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Introduction: Bone integrity relies on mechanical stimulation, and its absence,
such as in disuse osteoporosis or periodontitis, enhances osteoclast-mediated
resorption. Although Piezol is a well-characterized mechanosensitive ion channel
in several cell types, its function in osteoclast lineage cells has remained unclear.
Methods: We examined Piezol expression and signaling in pre-osteoclasts (OCs)
using mouse models of periodontal bone loss and in vitro differentiation assays.
Genetic and pharmacological approaches were applied to manipulate Piezol
activity. Downstream pathways were assessed with a focus on NFATcl
regulation, Akt phosphorylation, and PP2A activity. The therapeutic potential of
the Piezol agonist Yodal was tested in inflammatory bone loss models.
Results: Piezol was selectively expressed and functional in pre-OCs, where it
acted as a mechanosensor to inhibit RANKL-induced OC-genesis. Activation of
Piezol suppressed NFATc1 via a Ca®*-independent mechanism involving PP2A-
mediated dephosphorylation of Akt, distinct from the canonical Ca*-calcineurin
pathway. In healthy periodontal bone, Piezol restrained osteoclast differentiation
under mechanical loading, preserving bone mass. During periodontitis, reduced
mechanical forces impaired Piezol function, resulting in unchecked osteoclast
activation and pathological resorption. Pharmacological activation of Piezol with
Yodal restored the anti-resorptive pathway and effectively prevented
inflammatory bone loss, even in the absence of mechanical input.

Discussion: Our findings redefine Piezol as a critical mechanosensor in pre-OCs
and establish the Piezol-PP2A-Akt axis as a novel regulator of NFATc1-driven OC-
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genesis. These results provide a mechanistic explanation for bone resorption in
mechanically compromised states and highlight Piezol activation as a therapeutic
strategy to mimic mechanical cues and suppress pathological OC-genesis in
conditions such as periodontitis, rheumatoid arthritis, and osteoporosis.

Piezol, periodontitis, osteoclast, mechanosensing, PP2A, Akt

1 Introduction

The onset and progression of periodontitis result from
overactivation of the host immune response against opportunistic
pathogens in the periodontal microbiome. This, in turn, leads to
tissue-destructive inflammation of the periodontium, including
alveolar bone resorption (1-3). Inflammation in the periodontium
triggers angiogenesis, vasodilation, and increased vascular
permeability, facilitating the enhanced migration of immune cells,
including monocytes and macrophages, in response to T lymphocytes
(4). Osteoclasts (OCs), monocyte lineage cells, play a key role in bone
resorption in inflammatory bone-lytic diseases, such as rheumatoid
arthritis (5, 6) and periodontitis (7, 8). Preosteoclasts (pre-OCs) are
tartrate-resistant acid phosphatase (TRAP)" mononucleated
monocyte-linage cells which fuse to form multinucleated mature
TRAP* OCs (9) by activation of the master transcription factor (TF),
Nuclear factor of activated T-cells cytoplasmic 1 (NFATcl) in a
Receptor activator of nuclear factor kappa-b ligand (RANKL)-
dependent manner (10). RANKL-mediated OC-genesis requires
permissive costimulatory signaling from immunoreceptor tyrosine-
based activation motif (ITAM) receptors (signaling transducers),
such as Osteoclast-associated receptor (OSCAR) and Triggering
receptor expressed on myeloid cells 2 (TREM2), to elicit the
calcineurin/calmodulin signaling axis via Ca>* oscillation (11, 12),
in turn, upregulating NFATc1 expression.

