) exist, sharing between 60%-70% of
their coding sequence (5). DENV pathogenicity in the human host
can be partially explained by differences in viral virulence due to
genotype and serotype (6). For instance, the Asian genotype of
DENV-2 produces a more severe disease than the American
genotype (7, 8). Host factors are also implicated in the severity of
the disease, including the humoral immune response. The immune
response against DENV differs between serotypes, a serotypic-
specific or homotypic response is produced against the infecting
serotype while a cross-reacting or heterotypic response is generated
against other serotypes (9). A heterotypic immune response
provides protection for an estimated period of six months to
three years while a homotypic immune response should give a
lifetime protection (10). However, once a cross-reacting immune
response cannot protect the host anymore, it can contribute to the
immunopathogenesis of the disease by exacerbating inflammation
through a cytokine storm or immunopotentiation (ADE) (11). The
overproduction of cytokines produces endothelial cell damage
increasing vascular permeability and plasma leakage characteristic
of DHF (12). Complement activation and the production of a
temporal autoimmune response may also occur (13, 14).

Both the cellular and humoral heterotypic immune response
may induce immunopathogenesis. Cross-reacting cytotoxic T cells
are ineffective at controlling the infection and increase the
production of cytokines (15). Antibody-dependent enhancement
(ADE) of infection occurs when IgG antibodies bind the viral
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particles but are uncapable to neutralize them and instead, form
immune complexes that bind to the Fcy receptors (FcyR) on
immune cells, favoring viral infection of these cells followed by
uncontrolled immune cell activation (16). Antibody specificity
determines the risk of developing ADE. Antibodies targeting the
I- and II- domain of the envelope (E) viral glycoprotein are highly
serotype cross-reactive and associated with ADE (11, 17). The
tridimensional disposition of the epitopes and antibody
concentration also has an impact on the development of ADE
(18). Linear epitopes and neutralizing antibodies at low
concentrations can favor ADE (19, 20). Thus, serotype-specific,
and cross-reactive antibodies may produce ADE depending on their
concentration (18).

Fey receptors (FcyRs) belong to the immunoglobulin superfamily
and are expressed on the surface of various immune cells, including
monocytes, macrophages, neutrophils, and NK cells. The three main
classes—FcyRI (CD64), FcyRII (CD32), and FcyRIII (CD16)—differ
in structure, cellular distribution, affinity for IgG subclasses, and the
signaling pathways they activate (21). In the context of DENV
infection, FcyRs play a dual role: they can mediate protective
immune clearance or contribute to ADE, depending on the
antibody characteristics and the receptor involved. Notably,
FcyRIIla (CD16a), expressed primarily on NK cells and some
myeloid populations, has been implicated in both beneficial effector
functions such as antibody dependent cell-mediated cytoxicity
(ADCC) and potentially in facilitating ADE under certain
conditions (22, 23). Despite its relevance, the dynamics of FcyRIIIa
activation during acute dengue infection remain poorly understood.
In this study, we aim to characterize the FcyRIIIa-activating antibody
profile in individuals with acute dengue infection, evaluate how it
relates to other antibody effector functions and compare it to the
profile found in convalescent patients.

2 Materials and methods
2.1 Serum samples

Two sets of serum samples were analyzed. A first set consisted
of seven anonymous convalescent serum samples (S) collected in
Golfito and Puntarenas, which represented DENV hyperendemic
regions in Costa Rica, for a previous sero-epidemiological study
during 2005-2006 (24). The second set of samples were collected
from seven acute dengue adult patients with follow-up serial sample
collections (Table 1). All sera were collected from non-severe
dengue cases. Previous exposure to DENV infection was assessed
with IgG detection in the acute sample with a commercial ELISA.
Individuals with IgG antibodies against DENV during acute
infection were categorized as non-primary infection (NP) and
those where antibodies were not detected were classified as
primary infection (P). Ethical approval for the use of human
samples was given to the project B7360 in the resolution VI-
3178-2017 by the Scientific Ethical Committee from the Vice
rectory of Research of the University of Costa Rica.
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TABLE 1 List of samples from individuals with a confirmed acute infection and with sequential sample collection at different time points (T1-T4),

including the number of days post-symptom onset for sample collection.

