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Introduction: Bone integrity relies on mechanical stimulation, and its absence,

such as in disuse osteoporosis or periodontitis, enhances osteoclast-mediated

resorption. Although Piezo1 is a well-characterized mechanosensitive ion channel

in several cell types, its function in osteoclast lineage cells has remained unclear.

Methods:We examined Piezo1 expression and signaling in pre-osteoclasts (OCs)

using mouse models of periodontal bone loss and in vitro differentiation assays.

Genetic and pharmacological approaches were applied to manipulate Piezo1

activity. Downstream pathways were assessed with a focus on NFATc1

regulation, Akt phosphorylation, and PP2A activity. The therapeutic potential of

the Piezo1 agonist Yoda1 was tested in inflammatory bone loss models.

Results: Piezo1 was selectively expressed and functional in pre-OCs, where it

acted as a mechanosensor to inhibit RANKL-induced OC-genesis. Activation of

Piezo1 suppressed NFATc1 via a Ca2+-independent mechanism involving PP2A-

mediated dephosphorylation of Akt, distinct from the canonical Ca2+-calcineurin

pathway. In healthy periodontal bone, Piezo1 restrained osteoclast differentiation

under mechanical loading, preserving bone mass. During periodontitis, reduced

mechanical forces impaired Piezo1 function, resulting in unchecked osteoclast

activation and pathological resorption. Pharmacological activation of Piezo1 with

Yoda1 restored the anti-resorptive pathway and effectively prevented

inflammatory bone loss, even in the absence of mechanical input.

Discussion: Our findings redefine Piezo1 as a critical mechanosensor in pre-OCs

and establish the Piezo1-PP2A-Akt axis as a novel regulator of NFATc1-driven OC-
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genesis. These results provide a mechanistic explanation for bone resorption in

mechanically compromised states and highlight Piezo1 activation as a therapeutic

strategy to mimic mechanical cues and suppress pathological OC-genesis in

conditions such as periodontitis, rheumatoid arthritis, and osteoporosis.
KEYWORDS
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1 Introduction

The onset and progression of periodontitis result from

overactivation of the host immune response against opportunistic

pathogens in the periodontal microbiome. This, in turn, leads to

tissue-destructive inflammation of the periodontium, including

alveolar bone resorption (1–3). Inflammation in the periodontium

triggers angiogenesis, vasodilation, and increased vascular

permeability, facilitating the enhanced migration of immune cells,

includingmonocytes andmacrophages, in response to T lymphocytes

(4). Osteoclasts (OCs), monocyte lineage cells, play a key role in bone

resorption in inflammatory bone-lytic diseases, such as rheumatoid

arthritis (5, 6) and periodontitis (7, 8). Preosteoclasts (pre-OCs) are

tartrate-resistant acid phosphatase (TRAP)+ mononucleated

monocyte-linage cells which fuse to form multinucleated mature

TRAP+ OCs (9) by activation of the master transcription factor (TF),

Nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) in a

Receptor activator of nuclear factor kappa-b ligand (RANKL)-

dependent manner (10). RANKL-mediated OC-genesis requires

permissive costimulatory signaling from immunoreceptor tyrosine-

based activation motif (ITAM) receptors (signaling transducers),

such as Osteoclast-associated receptor (OSCAR) and Triggering

receptor expressed on myeloid cells 2 (TREM2), to elicit the

calcineurin/calmodulin signaling axis via Ca2+ oscillation (11, 12),

in turn, upregulating NFATc1 expression.

Monocytes in the circulation, a significant source of pre-OCs

(13–16), adhere to capillary endothelium and migrate into the

homeostatic bone remodeling site as well as bone lytic lesions

upon receiving signals from lipid mediators and specific

chemokines, including Sphingosine 1-phosphate, monocyte

chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 12

(CXCL12), stromal cell-derived factor-1 (SDF-1), C-X3-C motif

ligand 1 (CX3CL1) or macrophage migration inhibitory factor

(MIF) (17–22). Intercellular adhesion molecule 1 (ICAM-1)

expressed in endothelial cells (ECs) is a cell surface glycoprotein

that regulates the migration of pre-OCs during periodontal

inflammation (23, 24). Blood flow acts as a mechanical force on

blood cells, such as T lymphocytes and platelets, as well as pre-OCs

(25–28). Even though chronic inflammation in periodontitis causes

expansion of capillary diameter (29), blood velocity in the

vasculature of periodontitis lesions is significantly diminished

(30). It is also reported that the rate of blood flow in healthy
02
gingival tissue is significantly lower in the elderly than that of

younger groups (31). Based on these lines of evidence, it can be

posited that hematopoietic cells, including pre-osteoclasts (pre-

OCs), in the periodontium affected by periodontitis, are subjected

to reduced mechanical stress compared to those in healthy

periodontal tissue. Increased mechanical stimuli can alter various

activities of cells in the periodontium, including periodontal

ligament cells and osteoblasts (32, 33), outcomes of the opposite

condition whereby the periodontium receives less mechanical

stress, especially alveolar bone, are largely unknown in the

context of periodontitis.

Therefore, to shed more light on these unresolved questions, we

turned to the mechanosensory system, the importance of which was

highlighted by the 2021 Nobel Prize awarded for the discovery of

mechanosensitive Piezo Ca2+ channels (34). Specifically, upon

mechanical stimulation, the Piezo1 channel is opened by

rearrangement of cytoskeletal actin anchored to the proximal of

Piezo1, thereby eliciting Ca2+ influx which induces cell signaling for

a variety of activities (35–42). Although a mouse model of Piezo1

conditional knockout in OC lineage cells showed no bone

phenotype (43), in vitro results did show that shear stress can

suppress OC-genesis (44, 45). Therefore, we were confident in

hypothesizing that Piezo1 expressed on OC lineage cells is

associated with the pathogenic bone phenotype. Here, we report

that Piezo1 is the major mechanosensory receptor expressed on pre-

OCs and that diminished mechanostress to pre-OCs can impede the

Piezo1-mediated downmodulation of OC-genesis in periodontitis

without affecting the magnitude of local inflammatory mediators.

We further discovered that the activation of Piezo1 expressed on

pre-OCs elicits a unique cell signaling axis involving PP2A-

mediated dephosphorylation of Akt which, in turn, suppresses the

expression of NFATc1, a master TF for RANKL-induced

OC-genesis.
2 Materials and methods

2.1 Animals

To generate Piezo1fl/fl LysM-Cre (Piezo1DLysM) mice, Piezo1fl/fl

mice (Jackson Laboratories, stock no. 029213) mice were crossed

with LysM-Cre mice (Jackson Laboratories, stock no. 004781).
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Piezo1fl/fl littermates were used as controls. Genotypes were

confirmed by PCR from tail DNA. Wild-type C57BL/6J mice

(Jackson Laboratories) were used in experiments not requiring

genetic manipulation. 6- to 8-week-old males were used. The

experimental procedures employed in this study were approved

by the NSU IACUC (Protocol #TK7).
2.2 Cell culture

Bone marrow-derived mononuclear cells (BMMCs) were

collected from tibias and femurs of mice and were cultured with

minimum essential medium-a (MEM-a) supplemented with 10%

fetal bovine serum (FBS), streptomycin (100 µg/mL), penicillin (100

U/mL), Amphotericin B (0.25 µg/mL), L-glutamine (292 mg/mL)

and M-CSF (25 ng/mL; BioLegend, San Diego, CA, USA) at 37 °C in

humidified air with 5% CO2 for 3 days to obtain pre-OCs.