Monocytes in the circulation, a significant source of pre-OCs
(13-16), adhere to capillary endothelium and migrate into the
homeostatic bone remodeling site as well as bone lytic lesions
upon receiving signals from lipid mediators and specific
chemokines, including Sphingosine 1-phosphate, monocyte
chemoattractant protein-1 (MCP-1), C-X-C motif chemokine 12
(CXCL12), stromal cell-derived factor-1 (SDF-1), C-X3-C motif
ligand 1 (CX3CL1) or macrophage migration inhibitory factor
(MIF) (17-22). Intercellular adhesion molecule 1 (ICAM-1)
expressed in endothelial cells (ECs) is a cell surface glycoprotein
that regulates the migration of pre-OCs during periodontal
inflammation (23, 24). Blood flow acts as a mechanical force on
blood cells, such as T lymphocytes and platelets, as well as pre-OCs
(25-28). Even though chronic inflammation in periodontitis causes
expansion of capillary diameter (29), blood velocity in the
vasculature of periodontitis lesions is significantly diminished
(30). It is also reported that the rate of blood flow in healthy
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gingival tissue is significantly lower in the elderly than that of
younger groups (31). Based on these lines of evidence, it can be
posited that hematopoietic cells, including pre-osteoclasts (pre-
OCs), in the periodontium affected by periodontitis, are subjected
to reduced mechanical stress compared to those in healthy
periodontal tissue. Increased mechanical stimuli can alter various
activities of cells in the periodontium, including periodontal
ligament cells and osteoblasts (32, 33), outcomes of the opposite
condition whereby the periodontium receives less mechanical
stress, especially alveolar bone, are largely unknown in the
context of periodontitis.

Therefore, to shed more light on these unresolved questions, we
turned to the mechanosensory system, the importance of which was
highlighted by the 2021 Nobel Prize awarded for the discovery of
mechanosensitive Piezo Ca** channels (34). Specifically, upon
mechanical stimulation, the Piezol channel is opened by
rearrangement of cytoskeletal actin anchored to the proximal of
Piezol, thereby eliciting Ca*" influx which induces cell signaling for
a variety of activities (35-42). Although a mouse model of Piezol
conditional knockout in OC lineage cells showed no bone
phenotype (43), in vitro results did show that shear stress can
suppress OC-genesis (44, 45). Therefore, we were confident in
hypothesizing that Piezol expressed on OC lineage cells is
associated with the pathogenic bone phenotype. Here, we report
that Piezol is the major mechanosensory receptor expressed on pre-
OCs and that diminished mechanostress to pre-OCs can impede the
Piezol-mediated downmodulation of OC-genesis in periodontitis
without affecting the magnitude of local inflammatory mediators.
We further discovered that the activation of Piezol expressed on
pre-OCs elicits a unique cell signaling axis involving PP2A-
mediated dephosphorylation of Akt which, in turn, suppresses the
expression of NFATcl, a master TF for RANKL-induced
OC-genesis.

2 Materials and methods

2.1 Animals

fl/fl

ALysMy . .
Y$¥) mice, Piezol

To generate Piezo1™" LysM-Cre (Piezol
mice (Jackson Laboratories, stock no. 029213) mice were crossed
with LysM-Cre mice (Jackson Laboratories, stock no. 004781).
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Piezol™" littermates were used as controls. Genotypes were
confirmed by PCR from tail DNA. Wild-type C57BL/6] mice
(Jackson Laboratories) were used in experiments not requiring
genetic manipulation. 6- to 8-week-old males were used. The
experimental procedures employed in this study were approved
by the NSU IACUC (Protocol #TK7).

