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Background: Lung adenocarcinoma (LUAD) is the most common subtype of
non-small cell lung cancer, with EGFR mutations serving as key oncogenic
drivers. However, patients harboring EGFR mutations exhibit considerable
heterogeneity in clinical outcomes and treatment responses. Characterizing
the malignant features of EGFR-mutant epithelial cells may facilitate improved
stratification and personalized therapeutic strategies.

Methods: Using publicly available single-cell RNA sequencing data, malignant
epithelial cells were identified in EGFR-mutant LUAD samples via inferCNV and k-
means clustering. Pseudotime trajectories were constructed using Monocle2,
and branch-specific genes were extracted for functional analysis. Differentially
expressed genes were integrated with TCGA bulk transcriptomic data, and ten
machine learning algorithms were applied to construct the EGFR Mutation-
Associated Malignant Epithelial Cell-Related Signature (EGFRmMERS). The
prognostic value of EGFRmMERS was validated across multiple independent
cohorts. Associations between EGFRmMERS and immune infiltration,
immunotherapy response, tumor mutation burden (TMB), and copy number
variations (CNVs) were systematically assessed. The performance of EGFRmMERS
was also benchmarked against previously published LUAD prognostic signatures.
Finally, the core gene PERP was selected for in vitro functional validation,
including gRT-PCR, Transwell migration/invasion, and colony formation assays.
Results: EGFR-mutant epithelial cells were classified into subclusters with
varying malignant potential, enriched in pathways such as cell cycle regulation
and DNA repair. The EGFRmMERS signature robustly predicted patient prognosis
across multiple cohorts and outperformed existing models. High EGFRmMERS
scores were associated with an immunosuppressive microenvironment, reduced
immunotherapy responsiveness (as indicated by TIDE and IPS scores), elevated
TMB, and increased genomic instability. PERP was identified as a key gene, highly
expressed in LUAD and associated with poor prognosis. Functional assays
confirmed its role in promoting cell migration, invasion, and clonogenic capacity.
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Conclusions: This study delineates key malignant programs in EGFR-mutant
epithelial cells at the single-cell level and proposes a robust prognostic scoring
system, EGFRmERS, with strong predictive power for survival and
immunotherapy benefit. PERP was identified as a potential therapeutic target,
offering novel insights for precision stratification and treatment in EGFR-

mutant LUAD.

LUAD, scRNA-seq, EGFR, machine learning, immunotherapy, PERP

1 Introduction

LUAD is one of the most common and deadly malignancies
worldwide, representing the major histological subtype of non-small
cell lung cancer (NSCLC) (1). With advances in molecular
classification, mutations in the epidermal growth factor receptor
(EGFR) have been identified as the most frequent oncogenic driver
in LUAD, particularly prevalent in Asian populations where the
mutation rate exceeds 40% (2-4). Although EGFR-targeted tyrosine
kinase inhibitors (TKIs) have achieved significant therapeutic success, a
proportion of patients still experience disease progression or develop
resistance during treatment, indicating substantial biological
heterogeneity within the EGFR-mutant subgroup (5-7). Moreover,
EGFR-mutant LUAD typically exhibits a “cold” immune phenotype
and shows limited response to immune checkpoint inhibitors (ICIs),
suggesting that this subtype possesses distinct features in terms of
tumor microenvironment (TME), immune escape mechanisms, and
gene expression profiles (8, 9). Therefore, EGFR mutation status alone
may be insufficient to predict prognosis or therapeutic outcomes,
highlighting the urgent need for more refined stratification strategies
to improve personalized treatment approaches.

In recent years, numerous prognostic models have been
proposed for LUAD, aiming to stratify patients based on gene
expression, mutation burden, immune profiles, and other factors
(10, 11). However, most of these models rely on bulk RNA
sequencing data, which cannot capture the cellular heterogeneity
within tumors or reflect the functional differences among tumor
cells. The emergence of single-cell RNA sequencing (scRNA-seq)
technology has enabled researchers to explore the transcriptional
states and molecular features of distinct cell populations at single-
cell resolution (12, 13). Previous studies have shown that the
transcriptional characteristics of epithelial cells not only represent
the biological behavior of tumors but also influence immune cell
infiltration and response to immunotherapy (14, 15). Nevertheless,
there is still a lack of studies focusing specifically on the malignant
epithelial cells in EGFR-mutant LUAD, which limits the
development of more specific prognostic models and therapeutic
prediction tools derived from the tumor itself.

At the same time, machine learning has been increasingly
applied in biomedical research, offering advantages such as
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precise feature selection, robustness in high-dimensional data,
and the ability to integrate multiple variables to construct
predictive models (16, 17). Compared to traditional univariate or
linear models, machine learning algorithms can capture complex
nonlinear relationships and identify critical feature combinations,
thereby improving the predictive power and generalizability of
prognostic tools. Integrating malignant epithelial cell features
identified at the single-cell level with multiple machine learning
approaches holds great promise for building individualized risk
assessment systems with clinical relevance.

In this study, we focused on malignant epithelial cell subsets
from single-cell transcriptomic data of EGFR-mutant LUAD. By
performing copy number variation analysis and pseudotime
trajectory reconstruction, we identified key differentiation features
within this population. We then integrated bulk RNA-seq data from
the TCGA-LUAD cohort and multiple external validation datasets
to construct and validate the EGFR mutation malignant epithelial
cell-related signature (EGFRmERS) using ten machine learning
algorithms. Finally, we evaluated the biological significance and
clinical relevance of this signature through comprehensive analysis
of immune characteristics, drug sensitivity profiles, and in vitro
functional experiments. This study provides a novel perspective for
risk stratification and immunotherapy precision in patients with
EGFR-mutant LUAD.