Subsequently, pre-OCs were differentiated to OCs using RANKL

(10 ng/mL; BioLegend). Human Peripheral Blood Mononuclear

Cells (PBMCs) were purchased from STEMCELL Technologies

(Vancouver, Canada). PBMCs were stimulated with M-CSF (30

ng/mL; BioLegend) at 37 °C in humidified air with 5% CO2 for 3

days. Human pre-OCs were differentiated to OCs using RANKL

(100 ng/mL; BioLegend). Yoda1 (Tocris), GsMTx4 (Tocris),

LY294002 (Cell Signaling Technology), FK506 (Tocris), Ocadaic

acid (R&D Systems) and DT-061 (Tocris) were administered with

validated concentration. Aa vehicle control, the same concentration

of Dimethylsulfoxide (DMSO, Sigma) was used.
2.3 Cell culture under flow or hydrostatic
pressure

Shear stress was generated by a rocker (Thermo Fisher

Scientific) or ibidi pump system (ibidi, Fitchburg, WI). Pre-OCs

were seeded in wells of a 24-well plate (1x106 cells/well) and then

stimulated with shear stress by rocking (15°, 30 rpm). On the other

hand, for the ibidi pump system, pre-OCs were cultured in the µ-

Slide I 0.4 Luer (3x105 cells/well). Cells were cultured with shear

stress at 5 dyn/cm2 or 20 dyn/cm2. For hydrostatic pressure (HP)

loading, cell culture dishes were positioned at the bottom of a

beaker (1000 ml or 100 ml), and medium was added to heights of

5.5 cm, generating consistent HP. Control cells were cultured with a

1.2 cm medium height under atmospheric pressure (46).
2.4 Tartrate-resistant acid phosphatase
staining

TRAP staining was performed with a TRAP staining kit (Sigma-

Aldrich) according to the manufacturer’s protocol. Briefly, OCs

were fixed by a citrate (0.38 mol/L)/acetone solution for 30 seconds

at room temperature. Cells were stained with a TRAP staining

solution (L(+)-tartrate buffer, 0.67 mol/L; acetate buffer, 2.5 mol/L;

Naphthol AS-BI phosphoric acid, 12.5 mg/mL; and Fast Garnet
Frontiers in Immunology 03
GBC base, 7.0 mg/mL) for 10 min at 37°C in the dark. OCs with ≥ 3

nuclei were determined to be multinucleated OCs.
2.5 Pit formation assay

A plate coated with calcium phosphate was prepared according

to previous reports (47, 48). Briefly, 0.12 M Na2HPO4 and 0.2 M

CaCl2 (50 mM Tris-HCl, pH 7.4) were mixed at 37°C. The calcium

phosphate slurry was washed with sterile water and then applied

into wells of a culture plate and dried at 37°C overnight. BMMCs

(3.0 × 105 cells/well for a 96-well plate or 1× 106 cells/well for a 24-

well plate) were then seeded in wells of calcium phosphate-coated

plates, respectively. After treating cells for 6 days, the plates were

washed with 10% sodium hypochlorite for 10 min and then dried

overnight. The pit areas were microscopically imaged (Evos Cell

Imaging System, Thermo Fisher Scientific). Images were analyzed

using ImageJ software (version 1.50).
2.6 Measurement of intracellular Ca2+

concentration

Cells (4×104 cells/well) were seeded in wells of a black wall/clear

bottom plate. Fluo-8 No Wash Calcium Assay Kit (AAT Bioquest,

Pleasanton, CA) was employed to measure Ca2+ influx in

accordance with the manufacturer’s protocol. Briefly, Fluo-8 NW

and 0.04% Pluronic™ F-127 in HHBS buffer were added for 30 min

at 37°C, followed by 30 min at room temperature. After Yoda1

treatment, fluorescence alternately excited at 490 nm and emission

at 525 nm was measured every 10 sec using a FilterMax F5

Microplate Reader (Molecular Devices, San Jose, CA).

Ca2+ influx was also analyzed under flow conditions with the

BioFlux One system (Fluxion Biosciences, Oakland, Ca) or ibidi

pump system (ibidi). For the BioFlux One system, a 48-well

microfluidic plate (Fluxion Biosciences) was first coated for 1 h at

room temperature with rat tail type 1 collagen (50 mg/ml; Thermo

Fisher Scientific) in 0.2% acetic acid. Before using the plate,

microfluidic channels were washed with PBS, followed by the

introduction of cells in the channels. After 24 h, the Fluo-8 No

Wash Calcium Assay Kit was employed to image Ca2+ influx. The

assay was performed with a wall shear stress at 20 dyn/cm2.

Fluorescence intensity was measured and analyzed by the BioFlux

One system (Fluxion Biosciences). For ibidi pump system, pre-OCs

were seeded in µ-Slide I 0.4 Luer (ibidi) at 3x105 cells/plate. The

assay was performed with a wall shear stress at 20 dyn/cm2.

Fluorescence intensity was measured and analyzed by the EVOS

(Thermo Fisher Scientific).
2.7 siRNA transfection for knockdown of
Piezo1.

BMMCswere seeded inwells of a96-wellplate (3×105 cells/well) or

24-well plate (1×106 cells/well). After 24 h, BMMCs were maintained
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in Opti-MEM™ Reduced SerumMedium (Thermo Fisher Scientific)

and transfected with 50 nM Piezo1-specific siRNA (107969,

Thermo Fisher Scientific; siPiezo1), PP2A-specific siRNA (152168,

Thermo Fisher Scientific; siPP2A), PP2B-specific siRNA (162266,

Thermo Fisher Scientific; siPP2B) or negative control siRNA

(AM4611, Thermo Fisher Scientific; siCTL) using Lipofectamine™

RNAiMAX Transfection Reagent (Thermo Fisher Scientific)

according to the manufacturer’s instructions. 48 h post- transfection,

BMMCs were used for indicated experiments.
2.8 Quantitative polymerase chain reaction

Total RNA was extracted from pre-OCs using the PureLink

RNA Mini Kit (Thermo Fisher Scientific), following the

manufacturer’s protocol. The first strand cDNA was assembled

from 100 ng of sample RNA using a Verso cDNA Synthesis Kit

(Thermo Fisher Scientific). Amplification reactions were performed

by Taqman Fast Advanced Master Mix (Thermo Fisher Scientific)

or SYBR Green Master Mix (Thermo Fisher Scientific). The

resultant cDNA was amplified by specific probes (Thermo Fisher

S c i e n t ifi c ) f o r Gapdh (Mm999 9 9 9 1 5 _ g 1 ) , P i e z o 1

(Mm01241549_m1), Piezo2 (Mm01265861_m1), Trpa1

(Mm01227437_m1), Trpv4 (Mm00499025_m1), Stoml3

(Mm01289590_m1), Kcnk10 (Hs01026663_m1), Kcnk4

(Mm00434626_m1), Kcnk1 (Mm00434624_m1), Ocstamp

(Mm00512445_m1) , Mmp9 (Mm00442991_m1) , Ctsk

(Mm00484039_m1) , Acp5 (Mm00475698_m1) , Oscar

(Mm01338227_g1), Nfatc1 (Mm00438670_m1), Tnfsf11

(Mm00441906_m1) and Tnfsf11b (Mm00435454_m1) on a

QuantStudio™ 3 (Thermo Fisher Scientific). The ratios of mRNA

levels to those of the control gene were calculated using the DCt
method (2−DDCt).
2.9 PCR array