Days post-symptoms onset

Infecting DENV Serotype Sample 1 Sample 2 Sample 3 Sample 4

(T1) ) (T3) (T4)

P1 DENV-3 3 14 82 -

P2 DENV-3 2 13 81 -

NP1 DENV-1 2 17 - -

NP2 DENV-1 4 21 - -

NP3 DENV-1 4 33 127 -

NP4 DENV-1 6 36 116 -

NP5 DENV-1 2 11 48 1719

NP, non-primary infection; P, primary infection.

2.2 Anti-DENV IgG and IgM detection

To detect IgG and IgM antibodies against DENV, two highly
sensitive commercial ELISA kits were used (26): the Human
Dengue IgG ELISA Test Kit (Diagnostic Automation, Cortez
Diagnostics Inc., CA, USA) with 94.7% sensitivity and 97.4%
specificity, and the Human Dengue IgM ELISA Test Kit
(Diagnostic Automation, Cortez Diagnostics Inc., CA, USA) with
97.8% sensitivity and 93.5% specificity. Both assays were performed
following the manufacturer’s protocol. Optical density (OD) values
were measured after a 25-minute reading at 450 nm and 630 nm
using the Epoch spectrophotometer (BioTek, Vermont, USA).

2.3 Molecular detection and serotyping of
DENV

Viral RNA was extracted from 200 pl of serum or urine using
the MagNA Pure LC RNA Isolation Kit I (Roche, Basel,
Switzerland) according to the manufacturer’s instructions, using
the MagNA Pure LC 2.0 extraction system (Roche, Basel,
Switzerland). Detection and confirmation of DENV, ZIKV, and
CHIKV were conducted on RNA samples using real-time reverse
transcription PCR (RT-PCR) with Modular Diagnostic Kits for
Dengue, Zika, and Chikungunya viruses, along with Multiplex RNA
Master Mix on the LightCycler II (Roche, Basel, Switzerland),
following the manufacturer protocol. Dengue serotyping was
carried out following the protocol described by Lanciotti et al.,
using specific serotype controls (25).

2.4 Viral strains and cell lines

Dengue virus prototype strains all grown in the C6/36 cell line
(ATCC® CRL-1660"™ RRID: CVCLZ230), donated by the Pedro
Kouri Institute in Cuba, were used in the K562 (ATCC® cCL-243™
RRID: CVCL0004) immune enhancement and FcyRIIIA-CD3(
activation assays (26). The strains were DENV-1 Angola (12
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passages), DENV-2 Jamaica (19 passages), DENV-3 Nicaragua
(13 passages) and DENV-4 Dominica (16 passages).

For neutralization assays, chimeric viruses (ChimeriVax -
DENV1, DENV2, DENV3 and DENV4) produced by Sanofi
Pasteur and grown in Vero cells (ATCC® cCL-81"" RRID:
CVCL0059) were used (27). These viruses are based on the yellow
fever 17D vaccine backbone and express only the prM and E genes
of each DENV serotype, thereby assessing the neutralizing activity
of antibodies directed against the major structural antigens involved
in viral entry. Using this approach restricts the readout to
neutralization-relevant epitopes, thereby minimizing
contributions from other viral proteins. These viruses were
donated by Sanofi Pasteur through the CDC Arbovirus Reference
Collection under a material transfer agreement (MTA).

