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Background: Lung adenocarcinoma (LUAD) is the most common subtype of

non-small cell lung cancer, with EGFR mutations serving as key oncogenic

drivers. However, patients harboring EGFR mutations exhibit considerable

heterogeneity in clinical outcomes and treatment responses. Characterizing

the malignant features of EGFR-mutant epithelial cells may facilitate improved

stratification and personalized therapeutic strategies.

Methods: Using publicly available single-cell RNA sequencing data, malignant

epithelial cells were identified in EGFR-mutant LUAD samples via inferCNV and k-

means clustering. Pseudotime trajectories were constructed using Monocle2,

and branch-specific genes were extracted for functional analysis. Differentially

expressed genes were integrated with TCGA bulk transcriptomic data, and ten

machine learning algorithms were applied to construct the EGFR Mutation-

Associated Malignant Epithelial Cell-Related Signature (EGFRmERS). The

prognostic value of EGFRmERS was validated across multiple independent

cohorts. Associations between EGFRmERS and immune infi ltration,

immunotherapy response, tumor mutation burden (TMB), and copy number

variations (CNVs) were systematically assessed. The performance of EGFRmERS

was also benchmarked against previously published LUAD prognostic signatures.

Finally, the core gene PERP was selected for in vitro functional validation,

including qRT-PCR, Transwell migration/invasion, and colony formation assays.

Results: EGFR-mutant epithelial cells were classified into subclusters with

varying malignant potential, enriched in pathways such as cell cycle regulation

and DNA repair. The EGFRmERS signature robustly predicted patient prognosis

across multiple cohorts and outperformed existing models. High EGFRmERS

scores were associated with an immunosuppressive microenvironment, reduced

immunotherapy responsiveness (as indicated by TIDE and IPS scores), elevated

TMB, and increased genomic instability. PERP was identified as a key gene, highly

expressed in LUAD and associated with poor prognosis. Functional assays

confirmed its role in promoting cell migration, invasion, and clonogenic capacity.
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Conclusions: This study delineates key malignant programs in EGFR-mutant

epithelial cells at the single-cell level and proposes a robust prognostic scoring

system, EGFRmERS, with strong predictive power for survival and

immunotherapy benefit. PERP was identified as a potential therapeutic target,

offering novel insights for precision stratification and treatment in EGFR-

mutant LUAD.
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1 Introduction

LUAD is one of the most common and deadly malignancies

worldwide, representing the major histological subtype of non-small

cell lung cancer (NSCLC) (1). With advances in molecular

classification, mutations in the epidermal growth factor receptor

(EGFR) have been identified as the most frequent oncogenic driver

in LUAD, particularly prevalent in Asian populations where the

mutation rate exceeds 40% (2–4). Although EGFR-targeted tyrosine

kinase inhibitors (TKIs) have achieved significant therapeutic success, a

proportion of patients still experience disease progression or develop

resistance during treatment, indicating substantial biological

heterogeneity within the EGFR-mutant subgroup (5–7). Moreover,

EGFR-mutant LUAD typically exhibits a “cold” immune phenotype

and shows limited response to immune checkpoint inhibitors (ICIs),

suggesting that this subtype possesses distinct features in terms of

tumor microenvironment (TME), immune escape mechanisms, and

gene expression profiles (8, 9). Therefore, EGFR mutation status alone

may be insufficient to predict prognosis or therapeutic outcomes,

highlighting the urgent need for more refined stratification strategies

to improve personalized treatment approaches.

In recent years, numerous prognostic models have been

proposed for LUAD, aiming to stratify patients based on gene

expression, mutation burden, immune profiles, and other factors

(10, 11). However, most of these models rely on bulk RNA

sequencing data, which cannot capture the cellular heterogeneity

within tumors or reflect the functional differences among tumor

cells. The emergence of single-cell RNA sequencing (scRNA-seq)

technology has enabled researchers to explore the transcriptional

states and molecular features of distinct cell populations at single-

cell resolution (12, 13). Previous studies have shown that the

transcriptional characteristics of epithelial cells not only represent

the biological behavior of tumors but also influence immune cell

infiltration and response to immunotherapy (14, 15). Nevertheless,

there is still a lack of studies focusing specifically on the malignant

epithelial cells in EGFR-mutant LUAD, which limits the

development of more specific prognostic models and therapeutic

prediction tools derived from the tumor itself.

At the same time, machine learning has been increasingly

applied in biomedical research, offering advantages such as
02
precise feature selection, robustness in high-dimensional data,

and the ability to integrate multiple variables to construct

predictive models (16, 17). Compared to traditional univariate or

linear models, machine learning algorithms can capture complex

nonlinear relationships and identify critical feature combinations,

thereby improving the predictive power and generalizability of

prognostic tools. Integrating malignant epithelial cell features

identified at the single-cell level with multiple machine learning

approaches holds great promise for building individualized risk

assessment systems with clinical relevance.

In this study, we focused on malignant epithelial cell subsets

from single-cell transcriptomic data of EGFR-mutant LUAD. By

performing copy number variation analysis and pseudotime

trajectory reconstruction, we identified key differentiation features

within this population. We then integrated bulk RNA-seq data from

the TCGA-LUAD cohort and multiple external validation datasets

to construct and validate the EGFR mutation malignant epithelial

cell-related signature (EGFRmERS) using ten machine learning

algorithms. Finally, we evaluated the biological significance and

clinical relevance of this signature through comprehensive analysis

of immune characteristics, drug sensitivity profiles, and in vitro

functional experiments. This study provides a novel perspective for

risk stratification and immunotherapy precision in patients with

EGFR-mutant LUAD.
2 Method

2.1 Multi-omics data acquisition and
integration

ScRNA-seq data were obtained from the GEO database

(accession number: GSE171145), comprising nine tumor samples

from eight treatment-naïve LUAD patients. Among them, four

samples harbored EGFR mutations, while five were EGFR wild-type

(3). Detailed information on the EGFR mutation status for each

patient can be found in Supplementary Table 1. The dataset

includes comprehensive clinical annotations and EGFR mutation

information. Bulk RNA-seq data from the TCGA-LUAD cohort

were downloaded using the TCGAbiolinks R package (18),
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including transcriptomic profiles, somatic mutation data, and

clinical annotations. Additionally, six independent NSCLC

cohorts were retrieved from GEO as external validation datasets,

as detailed in the Results section. To mitigate potential batch effects

among different datasets, we applied the ComBat function from the

sva R package for batch correction (19), ensuring comparability and

robustness in downstream analyses. We further utilized multiple

bioinformatics tools and platforms to support functional and

immunological investigations, including GISTIC2.0 (20) for copy

number variation analysis, TIMER2.0 for immune cell infiltration

estimation (21), TIDE for immunotherapy response prediction, and

SubMap (22) for immunophenotype mapping.
2.2 Quality control and clustering of
scRNA-seq data