2 Method

2.1 Multi-omics data acquisition and
integration

ScRNA-seq data were obtained from the GEO database
(accession number: GSE171145), comprising nine tumor samples
from eight treatment-naive LUAD patients. Among them, four
samples harbored EGFR mutations, while five were EGFR wild-type
(3). Detailed information on the EGFR mutation status for each
patient can be found in Supplementary Table 1. The dataset
includes comprehensive clinical annotations and EGFR mutation
information. Bulk RNA-seq data from the TCGA-LUAD cohort
were downloaded using the TCGAbiolinks R package (18),
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including transcriptomic profiles, somatic mutation data, and
clinical annotations. Additionally, six independent NSCLC
cohorts were retrieved from GEO as external validation datasets,
as detailed in the Results section. To mitigate potential batch effects
among different datasets, we applied the ComBat function from the
sva R package for batch correction (19), ensuring comparability and
robustness in downstream analyses. We further utilized multiple
bioinformatics tools and platforms to support functional and
immunological investigations, including GISTIC2.0 (20) for copy
number variation analysis, TIMER2.0 for immune cell infiltration
estimation (21), TIDE for immunotherapy response prediction, and
SubMap (22) for immunophenotype mapping.

2.2 Quality control and clustering of
scRNA-seq data

The scRNA-seq data were processed using the Seurat package
(version 4.4.0). Initially, a Seurat object was created from the raw
count matrix, followed by quality control to exclude low-quality or
ambiguous cells. Filtering criteria included: number of detected
genes (nFeature) between 500 and 10,000, total UMI counts
(nCount) between 1,000 and 100,000, mitochondrial gene
percentage below 40%, and hemoglobin gene percentage below
5%. Following normalization (NormalizeData) and identification of
highly variable genes (FindVariableFeatures), dimensionality
reduction was performed using principal component analysis
(PCA). To minimize batch-specific variations between samples,
we applied the Harmony algorithm for batch effect correction
using orig.ident as the grouping variable (group.by.vars), while
keeping all other parameters at their default settings. The top
principal components were used as input for integration, and
convergence plots were generated to monitor the optimization
process. Batch correction effectiveness was evaluated by visual
inspection of PCA and UMAP projections before and after
correction. Cell clustering was then performed using a shared
nearest neighbor (SNN) graph-based approach with the
resolution parameter set to 1.0. Clustering results were visualized
via UMAP (Uniform Manifold Approximation and Projection) for
two-dimensional projection. Cell type identification was guided by
canonical marker gene expression and further assisted by reference-
based methods such as SingleR and scType. To enhance the
visualization of gene expression patterns, we employed tools such
as Nebulosa (23) (for density-based feature plots), SCP (24) (for
plot layout organization), and plotlcell (for high-quality rendering
of single-cell results).

2.3 Differential cell-cell communication
analysis between EGFR-mutant and wild-
type LUAD

To investigate how EGFR mutation status affects intercellular
signaling within the tumor microenvironment, we performed cell-
cell communication analysis using the CellChat R package (25).
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Expression data and cell-type annotations were extracted from the
processed single-cell dataset for both the EGFR-mutant (Mut) and
wild-type (WT) groups. Potential ligand-receptor interactions were
inferred based on a curated signaling database focused on secreted
signaling pathways. Communication probability between cell types
was then estimated to construct interaction networks for each
group. The number and strength of signaling events were
compared between groups, and the signaling roles of different cell
types—such as senders or receivers—were assessed. Signaling
pathways that showed increased or decreased activity in the
EGFR-mutant group were identified and visualized using network
and heatmap plots to highlight specific source-target cell pairs. All
analyses were conducted using the default settings and standard
workflow recommended by the CellChat framework.

2.4 Clustering analysis and identification of
malignant epithelial cells

To identify malignant epithelial subpopulations, we performed
unsupervised clustering based on the CNV expression matrix
inferred by inferCNV (26). Endothelial cells were used as the
reference group to normalize CNV signals. All epithelial cells
were then clustered using the k-means algorithm, with the
number of clusters set to five. The CNV profiles of each cluster
were assessed through heatmap visualization and CNV score
distribution. Clusters 1, 3, 4, and 5 exhibited markedly elevated
CNV levels and substantial deviations from reference cells, and
were thus defined as malignant epithelial populations. These
identified subclusters were used in downstream analyses,
including dimensionality reduction, functional enrichment, and
assessment of intratumoral heterogeneity.

2.5 Reconstruction of malignant epithelial
cell differentiation trajectory

To explore the dynamic progression and transcriptional
heterogeneity of malignant epithelial cells, pseudotime analysis
was performed using the Monocle2 package (27). A CellDataSet
object was constructed using raw count data, with size factors and
dispersions estimated for normalization and variance modeling.
Lowly expressed genes were filtered out, and the top 2000
differentially expressed genes across epithelial subclusters were
selected for ordering. Dimensionality reduction was conducted
using the DDRTree algorithm to infer the developmental
trajectory and project cells along a continuous pseudotime axis.
Each cell was assigned a pseudotime value and a discrete state.
Visualization of the trajectory was performed by coloring cells based
on cluster identity, pseudotime, and inferred cell states. To
investigate gene expression changes associated with lineage
bifurcation, BEAM analysis was applied at the primary branching
point. Genes showing branch-dependent expression patterns were
identified, and clustering was performed to group genes with similar
expression dynamics. Functional enrichment analysis of each gene
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module was conducted using the ClusterGVis framework, and
results were visualized as annotated heatmaps incorporating both
expression patterns and biological process annotations.

2.6 High-dimensional weighted gene co-
expression network reveals functional
modules in malignant epithelial cells

To identify co-expressed gene modules in malignant epithelial
cells, a high-dimensional weighted gene co-expression network
analysis (hdWGCNA) was conducted (28). The analysis began
with the extraction of gene expression data from malignant
epithelial subsets, followed by the exclusion of lowly expressed
genes and the selection of highly variable genes for downstream
analysis. A weighted correlation matrix was constructed, and a
suitable soft threshold was determined to ensure the network
conformed to a scale-free topology. Hierarchical clustering was
then applied to group genes with similar expression patterns.
Dynamic tree cutting was used to define distinct co-expression
modules, with each module assigned a unique color label. Module
eigengenes (MEs), representing the principal components of each
module, were calculated to reflect the overall expression profile of
the corresponding module. These eigengene scores were
subsequently projected onto a two-dimensional embedding to
visualize the spatial distribution of modules across different
malignant cell subsets. For each module, the top ten genes
showing the strongest correlation with the module eigengene
were identified as representative hub genes. To further investigate
module-specific expression patterns, violin plots were generated to
compare module scores across distinct malignant subclusters.
Additionally, the relationships among different modules were
evaluated by constructing a correlation matrix based on their
eigengenes, providing insights into potential co-regulation or
functional interactions between modules.