2.5 Reporter cell BW: FcyRIII-{ assay

The assay used to evaluate individual antibody-dependent
activation of FcyRIII (CD16) involved co-culturing antigen-
bearing cells with BW5147 reporter cells that stably express
chimeric FcyRIII-{ chain receptors. These receptors trigger mouse
IL-2 production upon receptor crosslinking by immune-complexed
IgG, provided the opsonizing IgG is recognized by specific FcyR
(26). This assay was standardized before in Corrales-Aguilar et al.
(26). Briefly, to assess antibody-dependent activation of BW:
FcyRII-C reporter transfectants, Vero cells where infected with
0.1 multiplicity of infection (MOI) of each DENV serotype for a 72-
hour period, then virus was inactivated by UV-light. After
inactivation, mock-infected and virus-infected cells were
incubated with serial two-fold dilutions of human sera in D-
MEM (Sigma-Aldrich, MO, USA). containing 10% (v/v) FCS
(Thermo Fisher Scientific, MA, EE.UU.) for 30 minutes at 37 °C
in a 5% CO, atmosphere. Non-bound IgG was removed by washing
the cells three times with D-MEM containing 10% (v/v) FCS before
co-culturing them with 100-000 BW: FcyRIII-C reporter cells per
well for 16 to 24 hours at 37 °C in a 5% CO, atmosphere in RPMI
medium (Thermo Fisher Scientific, MA, EE.UU.) supplemented
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with 10% (v/v) FCS. Unless otherwise noted, experiments were
conducted in triplicate with a MOI of 0.1. After the 16 to 24-hour
co-cultivation, supernatants were diluted 1:2 in ELISA sample
buffer (PBS with 10% [v/v] FCS and 0.1% [v/v] Tween-20).
Mouse IL-2 levels were then measured by ELISA using the
capture antibody JES6-1A12 and the biotinylated detection
antibody JES6-5H4 (BD PharmingenTM, Erembodegem, Belgium.
RRID: AB2067783 and RRID: AB2621654 respectively) following
the manufacturer instructions. The cutoff point for result
interpretation was calculated by adding the mean of mIL-2
production in virus-free (or mock) cells and three standard
deviations. Values above this cutoff point were considered
positive. The magnitude of IL-2 production was interpreted as an
indicator of the strength of receptor engagement by IgG-virus
immune complexes. Higher IL-2 values reflect more efficient
crosslinking of FcyRIITA (26, 28).

2.6 Focus reduction neutralization test

For the FRNT assay, ChimeriVax strains (YFV-DENV1, 2, 3,
and 4), validated for viral neutralization studies (29), were used. A
focus-reduction microneutralization assay (FRNT) was performed
in flat-bottom 96-well plates (30). Serial two-fold dilutions of sera,
starting at 1:40, were incubated for 1 hour at 37°C with viral stocks,
adjusted to yield 30-200 foci per well in at least four wells. The
mixture was then inoculated (50 uL/well) into confluent Vero cell
monolayers and incubated for an additional hour to allow viral
adsorption. The adsorption medium was replaced by 100 uL of
1.5% carboxymethylcellulose overlay medium to restrict infection.
DENV-1, DENV-2, and DENV-3 were incubated at 37°C for 48
hours, while DENV-4 was incubated for 24 hours. Post-incubation,
the overlay medium was removed, wells were washed with PBS
(Thermo Fisher Scientific, MA, EE.UU.) and fixed with 100 UL of
cold methanol per well. Plates were stored at —20°C for at least 24
hours. For focus visualization, immunostaining was performed
using an anti-flavivirus group monoclonal antibody 4G2
(GeneTex, CA, USA. RRID: AB3074294) (1:600 dilution) followed
by a secondary anti-mouse IgG antibody conjugated with
peroxidase (1:600 dilution). The signal was developed using 3-
amino-9-ethylcarbazole (AEC) substrate, incubated for 30 minutes
at room temperature in darkness. Foci were imaged using a
stereoscope and manually counted with ImageJ software (RRID:
SCR_003070). FRNT50 was determined in Prism 10 (GraphPad,
San Diego, CA, USA) by nonlinear regression, identifying the
dilution that reduced foci by 50% (FRNT50). High FRNT50
values indicate stronger neutralizing capacity against the tested
DENV serotype.

2.7 Antibody dependent enhancement test
This study used the semi-adherent K562 cell line, which

constitutively expresses FcyRIIa (31), based on a monolayer
methodology (32). Plates were coated with fibronectin and 30-
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000 cells per well were added. Serial dilutions of test sera were mixed
with DENV serotypes at a MOI of 0.5 (DENV4) to 0.1 (other
serotypes) and incubated at 37 °C for 24 (DENV-4) to 48 (other
serotypes) hours. Post-incubation, cells were fixed, immunostained
with the 4G2 antibody and secondary anti-mouse peroxidase-
conjugated antibodies and stained with AEC to visualize infected
cells as described before. Infected cells, identified by a precipitated
brown color, were observed under light microscopy, and the
number of infected cells per 40X field was quantified using
Image] software. The percentage of infection for all serial
dilutions was plotted, and the level of immunopotentiation was
determined based on the width of the curve. Samples that exhibited
broad curves against more than one DENV serotype were
considered to have a high level of immunopotentiation as defined
in other studies (18). The magnitude of enhancement was
interpreted based on the breadth and height of the curve: narrow,
low curves were considered low enhancement, whereas broad
curves with high percentages of infection across multiple dilutions
indicated strong enhancement potential.