2.2 Cell culture

Bone marrow-derived mononuclear cells (BMMCs) were
collected from tibias and femurs of mice and were cultured with
minimum essential medium-o (MEM-a) supplemented with 10%
fetal bovine serum (FBS), streptomycin (100 pg/mL), penicillin (100
U/mL), Amphotericin B (0.25 pg/mL), L-glutamine (292 pg/mL)
and M-CSF (25 ng/mL; BioLegend, San Diego, CA, USA) at 37 °Cin
humidified air with 5% CO, for 3 days to obtain pre-OCs.
Subsequently, pre-OCs were differentiated to OCs using RANKL
(10 ng/mL; BioLegend). Human Peripheral Blood Mononuclear
Cells (PBMCs) were purchased from STEMCELL Technologies
(Vancouver, Canada). PBMCs were stimulated with M-CSF (30
ng/mL; BioLegend) at 37 °C in humidified air with 5% CO, for 3
days. Human pre-OCs were differentiated to OCs using RANKL
(100 ng/mL; BioLegend). Yodal (Tocris), GsMTx4 (Tocris),
LY294002 (Cell Signaling Technology), FK506 (Tocris), Ocadaic
acid (R&D Systems) and DT-061 (Tocris) were administered with
validated concentration. Aa vehicle control, the same concentration
of Dimethylsulfoxide (DMSO, Sigma) was used.

2.3 Cell culture under flow or hydrostatic
pressure

Shear stress was generated by a rocker (Thermo Fisher
Scientific) or ibidi pump system (ibidi, Fitchburg, WI). Pre-OCs
were seeded in wells of a 24-well plate (1x10° cells/well) and then
stimulated with shear stress by rocking (15°, 30 rpm). On the other
hand, for the ibidi pump system, pre-OCs were cultured in the p-
Slide I 0.4 Luer (3x10° cells/well). Cells were cultured with shear
stress at 5 dyn/cm” or 20 dyn/cm”. For hydrostatic pressure (HP)
loading, cell culture dishes were positioned at the bottom of a
beaker (1000 ml or 100 ml), and medium was added to heights of
5.5 cm, generating consistent HP. Control cells were cultured with a
1.2 cm medium height under atmospheric pressure (46).

2.4 Tartrate-resistant acid phosphatase
staining

TRAP staining was performed with a TRAP staining kit (Sigma-
Aldrich) according to the manufacturer’s protocol. Briefly, OCs
were fixed by a citrate (0.38 mol/L)/acetone solution for 30 seconds
at room temperature. Cells were stained with a TRAP staining
solution (L(+)-tartrate buffer, 0.67 mol/L; acetate buffer, 2.5 mol/L;
Naphthol AS-BI phosphoric acid, 12.5 mg/mL; and Fast Garnet
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GBC base, 7.0 mg/mL) for 10 min at 37°C in the dark. OCs with > 3
nuclei were determined to be multinucleated OCs.

2.5 Pit formation assay

A plate coated with calcium phosphate was prepared according
to previous reports (47, 48). Briefly, 0.12 M Na,HPO, and 0.2 M
CaCl, (50 mM Tris-HCI, pH 7.4) were mixed at 37°C. The calcium
phosphate slurry was washed with sterile water and then applied
into wells of a culture plate and dried at 37°C overnight. BMMCs
(3.0 x 10° cells/well for a 96-well plate or 1x 10° cells/well for a 24-
well plate) were then seeded in wells of calcium phosphate-coated
plates, respectively. After treating cells for 6 days, the plates were
washed with 10% sodium hypochlorite for 10 min and then dried
overnight. The pit areas were microscopically imaged (Evos Cell
Imaging System, Thermo Fisher Scientific). Images were analyzed
using Image] software (version 1.50).

2.6 Measurement of intracellular Ca%*
concentration

Cells (4x10* cells/well) were seeded in wells of a black wall/clear
bottom plate. Fluo-8 No Wash Calcium Assay Kit (AAT Bioquest,
Pleasanton, CA) was employed to measure Ca’" influx in
accordance with the manufacturer’s protocol. Briefly, Fluo-8 NW
and 0.04% Pluronic " F-127 in HHBS buffer were added for 30 min
at 37°C, followed by 30 min at room temperature. After Yodal
treatment, fluorescence alternately excited at 490 nm and emission
at 525nm was measured every 10 sec using a FilterMax F5
Microplate Reader (Molecular Devices, San Jose, CA).