The scRNA-seq data were processed using the Seurat package

(version 4.4.0). Initially, a Seurat object was created from the raw

count matrix, followed by quality control to exclude low-quality or

ambiguous cells. Filtering criteria included: number of detected

genes (nFeature) between 500 and 10,000, total UMI counts

(nCount) between 1,000 and 100,000, mitochondrial gene

percentage below 40%, and hemoglobin gene percentage below

5%. Following normalization (NormalizeData) and identification of

highly variable genes (FindVariableFeatures), dimensionality

reduction was performed using principal component analysis

(PCA). To minimize batch-specific variations between samples,

we applied the Harmony algorithm for batch effect correction

using orig.ident as the grouping variable (group.by.vars), while

keeping all other parameters at their default settings. The top

principal components were used as input for integration, and

convergence plots were generated to monitor the optimization

process. Batch correction effectiveness was evaluated by visual

inspection of PCA and UMAP projections before and after

correction. Cell clustering was then performed using a shared

nearest neighbor (SNN) graph-based approach with the

resolution parameter set to 1.0. Clustering results were visualized

via UMAP (Uniform Manifold Approximation and Projection) for

two-dimensional projection. Cell type identification was guided by

canonical marker gene expression and further assisted by reference-

based methods such as SingleR and scType. To enhance the

visualization of gene expression patterns, we employed tools such

as Nebulosa (23) (for density-based feature plots), SCP (24) (for

plot layout organization), and plot1cell (for high-quality rendering

of single-cell results).
2.3 Differential cell–cell communication
analysis between EGFR-mutant and wild-
type LUAD

To investigate how EGFR mutation status affects intercellular

signaling within the tumor microenvironment, we performed cell–

cell communication analysis using the CellChat R package (25).
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Expression data and cell-type annotations were extracted from the

processed single-cell dataset for both the EGFR-mutant (Mut) and

wild-type (WT) groups. Potential ligand–receptor interactions were

inferred based on a curated signaling database focused on secreted

signaling pathways. Communication probability between cell types

was then estimated to construct interaction networks for each

group. The number and strength of signaling events were

compared between groups, and the signaling roles of different cell

types—such as senders or receivers—were assessed. Signaling

pathways that showed increased or decreased activity in the

EGFR-mutant group were identified and visualized using network

and heatmap plots to highlight specific source–target cell pairs. All

analyses were conducted using the default settings and standard

workflow recommended by the CellChat framework.
2.4 Clustering analysis and identification of
malignant epithelial cells

To identify malignant epithelial subpopulations, we performed

unsupervised clustering based on the CNV expression matrix

inferred by inferCNV (26). Endothelial cells were used as the

reference group to normalize CNV signals. All epithelial cells

were then clustered using the k-means algorithm, with the

number of clusters set to five. The CNV profiles of each cluster

were assessed through heatmap visualization and CNV score

distribution. Clusters 1, 3, 4, and 5 exhibited markedly elevated

CNV levels and substantial deviations from reference cells, and

were thus defined as malignant epithelial populations. These

identified subclusters were used in downstream analyses,

including dimensionality reduction, functional enrichment, and

assessment of intratumoral heterogeneity.
2.5 Reconstruction of malignant epithelial
cell differentiation trajectory

To explore the dynamic progression and transcriptional

heterogeneity of malignant epithelial cells, pseudotime analysis

was performed using the Monocle2 package (27). A CellDataSet

object was constructed using raw count data, with size factors and

dispersions estimated for normalization and variance modeling.

Lowly expressed genes were filtered out, and the top 2000

differentially expressed genes across epithelial subclusters were

selected for ordering. Dimensionality reduction was conducted

using the DDRTree algorithm to infer the developmental

trajectory and project cells along a continuous pseudotime axis.

Each cell was assigned a pseudotime value and a discrete state.

Visualization of the trajectory was performed by coloring cells based

on cluster identity, pseudotime, and inferred cell states. To

investigate gene expression changes associated with lineage

bifurcation, BEAM analysis was applied at the primary branching

point. Genes showing branch-dependent expression patterns were

identified, and clustering was performed to group genes with similar

expression dynamics. Functional enrichment analysis of each gene
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module was conducted using the ClusterGVis framework, and

results were visualized as annotated heatmaps incorporating both

expression patterns and biological process annotations.
2.6 High-dimensional weighted gene co-
expression network reveals functional
modules in malignant epithelial cells

To identify co-expressed gene modules in malignant epithelial

cells, a high-dimensional weighted gene co-expression network

analysis (hdWGCNA) was conducted (28). The analysis began

with the extraction of gene expression data from malignant

epithelial subsets, followed by the exclusion of lowly expressed

genes and the selection of highly variable genes for downstream

analysis. A weighted correlation matrix was constructed, and a

suitable soft threshold was determined to ensure the network

conformed to a scale-free topology. Hierarchical clustering was

then applied to group genes with similar expression patterns.

Dynamic tree cutting was used to define distinct co-expression

modules, with each module assigned a unique color label. Module

eigengenes (MEs), representing the principal components of each

module, were calculated to reflect the overall expression profile of

the corresponding module. These eigengene scores were

subsequently projected onto a two-dimensional embedding to

visualize the spatial distribution of modules across different

malignant cell subsets. For each module, the top ten genes

showing the strongest correlation with the module eigengene

were identified as representative hub genes. To further investigate

module-specific expression patterns, violin plots were generated to

compare module scores across distinct malignant subclusters.

Additionally, the relationships among different modules were

evaluated by constructing a correlation matrix based on their

eigengenes, providing insights into potential co-regulation or

functional interactions between modules.
2.7 Machine learning-based generation of
the EGFRmERS score for LUAD prognosis

To develop a multi-gene prognostic scoring system, the TCGA-

LUAD cohort was used as the training dataset, and a set of candidate

genes was subjected to feature selection and model development. In

this process, we chose the intersection of three gene sets: hdWGCNA

module genes, TCGA differentially expressed genes, and marker

genes from prognostic subclusters. The primary goal of this

strategy was to integrate data from different sources and select

genes that are highly related to clinical prognosis, thereby

improving the specificity of the model. However, this approach

may lead to the filtering out of potentially important genes,

especially in cases of functional overlap between genes. To ensure

the reliability of the model, we validated the selected genes across

multiple independent datasets and used cross-validation methods to

ensure consistency and stability of the selected genes in different

datasets. Ten widely used machine learning algorithms were
Frontiers in Immunology 04
employed, including stepwise Cox regression, Lasso, Ridge, partial

least squares regression for Cox (plsRcox), CoxBoost, random

survival forest (RSF), generalized boosted regression modeling

(GBM), elastic net (Enet), supervised principal components

(SuperPC), and survival support vector machine (survival-SVM).