2.8 Statistical analysis

All assays were performed in triplicate unless otherwise
indicated. Data are shown as individual values or as mean *
standard deviation (SD). For the FcyRIIIA activation assay, the
cutoff for a positive response was defined as the mean IL-2
production of mock-infected cells plus three standard deviations.
Neutralization titers (FRNT50) were determined by nonlinear
regression analysis using GraphPad Prism 10 (GraphPad
Software, San Diego, CA, USA). No formal hypothesis testing was
performed due to the small sample size; instead, results are
presented descriptively to illustrate individual antibody profiles

over time.

3 Results

3.1 Serological and functional
characterization of samples

Serum samples were classified into two main groups based on
clinical and serological criteria: past infections and acute infections.
The past infection group (S) consisted of asymptomatic individuals
with serological evidence of prior DENV exposure, while the acute
infection group included laboratory-confirmed cases of active
dengue virus infection. Acute-phase samples were further
subdivided into primary (P) and non-primary infections (NP),
based on the presence or absence of anti-DENV IgG within the
first seven days following symptom onset. The detection of IgG at
this early stage was used as a proxy to distinguish primary infections
from those that were likely secondary or beyond. Due to limitations
in discriminating between secondary and tertiary or quaternary
responses, all early IgG-positive acute cases were conservatively
grouped as non-primary (NP) infections.
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The samples from past infections presented highly diverse
profiles depending on IgG antibody concentration measured as
OD values. Samples with anti-DENV IgG optical density (OD)
values below 0.500 displayed a monotypic neutralization profile,
showing serotype-specific activity restricted to either DENV-3
(Figure 1, Sample 1 (S1)) or DENV-2 (Figure 1, Sample 5
(S5)).These specimens exhibited minimal ADE activity, revealed
by the short breath of the curves against the four serotypes, and
failed to induce significant activation of the FcyRIIIA-CD3(
receptor, suggesting limited effector function in this group.

In contrast, samples with intermediate anti-DENV ELISA OD
values (0.5-1.0) exhibited broader serotype recognition,
neutralizing two (Figure 1, Samples 3, 7 (S3, S7)) or three
(Figure 1, Sample 4 (S4)) DENV serotypes. Moderate ADE
activity was observed across these samples. Notably, FcyRIIIA-
CD3( activation was detected exclusively in S4. Interestingly,
despite having the highest neutralizing titer against DENV-3, the
strongest receptor activation in S4 was induced by DENV-1,
highlighting a potential uncoupling between neutralization
capacity and Fc-mediated effector activation.

Only two samples exhibited high anti-DENV IgG OD values
(>1.0). Both (Figure 1, Samples 2, 6 (S2, S6)) neutralized three
serotypes and displayed the highest levels of ADE and FcyRIITA-
CD3( activation among all specimens analyzed from the past
infection cohort. S2 showed peak FcyRIIIA activation in response
to DENV-4, with neutralization strongest against DENV-1. In
contrast, in S6 the strongest receptor activation occurred in
response to DENV-1, while the highest neutralization titer
targeted DENV-3. These findings underscore the complex
relationships among antibody specificity, enhancement potential,
and Fc-mediated effector functions following natural
DENV exposure.

3.2 Longitudinal analysis of serum samples
from acute DENV infections

In the longitudinal study, the values for all antibody
characterization assays for each patient were plotted across all
collected samples (T1-T4) (Figure 2). In primary DENV
infections (Figure 2, P1 and P2), the immune response followed
classical kinetics, marked by the induction of anti-DENV IgG and a
progressive increase in functional activity. Neutralization peaked at
T3 timepoint, with strong titers against the infecting serotype
(DENV-3). ADE activity rose during the T2 timepoints, with
moderate levels persisting in the T3 subacute phase. FcyRIITA-
CD3( activation was largely absent, except for a minimal, above-
threshold response to DENV-4 in P2 at T3.