2.7 Machine learning-based generation of
the EGFRmMERS score for LUAD prognosis

To develop a multi-gene prognostic scoring system, the TCGA-
LUAD cohort was used as the training dataset, and a set of candidate
genes was subjected to feature selection and model development. In
this process, we chose the intersection of three gene sets: hdWGCNA
module genes, TCGA differentially expressed genes, and marker
genes from prognostic subclusters. The primary goal of this
strategy was to integrate data from different sources and select
genes that are highly related to clinical prognosis, thereby
improving the specificity of the model. However, this approach
may lead to the filtering out of potentially important genes,
especially in cases of functional overlap between genes. To ensure
the reliability of the model, we validated the selected genes across
multiple independent datasets and used cross-validation methods to
ensure consistency and stability of the selected genes in different
datasets. Ten widely used machine learning algorithms were
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employed, including stepwise Cox regression, Lasso, Ridge, partial
least squares regression for Cox (plsRcox), CoxBoost, random
survival forest (RSF), generalized boosted regression modeling
(GBM), elastic net (Enet), supervised principal components
(SuperPC), and survival support vector machine (survival-SVM).
Each method was trained under a consistent cross-validation
framework to evaluate its predictive performance. The resulting
models were further validated across multiple independent external
cohorts to assess generalizability and robustness, providing a basis for
selecting the optimal prognostic model.

To comprehensively assess the robustness and generalizability
of the EGFRmERS signature, we conducted external validations
across six independent GEO cohorts (GSE31210, GSE50081,
GSE30219, GSE37745, GSE26939, and GSE42127) in addition to
the TCGA-LUAD dataset. For each dataset, the EGFRmERS score
was calculated using the final RSF+SuperPC model. Patients were
stratified into high- and low-risk groups based on the median score
within each cohort. Kaplan-Meier survival curves and log-rank
tests were applied to compare overall survival between groups.
Predictive accuracy was further assessed using time-dependent
ROC curves at 1-, 3-, and 5-year intervals, with AUC values
calculated accordingly.

To benchmark the prognostic performance of EGFRmERS, we
computed the concordance index (C-index) and compared it with
conventional clinical variables (age, gender, stage) in each dataset.
Additionally, EGFRmERS was compared against previously
published LUAD prognostic gene signatures using the same
C-index metric. These comparisons were visualized to highlight
the superiority or complementarity of EGFRmERS across multiple
datasets and evaluation criteria.

For survival analyses, model-related comparisons (e.g.,
EGFRmERS) used median-based stratification within each cohort,
whereas subcluster-specific signature analyses (Supplementary
Figures 2A-E) used the optimal cut-off determined by
survminer::surv_cutpoint.

2.8 Comprehensive evaluation of drug
sensitivity and immunotherapy response
based on EGFRmMERS

To evaluate the potential therapeutic implications of the
EGFRmERS signature, we conducted a series of analyses related
to drug sensitivity and immunotherapy response. Drug sensitivity
prediction was performed using data from the CTRP and PRISM
pharmacogenomic databases (29), which contain compound
response profiles across a wide range of cancer cell lines. Based
on gene expression data, the estimated area under the dose-
response curve (AUC) values were compared between high- and
low-EGFRmMERS subgroups to assess potential differences in drug
responsiveness. In addition, Spearman correlation analysis was
applied to evaluate the relationship between EGFRmERS scores
and AUC values across drugs.

For immunotherapy prediction, we examined the expression
levels of immune checkpoint-related genes in different EGFRmERS
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FIGURE 1
Dimensionality reduction, sample distribution, cell annotation, and cell-type characteristics of the single-cell transcriptomic data. (A) UMAP plot
showing cell clusters identified using PCA and the shared nearest neighbor (SNN) graph-based clustering algorithm. (B) UMAP visualization of the
original sample origin for each cell. (C) Cell type annotation based on canonical marker genes, identifying major lineages including T cells, B cells,
epithelial cells, dendritic cells, macrophages, and others. (D) Proportional distribution of annotated cell types across individual patients (left), different
EGFR mutation subtypes (middle), and EGFR mutation status (right). (E) UMAP feature plots displaying the expression of representative marker genes,
including CD1C, CD14, and CD68; EPCAM and KRT19; CD3D and CD79A; NKG7, KIT, and MKI67; DCN and PECAML1.

between groups. SubMap analysis was also performed to
predict the likelihood of response to anti-PD-1 or anti-CTLA-4
therapies based on transcriptomic similarities with known

groups and assessed their correlations with the signature. To further
predict immunotherapy efficacy, immune-related scores including
TIDE (Tumor Immune Dysfunction and Exclusion) (30), IPS

(Immunophenoscore), and Exclusion scores were compared  responder profiles.
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2.9 Evaluation of immune infiltration and
stromal features based on EGFRmMERS
stratification

To explore the relationship between EGFRmERS scores and the
tumor immune microenvironment, we retrieved immune cell
infiltration data generated by seven widely used algorithms
(TIMER, CIBERSORT, CIBERSORT-ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC) from the TIMER2.0 database.
A comprehensive immune heatmap was constructed to visualize the
compositional differences between high- and low-score groups.
Additionally, the ESTIMATE algorithm was applied to calculate
stromal scores, immune scores, and ESTIMATE composite scores
for each sample, thereby assessing the association between
EGFRmERS scores and tumor purity. Moreover, a set of
immunomodulatory genes—including co-stimulatory molecules,
co-inhibitory molecules, and antigen presentation-related genes—
was selected to comprehensively characterize their multi-omics
features across EGFRmERS subgroups. This analysis integrated
mRNA expression, DNA methylation levels, Spearman correlations
between expression and methylation, and copy number variation
(CNV) data derived from the TCGA-LUAD cohort. The
immunomodulator gene list was curated from the literature, aiming
to provide a systematic view of immune regulation heterogeneity
under different EGFRmERS conditions.