Each method was trained under a consistent cross-validation

framework to evaluate its predictive performance. The resulting

models were further validated across multiple independent external

cohorts to assess generalizability and robustness, providing a basis for

selecting the optimal prognostic model.

To comprehensively assess the robustness and generalizability

of the EGFRmERS signature, we conducted external validations

across six independent GEO cohorts (GSE31210, GSE50081,

GSE30219, GSE37745, GSE26939, and GSE42127) in addition to

the TCGA-LUAD dataset. For each dataset, the EGFRmERS score

was calculated using the final RSF+SuperPC model. Patients were

stratified into high- and low-risk groups based on the median score

within each cohort. Kaplan–Meier survival curves and log-rank

tests were applied to compare overall survival between groups.

Predictive accuracy was further assessed using time-dependent

ROC curves at 1-, 3-, and 5-year intervals, with AUC values

calculated accordingly.

To benchmark the prognostic performance of EGFRmERS, we

computed the concordance index (C-index) and compared it with

conventional clinical variables (age, gender, stage) in each dataset.

Additionally, EGFRmERS was compared against previously

published LUAD prognostic gene signatures using the same

C-index metric. These comparisons were visualized to highlight

the superiority or complementarity of EGFRmERS across multiple

datasets and evaluation criteria.

For survival analyses, model-related comparisons (e.g.,

EGFRmERS) used median-based stratification within each cohort,

whereas subcluster-specific signature analyses (Supplementary

Figures 2A–E) used the optimal cut-off determined by

survminer::surv_cutpoint.
2.8 Comprehensive evaluation of drug
sensitivity and immunotherapy response
based on EGFRmERS

To evaluate the potential therapeutic implications of the

EGFRmERS signature, we conducted a series of analyses related

to drug sensitivity and immunotherapy response. Drug sensitivity

prediction was performed using data from the CTRP and PRISM

pharmacogenomic databases (29), which contain compound

response profiles across a wide range of cancer cell lines. Based

on gene expression data, the estimated area under the dose–

response curve (AUC) values were compared between high- and

low-EGFRmERS subgroups to assess potential differences in drug

responsiveness. In addition, Spearman correlation analysis was

applied to evaluate the relationship between EGFRmERS scores

and AUC values across drugs.

For immunotherapy prediction, we examined the expression

levels of immune checkpoint-related genes in different EGFRmERS
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groups and assessed their correlations with the signature. To further

predict immunotherapy efficacy, immune-related scores including

TIDE (Tumor Immune Dysfunction and Exclusion) (30), IPS

(Immunophenoscore), and Exclusion scores were compared
Frontiers in Immunology 05
between groups. SubMap analysis was also performed to

predict the likelihood of response to anti–PD-1 or anti–CTLA-4

therapies based on transcriptomic similarities with known

responder profiles.
FIGURE 1

Dimensionality reduction, sample distribution, cell annotation, and cell-type characteristics of the single-cell transcriptomic data. (A) UMAP plot
showing cell clusters identified using PCA and the shared nearest neighbor (SNN) graph-based clustering algorithm. (B) UMAP visualization of the
original sample origin for each cell. (C) Cell type annotation based on canonical marker genes, identifying major lineages including T cells, B cells,
epithelial cells, dendritic cells, macrophages, and others. (D) Proportional distribution of annotated cell types across individual patients (left), different
EGFR mutation subtypes (middle), and EGFR mutation status (right). (E) UMAP feature plots displaying the expression of representative marker genes,
including CD1C, CD14, and CD68; EPCAM and KRT19; CD3D and CD79A; NKG7, KIT, and MKI67; DCN and PECAM1.
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2.9 Evaluation of immune infiltration and
stromal features based on EGFRmERS
stratification

To explore the relationship between EGFRmERS scores and the

tumor immune microenvironment, we retrieved immune cell

infiltration data generated by seven widely used algorithms

(TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,

MCPCOUNTER, XCELL, and EPIC) from the TIMER2.0 database.

A comprehensive immune heatmap was constructed to visualize the

compositional differences between high- and low-score groups.

Additionally, the ESTIMATE algorithm was applied to calculate

stromal scores, immune scores, and ESTIMATE composite scores

for each sample, thereby assessing the association between

EGFRmERS scores and tumor purity. Moreover, a set of

immunomodulatory genes—including co-stimulatory molecules,

co-inhibitory molecules, and antigen presentation-related genes—

was selected to comprehensively characterize their multi-omics

features across EGFRmERS subgroups. This analysis integrated

mRNA expression, DNA methylation levels, Spearman correlations

between expression and methylation, and copy number variation

(CNV) data derived from the TCGA-LUAD cohort. The

immunomodulator gene list was curated from the literature, aiming

to provide a systematic view of immune regulation heterogeneity

under different EGFRmERS conditions.
2.10 Association of EGFRmERS with tumor
mutational burden and mutation landscape

The mutation annotation format (MAF) file for the TCGA-

LUAD cohort was downloaded and analyzed using the maftools

package (31) to evaluate tumor mutation burden (TMB) and

visualize the mutational landscape. TMB was defined as the

number of non-synonymous mutations per megabase. Based on

the median EGFRmERS score, patients were stratified into high-

and low-risk groups. Differences in TMB between the groups were

assessed, and the correlation between TMB and EGFRmERS score

was calculated. Furthermore, combined survival analysis was

performed using the survminer and survival packages to

investigate the prognostic significance of TMB in conjunction

with the EGFRmERS score. To assess genomic instability between

EGFRmERS-defined subgroups, copy number variation (CNV)

data generated by GISTIC2.0 were retrieved from the GDC

portal. Amplification and deletion events at the segment level

were extracted and visualized across chromosomes. CNV

distribution plots were generated for high- and low-EGFRmERS

groups to compare genome-wide chromosomal instability patterns.
2.11 Cell culture and transfection

Human lung adenocarcinoma cell lines A549 and H1299 were

cultured in RPMI-1640 medium supplemented with 10% fetal

bovine serum and 1% penicillin–streptomycin, and maintained at
Frontiers in Immunology 06
37°C in a humidified incubator with 5% CO2. Cells in the

logarithmic growth phase were used for subsequent experiments.