Ca®" influx was also analyzed under flow conditions with the
BioFlux One system (Fluxion Biosciences, Oakland, Ca) or ibidi
pump system (ibidi). For the BioFlux One system, a 48-well
microfluidic plate (Fluxion Biosciences) was first coated for 1 h at
room temperature with rat tail type 1 collagen (50 ug/ml; Thermo
Fisher Scientific) in 0.2% acetic acid. Before using the plate,
microfluidic channels were washed with PBS, followed by the
introduction of cells in the channels. After 24 h, the Fluo-8 No
Wash Calcium Assay Kit was employed to image Ca** influx. The
assay was performed with a wall shear stress at 20 dyn/cm’.
Fluorescence intensity was measured and analyzed by the BioFlux
One system (Fluxion Biosciences). For ibidi pump system, pre-OCs
were seeded in p-Slide I 0.4 Luer (ibidi) at 3x10° cells/plate. The
assay was performed with a wall shear stress at 20 dyn/cm®
Fluorescence intensity was measured and analyzed by the EVOS
(Thermo Fisher Scientific).

2.7 siRNA transfection for knockdown of
Piezol.

BMMCs were seeded in wells of a 96-well plate (3x 10° cells/well) or
24-well plate (1x10° cells/well). After 24 h, BMMCs were maintained

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1661538
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Shindo et al.

in Opti—MEMTM Reduced Serum Medium (Thermo Fisher Scientific)
and transfected with 50 nM Piezol-specific siRNA (107969,
Thermo Fisher Scientific; siPiezol), PP2A-specific siRNA (152168,
Thermo Fisher Scientific; siPP2A), PP2B-specific siRNA (162266,
Thermo Fisher Scientific; siPP2B) or negative control siRNA
(AM4611, Thermo Fisher Scientific; siCTL) using LipofectamineTM
RNAIMAX Transfection Reagent (Thermo Fisher Scientific)
according to the manufacturer’s instructions. 48 h post- transfection,
BMMC:s were used for indicated experiments.

2.8 Quantitative polymerase chain reaction

Total RNA was extracted from pre-OCs using the PureLink
RNA Mini Kit (Thermo Fisher Scientific), following the
manufacturer’s protocol. The first strand cDNA was assembled
from 100 ng of sample RNA using a Verso cDNA Synthesis Kit
(Thermo Fisher Scientific). Amplification reactions were performed
by Taqman Fast Advanced Master Mix (Thermo Fisher Scientific)
or SYBR Green Master Mix (Thermo Fisher Scientific). The
resultant cDNA was amplified by specific probes (Thermo Fisher
Scientific) for Gapdh (Mm99999915_g1), Piezol
(MmO01241549_m1), Piezo2 (Mm01265861_ml), Trpal
(MmO01227437_m1), Trpv4 (MmO00499025_m1), Stoml3
(MmO01289590_m1), Kcnkl0 (Hs01026663_m1), Kcnk4
(MmO00434626_m1), Kcnkl (Mm00434624_m1), Ocstamp
(Mm00512445_m1), Mmp9 (Mm00442991_m1), Ctsk
(Mm00484039_m1), Acp5 (Mm00475698_m1l), Oscar
(Mm01338227_g1), Nfatcl (MmO00438670_m1), Tnfsfll
(MmO00441906_m1) and Tnfsfl1b (MmO00435454_ml) on a
QuantStudioTM 3 (Thermo Fisher Scientific). The ratios of mRNA
levels to those of the control gene were calculated using the ACt
method (2744¢").

2.9 PCR array

After extraction of total RNA from cells and synthesis of cDNA
described above, the resultant cDNA was tested using Taqman Fast
Advanced Master Mix (Thermo Fisher Scientific) and TaqMan®
Array Mouse Osteogenesis (Thermo Fisher Scientific) according to
the manufacturer’s instruction. An integrated web-based software
package was used for data analysis (https://www.thermofisher.com/
account-center/simplified-username.html).