In non-primary infections (NP), antibody dynamics were more
heterogeneous. In all cases, the infecting serotype was DENV-1.
Patient NP2 showed detectable IgG during the acute phase, but
without measurable neutralizing activity. By T2, neutralization
peaked against DENV-2, and ADE activity increased notably. A
low but detectable FcyRIIIA-CD3{ activation signal was recorded
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in T3 against DENV-4 (Figure 2, NP2). For NP3, all measured
antibody activities—including neutralization, ADE, and FcyRIITA-
CD3( activation—peaked at T2 and declined by T3 timepoint.
Neutralizing responses were strongest against DENV-2 across all
timepoints, followed by DENV-1, suggesting that DENV-2 was
likely the priming serotype. FcyRIIIA activation in this case was
restricted to DENV-4, which peaked at T2 and decrease by T3
(Figure 2, NP3).

NP5 was the only case with a fourth sample collected nearly five
years post-infection (Figure 2, NP5). The acute-phase sample (T1)
showed the highest IgG OD value among all evaluated samples,
along with the strongest neutralizing response against DENV-2,
followed by DENV-1, supporting DENV-2 as the primary infecting
serotype. FcyRIIIA-CD3( activation was significant for DENV-1,
DENV-2, and DENV-3, with DENV-1 showing the highest signal
from T1. An elevated enhancing activity is seen for all serotypes in
all time points. It should be noted that in this case the acute sample
had a broad neutralizing activity, recognizing all four serotypes.
Although antibody function remained relatively high through T3,
all profiles declined markedly by T4.

Patient NP4 showed persistently high IgG OD values and a
broad neutralization activity across all timepoints, being the
strongest against DENV-2, suggesting this serotype as the
primary exposure. ADE activity increased over time, and
FcyYRIIIA-CD3( activation was pronounced against DENV-1
from the acute phase through T3. A secondary, though
significant, activation signal was also observed for DENV-4
(Figure 2, NP4). In the case of NP1, the neutralization profile also
pointed to DENV-2 as the primary infecting serotype. Enhancing
activity was initially low but increased by T2. FcyRIIIA-CD3{
activation was undetectable in the acute phase, but increased
significantly in the subacute sample, particularly in response to
DENV-4, DENV-3, and DENV-2.

Collectively, these findings highlight the dynamic and
individualized nature of DENV-specific antibody responses
following natural infection. Primary infections showed a more
predictable trajectory of rising neutralization and ADE activity,
with minimal detection of FcyRIITA activation. In contrast, non-
primary infections were characterized by broader serotype
recognition, variable neutralization targets, and a more prominent
engagement of FcyRIITA-mediated triggering. Notably, patients
NP4 and NP5—who exhibited the broadest neutralization profiles
—were also the only individuals with the detectable FcyRIIIA
activation against the infecting serotype (DENV-1) with peaks at
relatively late time-points (T3) after symptom onset.

4 Discussion

In this pilot study, we determined for the first time distinct
antibody effector functions and profiles by ELISA, FRNT, ADE test
and FcyRIIIA activation assay across different immunological
contexts of DENV 1-4 infection. Notably, in most cases,
FcyRIITA-CD3{ activation did not consistently correlate with
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FIGURE 1

Anti-DENV antibody profile of seven participants from a serosurvey.