2.10 Association of EGFRmMERS with tumor
mutational burden and mutation landscape

The mutation annotation format (MAF) file for the TCGA-
LUAD cohort was downloaded and analyzed using the maftools
package (31) to evaluate tumor mutation burden (TMB) and
visualize the mutational landscape. TMB was defined as the
number of non-synonymous mutations per megabase. Based on
the median EGFRmERS score, patients were stratified into high-
and low-risk groups. Differences in TMB between the groups were
assessed, and the correlation between TMB and EGFRmERS score
was calculated. Furthermore, combined survival analysis was
performed using the survminer and survival packages to
investigate the prognostic significance of TMB in conjunction
with the EGFRmERS score. To assess genomic instability between
EGFRmERS-defined subgroups, copy number variation (CNV)
data generated by GISTIC2.0 were retrieved from the GDC
portal. Amplification and deletion events at the segment level
were extracted and visualized across chromosomes. CNV
distribution plots were generated for high- and low-EGFRmERS
groups to compare genome-wide chromosomal instability patterns.

2.11 Cell culture and transfection
Human lung adenocarcinoma cell lines A549 and H1299 were

cultured in RPMI-1640 medium supplemented with 10% fetal
bovine serum and 1% penicillin-streptomycin, and maintained at
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37°C in a humidified incubator with 5% CO,. Cells in the
logarithmic growth phase were used for subsequent experiments.

Transfection of siRNAs targeting PERP was performed using
LipofectamineTM 3000 reagent according to the manufacturer’s
instructions. siRNAs were mixed with transfection reagent in
serum-free Opti-MEM medium to form complexes, which were
then added to the plated cells. After 48 hours of transfection, cells
were harvested for downstream assays. A non-targeting siRNA
(siNC) was used as the negative control.

2.12 Quantitative real-time PCR

Cells were washed with PBS and lysed using TRIzol reagent to
extract total RNA. RNA concentration and purity were measured using
a NanoDrop 2000 spectrophotometer. Equal amounts of RNA were
reverse-transcribed into ¢cDNA following the manufacturer’s
instructions. QRT-PCR was performed using SYBR Green dye on a
real-time PCR system. Each 20 pL reaction mixture contained cDNA
template, forward and reverse primers, and SYBR Green master mix.
The amplification protocol consisted of an initial denaturation at 95°C
for 30 seconds, followed by 40 cycles of 95°C for 5 seconds and 60°C for
30 seconds. Each sample was analyzed in triplicate. Relative gene
expression levels were calculated using the 2A-AACt method, with
GAPDH as the internal control. Primer sequences are listed in
Supplementary Table 2.

2.13 Transwell migration and invasion
assays

Transwell chambers with 8 um pore membranes were used to
assess cell migratory and invasive abilities. For migration assays, cells
were suspended in serum-free medium and seeded into the upper
chamber (5x10%cells per well). The lower chamber was filled with
complete medium containing 10% fetal bovine serum as a
chemoattractant. For invasion assays, the upper chamber membrane
was pre-coated with diluted Matrigel, and the remaining steps were
identical to the migration assay. After incubation for 24-48 hours at 37°
C with 5% CO,, non-migrated or non-invaded cells on the upper
surface were removed. Cells on the lower surface were fixed and stained
with 0.1% crystal violet. Five random fields were selected for cell
counting, and images were analyzed using ImageJ software.

2.14 Colony formation assay

Treated cells were seeded into 6-well plates at a low density
(500-1000 cells per well) and cultured for 10-14 days until visible
colonies appeared. Cells were gently washed twice with PBS, fixed in
4% paraformaldehyde for 15-20 minutes, and then stained with
0.1% crystal violet for 30 minutes. After removing excess dye and
rinsing with water, the plates were imaged, and colonies larger than
1 mm in diameter were counted using ImageJ software to assess
clonogenic potential.
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2.15 Statistical analysis

All statistical analyses were performed using R software (version
4.2.0) and GraphPad Prism (version 9.0). Comparisons between
two groups were conducted using the Wilcoxon rank-sum test or
Student’s t-test, depending on data distribution. For multiple group
comparisons, the Kruskal-Wallis test or one-way ANOVA was
applied. Survival differences were assessed by the Kaplan-Meier
method with log-rank test. Correlation analyses were conducted
using Spearman or Pearson correlation as appropriate. Nomogram
construction and decision curve analysis were conducted using the
“rms” and “rmda” packages in R. A p-value < 0.05 was considered
statistically significant unless otherwise specified.

3 Results

3.1 Construction of a single-cell atlas and
annotation of major cell types in LUAD

To characterize the cellular landscape and heterogeneity of LUAD,
we performed single-cell transcriptomic analysis based on the
GSE171145 dataset. After quality control and normalization, a
unified Seurat object was constructed, and batch effects across
samples were corrected using the Harmony algorithm. After quality
control and normalization, a unified Seurat object was constructed, and
batch effects across samples were corrected using the Harmony
algorithm (Supplementary Figures 1A, B). Principal component
analysis followed by shared nearest neighbor (SNN) graph-based
clustering identified transcriptionally distinct cell clusters, which were
visualized using UMAP (Figure 1A). Figure 1B displays the distribution
of cells according to their patient of origin, indicating effective batch
integration. Based on the expression of canonical marker genes, major
cell types were annotated, including T cells, B cells, dendritic cells,
macrophages, epithelial cells, endothelial cells, and fibroblasts
(Figure 1C). Cellular composition varied across different
stratifications (Figure 1D). Overall, T cells and epithelial cells were
the most abundant populations. At the individual level (left), inter-
patient variability in cell-type proportions was observed. Stratification
by EGFR mutation subtype (middle) revealed subtype-specific
differences in cellular composition. Notably, in the comparison by
EGFR mutation status (right), wild-type LUAD samples exhibited
higher infiltration of mast cells and fibroblasts, suggesting a potential
influence of EGFR mutation on the non-immune stromal landscape.
To validate the annotation, representative marker genes were visualized
across the UMAP embedding (Figure 1E). For instance, EPCAM and
KRT19 were enriched in epithelial cells, CD3D and CD79A marked T
and B cells, while CD14 and CD68 were highly expressed in
monocytes/macrophages, supporting the accuracy of cell-type
classification. In addition, Supplementary Figure 1C provides a
comprehensive overview of the expression patterns of key marker
genes across major cell types and subclusters. It also integrates
information on cell cycle phase, G2M scores, EGFR mutation status,
and mitochondrial gene proportion, further supporting the accuracy of
cell-type annotation and the stability of cellular states.
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3.2 Differential cell-cell communication
analysis between EGFR-mutant and wild-
type LUAD