Transfection of siRNAs targeting PERP was performed using

Lipofectamine™ 3000 reagent according to the manufacturer’s

instructions. siRNAs were mixed with transfection reagent in

serum-free Opti-MEM medium to form complexes, which were

then added to the plated cells. After 48 hours of transfection, cells

were harvested for downstream assays. A non-targeting siRNA

(siNC) was used as the negative control.
2.12 Quantitative real-time PCR

Cells were washed with PBS and lysed using TRIzol reagent to

extract total RNA. RNA concentration and purity were measured using

a NanoDrop 2000 spectrophotometer. Equal amounts of RNA were

reverse-transcribed into cDNA following the manufacturer’s

instructions. qRT-PCR was performed using SYBR Green dye on a

real-time PCR system. Each 20 µL reaction mixture contained cDNA

template, forward and reverse primers, and SYBR Green master mix.

The amplification protocol consisted of an initial denaturation at 95°C

for 30 seconds, followed by 40 cycles of 95°C for 5 seconds and 60°C for

30 seconds. Each sample was analyzed in triplicate. Relative gene

expression levels were calculated using the 2^−DDCt method, with

GAPDH as the internal control. Primer sequences are listed in

Supplementary Table 2.
2.13 Transwell migration and invasion
assays

Transwell chambers with 8 mm pore membranes were used to

assess cell migratory and invasive abilities. For migration assays, cells

were suspended in serum-free medium and seeded into the upper

chamber (5×104cells per well). The lower chamber was filled with

complete medium containing 10% fetal bovine serum as a

chemoattractant. For invasion assays, the upper chamber membrane

was pre-coated with diluted Matrigel, and the remaining steps were

identical to themigration assay. After incubation for 24–48 hours at 37°

C with 5% CO2, non-migrated or non-invaded cells on the upper

surface were removed. Cells on the lower surface were fixed and stained

with 0.1% crystal violet. Five random fields were selected for cell

counting, and images were analyzed using ImageJ software.
2.14 Colony formation assay

Treated cells were seeded into 6-well plates at a low density

(500–1000 cells per well) and cultured for 10–14 days until visible

colonies appeared. Cells were gently washed twice with PBS, fixed in

4% paraformaldehyde for 15–20 minutes, and then stained with

0.1% crystal violet for 30 minutes. After removing excess dye and

rinsing with water, the plates were imaged, and colonies larger than

1 mm in diameter were counted using ImageJ software to assess

clonogenic potential.
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2.15 Statistical analysis

All statistical analyses were performed using R software (version

4.2.0) and GraphPad Prism (version 9.0). Comparisons between

two groups were conducted using the Wilcoxon rank-sum test or

Student’s t-test, depending on data distribution. For multiple group

comparisons, the Kruskal–Wallis test or one-way ANOVA was

applied. Survival differences were assessed by the Kaplan–Meier

method with log-rank test. Correlation analyses were conducted

using Spearman or Pearson correlation as appropriate. Nomogram

construction and decision curve analysis were conducted using the

“rms” and “rmda” packages in R. A p-value < 0.05 was considered

statistically significant unless otherwise specified.
3 Results

3.1 Construction of a single-cell atlas and
annotation of major cell types in LUAD

To characterize the cellular landscape and heterogeneity of LUAD,

we performed single-cell transcriptomic analysis based on the

GSE171145 dataset. After quality control and normalization, a

unified Seurat object was constructed, and batch effects across

samples were corrected using the Harmony algorithm. After quality

control and normalization, a unified Seurat object was constructed, and

batch effects across samples were corrected using the Harmony

algorithm (Supplementary Figures 1A, B). Principal component

analysis followed by shared nearest neighbor (SNN) graph-based

clustering identified transcriptionally distinct cell clusters, which were

visualized using UMAP (Figure 1A). Figure 1B displays the distribution

of cells according to their patient of origin, indicating effective batch

integration. Based on the expression of canonical marker genes, major

cell types were annotated, including T cells, B cells, dendritic cells,

macrophages, epithelial cells, endothelial cells, and fibroblasts

(Figure 1C). Cellular composition varied across different

stratifications (Figure 1D). Overall, T cells and epithelial cells were

the most abundant populations. At the individual level (left), inter-

patient variability in cell-type proportions was observed. Stratification

by EGFR mutation subtype (middle) revealed subtype-specific

differences in cellular composition. Notably, in the comparison by

EGFR mutation status (right), wild-type LUAD samples exhibited

higher infiltration of mast cells and fibroblasts, suggesting a potential

influence of EGFR mutation on the non-immune stromal landscape.

To validate the annotation, representative marker genes were visualized

across the UMAP embedding (Figure 1E). For instance, EPCAM and

KRT19 were enriched in epithelial cells, CD3D and CD79A marked T

and B cells, while CD14 and CD68 were highly expressed in

monocytes/macrophages, supporting the accuracy of cell-type

classification. In addition, Supplementary Figure 1C provides a

comprehensive overview of the expression patterns of key marker

genes across major cell types and subclusters. It also integrates

information on cell cycle phase, G2M scores, EGFR mutation status,

and mitochondrial gene proportion, further supporting the accuracy of

cell-type annotation and the stability of cellular states.
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3.2 Differential cell–cell communication
analysis between EGFR-mutant and wild-
type LUAD

To investigate how EGFR mutation status influences

intercellular communication within the LUAD tumor

microenvironment, cell–cell interaction networks were

constructed separately for EGFR-mutant (Mut) and wild-type

(WT) samples. Figure 2A provides a qualitative overview of the

intercellular communication networks constructed separately for

the EGFR-mutant (Mut) and wild-type (WT) groups. Nodes denote

cell types, edge thickness encodes interaction strength, and node

size reflects the participation of each cell type within the network.

This panel is presented as an overview and is not intended for direct

quantitative comparison between groups. Figure 2B illustrates the

incoming and outgoing signaling strengths of each cell type in both

groups. In theWT group, endothelial cells played a more prominent

role in both sending and receiving signals, suggesting their

functional importance in maintaining microenvironmental

homeostasis. Across both groups, fibroblasts consistently served

as the dominant signal senders, while macrophages were the major

signal receivers, highlighting a conserved directionality in stromal–

immune crosstalk. Pathways with significantly altered signaling

activity in the mutant group were further identified. As shown in

Figure 2C, a number of immune-related pathways exhibited

increased activity in the EGFR-mutant group, including APP–

CD74 and multiple HLA class II–CD4 ligand–receptor pairs (e.g.,

HLA-DPA1–CD4, HLA-DQA1–CD4, HLA-DRB1–CD4). These

interactions are largely involved in antigen presentation and

CD4+ T cell activation, indicating that EGFR mutation may

impair antigen processing and helper T cell-mediated immune

surveillance. In contrast, pathways with attenuated activity in the

Mut group (Figure 2D) were primarily enriched in cell adhesion

and extracellular matrix remodeling signals, such as LAMC2–CD44

and LAMB3–CD44. These interactions are associated with

enhanced adhesion, migration, and invasive potential of tumor

cells, suggesting that EGFR mutation may promote tumor

progression and immune evasion by modulating specific

adhesion-related communication axes.
3.3 Clustering analysis and identification of
malignant epithelial cells