After extraction of total RNA from cells and synthesis of cDNA

described above, the resultant cDNA was tested using Taqman Fast

Advanced Master Mix (Thermo Fisher Scientific) and TaqMan®

Array Mouse Osteogenesis (Thermo Fisher Scientific) according to

the manufacturer’s instruction. An integrated web-based software

package was used for data analysis (https://www.thermofisher.com/

account-center/simplified-username.html).
2.10 Phospho antibody array

The Phospho Explorer Antibody Array was used according to

the manufacturer’s instruction (Full Moon BioSystems, Sunnyvale,

CA) to profile the levels of phosphorylated proteins. Briefly, cell

lysate from BMMCs was collected and quantified by BCA Protein

Assay Kit (Thermo Fisher Scientific). Microarray slides were

blocked, and proteins were labeled using biotin and then coupled

to slides. Slides were washed, and Cy3-streptavidin was added to
Frontiers in Immunology 04
bind biotin. Fluorescence intensity was measured and analyzed by

the manufacturer (Full Moon BioSystems). The clustering of target

proteins and signaling pathways was assessed using Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Ingenuity

Pathway Analysis (IPA) (Qiagen, Germantown, MD).
2.11 Western blotting

After incubation for various times, pre-OCs were lysed by

incubation on ice for 30 min with RIPA buffer (Thermo Fisher

Scientific) supplemented with a protease inhibitor cocktail (Sigma-

Aldrich). Protein concentration of the resultant lysates was

measured with the BCA Protein Assay Kit (Thermo Fisher

Scientific). Fifteen mg of sample per lane were loaded onto a 4–

12% sodium dodecyl sulfate–polyacrylamide gel electrophoresis

(SDS-PAGE) gel (Thermo Fisher Scientific). Proteins separated in

the SDS-PAGE gel were electrotransferred to a polyvinylidene

difluoride membrane. The detection of specific proteins in pre-

OCs was assessed using anti-phospho-Akt rabbit mAb (193H12,

1:1000; Cell Signaling Technology, Danvers, MA), anti-Akt rabbit

mAb (C67E7, 1:1000; Cell Signaling Technology), anti-phospho-

p38 MAPKs rabbit mAb (3D7, 1:1000; Cell Signaling Technology),

anti-p38 MAPKs rabbit mAb (D13E1, 1:1000; Cell Signaling

Technology), anti-phospho-ERK rabbit mAb (D13.14.4E, 1:2000;

Cell Signaling Technology), anti-ERK rabbit mAb (137F5, 1:2000;

Cell Signaling Technology), anti-phospho-JNK rabbit mAb (81E11,

1:1000; Cell Signaling Technology), anti-JNK rabbit mAb (9258,

1:1000; Cell Signaling Technology), anti-IkBa rabbit mAb (L35A5,

1:1000; Cell Signaling Technology), anti-phospho-PP2A mouse

mAb (F-8, 1:1000; Santa Cruz Biotechnology, Dallas, TX), anti-

PP2A mouse mAb (6F9, 1:1000; Santa Cruz Biotechnology) or an

anti-GAPDH rabbit mAb (14C10, Cell Signaling Technology).

Protein bands that reacted with the respective antibody were

visualized by incubation with an HRP-conjugated rabbit or

mouse secondary antibody (Cell Signaling Technology), followed

by detection using ECL Western Blotting Substrate (Thermo Fisher

Scientific). Densitometric analysis was performed using ImageJ

software (Version 1.50).
2.12 Co-immunoprecipitation assay

To examine the interaction between RANK and TRAF6 or

Piezo1 and PP2A, Co-IP was performed. Pre-OCs were lysed in ice-

cold RIPA buffer (Thermo Fisher Scientific) supplemented with a

protease inhibitor cocktail (Sigma-Aldrich). The lysates were

cleared by centrifugation and incubated overnight at 4°C with an

anti-RANK antibody (sc-374360, 10 ug/ml/sample, Santa Cruz

Biotechnology). Or anti-Piezo1 antibody (2-10, 10 ug/ml/sample,

Thermo Fisher Scientific). Immune complexes were captured using

Protein A/G magnetic beads (Thermo Fisher Scientific) for 1 h at

RT with gentle rotation. Beads were washed three times with Tris-

Buffered Saline with Tween 20 (TBST), and bound proteins were

eluted in LDS sample buffer, followed by immunoblotting with anti-
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TRAF6 antibody (E2K9D, 1:1000; Cell Signaling Technology) or

anti-PP2A antibody (F-8, 1:1000; Santa Cruz Biotechnology).
2.13 Immunofluorescence

Pre-OCs cultured on Millicell EZ SLIDE (Sigma) were fixed with

4% paraformaldehyde at room temperature for 10 min,

permeabilized with 2% Triton X-100, and blocked with 5% BSA in

PBS for 1 h. Cells were incubated with anti-Piezo1 antibody

conjugated with Alexa Fluor® 594 (CL9714, 1 ug/ml, Novus,

Centennial, CO), isotype control antibody conjugated with Alexa

594 (141945, 1 ug/ml, Novus), anti-NFATc1 antibody (7A6, 1 ug/ml,

Santa Cruz Biotechnology) or isotype control antibody (MOPC-21,

1 ug/ml, Bio X Cell) at 4°C overnight. Cy3-conjugated goat anti-

mouse IgG secondary antibody (1:100, Jackson ImmunoResearch,

West Grove, PA) was applied for 1 hour at room temperature,

followed with CellMask™ Green Actin Tracking Stain (Thermo

Fisher Scientific) and Fluoromount-G containing DAPI (Thermo

Fisher Scientific). Immunofluorescence was imaged with a Zeiss

LSM880 confocal microscope (Carl Zeiss, Jena, Germany).
2.14 Mouse model of periodontal disease

To induce periodontal disease in mice (6–8 weeks old; male or

female), the maxillary second molar was attached with a 5–0 silk

ligature, following the previously published protocol (49, 50). Yoda1

(0.4 mg/kg), DT-061 (0.4 mg/kg) or DMSO (0.86%) was diluted in

PBS with 5% ethanol, followed by injection through the

intraperitoneal route every 2 days (day 0, 2, 4 and 6). After 7

days, mice were euthanized for postmortem analyses.
2.15 Monitoring Blood Perfusion Unit (BPU)

Real-time BPU was monitored by Laser Doppler Flowmetry

(OxyFlo pro, Oxford Optronix, UK). A fine needle-type blood flow

probe (Diameter: 0.5 mm, Oxford Optronix) was attached to the

mesial or distal surface of palatal gingiva, respectively (Figure 1).