To investigate how EGFR mutation status influences
intercellular communication within the LUAD tumor
microenvironment, cell-cell interaction networks were
constructed separately for EGFR-mutant (Mut) and wild-type
(WT) samples. Figure 2A provides a qualitative overview of the
intercellular communication networks constructed separately for
the EGFR-mutant (Mut) and wild-type (WT) groups. Nodes denote
cell types, edge thickness encodes interaction strength, and node
size reflects the participation of each cell type within the network.
This panel is presented as an overview and is not intended for direct
quantitative comparison between groups. Figure 2B illustrates the
incoming and outgoing signaling strengths of each cell type in both
groups. In the WT group, endothelial cells played a more prominent
role in both sending and receiving signals, suggesting their
functional importance in maintaining microenvironmental
homeostasis. Across both groups, fibroblasts consistently served
as the dominant signal senders, while macrophages were the major
signal receivers, highlighting a conserved directionality in stromal-
immune crosstalk. Pathways with significantly altered signaling
activity in the mutant group were further identified. As shown in
Figure 2C, a number of immune-related pathways exhibited
increased activity in the EGFR-mutant group, including APP-
CD74 and multiple HLA class II-CD4 ligand-receptor pairs (e.g.,
HLA-DPA1-CD4, HLA-DQA1-CD4, HLA-DRB1-CD4). These
interactions are largely involved in antigen presentation and
CD4" T cell activation, indicating that EGFR mutation may
impair antigen processing and helper T cell-mediated immune
surveillance. In contrast, pathways with attenuated activity in the
Mut group (Figure 2D) were primarily enriched in cell adhesion
and extracellular matrix remodeling signals, such as LAMC2-CD44
and LAMB3-CD44. These interactions are associated with
enhanced adhesion, migration, and invasive potential of tumor
cells, suggesting that EGFR mutation may promote tumor
progression and immune evasion by modulating specific
adhesion-related communication axes.

3.3 Clustering analysis and identification of
malignant epithelial cells

CNV inference was performed on epithelial cells from LUAD
samples to assess genomic instability. Using endothelial cells as a
reference, the inferCNV heatmap revealed distinct CNV patterns, with
widespread amplifications and deletions across various chromosomal
regions in a subset of epithelial cells (Figure 3A). K-means clustering
based on CNV profiles identified five epithelial subclusters with varying
levels of genomic alterations (Figure 3B). Comparison of CNV scores
showed that clusters 1, 3, 4, and 5 exhibited significantly higher CNV
burdens compared to cluster 2 (Figure 3C), suggesting that these
clusters likely represent malignant epithelial populations. Focusing on
EGFR-mutant samples, malignant epithelial cells were extracted and
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Differential cell-cell communication analysis between EGFR-mutant and wild-type LUAD. (A) Cell-cell communication networks in EGFR-mutant
(Mut, left) and wild-type (WT, right) groups. Edge thickness indicates the strength of interaction between cell types. (B) Scatter plots displaying
incoming (y-axis) and outgoing (x-axis) interaction strengths for each cell type in the Mut and WT groups. Bubble size reflects the number of
interactions involving each cell population. (C) Heatmap showing signaling pathways with increased communication probability in the Mut group.
Rows represent ligand—receptor pairs; columns represent sender—receiver cell pairs. Dot size indicates p-value significance, and color denotes
communication probability. (D) Heatmap displaying signaling pathways with decreased communication activity in the Mut group, visualized in the

same format as (C).

visualized using UMAP, revealing distinct spatial separation among

subclusters, indicative of pronounced intratumoral heterogeneity

(Figure 3D). Functional enrichment analysis further demonstrated

that these malignant subpopulations displayed diverse pathway
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activation patterns (Figure 3E), including epithelial-mesenchymal
transition (EMT), cell cycle progression, DNA repair, apoptosis
regulation, metabolism, and oxidative stress response, implying
divergent functional roles in tumor progression. To evaluate the
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clusters, reflecting differences in overall CNV burden. (D) UMAP plot of malignant epithelial cells extracted from EGFR-mutant patients, illustrating
the spatial distribution of distinct epithelial subgroups. (E) Heatmap of pathway enrichment across malignant epithelial clusters, highlighting

differential activity in biological processes.

clinical significance of these malignant subpopulations, we calculated
subcluster-specific signature scores in the TCGA cohort. Patients were
stratified into high and low expression groups for survival analysis. As
shown in Supplementary Figure 2, high scores for cluster_2 and
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cluster_3 were significantly associated with poorer survival outcomes
(p < 0.001 and p = 0.005, respectively), while cluster_0 also
demonstrated an unfavorable trend (p = 0.0031), highlighting their
potential prognostic relevance.
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3.4 Reconstruction of malignant epithelial
cell differentiation trajectory

To further investigate the transcriptional heterogeneity and
differentiation dynamics of malignant epithelial cells, a pseudotime
trajectory analysis was conducted. The top 2,000 differentially
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expressed genes across epithelial subclusters were selected to
construct the trajectory using Monocle2, with dimensionality
reduction performed via the DDRTree algorithm. Three distinct
cell states and a continuous differentiation path were identified
(Figure 4A). Notably, cluster 2 and 3 were primarily located at the
early stage of the trajectory, while cluster 0, 1, and 4 were enriched at
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the terminal branches, suggesting a potential progression axis among
malignant subpopulations. To characterize gene expression dynamics
along the pseudotime axis, significantly varying genes were clustered
and visualized in a heatmap (Figure 4B). Functional enrichment
revealed that these gene modules were associated with biological
processes such as regulation of leukocyte cell-cell adhesion,
aminoglycoside antibiotic metabolic process, and humoral immune
response, indicating immunological and metabolic reprogramming
during progression. Branch-specific transcriptional programs were
further dissected using BEAM analysis. Genes with significant
expression divergence between branches were visualized in a
branched heatmap and subjected to pathway enrichment analysis
(Figure 4C). Branch 2 was enriched in terms including negative
regulation of transport, positive regulation of heterotypic cell-cell
adhesion, and mononuclear cell migration, while Branch 1 was
predominantly associated with immune response-activating
signaling pathways, suggesting distinct functional trajectories and
potential cell fate bifurcations.