CNV inference was performed on epithelial cells from LUAD

samples to assess genomic instability. Using endothelial cells as a

reference, the inferCNV heatmap revealed distinct CNV patterns, with

widespread amplifications and deletions across various chromosomal

regions in a subset of epithelial cells (Figure 3A). K-means clustering

based on CNV profiles identified five epithelial subclusters with varying

levels of genomic alterations (Figure 3B). Comparison of CNV scores

showed that clusters 1, 3, 4, and 5 exhibited significantly higher CNV

burdens compared to cluster 2 (Figure 3C), suggesting that these

clusters likely represent malignant epithelial populations. Focusing on

EGFR-mutant samples, malignant epithelial cells were extracted and
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visualized using UMAP, revealing distinct spatial separation among

subclusters, indicative of pronounced intratumoral heterogeneity

(Figure 3D). Functional enrichment analysis further demonstrated

that these malignant subpopulations displayed diverse pathway
Frontiers in Immunology 08
activation patterns (Figure 3E), including epithelial–mesenchymal

transition (EMT), cell cycle progression, DNA repair, apoptosis

regulation, metabolism, and oxidative stress response, implying

divergent functional roles in tumor progression. To evaluate the
FIGURE 2

Differential cell–cell communication analysis between EGFR-mutant and wild-type LUAD. (A) Cell–cell communication networks in EGFR-mutant
(Mut, left) and wild-type (WT, right) groups. Edge thickness indicates the strength of interaction between cell types. (B) Scatter plots displaying
incoming (y-axis) and outgoing (x-axis) interaction strengths for each cell type in the Mut and WT groups. Bubble size reflects the number of
interactions involving each cell population. (C) Heatmap showing signaling pathways with increased communication probability in the Mut group.
Rows represent ligand–receptor pairs; columns represent sender–receiver cell pairs. Dot size indicates p-value significance, and color denotes
communication probability. (D) Heatmap displaying signaling pathways with decreased communication activity in the Mut group, visualized in the
same format as (C).
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clinical significance of these malignant subpopulations, we calculated

subcluster-specific signature scores in the TCGA cohort. Patients were

stratified into high and low expression groups for survival analysis. As

shown in Supplementary Figure 2, high scores for cluster_2 and
Frontiers in Immunology 09
cluster_3 were significantly associated with poorer survival outcomes

(p < 0.001 and p = 0.005, respectively), while cluster_0 also

demonstrated an unfavorable trend (p = 0.0031), highlighting their

potential prognostic relevance.
FIGURE 3

CNV inference, clustering, and functional characterization of malignant epithelial cells. (A) inferCNV plot illustrating the inferred copy number
variation (CNV) profiles derived from single-cell RNA sequencing data. Normal epithelial cells are positioned at the top as the reference group, while
epithelial cells under evaluation are displayed below. The heatmap color scale denotes relative chromosomal copy number changes, where blue
represents regions of deletion and red represents regions of amplification. This arrangement facilitates visual comparison of CNV patterns between
reference and test cells, enabling the identification of potential malignant phenotypes. (B) K-means clustering of all epithelial cells based on inferred
CNV profiles, identifying distinct subpopulations with variable genomic alterations. (C) Violin plot comparing CNV scores across the five K-means
clusters, reflecting differences in overall CNV burden. (D) UMAP plot of malignant epithelial cells extracted from EGFR-mutant patients, illustrating
the spatial distribution of distinct epithelial subgroups. (E) Heatmap of pathway enrichment across malignant epithelial clusters, highlighting
differential activity in biological processes.
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3.4 Reconstruction of malignant epithelial
cell differentiation trajectory

To further investigate the transcriptional heterogeneity and

differentiation dynamics of malignant epithelial cells, a pseudotime

trajectory analysis was conducted. The top 2,000 differentially
Frontiers in Immunology 10
expressed genes across epithelial subclusters were selected to

construct the trajectory using Monocle2, with dimensionality

reduction performed via the DDRTree algorithm. Three distinct

cell states and a continuous differentiation path were identified

(Figure 4A). Notably, cluster 2 and 3 were primarily located at the

early stage of the trajectory, while cluster 0, 1, and 4 were enriched at
FIGURE 4

Pseudotime trajectory construction and branch analysis of malignant epithelial cells. (A) Pseudotime trajectory plot constructed using Monocle2,
based on the top 2000 differentially expressed genes and reduced with the DDRTree algorithm. Cells are colored by state, RNA_snn_res.0.1 clusters,
and pseudotime. (B) Heatmap of genes with expression changes along the pseudotime trajectory. The left panel shows gene clustering results, and
the right panel presents functional annotations for each gene module. (C) Heatmap of branch-related genes identified through BEAM analysis. The
two trajectory branches are shown with corresponding gene expression patterns and annotations.
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the terminal branches, suggesting a potential progression axis among

malignant subpopulations. To characterize gene expression dynamics

along the pseudotime axis, significantly varying genes were clustered

and visualized in a heatmap (Figure 4B). Functional enrichment

revealed that these gene modules were associated with biological

processes such as regulation of leukocyte cell–cell adhesion,

aminoglycoside antibiotic metabolic process, and humoral immune

response, indicating immunological and metabolic reprogramming

during progression. Branch-specific transcriptional programs were

further dissected using BEAM analysis. Genes with significant

expression divergence between branches were visualized in a

branched heatmap and subjected to pathway enrichment analysis

(Figure 4C). Branch 2 was enriched in terms including negative

regulation of transport, positive regulation of heterotypic cell–cell

adhesion, and mononuclear cell migration, while Branch 1 was

predominantly associated with immune response–activating

signaling pathways, suggesting distinct functional trajectories and

potential cell fate bifurcations.
3.5 High-dimensional weighted gene co-
expression network reveals functional
modules in malignant epithelial cells

To further elucidate the functional heterogeneity of malignant

epithelial cells, a high-dimensional weighted gene co-expression

network was constructed. The optimal soft-thresholding power was

determined as 14 to ensure that the resulting network conformed to a

scale-free topology (Figure 5A). Based on this threshold, multiple gene

co-expression modules were identified, each represented by a distinct

color (Figure 5B). UMAP projections of module-specific gene

expression revealed distinct spatial distributions of each module

within malignant cells (Figure 5C). The top 10 hub genes of each

module were annotated (Figure 5D), providing a basis for downstream

functional analyses. Supplementary Figure 2 further visualizes the

internal co-expression structure of each module, highlighting dense

interactions among genes, particularly within modules M2, M4, M5,

and M7, which showed strong intra-module connectivity.