2.10 Phospho antibody array

The Phospho Explorer Antibody Array was used according to
the manufacturer’s instruction (Full Moon BioSystems, Sunnyvale,
CA) to profile the levels of phosphorylated proteins. Briefly, cell
lysate from BMMCs was collected and quantified by BCA Protein
Assay Kit (Thermo Fisher Scientific). Microarray slides were
blocked, and proteins were labeled using biotin and then coupled
to slides. Slides were washed, and Cy3-streptavidin was added to
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bind biotin. Fluorescence intensity was measured and analyzed by
the manufacturer (Full Moon BioSystems). The clustering of target
proteins and signaling pathways was assessed using Kyoto
Encyclopedia of Genes and Genomes (KEGG) and Ingenuity
Pathway Analysis (IPA) (Qiagen, Germantown, MD).

2.11 Western blotting

After incubation for various times, pre-OCs were lysed by
incubation on ice for 30 min with RIPA buffer (Thermo Fisher
Scientific) supplemented with a protease inhibitor cocktail (Sigma-
Aldrich). Protein concentration of the resultant lysates was
measured with the BCA Protein Assay Kit (Thermo Fisher
Scientific). Fifteen pg of sample per lane were loaded onto a 4-
12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) gel (Thermo Fisher Scientific). Proteins separated in
the SDS-PAGE gel were electrotransferred to a polyvinylidene
difluoride membrane. The detection of specific proteins in pre-
OCs was assessed using anti-phospho-Akt rabbit mAb (193H12,
1:1000; Cell Signaling Technology, Danvers, MA), anti-Akt rabbit
mAb (C67E7, 1:1000; Cell Signaling Technology), anti-phospho-
p38 MAPKSs rabbit mAb (3D7, 1:1000; Cell Signaling Technology),
anti-p38 MAPKs rabbit mAb (DI3El, 1:1000; Cell Signaling
Technology), anti-phospho-ERK rabbit mAb (D13.14.4E, 1:2000;
Cell Signaling Technology), anti-ERK rabbit mAb (137F5, 1:2000;
Cell Signaling Technology), anti-phospho-JNK rabbit mAb (81E11,
1:1000; Cell Signaling Technology), anti-JNK rabbit mAb (9258,
1:1000; Cell Signaling Technology), anti-IkBa rabbit mAb (L35A5,
1:1000; Cell Signaling Technology), anti-phospho-PP2A mouse
mAb (F-8, 1:1000; Santa Cruz Biotechnology, Dallas, TX), anti-
PP2A mouse mAb (6F9, 1:1000; Santa Cruz Biotechnology) or an
anti-GAPDH rabbit mAb (14C10, Cell Signaling Technology).
Protein bands that reacted with the respective antibody were
visualized by incubation with an HRP-conjugated rabbit or
mouse secondary antibody (Cell Signaling Technology), followed
by detection using ECL Western Blotting Substrate (Thermo Fisher
Scientific). Densitometric analysis was performed using Image]
software (Version 1.50).

2.12 Co-immunoprecipitation assay

To examine the interaction between RANK and TRAF6 or
Piezol and PP2A, Co-IP was performed. Pre-OCs were lysed in ice-
cold RIPA buffer (Thermo Fisher Scientific) supplemented with a
protease inhibitor cocktail (Sigma-Aldrich). The lysates were
cleared by centrifugation and incubated overnight at 4°C with an
anti-RANK antibody (sc-374360, 10 ug/ml/sample, Santa Cruz
Biotechnology). Or anti-Piezol antibody (2-10, 10 ug/ml/sample,
Thermo Fisher Scientific). Immune complexes were captured using
Protein A/G magnetic beads (Thermo Fisher Scientific) for 1 h at
RT with gentle rotation. Beads were washed three times with Tris-
Buffered Saline with Tween 20 (TBST), and bound proteins were
eluted in LDS sample buffer, followed by immunoblotting with anti-
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TRAF6 antibody (E2K9D, 1:1000; Cell Signaling Technology) or
anti-PP2A antibody (F-8, 1:1000; Santa Cruz Biotechnology).