3.5 High-dimensional weighted gene co-
expression network reveals functional
modules in malignant epithelial cells

To further elucidate the functional heterogeneity of malignant
epithelial cells, a high-dimensional weighted gene co-expression
network was constructed. The optimal soft-thresholding power was
determined as 14 to ensure that the resulting network conformed to a
scale-free topology (Figure 5A). Based on this threshold, multiple gene
co-expression modules were identified, each represented by a distinct
color (Figure 5B). UMAP projections of module-specific gene
expression revealed distinct spatial distributions of each module
within malignant cells (Figure 5C). The top 10 hub genes of each
module were annotated (Figure 5D), providing a basis for downstream
functional analyses. Supplementary Figure 2 further visualizes the
internal co-expression structure of each module, highlighting dense
interactions among genes, particularly within modules M2, M4, M5,
and M7, which showed strong intra-module connectivity.

Given that clusters 0, 2, and 3 were previously shown to be
associated with patient prognosis, we focused on the modules
enriched in these clusters. Violin plots revealed that module M2
was predominantly enriched in cluster 3, M4 in cluster 2, while M5
and M7 were highly expressed in both clusters 0 and 2 (Figure 5E),
suggesting that these modules may regulate pathways related to poor
prognosis. Correlation analysis among modules further revealed
strong positive associations between M3 and M2, M3 and M7, and
M6 and M7 (Figure 5F), indicating potential coordinated regulation
and shared biological functions among these modules.

3.6 Machine learning-based generation of
the EGFRmMERS score for LUAD prognosis

To construct the EGFRmERS, we first intersected three sets of
genes: differentially expressed genes from the TCGA cohort, hub
module genes identified by hdWGCNA, and marker genes from
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malignant epithelial subclusters associated with prognosis. This
integration yielded a set of candidate genes (Figure 6A). The detailed
information of the intersecting genes can be found in Supplementary
Table 3. Gene Ontology enrichment analysis revealed that these genes
were primarily involved in immune-related processes, cell adhesion,
and metabolic regulation, including representative pathways such as
“response to leptin” and “positive regulation of cell-substrate adhesion”
(Figure 6B). For GO enrichment analysis, genes without functional
annotation or those unmapped in the GO database were excluded, and
only the most significant and representative pathways with their
corresponding genes were visualized; therefore, the number of genes
displayed in Figure 6B is smaller than the total of 44 intersecting genes
shown in Figure 6A. Subsequently, univariate Cox regression analysis
was performed to screen for survival-associated genes (Figure 6C).
Based on these genes, ten machine learning algorithms were employed
to construct prognostic models, including stepwise Cox, Lasso, Ridge,
partial least squares regression for Cox (plsRcox), CoxBoost, random
survival forest (RSF), generalized boosted regression modeling (GBM),
elastic net (Enet), supervised principal components (SuperPC), and
survival support vector machine (survival-SVM). Ultimately, the
optimal model was constructed by integrating RSF and SuperPC,
forming the EGFRmERS scoring system (Figure 6D). The final
EGFRmERS comprised nine genes: PERP, PEKP, DNAJB4, MYEOV,
CALU, NEDD9, MTFR1, HM13, and PIGR.

The prognostic performance of EGFRmERS was evaluated in
comparison with conventional clinical variables by calculating
concordance index (C-index) across multiple datasets. Results
showed that EGFRmERS exhibited consistently higher C-index
values than traditional indicators such as age, gender, and TNM
stage, indicating its superiority in individualized risk prediction
(Figure 7A). Stratifying patients into high- and low-risk groups based
on the median EGFRmERS score revealed significantly poorer survival
outcomes in the high-score group across both the TCGA and external
validation cohorts, as shown by Kaplan-Meier survival analyses
(Figure 7B). Predictive accuracy for 1-, 3-, and 5-year overall survival
was further supported by ROC analysis, with area under the curve
(AUC) values exceeding 0.70 in all datasets (Figure 7C). Compared
with previously reported LUAD prognostic models, EGFRmERS
achieved the highest C-index values across all datasets examined,
underscoring its robust and generalizable prognostic utility
(Figure 7D). In Figure 7D, the predictive performance of our model
and previous models in the TCGA-LUAD cohort was compared using
C-index. The previously reported models were primarily linear
prognostic models; we strictly calculated prognostic scores according
to the gene lists and corresponding coefficients (or formulas) provided
in the original publications, and then applied these scores to the
TCGA-LUAD cohort for C-index evaluation.

3.7 Comprehensive evaluation of drug
sensitivity and immunotherapy response
based on EGFRmMERS

In the drug sensitivity analysis, samples with lower EGFRmERS
scores exhibited increased sensitivity to multiple anticancer agents in
both the CTRP and PRISM datasets, as reflected by lower AUC values
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Overview of hdWGCNA workflow and visualization of gene co-expression modules. (A) Determination of the soft-thresholding power for network
construction, based on scale-free topology fit and mean connectivity. (B) Gene clustering dendrogram generated from the weighted co-expression
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(Figures 8A, B, left). Spearman correlation analysis further indicated a
significant positive correlation between EGFRmMERS scores and drug
AUGs, suggesting that higher scores may be associated with increased
drug resistance (Figures 8A, B, right). Analysis of immune checkpoint
gene expression revealed that the high EGFRmERS group showed
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elevated expression of key immunoregulatory genes, including
CD274 (PD-L1), TNFRSF9 (4-1BB), CD276 (B7-H3), and
PDCD1LG2 (PD-L2) (Figure 8C). However, overall, the
EGFRmERS score exhibited a negative correlation with most
immune checkpoint-related genes (Figure 8D), implying a complex
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Integration of candidate genes and construction of prognostic models using machine learning. (A) Venn diagram showing the intersection of
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FIGURE 7

Validation and performance assessment of the EGFRmMERS signature across multiple cohorts. (A) Comparison of the concordance index (C-index)

between EGFRmMERS and conventional clinical features (gender, age, stage) a
based on median EGFRMERS scores to assess its prognostic stratification abi

cross seven independent cohorts. (B) Kaplan—Meier survival analysis
lity. (C) Time-dependent ROC curves evaluating the predictive accuracy

of EGFRmERS for 1-, 3-, and 5-year overall survival. (D) Comparison of C-index values between EGFRmMERS and previously published prognostic

signatures for LUAD in each dataset.

immunosuppressive profile in high-score patients. Further
exploration showed that patients with high EGFRmERS scores had
significantly attenuated TIDE scores (Figure 8E) and reduced IPS
scores (Figure 8F), indicating a stronger immune evasion tendency
and potentially diminished responsiveness to immune checkpoint
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blockade. In addition, the Exclusion score was also higher in the
high-score group (Figure 8G), reflecting a more pronounced
immunosuppressive microenvironment. Finally, SubMap analysis
suggested that patients in the low EGFRmERS group were more
likely to respond to anti-PD-1 therapy (Figure 8H), supporting
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the potential clinical utility of EGFRmERS in predicting
immunotherapy responsiveness.