Given that clusters 0, 2, and 3 were previously shown to be

associated with patient prognosis, we focused on the modules

enriched in these clusters. Violin plots revealed that module M2

was predominantly enriched in cluster 3, M4 in cluster 2, while M5

and M7 were highly expressed in both clusters 0 and 2 (Figure 5E),

suggesting that these modules may regulate pathways related to poor

prognosis. Correlation analysis among modules further revealed

strong positive associations between M3 and M2, M3 and M7, and

M6 and M7 (Figure 5F), indicating potential coordinated regulation

and shared biological functions among these modules.
3.6 Machine learning-based generation of
the EGFRmERS score for LUAD prognosis

To construct the EGFRmERS, we first intersected three sets of

genes: differentially expressed genes from the TCGA cohort, hub

module genes identified by hdWGCNA, and marker genes from
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malignant epithelial subclusters associated with prognosis. This

integration yielded a set of candidate genes (Figure 6A). The detailed

information of the intersecting genes can be found in Supplementary

Table 3. Gene Ontology enrichment analysis revealed that these genes

were primarily involved in immune-related processes, cell adhesion,

and metabolic regulation, including representative pathways such as

“response to leptin” and “positive regulation of cell–substrate adhesion”

(Figure 6B). For GO enrichment analysis, genes without functional

annotation or those unmapped in the GO database were excluded, and

only the most significant and representative pathways with their

corresponding genes were visualized; therefore, the number of genes

displayed in Figure 6B is smaller than the total of 44 intersecting genes

shown in Figure 6A. Subsequently, univariate Cox regression analysis

was performed to screen for survival-associated genes (Figure 6C).

Based on these genes, ten machine learning algorithms were employed

to construct prognostic models, including stepwise Cox, Lasso, Ridge,

partial least squares regression for Cox (plsRcox), CoxBoost, random

survival forest (RSF), generalized boosted regression modeling (GBM),

elastic net (Enet), supervised principal components (SuperPC), and

survival support vector machine (survival-SVM). Ultimately, the

optimal model was constructed by integrating RSF and SuperPC,

forming the EGFRmERS scoring system (Figure 6D). The final

EGFRmERS comprised nine genes: PERP, PFKP, DNAJB4, MYEOV,

CALU, NEDD9, MTFR1, HM13, and PIGR.

The prognostic performance of EGFRmERS was evaluated in

comparison with conventional clinical variables by calculating

concordance index (C-index) across multiple datasets. Results

showed that EGFRmERS exhibited consistently higher C-index

values than traditional indicators such as age, gender, and TNM

stage, indicating its superiority in individualized risk prediction

(Figure 7A). Stratifying patients into high- and low-risk groups based

on the median EGFRmERS score revealed significantly poorer survival

outcomes in the high-score group across both the TCGA and external

validation cohorts, as shown by Kaplan–Meier survival analyses

(Figure 7B). Predictive accuracy for 1-, 3-, and 5-year overall survival

was further supported by ROC analysis, with area under the curve

(AUC) values exceeding 0.70 in all datasets (Figure 7C). Compared

with previously reported LUAD prognostic models, EGFRmERS

achieved the highest C-index values across all datasets examined,

underscoring its robust and generalizable prognostic utility

(Figure 7D). In Figure 7D, the predictive performance of our model

and previous models in the TCGA-LUAD cohort was compared using

C-index. The previously reported models were primarily linear

prognostic models; we strictly calculated prognostic scores according

to the gene lists and corresponding coefficients (or formulas) provided

in the original publications, and then applied these scores to the

TCGA-LUAD cohort for C-index evaluation.
3.7 Comprehensive evaluation of drug
sensitivity and immunotherapy response
based on EGFRmERS

In the drug sensitivity analysis, samples with lower EGFRmERS

scores exhibited increased sensitivity to multiple anticancer agents in

both the CTRP and PRISM datasets, as reflected by lower AUC values
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(Figures 8A, B, left). Spearman correlation analysis further indicated a

significant positive correlation between EGFRmERS scores and drug

AUCs, suggesting that higher scores may be associated with increased

drug resistance (Figures 8A, B, right). Analysis of immune checkpoint

gene expression revealed that the high EGFRmERS group showed
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elevated expression of key immunoregulatory genes, including

CD274 (PD-L1), TNFRSF9 (4-1BB), CD276 (B7-H3), and

PDCD1LG2 (PD-L2) (Figure 8C). However, overall, the

EGFRmERS score exhibited a negative correlation with most

immune checkpoint-related genes (Figure 8D), implying a complex
FIGURE 5

Overview of hdWGCNA workflow and visualization of gene co-expression modules. (A) Determination of the soft-thresholding power for network
construction, based on scale-free topology fit and mean connectivity. (B) Gene clustering dendrogram generated from the weighted co-expression
matrix, with identified modules represented by different colors. (C) UMAP projection showing module eigengene (ME) scores across different cell
populations. (D) Bar plots displaying the top 10 genes with highest ME scores for each module. (E) Violin plots illustrating module eigengene score
distributions across different groups. (F) Correlation matrix of module eigengenes among all identified modules.
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FIGURE 6

Integration of candidate genes and construction of prognostic models using machine learning. (A) Venn diagram showing the intersection of
differentially expressed genes from TCGA, genes from hdWGCNA modules, and marker genes of epithelial subpopulations associated with prognosis.
A total of 44 overlapping genes were identified. (B) GO enrichment analysis of the overlapping genes. The left Sankey plot illustrates the relationship
between genes and biological pathways, while the right bubble plot indicates the significance and gene counts of enriched terms. (C) Univariate Cox
regression analysis of the overlapping genes. Red represents risk genes (HR > 1), and blue indicates protective genes (HR < 1). (D) Multiple machine
learning algorithms were applied to the 44 intersecting genes to construct prognostic models. Model performance was assessed using the C-index
across six independent GEO validation cohorts, with deeper colors representing higher predictive accuracy.
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immunosuppressive profile in high-score patients. Further

exploration showed that patients with high EGFRmERS scores had

significantly attenuated TIDE scores (Figure 8E) and reduced IPS

scores (Figure 8F), indicating a stronger immune evasion tendency

and potentially diminished responsiveness to immune checkpoint
Frontiers in Immunology 14
blockade. In addition, the Exclusion score was also higher in the

high-score group (Figure 8G), reflecting a more pronounced

immunosuppressive microenvironment. Finally, SubMap analysis

suggested that patients in the low EGFRmERS group were more

likely to respond to anti–PD-1 therapy (Figure 8H), supporting
FIGURE 7

Validation and performance assessment of the EGFRmERS signature across multiple cohorts. (A) Comparison of the concordance index (C-index)
between EGFRmERS and conventional clinical features (gender, age, stage) across seven independent cohorts. (B) Kaplan–Meier survival analysis
based on median EGFRmERS scores to assess its prognostic stratification ability. (C) Time-dependent ROC curves evaluating the predictive accuracy
of EGFRmERS for 1-, 3-, and 5-year overall survival. (D) Comparison of C-index values between EGFRmERS and previously published prognostic
signatures for LUAD in each dataset.
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the potential clinical utility of EGFRmERS in predicting

immunotherapy responsiveness.
3.8 Evaluation of immune infiltration and
stromal features based on EGFRmERS
stratification