Real-time data were captured and analyzed by Labchart 8 software

(ADInstruments, Colorado Springs, CO).
2.16 Histological analysis

Murine maxillary bones were fixed in 4% paraformaldehyde

overnight at 4°C before decalcification in 10% EDTA at 4°C for 2

weeks. Tissues were embedded in an OCT compound (Sakura

Finetek USA, Torrance, CA, USA) overnight at −20°C and cut

into 8 mm sections with a cryostat (Leica Biosystems, Deer Park, IL).

TRAP staining of decalcified periodontal tissue was performed

using an Acid Phosphatase Leukocyte (TRAP) Kit (Sigma-

Aldrich), as described above, followed by nuclear counterstaining
Frontiers in Immunology 05
with methyl green. Sections were imaged with an EVOS XL Core

microscope (Thermo Fisher Scientific). For immunofluorescence-

based detection of OC-STAMP and phospho-Akt, the sections were

reacted with anti-OC-STAMP rabbit pAb (HPA031116, 1:200;

Sigma-Aldrich) or anti-phospho-Akt rabbit mAb (D9E, 1:200;

Cell Signaling Technology) as the primary antibody at 4°C

overnight. Cy3-conjugated anti-rabbit IgG FC goat pAb (1:200;

Jackson ImmunoResearch) was used as a secondary antibody. The

stained sections were mounted with Fluoromount-G containing

DAPI (Thermo Fisher Scientific). Immunofluorescence was

observed with a Zeiss LSM880 confocal microscope (Carl Zeiss,

Jena, Germany).
2.17 Micro-CT analysis

Mouse maxillary alveolar bone was fixed in 4% phosphate-

buffered paraformaldehyde and stored at 4˚C for 16 hours. Micro-

CT images were obtained with the Microfocus X-ray CT scanning

system (Skyscan 1176, Bruker, Billerica, MA), using the following

settings: acceleration voltage, 50 kV; current, 500 µA; voxel size, 18

µm/pixel; matrix size, 2,000 × 1,336. Images were reconstructed with

NRecon software, version 1.7.0.3 (Bruker), and images of both

ligature side and control untreated side were acquired. As regions

of interest (ROI), 50 sliced images coronally from the contact point

between the maxillary first molar and maxillary second molar were

evaluated. Bone volume (BV) of the whole palatal alveolar bone,

including the ipsilateral hard palate, was measured using three-

dimensional (3D) analysis CTAn software, version v.1.18 (Bruker).

3-dimensional images were obtained using CTVox software, version

3.2.0 (Bruker). To evaluate periodontal bone resorption, distances

from the cement–enamel junction to the alveolar bone crest on the

palatal side of root were measured for the maxillary second molar.
2.18 Statistical analysis

Statistical analyses were performed by one-way ANOVA and

Tukey’s Honestly Significant Difference (HSD) test to compare

differences among multiple groups and Student’s t-test for

comparisons between two groups. All statistical analyses were

performed using GraphPad Prism, version 10.0.1 (GraphPad

Software, Inc., La Jolla, California, USA). Statistical significance

was considered to be at p < 0.05. All data were expressed as the

mean ± SD.
3 Results

3.1 Blood flow was reduced in murine
periodontitis

Although, as noted above, the blood flow rate in the vasculature

of human periodontitis lesions is significantly diminished (30);
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however, it is unknown whether blood flow in the periodontitis

induced in mice is also reduced. Therefore, to induce murine

periodontitis, a silk ligature was attached to the second maxillary

molar for 7 days. To assess the impact of periodontitis on the local

blood flow, the blood perfusion unit (BPU) of gingival tissue was

measured using Laser Doppler Flowmetry. Irrespective of
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inflammation induced in the periodontal tissue, the BPU in

periodontally diseased tissue was significantly reduced compared

to that in healthy tissue (Figures 1A, B). Since interstitial pressure is

generally considered to be proportional to the local blood flow rate

(51, 52), it is assumed that the mechanical stress to the cells in the

laminar propria of periodontal tissue is also reduced.
FIGURE 1 (Continued)
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FIGURE 1 (Continued)

Shear stress inhibited OC-genesis through Piezo1. (A, B) Real-time BPU that reflects the flow rate of local vasculature in the palatal gingival tissue of
a live mouse was measured by Laser Doppler Flowmetry as shown. BPU was measured at the mesial and distal sites of second maxillary molar with
or without a silk ligature to induce periodontitis. Continuous detections of temporal change of real-time BPU (50 s) were displayed. (C, D) MCSF (25
ng/ml)-primed murine bone marrow-derived mononuclear cells were employed as pre-OCs. TRAP staining was conducted after 6 days of RANKL
treatment. Scale bar: 10 mm (E) Expression of mechanosensory receptors, including Piezo1, Piezo2, Trpv1, Trpv4, Stmol3, Kcnk10, Kcnk1 and Kcnk4,
in pre-OCs was determined by qPCR. (F, G) Piezo1 protein expression was detected by flow cytometry and immunofluorescence, respectively.
Scale bar: 50 mm (H) Fluo-8-treated pre-OCs with or without GsMTx4 (1 uM) were stimulated by shear flow at 20 dyn/cm2 using the Bioflux
microfluidics system. Ca2+ influx was visualized and analyzed with the Bioflux system. (I) To silence Piezo1 expression, Pre-OCs were transfected
with siRNA specific to Piezo1 (siPiezo1). siPiezo1-mediated silencing efficacy was evaluated by qPCR and immunofluorescence staining in
comparison to control siRNA treatment (siControl). (J) siPiezo1-mediated Piezo1 loss-of-function was determined by measuring Yoda1-enhanced
Ca2+ influx. Fluo-8-treated pre-OCs were stimulated with Yoda1; subsequently, kinetic fluorescence intensity was measured every 10 sec by plate
reader. (K) Fluo-8-treated pre-OCs in µ-Slide I 0.4 Luer were stimulated with 20 dyn/cm2 of shear stress generated by the ibidi pump system,
followed by time-lapse images taken every 1sec. Representative image after 1 min of shear flow exposure was displayed. Scale bar: 100 mm (L) TRAP
staining or pit formation assay were conducted after 6 days or 9 days of RANKL treatment, respectively. The number of TRAP-positive
multinucleated OCs was measured, and measurement of pit area was performed. Scale bar: 10 mm. Data represent the mean ± SD of three
independent experiments. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.
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3.2 Mechanical stress suppressed RANKL-
induced OC-genesis in vitro

According to a previous report, the blood flow rate in the

microcapillaries of healthy periodontal tissue is approximately 20

dyn/cm2, whereas that in diseased periodontal tissue is diminished

to approximately 5 dyn/cm2 30. To compare the effect offlow rates, a

microfluidics system was employed to evaluate the effects of fluid

shear stress on RANKL-induced OC-genesis. OC-genesis, as well as

OC-related gene expression (Ocstamp, Mmp9, Acp5, Oscar,

Dcstamp and Nfatc1), were significantly suppressed by a high flow

rate (20 dyn/cm2) compared to a low flow rate (5 dyn/cm2) or static

condition (Figures 1C, D; Supplementary Figure S1a). However,

Piezo1 expression did not significantly differ between high- or low-

flow conditions and static control (Supplementary Figure S1a).