2.13 Immunofluorescence

Pre-OCs cultured on Millicell EZ SLIDE (Sigma) were fixed with
4% paraformaldehyde at room temperature for 10 min,
permeabilized with 2% Triton X-100, and blocked with 5% BSA in
PBS for 1 h. Cells were incubated with anti-Piezol antibody
conjugated with Alexa Fluor® 594 (CL9714, 1 ug/ml, Novus,
Centennial, CO), isotype control antibody conjugated with Alexa
594 (141945, 1 ug/ml, Novus), anti-NFATc1 antibody (7A6, 1 ug/ml,
Santa Cruz Biotechnology) or isotype control antibody (MOPC-21,
1 ug/ml, Bio X Cell) at 4°C overnight. Cy3-conjugated goat anti-
mouse IgG secondary antibody (1:100, Jackson ImmunoResearch,
West Grove, PA) was applied for 1 hour at room temperature,
followed with CellMask' " Green Actin Tracking Stain (Thermo
Fisher Scientific) and Fluoromount-G containing DAPI (Thermo
Fisher Scientific). Immunofluorescence was imaged with a Zeiss
LSM880 confocal microscope (Carl Zeiss, Jena, Germany).

2.14 Mouse model of periodontal disease

To induce periodontal disease in mice (6-8 weeks old; male or
female), the maxillary second molar was attached with a 5-0 silk
ligature, following the previously published protocol (49, 50). Yodal
(0.4 mg/kg), DT-061 (0.4 mg/kg) or DMSO (0.86%) was diluted in
PBS with 5% ethanol, followed by injection through the
intraperitoneal route every 2 days (day 0, 2, 4 and 6). After 7
days, mice were euthanized for postmortem analyses.

2.15 Monitoring Blood Perfusion Unit (BPU)

Real-time BPU was monitored by Laser Doppler Flowmetry
(OxyFlo pro, Oxford Optronix, UK). A fine needle-type blood flow
probe (Diameter: 0.5 mm, Oxford Optronix) was attached to the
mesial or distal surface of palatal gingiva, respectively (Figure 1).
Real-time data were captured and analyzed by Labchart 8 software
(ADInstruments, Colorado Springs, CO).

2.16 Histological analysis

Murine maxillary bones were fixed in 4% paraformaldehyde
overnight at 4°C before decalcification in 10% EDTA at 4°C for 2
weeks. Tissues were embedded in an OCT compound (Sakura
Finetek USA, Torrance, CA, USA) overnight at —20°C and cut
into 8 um sections with a cryostat (Leica Biosystems, Deer Park, IL).
TRAP staining of decalcified periodontal tissue was performed
using an Acid Phosphatase Leukocyte (TRAP) Kit (Sigma-
Aldrich), as described above, followed by nuclear counterstaining
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with methyl green. Sections were imaged with an EVOS XL Core
microscope (Thermo Fisher Scientific). For immunofluorescence-
based detection of OC-STAMP and phospho-Akt, the sections were
reacted with anti-OC-STAMP rabbit pAb (HPA031116, 1:200;
Sigma-Aldrich) or anti-phospho-Akt rabbit mAb (D9E, 1:200;
Cell Signaling Technology) as the primary antibody at 4°C
overnight. Cy3-conjugated anti-rabbit IgG FC goat pAb (1:200;
Jackson ImmunoResearch) was used as a secondary antibody. The
stained sections were mounted with Fluoromount-G containing
DAPI (Thermo Fisher Scientific). Immunofluorescence was
observed with a Zeiss LSM880 confocal microscope (Carl Zeiss,
Jena, Germany).