Using seven immune infiltration methods from the TIMER2.0

database, the immune landscape of tumors with different EGFRmERS

scores was evaluated (Figure 9A). While certain rare immune cell

types showed minimal differences between groups, the majority of

immune cell types—including CD8+ T cells, activated NK cells, and

M1 macrophages—exhibited higher infiltration levels in the low-

score group. This conclusion was further supported by additional

immune metrics and functional analyses. The high-score group

showed generally reduced immune cell infiltration, suggesting a

more immunosuppressive microenvironment. Expression profiles

of immunomodulatory genes also differed significantly between the

two groups (Figure 9B). Additionally, ESTIMATE analysis revealed

negative correlations between EGFRmERS scores and immune,

stromal, and total scores (Figure 9C), supporting the notion that

high EGFRmERS tumors are associated with a poorly infiltrated and

stroma-deficient microenvironment.
3.9 Association of EGFRmERS with tumor
mutational burden and mutation landscape

To further investigate the potential association between the

EGFRmERS score and genomic instability, we first examined the

mutational landscape of the TCGA-LUAD cohort. Figure 10A

summarizes the mutational landscape of the TCGA-LUAD cohort

stratified by EGFRmERS, including mutation types, TMB annotations,

and CNV profiles. This panel is intended as a qualitative overview

rather than for direct quantitative comparison between groups.

Comparison of TMB revealed significantly higher TMB levels in the

high-score group (Figure 10B), and a positive correlation between

EGFRmERS and TMB was identified (R = 0.33, p = 3e–14)

(Figure 10C). Combined survival analysis indicated that patients

with both high EGFRmERS and high TMB had the worst prognosis

(Figure 10D). Furthermore, GISTIC2.0 analysis of CNVs

demonstrated that the high-score group exhibited broader

amplifications and deletions, particularly on chromosomes 3, 5, and

8 (Figure 10E), whereas CNV alterations were relatively limited in the

low-score group (Figure 10F). These findings suggest that the

EGFRmERS score may reflect distinct patterns of genomic instability.
3.10 Selection and functional validation of
PERP as a key gene in LUAD progression

Our EGFRmERS model comprised nine genes (PERP, PFKP,

DNAJB4, MYEOV, CALU, NEDD9, MTFR1, HM13, and PIGR). As

an initial step, we performed univariate Cox screening on candidate
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genes (Figure 7C), in which several genes—including JPT1, DNAJB4,

and PERP—showed high hazard ratios. During subsequent model

construction using Random Survival Forest (RSF) and Supervised

Principal Components (SuperPC), feature selection removed JPT1 and

certain other candidates; among the genes retained in the final model,

PERP exhibited the highest hazard ratio (HR = 1.351). Considering its

relatively high risk estimate within the final gene set, its elevated

expression in LUAD and other malignancies, and literature support for

its roles in cancer biology, PERP was prioritized for in vitro functional

assays. We have clarified this selection process in the revised

manuscript. Pan-cancer analysis revealed that PERP expression

differed significantly between tumor and normal tissues across

various cancer types (Figure 11A). Immune infiltration analysis

using the CIBERSORT algorithm indicated that PERP expression

was significantly correlated with multiple immune cell populations,

particularly M1macrophages, dendritic cells, and several T-cell subsets

(Figure 11B). Survival analysis in the LUAD cohort showed that high

PERP expression was associated with worse OS, DFS, DSS, and PFS

outcomes (Figure 11C). To validate its functional role, we constructed

PERP knockdown models in A549 and H1299 cell lines using siRNA.

qRT-PCR confirmed efficient gene silencing (Figure 11D). Transwell

assays demonstrated that PERP knockdown promoted both migratory

and invasive capabilities in lung cancer cells (Figure 11E), while colony

formation assays showed enhanced proliferative capacity following

PERP silencing (Figure 11F).
4 Discussion

Lung cancer remains the leading cause of cancer-related deaths

worldwide, imposing a significant public health burden due to its

high incidence and mortality rates (32, 33). LUAD, the most

common histological subtype of NSCLC, is driven by a complex

interplay of genetic and microenvironmental factors, leading to

marked heterogeneity in clinical outcomes among patients (34).

Although the advent of targeted therapies and immune checkpoint

inhibitors has improved survival for certain individuals, accurately

identifying high-risk patients and predicting treatment response

remains a critical challenge in clinical management (35, 36).

EGFR mutations are among the most pivotal molecular events in

LUAD and have been widely applied in guiding targeted therapy (37).

However, substantial heterogeneity exists within EGFR-mutant

patients, as responses to TKI vary considerably, and resistance

often emerges during treatment. Furthermore, many EGFR-mutant

LUAD patients exhibit low responsiveness to immunotherapy,

reflecting complex biological diversity within this molecular

subtype (38, 39). These challenges underscore the need for refined

risk stratification frameworks that incorporate additional molecular

features to improve prognostic accuracy and therapeutic precision.

In this study, we focused on malignant epithelial cells within

EGFR-mutant LUAD. By leveraging single-cell RNA sequencing data

and integrating inferCNV, pseudotime trajectory, and co-expression

network analyses, we characterized heterogeneity in malignancy and

functional phenotypes across epithelial subpopulations, identifying

specific cell groups associated with poor prognosis. Subsequently, we
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FIGURE 8

Evaluation of therapeutic relevance and immune landscape based on the EGFRmERS. (A) Drug sensitivity analysis using the CTRP database. Left:
boxplots showing the estimated area under the dose–response curve (AUC) values for various compounds in the high and low EGFRmERS groups;
lower AUC values indicate greater drug sensitivity. Right: Spearman correlation analysis between EGFRmERS scores and drug sensitivity profiles.
(B) Drug sensitivity assessment from the PRISM database. Left: boxplots of AUC values for selected compounds in different EGFRmERS groups. Right:
Spearman correlation coefficients reflecting the association between EGFRmERS scores and drug response. (C) Expression levels of immune
checkpoint–related genes across EGFRmERS subgroups. (D) Correlation matrix showing associations between EGFRmERS scores, model genes, and
immune checkpoint genes. (E) Comparison of TIDE scores between high and low EGFRmERS groups. (F) Distribution of immunophenoscore (IPS)
components, including IPS-CTLA4 and IPS-PD1, across EGFRmERS subgroups. (G) Distribution of Exclusion scores from the TIDE platform in high
versus low EGFRmERS groups. (H) SubMap analysis predicting differential response to immune checkpoint blockade therapies between the two
EGFRmERS groups. * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.001.
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FIGURE 9