Moreover, shear flow generated in the tissue culture plate by a

rocker (15°, 30 rpm) also suppressed RANKL-induced OC-genesis

(Supplementary Figures S1b, c). Hydrostatic pressure (HP) via the

tissue interstitial fluid has an important role in providing mechano-

stimulation to cells (53). To examine the effect of HP on OC

differentiation, the OCs were cultured in two different culture

flasks following the protocol published by another group (46, 54).

A 5.5 cm deep beaker with 100 ml of medium gives approximately

HP of 3.7 mmHg, compared to a 1.2 cm deep flask with 100 ml of

medium (0 mmHg). Such a difference of HP promoted Piezo1

stimulation, which, in turn, significantly suppressed OC

differentiation (Supplementary Figure S1d).
3.3 Piezo1 expressed on pre-OCs
functioned as a mechanosensory Ca2+

channel

Out of 8 major mechanoreceptors (Piezo1, Piezo2, Trpv1, Trpv4,

Stoml3, Kcnk10, Kcnk4 and Kcnk1), Piezo1 mRNA was expressed at

the highest level (Figure 1E). The protein expression of Piezo1 in

pre-OCs was confirmed by both immunofluorescence staining and

flow cytometry (58.5%) (Figures 1F, G). GsMTx4, a spider venom

that selectively inhibits Piezo1 (55–57), suppressed Ca2+ influx
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induced in pre-OCs via microfluidics-generated shear flow

(Figure 1H), indicating that pre-OCs appeared to sense shear

flow-generated mechanical force via Piezo1.
3.4 Sensing of shear stress by Piezo1
expressed on pre-OCs suppressed in vitro
OC-genesis

RANK-positive mononuclear pre-OCs, which are derived from

monocyte lineage cells, circulate in the vasculature and migrate to

bone (58). Fluid shear stress influences the local migration of

circulating immune cells, such as CD4 T cells, neutrophils, and

monocytes (59–61). As demonstrated by the above-noted result

(Figure 1E) and a previous report (62), Piezo1, but little, or no,

Piezo2, is expressed by pre-OCs. The functionality of Piezo1 in pre-

OCs was examined by siRNA-based loss-of-function assay. The

silencing of Piezo1 mRNA by Piezo1-specific siRNA (siPiezo1) in

pre-OCs (Figure 1I) downmodulated Ca2+ influx induced by Yoda1,

a chemical agonist of Piezo1, which was not observed in the pre-

OCs treated with siControl (Figure 2J). The shear flow (20 dyn/cm2)

created in a microfluidics system caused an influx of Ca2+ in pre-

OCs. Such shear flow-induced Ca2+ influx was, however, abrogated

by treating pre-OCs with siPiezo1 (Figure 2K). Also, mechanical

stress generated by the rocker suppressed OC-genesis-related genes,

including the expression of OCSTAMP, MMP9 and ACP5, while

mature TRAP+ OC formation and pit formation were

downregulated by treating pre-OCs with siPiezo1 (Figure 2L;

Supplementary Figure S1g). These data indicated that Piezo1

expressed in pre-OCs acts as a mechanosensor that downregulates

RANKL-induced OC-genesis.
3.5 Pharmacological Piezo1 activator
inhibited OC-genesis and function

Yoda1 is a chemical agonist that can selectively open Piezo1 and

promote intercellular Ca2+ to initiate a variety of biological events

(63–66). We therefore used Yoda1 to determine if RANKL-induced
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OC-genesis was regulated by Piezo1. We found that TRAP-positive

multinucleated OC formation, as well as bone resorptive activity,

were both significantly diminished by Yoda1 administration

(Figure 2A). In addition, GsMTx4 inhibited Yoda1-induced Ca2+

influx in pre-OCs (Supplementary Figure S1e). To test the effect of

Yoda1 on human OC-genesis, peripheral blood mononuclear cells

(PBMC)-derived pre-OCs were employed. Yoda1-mediated Piezo1

activation also inhibited RANKL-mediated human OC-genesis

(Supplementary Figure S2a). PCR array was used to screen for

RANKL-stimulated genes that were impaired by Yoda (Figure 2B).

Yoda1-mediated suppression of OC-genesis-associated genes

(Ocstamp, Ctsk, Mmp9, Acp5 and Oscar) was also confirmed by

qPCR (Supplementary Figure S2b). Upon stimulation with RANKL,

NFATc1, a master TF of OC-genesis (10, 67, 68), translocates from

cytoplasm to nucleus, and induces the transcription of genes

required for OC-genesis and fusion (69, 70). Yoda1 inhibited the

expression of Nfatc1 gene and its protein during RANKL-induced

OC-genesis (Figures 2C–E and Supplementary Figure S5a).

Furthermore, Yoda1 inhibited NFATc1 nuclear localization and

disrupted the redistribution of b-actin from the inner to the outer

regions, suggesting that Yoda1 impairs osteoclast mobility,

preventing fusion with adjacent OCs (Figure 2E). These results

suggested that the pharmacological activation of Piezo1 caused the

downregulation of RANKL-induced OC-genesis in conjunction

with the suppression of both Nfatc1 expression and NFATc1

nuclear translocation.
3.6 Piezo1 activation by Yoda1 strongly
suppressed Akt phosphorylation.

Piezo1 is reported to provoke intracellular signaling activation

in numerous cells (37, 71, 72). However, Piezo1-related signaling in

OCs is still unknown. To address this question, a phospho antibody

array was performed to discover the specific signaling of Piezo1 in

pre-OCs in vitro. A search of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) and Ingenuity® Pathway Analysis (IPA®) found

PI3K/Akt signaling to be the most likely Piezo1 signaling pathway

(Figure 3A). Akt is a serine/threonine kinase that plays a critical role

in cell survival, growth, and metabolism. It is well known that Akt is

closely involved in OC-genesis (73, 74). Akt phosphorylation

activates GSK3b, then evokes NFATc1 nuclear translocation

during OC formation (75–77). As further confirmation, the

inhibition of PI3K/Akt signaling by LY294002, a morpholine-

containing chemical compound, resulted in suppressed OC

formation and Nfatc1 expression, suggesting that PI3K/Akt

signaling is, indeed, involved in OC-genesis (Supplementary

Figure S1f). In addition, Yoda1 application significantly reduced

Akt phosphorylat ion and moderate ly inhibi ted ERK

phosphorylation (Figure 3B). The inhibitory effect of Yoda1 on

Akt phosphorylation in OCs was observed in a time-dependent

manner, but it was diminished in Piezo1-deficient OCs (Figure 3C;

Supplementary Figure S5b)4f Moreover, shear flow-mediated Akt

dephosphorylation was regulated via Piezo1 (Figure 3D;

Supplementary Figure S5b). Therefore, Akt dephosphorylation
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induced by Piezo1 activation is associated with OC formation.