The ELISA OD values for IgG detection are indicated below each
participant code. NT: Neutralization profile; ADE: Antibody-
dependent enhancement profile; BW: CD16: FcyRIIIA activation
profile. For FcyRIIIA activation, data points represent the mean of
three independent experiments + standard deviation (SD), and the
cutoff for a positive response (dotted line) was defined as the mean
IL-2 production of mock-infected cells plus three standard
deviations. Neutralization titers (FRNT50) were determined by
nonlinear regression analysis. Negative controls included mock-
infected cells (for FcyRIIIA assay) and seronegative human sera (for
ELISA, ADE, and FRNT assays).
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neutralization profiles, one explanation may be that the epitopes
driving neutralization differ from those responsible for Fc-mediated
functions (28). Neutralization is typically mediated by antibodies
targeting structurally critical regions on the virion, such as
quaternary epitopes recognizing multiple envelope (E) protein
subunits or serotype-specific sites on the E protein domain III
(33). By contrast, robust FcyRIIIA activation often arises from
highly cross-reactive IgG antibodies against conserved epitopes
that confer little DENV neutralization. Notably, many human
anti-DENV antibodies dominantly target the precursor
membrane (prM) protein and the conserved fusion-loop of E
domain II; these antibodies are broadly cross-reactive among
serotypes yet poorly neutralizing, even at high concentrations,
and can still efficiently opsonize infected cells and virions,
triggering FcyRIIIA (17, 33). Indeed, the FcyRIIIA activation
assay of this study utilized DENV-infected Vero cells that display
both E and uncleaved prM on their surface, providing abundant
targets for Fc binding in comparison to neutralization assay (34). In
summary, the antigenic determinants of neutralization versus
FcyRIITA-mediated effector function only partially overlap,
leading to an uncoupling dissection of these profiles in
many samples.

Past infection data likely reflect a range of diverse time points
post DENV infection (Figure 1). Samples with broader serotype
reactivity and enhanced Fc-mediated function are consistent with
non-primary infections or specimens taken within two years after
exposure, when cross-reactive antibodies remain elevated (35).
Longitudinal analysis of acute cases provides a clearer view on the
kinetics of the humoral response and its associated effector
functions. Individuals with secondary or multiple infections
exhibited notably stronger FcyRIITA-CD3( activation compared
to primary cases. This increased activity reflects not only higher
antibody titers but also qualitative differences in the IgG response,
possibly due to subclass distribution and Fcy N297 glycosylation
pattern as demonstrated in COVID-19 patients (36-38). DENV
infection predominantly induces IgG1 and IgG3, both capable of
engaging FcyRIITA. IgG3 is short-lived and more potently
neutralizing, while IgGl1 is longer-lasting and subject to glycan
modification (22). It has been described that afucosylation of IgG1
is more prominent in dengue secondary infections, and that
elevated levels of afucosylated anti-E IgGl are present early on
severe dengue (22). Afucosylation significantly enhances FcyRIIIA
binding (22) which may explain the difference observed between P
and NP individuals.

Analysis of past infection samples revealed a consistent
association between the breadth of serotype recognition by
neutralization and the magnitude of FcyRIITA-mediated effector
activity. In acute infections, broadly neutralizing sera, typically from
those with non-primary infection, tended to activate FcyRIITA
across multiple serotypes more robustly than narrow, type-
specific sera. A broader neutralization profile implies a more
extensive distribution of IgG bound to diverse epitopes on the
virion surface or the infected cells membrane, thereby increasing
the valency, defined as the multivalent engagement of antibodies
with multiple epitopes, and the density of immune complexes (22).

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1662138
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Soto-Garita et al. 10.3389/fimmu.2025.1662138