Association between EGFRmERS and immune microenvironment characteristics. (A) Heatmap illustrating the distribution of immune cell infiltration
across different EGFRmERS groups, highlighting variations in the immune landscape between high- and low-score samples. (B) Overview of immune
modulators—including co-stimulatory and co-inhibitory molecules, ligands, receptors, cell adhesion molecules, antigen-presenting markers, and
other regulatory factors—showing their expression levels, mutation status, copy number alterations, and methylation profiles between high- and
low-risk groups. (C) Comparative analysis of immune-related scores (StromalScore, ImmuneScore, ESTIMATE Score, and TumorPurity) between
EGFRmERS groups, assessing their relationship with the tumor immune microenvironment.
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incorporated TCGA and multiple external validation cohorts to

construct and evaluate a robust EGFRmERS. This model was

developed using ten mainstream machine learning algorithms,

integrating differentially expressed genes, single-cell markers, and

prognostic features. EGFRmERS consistently outperformed
Frontiers in Immunology 18
conventional clinical parameters and previously published models

across various datasets, highlighting its broad applicability across

molecular backgrounds and populations.

Functional enrichment analyses revealed that high EGFRmERS

scores were closely associated with pathways involved in cell
FIGURE 10

Association between the EGFRmERS score and genomic alterations. (A) Oncoplot illustrating the mutational landscape across high and low
EGFRmERS subgroups, including tumor mutation burden (TMB), MutSig genes, copy number variations (CNVs), and frequently altered driver genes.
(B) Comparison of TMB levels between high- and low-EGFRmERS groups. (C) Correlation analysis between EGFRmERS score and TMB. (D) Survival
analysis stratified by TMB status and EGFRmERS subgroups. (E) Genome-wide copy number alteration profiles of the high EGFRmERS group based
on GISTIC2.0 analysis. (F) Genome-wide copy number alteration profiles of the low EGFRmERS group based on GISTIC2.0 analysis.
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FIGURE 11

Expression profile, immune relevance, and functional validation of PERP. (A) Pan-cancer analysis of PERP expression across tumor and normal tissues.
Red indicates tumor, blue indicates normal. (B) Correlation between PERP expression and immune cell infiltration estimated by the CIBERSORT
algorithm, showing significant associations with multiple immune cell types. (C) Survival analyses (OS, DFS, DSS, and PFS) of PERP expression in the
TCGA-LUAD cohort. (D) Silencing efficiency of PERP in A549 and H1299 cells following siRNA transfection. (E) Transwell migration and invasion assays
evaluating the effects of PERP knockdown on A549 and H1299 cell motility. (F) Colony formation assays indicating enhanced proliferative capacity of
PERP-silenced A549 and H1299 cells. * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001 and **** indicates P < 0.0001.
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adhesion, metabolic regulation, and immune suppression.

Additionally, EGFRmERS positively correlated with several

immune checkpoint molecules and immunotherapy response

indicators such as TIDE and IPS scores, suggesting its potential

utility in predicting immunotherapeutic sensitivity. Drug sensitivity

analysis further indicated that patients with high EGFRmERS scores

exhibited heightened sensitivity to a range of anti-tumor agents,

offering guidance for personalized therapeutic selection.

Among the model genes, we focused on PERP due to its

potential biological relevance. Previous studies have shown that

PERP may act as a tumor suppressor by maintaining adhesion-

dependent growth and promoting apoptosis, with well-established

roles in melanoma and breast cancer (40–42). However, its function

in lung cancer remains unclear, and some studies suggest that high

PERP expression may be linked to poor prognosis. In our analysis,

PERP was significantly upregulated in the high EGFRmERS group

and positively associated with multiple immunosuppressive

features, indicating that it may not only sustain malignant

phenotypes within tumor cells but also contribute to immune

evasion through tumor microenvironment remodeling. Follow-up

qRT-PCR and functional assays further validated the oncogenic role

of PERP in LUAD, supporting its potential as a therapeutic target.

Despite the systematic integration of single-cell and bulk

transcriptomic data and the application of multiple machine

learning algorithms with validation across independent cohorts,

this study has several limitations. First, the model was developed

using retrospective data from public databases; future validation in

prospective clinical cohorts is necessary. Second, although the

function of key genes such as PERP was confirmed in vitro,

further studies using in vivo models and clinical specimens are

needed to elucidate their mechanistic roles. Lastly, EGFRmERS

performance may still be influenced by sample heterogeneity and

the completeness of clinical annotations, necessitating future

integration of multi-omics data to enhance model robustness.

In conclusion, this study constructed a novel EGFRmERS based

on single-cell transcriptomic heterogeneity, machine learning

algorithms, and multi-cohort validation. EGFRmERS not only

effectively stratifies patient prognosis but also provides insights

into immunotherapy response and drug sensitivity, offering a

promising strategy for precision stratification and individualized

therapy in EGFR-mutant LUAD.
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SUPPLEMENTARY FIGURE 1

Batch correction and marker gene expression profiling in LUAD single-cell
datasets. (A, B) Distribution of samples before and after Harmony batch

correction, showing the effect of integration across datasets. (C) Dot plot

showing the expression patterns of canonical marker genes across annotated
main cell types (left panel) and transcriptional subclusters (right panel). The

size of the dots represents the percentage of cells expressing each gene, and
the color indicates the normalized average expression (z-score). The top
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annotations indicate the distribution of cell cycle phase (G1, S, G2M), G2M
scores, EGFR mutation status (19del, L858R, wild-type), and mitochondrial

gene percentage (pMT), providing additional context for cellular identity
and state.

SUPPLEMENTARY FIGURE 2

Survival analysis of malignant epithelial subclusters. (A–E) Kaplan–Meier

survival curves for cluster_0 to cluster_4 subpopulations based on
subcluster-specific scores in TCGA samples. Patients were stratified into

high and low expression groups, and overall survival differences were
analyzed. Time (years) is shown on the x-axis, survival probability on the y-

axis, with corresponding p-values and risk tables displayed. Note: For the

subcluster-specific signature analyses shown in Supplementary Figures 2A–E,
patients were dichotomized using the optimal cut-off determined by

survminer::surv_cutpoint, rather than the median.

SUPPLEMENTARY FIGURE 3

Visualization of co-expression networks for the seven modules (M1–M7)

identified through high-dimensional weighted gene co-expression network

analysis (hdWGCNA) in malignant epithelial cells. Each node represents a
gene, and edges represent co-expression relationships, with denser

connections indicating stronger intra-module correlation.
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