RANKL/RANK signaling is known to involve the TRAF6/PI3K/

Akt pathway in OCs (78). To further clarify the interaction between

Piezo1 activation and RANK/TRAF6/PI3K signaling, we examined

the effects of Yoda1 on RANK/TRAF6 binding and PI3K

phosphorylation. Piezo1 activation by Yoda1 suppressed RANK/

TRAF6 binding, which was accompanied by a reduction in PI3K

phosphorylation (Figure 3B, E). However, unlike the strong

suppression observed in Akt phosphorylation (Figure 3B), PI3K

phosphorylation was only partially inhibited by Yoda1. These

findings indicate that Piezo1 activation partially regulates OC-

genesis by interfering with RANK/TRAF6/PI3K signaling.
3.7 PP2A, not Calcineurin, is involved in
Piezo1-induced Akt dephosphorylation in
OCs.

In the absence of extracellular Ca2+, Yoda1 was not able to

induce Ca2+ influx in pre-OCs, whereas Yoda1 induced Ca2+ influx

in pre-OCs suspended with Ca2+ at 2 mM (normal Ca2+

concentration in medium) and 40 mM (high Ca2+ concentration

representing on the bone surface) (Figure 4A; Supplementary

Figure S5c). BAPTA-AM is mostly used for cell-permeable

intercellular Ca2+ chelating agent (79, 80). Whereas BAPTA-AM

could block Yoda1-induced intercellular Ca2+ influx, Yoda1 could

induce Akt-dephosphorylation in the presence of BAPTA-AM,

suggesting that a Ca2+-independent pathway mediates Yoda1-

induced Akt dephosphorylat ion in OCs (Figure 4D;

Supplementary Figure S5d). Akt is regulated by the protein

phosphatase family, such as protein phosphatase 2A (PP2A) or

protein phosphatase 2B (PP2B), known as calcineurin (81). We

demonstrated that okadaic acid, a PP2A inhibitor, but not FK506, a

calcineurin inhibitor, could counteract Yoda1-induced

dephosphorylation of Akt (Figures 4C, F; Supplementary Figures

S5e, d). Subsequently, as a gain-of-function approach, DT-061, a

PP2A activator (82), was employed to elucidate PP2A’s functional

role in OC-genesis. We demonstrated that DT-061, through its

activation of PP2A, significantly suppressed TRAP+ OC formation,

resorption pit formation, and Akt phosphorylation in RANKL-

stimulated pre-OCs (Figure 5A). RANKL-induced NFATc1

expression was also downregulated by treatment with the PP2A

activator DT-061 (Figure 5C). We found that Yoda 1

downregulated the induction of PP2A phosphorylation at Tyr307

in RANKL-stimulated pre-OCs (Figure 4D; Supplementary Figure

S5g). It is noteworthy that the PP2A catalytic subunit (PP2Ac) is

inactivated by single phosphorylation at Tyr307 residue (83),

whereas phosphorylation of Tyr127 and Tyr284 can activate PP2Ac

(84). These findings indicate that the activation of Piezo1 can

suppress phosphorylation of PP2A at Tyr307 to increase

phosphatase activity by PP2A which, in turn, suppresses the

phosphorylation of Akt, i.e., Akt dephosphorylation, as well as

NFATc1. RNAi-based silencing of PP2A mRNA expression

(siPP2A), but not calcineurin (siCalcineurin), resulted in

increasing Akt phosphorylation in Yoda1-treated OCs (Figure 4E
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FIGURE 2

Pharmacological Piezo1 activator inhibited OC-genesis and function. (A) Pre-OCs were treated with RANKL (10 ng/ml) in the presence or absence of
Yoda1 (5 µM) or vehicle control. After 6 days, TRAP-positive OCs with three or more nuclei were counted as mature OCs. Pit formation activity by
OCs was evaluated by imaging and calculation using Image J (Version 1.50). Scale bar: 10 mm (B) PCR array was performed to identify osteoclast-
related genes regulated by Yoda1. (C, D) NFATc1 mRNA and protein expression was determined from pre-OCs stimulated with or without Yoda1 at
day 1, day 2 and day 3 by qPCR or Western blot analysis, respectively. GAPDH was loading control. Densitometric analysis of three independent
experiments was performed (Supplementary Figure S11). (E) Immunofluorescence was employed to image the localization of NFATc1 in pre-OCs at
day 3. Nucleus occupancy of NFATc1 was evaluated by Imaris. Cells with NFATc1 present in the nucleus were counted. Scale bar: 10 mm. Data
represent the mean ± SD of three independent experiments. *p < 0.05 ***p < 0.001 ****p < 0.0001.
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FIGURE 3

Piezo 1 activation by Yoda1 strongly suppressed Akt phosphorylation. (A) Phospho Explorer Antibody Array was performed to determine Yoda1-
mediated signaling pathway in pre-OCs. KEGG and IPA were used for bioinformatics analysis. (B) Pre-OCs were stimulated with RANKL (10 ng/ml) in
the presence or absence of Yoda1 (5 uM) for 30 min to monitor protein phosphorylation, including Akt, GSK-3b, PI3K, p38MAPK, ERK, JNK and NF-kB.
siRNA-transfected OCs were cultured with shear flow, and samples were collected to monitor Akt phosphorylation by Western blotting.
Densitometric analysis was conducted using ImageJ software (Version 1.50). (C) Pre-OCs from Piezo1flox/flox mice or Piezo1LysMD mice were
stimulated with Yoda1 for the indicated time courses, and Akt phosphorylation was assessed by Western blotting. (D) Pre-OCs treated with siRNA for
Piezo1 or negative control were stimulated with shear stress at 20 dyn/cm2, and then Western blotting was preformed to determine Akt
phosphorylation. (E) Pre-OCs were stimulated with Yoda1 for 30min, and cell lysates were subjected to Co-IP to analyze the interaction between
RANK and TRAF6. Representative band images are shown from three independent experiments. Data represent the mean ± SD of three independent
experiments. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.
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FIGURE 4

Piezo1 activation in OCs induced PP2A-mediated Akt dephosphorylation in a Ca2+-independent manner. (A) Pre-OCs were stimulated with Yoda1 in the
medium containing 0, 2 or 40 mM Ca2+. Akt phosphorylation was evaluated by Western blotting and Ca influx was observed. (B) Pre-OCs were
preincubated with BAPTA-AM (2uM) constituted in Hanks’ Balanced Salt Solution (HBSS) and 0.1% of Pluronic F-127 for 30 min. After washing with HBSS
twice, fresh medium was added followed pre-OCs were stimulated with Yoda1. Akt phosphorylation was evaluated by Western blotting and Ca influx
was observed. (C) Following preincubation with okadaic acid (protein phosphatase inhibitor) (250 nM) or FK506 (calcineurin inhibitor) (1 uM) for 1 hour,
pre-OCs were incubated with Yoda1 (5 uM) for 30 min. Western blotting was performed to detect Akt phosphorylation. (D) Phosphorylation of the
PP2A catalytic subunit at Tyr307 was visualized by Western blotting. Densitometric analysis was performed, and data are shown. (E) Either siPP2A or
siCalcineurin was employed to evaluate Yoda1-mediated Akt dephosphorylation by Western blotting. Densitometric analysis was performed, and data are
shown. (F) Pre-OCs were stimulated with Yoda1 for 30min, and cell lysates were subjected to Co-IP to analyze the interaction between Piezo1 and
PP2A. (G, H) To determine the effect of PP2A or calcineurin on mechanical force downregulation of OC-genesis, pre-OCs were transfected with siPP2A,
siCalcineurin or siControl, followed by TRAP staining, pit formation assay and qPCR for Ocstamp, Acp5 and Catk expression. Scale bar: 10 mm. Data
represent the mean ± SD of three independent experiments. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.
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and Supplementary Figure S5h). Furthermore, treatment with

siPP2A, but not siCalcineurin, prevented shear stress-dependent

suppression of RANKL-stimulated OC-genesis, otherwise activated

by PP2A, including TRAP-positive OC formation, pit formation,

and OC-genesis-related gene expression (Figures 4G, H).