Patient A) ELISA B) NT C) ADE D) BW:FcyRII-g
=3 15
o
e g* ®
2o = Serotype g o Serotype
IZ' Antibody E 3 -bl g om §° - 01
1 s e L -D2 @ omn % - 02
=] -igh S - D3 :.E g - 03
DENV3 3 1 o2 e E 2, o
= S R 00— heeeeeeeeaes
5
0 1 o s
T T2 T3 T T2 T3 1 X T T2 T3
Sample Sample Dilution Sample
5° 120 : 15
o
e §4 2 g
25 = Serotype E o Serotype
'Z’ Antibody E 3 -or 3 T g° - D1
P2 [ D™ -2 £ omn % - 02
[=] =1 - D3 1 LI P
DENV3 3 1 o2 s E 5 = 5 o4
2 —/_._/—1 S Y
(o) o
0 1 50 =
™ T2 T3 T T2 T3 1520253035 T T2 5]
Sample Sample Dilution Sample
100
3
5 % @ = N
©) a4 o 0
- ] s 2 100
20 [ erotype 8 o Serotype
@ Antibody § 3 - D1 20 -
NP1 8 *c @ e B ot & -
(=1 .l S *D3 9 2 § .
DENV1 T‘g 1 o2 D4 £ = D4
'g. L — S ® 100
0 1
1 T2 T T2
Sample Sample Sample
=3 15
=)
o a4 o 0
- ] seroype 3 100
£2 i [ e 8 5o 2 Serotype
7] Antibody £ 5 - D1 - £ 10 -0
NP2 S -6 W -2 £ 9 om -2
o .M S *D3 9 o T2 § - 02
DENV1 3 1 o2 b4 E s 5 — 04
S | L e FUUU —
3 —
0 1 o 0
T2 T T2 1.5 2.0 25 3.0 35 T T2
Sample Sample Dilution Sample
3 15
=)
() g4 «
n =
2o i E serotype @ 5 Serotype
@ Antibody E 3 -1 O ot £ - D1
NP3 8 -G L -2 2 omn £ -0
[=] - igM S @ D3 H g - 03
DENVI g1 2 /"\_ b E 2 o4
= 3 . e ES
i —/-4\_
0 1
T T2 T3 T1 T2 T3 o — =1
Sample Sample Sample
=3 15
o
(=3 g* “
n =
20 i = Serotype @ ° Serotype
2 Antibody % 3 bl e ot E 10 - 0t
o] *gG W —_—— & D2 £ oT2 - 02
NP4 A eign S *D3 9 om § -0
DENVI 1 (= e E H o4
S
0 1
T1 T2 T3 T T2 T o T2 T3
Sample Sample Sample
~3 15
a
o g* P
.? > [ Serotype g ° Serotype
@ Antibody E 3 - D1 2 oTm £10 e D1
NP5 1=> ™ - D2 2 <D> % 2 02
o -igM S -l 8 At § Dt
DENV1 g 1 o2 b+ E =5 04
= L IR B L) .
8- 2
0 1 he = of A
™ T2 T3 T4 T T2 T3 T4 1520 2530 35 ™ 12 18 T4
Sample Sample Dilution Sample

FIGURE 2

Anti-DENV antibody profile of seven dengue patients with sequential samples collected at different time points (T1-T4) post-symptom onset.
Infecting serotype is indicated below each patient. ELISA: anti-DENV IgG and IgM profile; NT: Neutralization profile; ADE: Antibody-dependent
enhancement profile; BW: CD16: FcyRIIIA activation profile. For FcyRIIIA activation, data points represent the mean of three independent
experiments + standard deviation (SD), and the cutoff for a positive response (dotted line) was defined as the mean IL-2 production of mock-
infected cells plus three standard deviations. Neutralization titers (FRNT50) were determined by nonlinear regression analysis. Negative controls
included mock-infected cells (for FcyRIIIA assay) and seronegative human sera (for ELISA, ADE, and FRNT assays).
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This configuration enhances the odds of cross-linking of FcyRIIIA
on effector cells, a prerequisite for efficient receptor signaling (39).
This finding is consistent with the concept that a minimum
concentration and opsonization density of IgG must be achieved
to overcome the activation threshold of FcyRIIIA. Prior studies of
dengue immunity have noted that intermediate antibody levels can
exacerbate infection (via ADE), but sufficiently high antibody levels
confer protection (40, 41). Analogously, only the samples with high
IgG binding levels were potent in FcyRIIIA triggering, whereas
those with modest titers did not (23, 42). Thus, a higher abundance
and breadth of antibodies likely ensures that FcyRIIIA is engaged in
antiviral effector functions rather than in enhancing pathways.

The longitudinal FcyRIITA activation profiles observed in
individuals NP5 and NP4 provide valuable insight into the dynamics
of Fc-mediated antibody responses during acute dengue infection. In
both cases, a marked FcyRIITA/CD16 activation signal was detected in
response to the infecting serotype (DENV-1) during the acute phase,
indicating the presence of FcyRIIIA-activating IgG early in infection.
Interestingly, both individuals exhibited a transitory decline in activation
at the T2 timepoint, followed by a peak in T3. This transient reduction
may reflect in vivo engagement of FcyRIIIA-expressing effector cells,
such as natural killer (NK) cells or monocytes, by IgG-virus immune
complexes, leading to ADCC or phagocytosis and temporary clearance
of activating antibodies in immune complexes (22, 23, 42, 43). The
increased CD16 activation signal observed in T3 may be due to clonal
expansion against the epitopes recognized in the acute infection (44).
Notably, while both individuals shared similar FcyRIIIA activation
kinetics against the infecting serotype, they differed in their ADE
profile: NP5 displayed high ADE in acute sample, while NP4 did not.
This immune assessment enabled the distinction between FcyRIIIA-
activating antibody profiles with low enhancing potential and those with
strong enhancing activity.