3.8 Evaluation of immune infiltration and
stromal features based on EGFRmERS
stratification

Using seven immune infiltration methods from the TIMER2.0
database, the immune landscape of tumors with different EGFRmERS
scores was evaluated (Figure 9A). While certain rare immune cell
types showed minimal differences between groups, the majority of
immune cell types—including CD8" T cells, activated NK cells, and
M1 macrophages—exhibited higher infiltration levels in the low-
score group. This conclusion was further supported by additional
immune metrics and functional analyses. The high-score group
showed generally reduced immune cell infiltration, suggesting a
more immunosuppressive microenvironment. Expression profiles
of immunomodulatory genes also differed significantly between the
two groups (Figure 9B). Additionally, ESTIMATE analysis revealed
negative correlations between EGFRmMERS scores and immune,
stromal, and total scores (Figure 9C), supporting the notion that
high EGFRmERS tumors are associated with a poorly infiltrated and
stroma-deficient microenvironment.

3.9 Association of EGFRmMERS with tumor
mutational burden and mutation landscape

To further investigate the potential association between the
EGFRmERS score and genomic instability, we first examined the
mutational landscape of the TCGA-LUAD cohort. Figure 10A
summarizes the mutational landscape of the TCGA-LUAD cohort
stratified by EGFRmERS, including mutation types, TMB annotations,
and CNV profiles. This panel is intended as a qualitative overview
rather than for direct quantitative comparison between groups.
Comparison of TMB revealed significantly higher TMB levels in the
high-score group (Figure 10B), and a positive correlation between
EGFRmERS and TMB was identified (R = 0.33, p = 3e-14)
(Figure 10C). Combined survival analysis indicated that patients
with both high EGFRmERS and high TMB had the worst prognosis
(Figure 10D). Furthermore, GISTIC2.0 analysis of CNVs
demonstrated that the high-score group exhibited broader
amplifications and deletions, particularly on chromosomes 3, 5, and
8 (Figure 10E), whereas CNV alterations were relatively limited in the
low-score group (Figure 10F). These findings suggest that the
EGFRmERS score may reflect distinct patterns of genomic instability.

3.10 Selection and functional validation of
PERP as a key gene in LUAD progression
Our EGFRmMERS model comprised nine genes (PERP, PFKP,

DNAJB4, MYEOV, CALU, NEDD9, MTFR1, HM13, and PIGR). As
an initial step, we performed univariate Cox screening on candidate
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genes (Figure 7C), in which several genes—including JPT1, DNAJB4,
and PERP—showed high hazard ratios. During subsequent model
construction using Random Survival Forest (RSF) and Supervised
Principal Components (SuperPC), feature selection removed JPT1 and
certain other candidates; among the genes retained in the final model,
PERP exhibited the highest hazard ratio (HR = 1.351). Considering its
relatively high risk estimate within the final gene set, its elevated
expression in LUAD and other malignancies, and literature support for
its roles in cancer biology, PERP was prioritized for in vitro functional
assays. We have clarified this selection process in the revised
manuscript. Pan-cancer analysis revealed that PERP expression
differed significantly between tumor and normal tissues across
various cancer types (Figure 11A). Immune infiltration analysis
using the CIBERSORT algorithm indicated that PERP expression
was significantly correlated with multiple immune cell populations,
particularly M1 macrophages, dendritic cells, and several T-cell subsets
(Figure 11B). Survival analysis in the LUAD cohort showed that high
PERP expression was associated with worse OS, DFS, DSS, and PFS
outcomes (Figure 11C). To validate its functional role, we constructed
PERP knockdown models in A549 and H1299 cell lines using siRNA.
qRT-PCR confirmed efficient gene silencing (Figure 11D). Transwell
assays demonstrated that PERP knockdown promoted both migratory
and invasive capabilities in lung cancer cells (Figure 11E), while colony
formation assays showed enhanced proliferative capacity following
PERP silencing (Figure 11F).

4 Discussion

Lung cancer remains the leading cause of cancer-related deaths
worldwide, imposing a significant public health burden due to its
high incidence and mortality rates (32, 33). LUAD, the most
common histological subtype of NSCLC, is driven by a complex
interplay of genetic and microenvironmental factors, leading to
marked heterogeneity in clinical outcomes among patients (34).
Although the advent of targeted therapies and immune checkpoint
inhibitors has improved survival for certain individuals, accurately
identifying high-risk patients and predicting treatment response
remains a critical challenge in clinical management (35, 36).

EGFR mutations are among the most pivotal molecular events in
LUAD and have been widely applied in guiding targeted therapy (37).
However, substantial heterogeneity exists within EGFR-mutant
patients, as responses to TKI vary considerably, and resistance
often emerges during treatment. Furthermore, many EGFR-mutant
LUAD patients exhibit low responsiveness to immunotherapy,
reflecting complex biological diversity within this molecular
subtype (38, 39). These challenges underscore the need for refined
risk stratification frameworks that incorporate additional molecular
features to improve prognostic accuracy and therapeutic precision.

In this study, we focused on malignant epithelial cells within
EGFR-mutant LUAD. By leveraging single-cell RNA sequencing data
and integrating inferCNV, pseudotime trajectory, and co-expression
network analyses, we characterized heterogeneity in malignancy and
functional phenotypes across epithelial subpopulations, identifying
specific cell groups associated with poor prognosis. Subsequently, we
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FIGURE 8

Evaluation of therapeutic relevance and immune landscape based on the EGFRmMERS. (A) Drug sensitivity analysis using the CTRP database. Left:
boxplots showing the estimated area under the dose—response curve (AUC) values for various compounds in the high and low EGFRmMERS groups;
lower AUC values indicate greater drug sensitivity. Right: Spearman correlation analysis between EGFRmMERS scores and drug sensitivity profiles.