Collectively, these results suggested that Piezo1-mediated

mechanosensing by pre-OCs suppresses RANKL-induced OC-

genesis through cell signaling that involves the PP2A/Akt-

dephosphorylation pathway toward the suppression of NFATc1,

the master TF controlling OC-genesis. To confirm the correlation

between Piezo1 and PP2A, a Co-IP assay was performed using an

anti-Piezo1 antibody. The results demonstrated that PP2A directly

binds to Piezo1, indicating that Piezo1 activation in osteoclasts may

directly regulate PP2A-mediated Akt dephosphorylation

(Figure 4F; Supplementary Figure S5i).
3.8 Yoda1 administration prevents
osteoclastic bone resorption in a mouse
model of ligature-induced periodontitis

Given the decreased shear stress and increased osteoclastic bone

resorption observed in periodontitis, we examined the effect of

systemic (i.p.) injection of Yoda1 in the mouse ligature-induced

periodontitis model. Murine periodontitis was induced by the

attachment of a silk ligature at the upper second molar, following

previous reports (49, 50, 85). Systemically administered Yoda1

significantly suppressed bone resorption and ligature-induced

TRAP-positive OC formation in alveolar bone compared to

vehicle control (Figure 6A). It also inhibited the mRNA

expression of OCSTAMP, ACP5 and MMP9, but not RANKL

mRNA (Tnfsf11) or osteoprotegerin mRNA (Tnfsf11b)

(Figure 6B). Furthermore, the number of phosphorylated Akt-

positive OCs increased in mouse alveolar bone (Figure 6C).

These results revealed that Piezo1 activation by Yoda1 directly

reversed bone resorption in periodontitis by restoring the

mechanical stress-signaling in pre-OCs which was attenuated in

an inflammation-dependent fashion.
4 Discussion

Our findings indicate that Piezo1 plays a dual role in OC-genesis

and bone resorption. It negatively regulates OC-genesis by suppressing

the expression of key osteoclast marker genes, including Ocstamp,

Acp5, Mmp9, Ctsk, Oscar, and Nfatc1. This suppression occurs in the

context of healthy periodontal bone through the activation of the

negative regulator PP2A, which dephosphorylates Akt within the

RANKL-induced Akt/NFATc1 signaling pathway, thereby inhibiting

bone resorption. Finally, Piezo1 activation by a chemical agonist Yoda1

could downregulate pathogenically elevated OC-genesis in the alveolar

bone of periodontally diseased tissue, suggesting the therapeutic

potential of Piezo1 agonist.

It was reported that murine arthritis-associated osteoclastogenic

macrophages (AtoMs) comprise the CX3CR1
hi FoxM1+ pre-OCs-
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containing population in inflamed synovium and that they originate

from circulating bonemarrow cells (86). Our group also demonstrated

that locally produced macrophage migration inhibitory factor (MIF)

at the inflammatory bone lytic site is engaged in the chemoattraction

of circulating CXCR4+ pre-OCs to the inflammatory bone resorption

site (22). Accordingly, owing to lower blood flow velocity in

periodontitis (29), it is plausible that the diminished shear stress

may affect the fate of pre-OCs differentiating into mature OCs. In

support of this hypothesis, we observed a significant alteration in

blood flow during murine ligature-induced periodontitis,

characterized by reduced blood flow in periodontitis-affected tissue

compared to healthy control tissue (Figure 1B). We found that pre-

OCs express a functional Piezo1 mechanosensory ion channel

(Figure 1E) as a kind of negative rescue factor by the imposition of

shear force that otherwise downregulates OC formation via Piezo1 Ca2

+ ion channel (Figure 1L). Thus, it was further hypothesized that

Piezo1 may act as a major mechanoreceptor in circulating pre-OCs

and that once activated, Piezo1 channels could initiate the PP2A-Akt

signaling pathway to downmodulate the expression of genes

associated with OC differentiation.

Piezo1 is a key mediator of mechanotransduction in bone cells,

including osteoblasts, osteocytes and mesenchymal stem cells

(54, 87, 88). It is involved in the differentiation of mesenchymal

stem cells into osteoblasts or odontoblasts (46, 54), and is responsible

for creating mechanical force and converting it into biochemical

signals that regulate cellular responses. In response to mechanical

stimuli, Piezo1 channels open, allowing the influx of Ca2+ into OBs;

this Ca2+ influx then triggers a cascade of intracellular signaling

events that ultimately lead to bone formation, including, as

noted above, activation of ERK or, in our case, Akt cascade (89).

Wang et al. reported that the Piezo1/YAP1/collagen pathway is

associated with OB maturation in vivo and in vitro (43). Osteocytes

also sense mechanical force through Piezo1, and intracellular

signaling occurs in osteocytes through the Piezo1/Akt axis (88)

which appears to be transduced by PI3K (90). Our data

demonstrates that Piezo1 activation in osteoclasts downregulates

Akt signaling (Figures 3B–D), while shear stress did not alter

Piezo1 expression levels (Supplementary Figure S1a). This indicates

that Piezo1 in OCs plays a distinct mechanosensory role compared

with other bone cell types. Moreover, these findings suggest that the

mechanosensory function of Piezo1 in OCs is driven by its activation

state rather than by changes in expression. More specifically, based on

our study and those of others, mechanosensing via Piezo1 not only

promotes osteoblastic bone formation but also inhibits osteoclastic

bone resorption through distinctly facilitated Piezo1-mediated

cellular signaling pathways (Figure 3).

As previously noted, NFATc1 is a master TF controlling OC-

genesis. Ligation of RANKL to RANK expressed on pre-OCs elicits

cell signals involving the TRAF6/PI3K/Akt axis for induction of

NFATc1 nuclear-translocation which, in turn, activates OC-genesis

(10, 91). However, Yoda1, the Piezo1 agonist, inhibited NFATc1

expression in pre-OCs stimulated with RANKL (Figures 2C–E).

Phospho Antibody Array (Figure 3A) indicated that Akt plays a key

regulatory function in Piezo1-elicited cell signaling for OC-genesis.