Our study focused exclusively on FcyRIIIA activation profile,
which does not capture the full range of FcyR-mediated effector
mechanisms. Furthermore, FcyR polymorphisms such as FcyRITA-
H131R and FcyRIITA-V158F, which affect the affinity of Fcy receptors
for IgG subclasses, have been associated with increased susceptibility
and protection against severe dengue, respectively (45, 46). Therefore,
a broader approach incorporating additional FcyRs, and their key
polymorphic variants, along with FcyR reporter cell assay settings
selective for certain ligands including soluble multimeric immune
complexes and C reactive Protein isoforms (47, 48), should be
undertaken to evaluate the full effector potential of dengue-specific
antibodies and to identify thresholds that help define the spectrum of
clinical outcomes from DENYV infection. The hyperendemic setting in
Costa Rica, where multiple flaviviruses co-circulate, highlights the
need for a broader viral panel to better interpret antibody profiles.
This would allow for the inclusion of both severe and non-severe
patients (2). Increasing the number of patients, outcomes of DENV-
disease, and timepoints during the early acute and convalescent
phases would provide a more detailed understanding of how FcyR
activation evolves. This would also help to clarify its complex role in
the dual nature of the humoral response in dengue infection.
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Recent studies highlight the dual impact of FcyRIIIA
interactions: afucosylated IgGl enhancing FcyRIIIA binding has
been linked to severe dengue (23, 42, 49, 50), dengue immune
complexes can activate NK cells and suppress ADE (51), and
stronger FcyRIIIA-driven effector functions, including NK
activation, associate with protection from symptomatic infection
(22). While NK cell-based assays are highly informative to evaluate
the protective role of CDI6-activating antibodies, our reporter
system allows the measurement of the broader fraction of
antibodies capable of engaging FcyRIIIA, including those that
may also contribute to immunopathogenic outcomes, since
FcyRIITA expression is not restricted to NK cells but includes
monocytes implicated in infection and inflammation (52). This
distinction provides a complementary view, revealing potentially
different functional profiles of dengue antibodies. Additionally, Kao
et al. recently revealed that CD8 T cells, which typically do not
express Fcy receptors, can specifically induce the activating FcyRIITa
receptor in response to viral infections like COVID-19 and dengue
(53). While FcyRIIla expression closely follows the immune
response timeline, its activation alone does not trigger CD8 T cell
function; however, it synergizes with T cell receptor (TCR)
stimulation to enhance activation (53). These findings uncover a
novel costimulatory role for FcyRIIIa, showing how virus-induced
antibodies can modulate CD8 T cell responses. By providing a
scalable and reproducible way to measure FcyRIIIA engagement
beyond natural killer and CD8 T cell functions, our assay offers a
novel framework to characterize the balance between protective and
pathogenic antibody responses.

Taken together, our data shows that neutralization and
FcyRIIIA-mediated antibody functions against Dengue viruses are
often uncoupled which has already been observed with other viral
infections before (28). Furthermore, the different epitopes involved
in each process may lead to distinct antibody functional profiles.
Cross-reactive antibodies (e.g., anti-prM, fusion-loop) may not
neutralize dengue virus effectively but still trigger immune effector
mechanisms via Fc receptors. To better understand how antibody
effector mechanisms and Fc-mediated immunity influence dengue
outcomes, different FcyRs and their polymorphisms, distinct
immune complex forms, more patients and defined timepoints of
sampling should be studied. Our foremost rationale for using these
tests will be to evaluate the functional quality of antibodies,
especially cross-reactive ones, during different phases of dengue
infection (acute and post-acute). This may help elucidate their dual
role in both protection and immunopathogenesis, improving our
understanding of disease progression and immune responses, and
potentially guiding vaccine development by distinguishing between
protective and pathogenic antibody profiles.
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