(B) Drug sensitivity assessment from the PRISM database. Left: boxplots of AUC values for selected compounds in different EGFRMERS groups. Right:
Spearman correlation coefficients reflecting the association between EGFRMERS scores and drug response. (C) Expression levels of immune
checkpoint—related genes across EGFRMERS subgroups. (D) Correlation matrix showing associations between EGFRmERS scores, model genes, and
immune checkpoint genes. (E) Comparison of TIDE scores between high and low EGFRmMERS groups. (F) Distribution of immunophenoscore (IPS)
components, including IPS-CTLA4 and IPS-PD1, across EGFRMERS subgroups. (G) Distribution of Exclusion scores from the TIDE platform in high
versus low EGFRmMERS groups. (H) SubMap analysis predicting differential response to immune checkpoint blockade therapies between the two
EGFRmMERS groups. * indicates P < 0.05, ** indicates P < 0.01, and *** indicates P < 0.001.
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across different EGFRmMERS groups, highlighting variations in the immune landscape between high- and low-score samples. (B) Overview of immune
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low-risk groups. (C) Comparative analysis of immune-related scores (StromalScore, ImmuneScore, ESTIMATE Score, and TumorPurity) between
EGFRmMERS groups, assessing their relationship with the tumor immune microenvironment.
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FIGURE 10

Association between the EGFRmMERS score and genomic alterations. (A) Oncoplot illustrating the mutational landscape across high and low
EGFRmMERS subgroups, including tumor mutation burden (TMB), MutSig genes, copy number variations (CNVs), and frequently altered driver genes.
(B) Comparison of TMB levels between high- and low-EGFRmMERS groups. (C) Correlation analysis between EGFRmMERS score and TMB. (D) Survival
analysis stratified by TMB status and EGFRmMERS subgroups. (E) Genome-wide copy number alteration profiles of the high EGFRMERS group based
on GISTIC2.0 analysis. (F) Genome-wide copy number alteration profiles of the low EGFRMERS group based on GISTIC2.0 analysis.

incorporated TCGA and multiple external validation cohorts to  conventional clinical parameters and previously published models
construct and evaluate a robust EGFRmERS. This model was  across various datasets, highlighting its broad applicability across
developed using ten mainstream machine learning algorithms,  molecular backgrounds and populations.

integrating differentially expressed genes, single-cell markers, and Functional enrichment analyses revealed that high EGFRmERS
prognostic features. EGFRmERS consistently outperformed  scores were closely associated with pathways involved in cell
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FIGURE 11

Expression profile, immune relevance, and functional validation of PERP. (A) Pan-cancer analysis of PERP expression across tumor and normal tissues.
Red indicates tumor, blue indicates normal. (B) Correlation between PERP expression and immune cell infiltration estimated by the CIBERSORT
algorithm, showing significant associations with multiple immune cell types. (C) Survival analyses (OS, DFS, DSS, and PFS) of PERP expression in the
TCGA-LUAD cohort. (D) Silencing efficiency of PERP in A549 and H1299 cells following siRNA transfection. (E) Transwell migration and invasion assays
evaluating the effects of PERP knockdown on A549 and H1299 cell motility. (F) Colony formation assays indicating enhanced proliferative capacity of
PERP-silenced A549 and H1299 cells. * indicates P < 0.05, ** indicates P < 0.01, *** indicates P < 0.001 and **** indicates P < 0.0001.
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adhesion, metabolic regulation, and immune suppression.
Additionally, EGFRmERS positively correlated with several
immune checkpoint molecules and immunotherapy response
indicators such as TIDE and IPS scores, suggesting its potential
utility in predicting immunotherapeutic sensitivity. Drug sensitivity
analysis further indicated that patients with high EGFRmERS scores
exhibited heightened sensitivity to a range of anti-tumor agents,
offering guidance for personalized therapeutic selection.

Among the model genes, we focused on PERP due to its
potential biological relevance. Previous studies have shown that
PERP may act as a tumor suppressor by maintaining adhesion-
dependent growth and promoting apoptosis, with well-established
roles in melanoma and breast cancer (40-42). However, its function
in lung cancer remains unclear, and some studies suggest that high
PERP expression may be linked to poor prognosis. In our analysis,
PERP was significantly upregulated in the high EGFRmERS group
and positively associated with multiple immunosuppressive
features, indicating that it may not only sustain malignant
phenotypes within tumor cells but also contribute to immune
evasion through tumor microenvironment remodeling. Follow-up
qRT-PCR and functional assays further validated the oncogenic role
of PERP in LUAD, supporting its potential as a therapeutic target.

Despite the systematic integration of single-cell and bulk
transcriptomic data and the application of multiple machine
learning algorithms with validation across independent cohorts,
this study has several limitations. First, the model was developed
using retrospective data from public databases; future validation in
prospective clinical cohorts is necessary. Second, although the
function of key genes such as PERP was confirmed in vitro,
further studies using in vivo models and clinical specimens are
needed to elucidate their mechanistic roles. Lastly, EGFRmERS
performance may still be influenced by sample heterogeneity and
the completeness of clinical annotations, necessitating future
integration of multi-omics data to enhance model robustness.

In conclusion, this study constructed a novel EGFRmERS based
on single-cell transcriptomic heterogeneity, machine learning
algorithms, and multi-cohort validation. EGFRmERS not only
effectively stratifies patient prognosis but also provides insights
into immunotherapy response and drug sensitivity, offering a
promising strategy for precision stratification and individualized
therapy in EGFR-mutant LUAD.
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Batch correction and marker gene expression profiling in LUAD single-cell
datasets. (A, B) Distribution of samples before and after Harmony batch
correction, showing the effect of integration across datasets. (C) Dot plot
showing the expression patterns of canonical marker genes across annotated
main cell types (left panel) and transcriptional subclusters (right panel). The
size of the dots represents the percentage of cells expressing each gene, and
the color indicates the normalized average expression (z-score). The top
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