Indeed, the PI3K/Akt axis plays a crucial role in OC formation (76),
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whereas interaction of Akt-mediated activation of GSK-3b
downmodulates OC formation via inhibition of nuclear

translocation of NFATc1 (76, 92, 93). Moreover, Yoda1 only

partially inhibited PI3K phosphorylation downstream of RANK/
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TRAF6 colocalization (Figure 3B; Figure 4F), whereas Akt

phosphorylation was strongly suppressed. Taken together, these

findings suggest that Piezo1-mediated signaling primarily

suppresses the Akt/NFATc1 axis.
FIGURE 5

DT-061, PP2A activator, attenuates OC-genesis via Akt signaling in periodontitis. (A) DT-061 (5 uM) or vehicle control was added to pre-OCs to
analyze OC-related gene expression, including Ocstamp, Acp5 and Mmp9, along with RANKL-mediated Akt phosphorylation. Scale bar: 10 mm
(B) DT-061 (0.4 mg/kg), or vehicle control (DMSO, 0.86%), was systemically injected into the periodontitis area of mice induced by silk ligation.
Scale bar: 1 mm (C) DT-061- (5 uM) or vehicle control-mediated NFATc1 protein expression was imaged. Scale bar: 5 mm. Results were presented as
the means ± SD. **p < 0.01 ***p < 0.001 ****p < 0.0001.
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FIGURE 6

Yoda1 administration prevents osteoclastic bone resorption in murine ligature-induced periodontitis in mice. A 5–0 silk ligature was placed around
murine maxillary second molar for 7 days to induce periodontitis. Yoda1 (0.4 mg/kg) or DMSO (as a vehicle control, 0.86%) was administered
systemically at day 0, 2, 4 and 6, respectively. (A) Bone resorption and TRAP-positive multinucleated OCs were evaluated by micro-CT analysis and
TRAP staining. Red scale bar: 1 mm, Black scale bar: 50 mm, M: Mesial side, D: Distal side, B: Buccal side, P: Palatal side. Red arrows indicate the
cortical bone of the alveolar bone. Black arrows indicate OCs. (B) Gingival tissue samples were harvested for qPCR to measure Ocstamp, Acp5,
Mmp9, Tnfsf11, Tnfsf11b and Il1b. (C) Frozen tissue sections of mouse model of periodontitis were employed to image phospho-Akt and OC-STAMP
double-positive cells in mouse model of periodontitis, and the number of double-positive cells was counted. (D) Schematic illustration of canonical
Ca2+-dependent and Ca2+-independent Piezo1 signaling in OCs. scale bar: 20 mm. Results were presented as the means ± SD. *p < 0.05 **p < 0.01
***p < 0.001 ****p < 0.0001.
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PP2A and PP2B, also known as calcineurin, are protein

phosphatases that dephosphorylate specific substrates and play

important roles in cell signaling and regulation (94, 95). We

demonstrated that Piezo1 activation in OCs promoted PP2A-

mediated Akt dephosphorylation (Figures 4A–C). Furthermore,

we determined that DT-061, a PP2A activator, exerts a crucial

preventive effect on OC-mediated bone resorption in murine

periodontitis (Figure 5B). Myung et al. reported that PP2A

inactivation promotes OC-genesis (96). Hyun-Jung et al. also

indicated that Dauricine, an isoquinoline alkaloid, decreases OC

formation via activation of PP2A (97). These reports and our results

strongly suggest that activation of PP2A in OCs can negatively

control their differentiation. Furthermore, we discovered, for the

first time, that activation of Piezo1 negatively regulates OC-genesis

via the PP2A/Akt axis. On the other hand, calcineurin (PP2B) is a

Ca2+- and calmodulin-dependent serine/threonine protein

phosphatase (98). Calcineurin inhibition by FK506 or siRNA was

ineffective in dephosphorylating Akt and failed to abrogate shear

stress-mediated suppression of OC formation (Figures 4C, G, H).

Indeed, chemical-based inhibition of calcineurin results in the

induction of osteoblastic bone formation (99, 100), but

suppression of OC formation (101, 102). In addition, Piezo1 was

found to colocalize with PP2A in osteoclasts (Figure 4F). Therefore,

we concluded that Piezo1-mediated dephosphorylation of Akt

depends on PP2A, not calcineurin, in OCs. Moreover, although

Piezo1 activation is reported to induce its downstream cell signaling

in Ca2+ influx-dependent manner (103, 104), we found that the

activation of Piezo1 expressed on OCs activates PP2A enzyme in a

Ca2+-independent fashion (Figure 4F).

Ca2+ influx is strongly associated with OC-genesis. RANKL/

RANK binding allows Ca2+ influx, following NFATc1 activation

(10). RANKL-mediated OC genesis requires a costimulatory signal

characterized by Ca2+ influx from ITAM receptors, such as OSCAR

and TREM2, triggered by type 3 collagen (11, 12). However, both

RANKL and type 3 collagen did not induce Ca2+ influx in pre-OCs

(Supplementary Figure S3). Ionomycin, a Ca2+ ionophore, is

reported to induce Ca2+ influx and OC-genesis (105). Instead,

however, ionomycin administration at previously reported

concentration (500 nM) increased Ca2+ influx, but suppressed

OC-genesis (Supplementary Figures S4a–c). Thus, it was clear

that intracellular calcium influx is not necessarily a positive

regulator of OC-genesis.

Ligature-induced periodontitis in mice is a well-established

model of periodontitis, as published in our previous reports (49,

106, 107). Here, we demonstrated that systemic Yoda1 application

in mice significantly prevented murine periodontal bone loss

induced by placement of ligature (Figure 6A). Yoda1 is widely

used as a specific pharmacological activator of Piezo1 and has

applications in the analysis of the bioactivity of Piezo1 in various

cells (63, 108, 109). For example, Yoda1 administration in mice

bolstered microglial phagocytosis resulting in Ab clearance in

Alzheimer’s disease (110). Yoda1 administration did not alter the

body weight of mice; instead, it increased cortical thickness and

cancellous bone mass in the distal femur of mice (111). Our results
Frontiers in Immunology 15
indicated that Yoda1 alone doesn’t affect bone resorption in the

control without-ligature group (data not shown). In addition to

significantly counteracting bone loss in the mouse model of

ligature-induced periodontitis, Yoda1 suppressed gene markers of

OC-genesis, including Ocstamp, Acp5 and Mmp9, but not Tnfsf11

and Tnfsf11b (Figure 6B), and phosphorylated Akt-positive OCs at

the alveolar bone surface of murine periodontitis (Figure 6C). These

results suggest that Yoda1 directly suppressed ligature-induced OC

formation in vivo.

In summary, we have identified that pre-OCs express

functional Piezo1, but not Piezo2, and that mechanical and

chemical act ivat ion of Piezo1 expressed on pre-OCs

downregulates RANKL-primed OC-genesis through Ca2

+-independent dephosphorylation of Akt by PP2A, rather than

the canonical Ca2+-dependent Piezo1 pathway reported in various

cell types (59, 87, 112). This mechanism ultimately suppresses the

expression of NFATc1, a master TF for RANKL-induced OC-

genesis (Figure 6D). Furthermore, systemic administration of

Yoda1, a Piezo1 chemical agonist, can substitute the mechanical

stress which was attenuated in the inflamed periodontium of the

mice with ligature-induced periodontitis, resulting in the

inhibition of local bone resorption mediated by osteoclasts. The

feedforward mechanism by Piezo1 chemical agonist that can

substitute the mechanical stress lost in the inflammatory bone

lytic lesion is anticipated to develop a novel regimen for

periodontitis as well as other inflammatory bone lytic diseases

such as rheumatoid arthritis and osteoporosis.
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