2.17 Micro-CT analysis

Mouse maxillary alveolar bone was fixed in 4% phosphate-
buffered paraformaldehyde and stored at 4°C for 16 hours. Micro-
CT images were obtained with the Microfocus X-ray CT scanning
system (Skyscan 1176, Bruker, Billerica, MA), using the following
settings: acceleration voltage, 50 kV; current, 500 pA; voxel size, 18
pm/pixel; matrix size, 2,000 x 1,336. Images were reconstructed with
NRecon software, version 1.7.0.3 (Bruker), and images of both
ligature side and control untreated side were acquired. As regions
of interest (ROI), 50 sliced images coronally from the contact point
between the maxillary first molar and maxillary second molar were
evaluated. Bone volume (BV) of the whole palatal alveolar bone,
including the ipsilateral hard palate, was measured using three-
dimensional (3D) analysis CTAn software, version v.1.18 (Bruker).
3-dimensional images were obtained using CTVox software, version
3.2.0 (Bruker). To evaluate periodontal bone resorption, distances
from the cement-enamel junction to the alveolar bone crest on the
palatal side of root were measured for the maxillary second molar.

2.18 Statistical analysis

Statistical analyses were performed by one-way ANOVA and
Tukey’s Honestly Significant Difference (HSD) test to compare
differences among multiple groups and Student’s t-test for
comparisons between two groups. All statistical analyses were
performed using GraphPad Prism, version 10.0.1 (GraphPad
Software, Inc., La Jolla, California, USA). Statistical significance
was considered to be at p < 0.05. All data were expressed as the
mean *+ SD.

3 Results

3.1 Blood flow was reduced in murine
periodontitis

Although, as noted above, the blood flow rate in the vasculature
of human periodontitis lesions is significantly diminished (30);
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however, it is unknown whether blood flow in the periodontitis
induced in mice is also reduced. Therefore, to induce murine
periodontitis, a silk ligature was attached to the second maxillary
molar for 7 days. To assess the impact of periodontitis on the local
blood flow, the blood perfusion unit (BPU) of gingival tissue was
measured using Laser Doppler Flowmetry. Irrespective of

A Laser Doppler Flowmetry (LDF)
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FIGURE 1 (Continued)

Shear stress inhibited OC-genesis through Piezol. (A, B) Real-time BPU that reflects the flow rate of local vasculature in the palatal gingival tissue of
a live mouse was measured by Laser Doppler Flowmetry as shown. BPU was measured at the mesial and distal sites of second maxillary molar with
or without a silk ligature to induce periodontitis. Continuous detections of temporal change of real-time BPU (50 s) were displayed. (C, D) MCSF (25
ng/ml)-primed murine bone marrow-derived mononuclear cells were employed as pre-OCs. TRAP staining was conducted after 6 days of RANKL
treatment. Scale bar: 10 um (E) Expression of mechanosensory receptors, including Piezol, Piezo2, Trpvl, Trpv4, Stmol3, Kcnk10, Kcnk1 and Kcnk4,

10.3389/fimmu.2025.1661538

in pre-OCs was determined by gqPCR. (F, G) Piezol protein expression was detected by flow cytometry and immunofluorescence, respectively.
Scale bar: 50 um (H) Fluo-8-treated pre-OCs with or without GsMTx4 (1 uM) were stimulated by shear flow at 20 dyn/cm? using the Bioflux
microfluidics system. Ca* influx was visualized and analyzed with the Bioflux system. (I) To silence Piezol expression, Pre-OCs were transfected
with siRNA specific to Piezol (siPiezol). siPiezol-mediated silencing efficacy was evaluated by gPCR and immunofluorescence staining in
comparison to control siRNA treatment (siControl). (J) siPiezol-mediated Piezol loss-of-function was determined by measuring Yodal-enhanced
Ca®* influx. Fluo-8-treated pre-OCs were stimulated with Yodal; subsequently, kinetic fluorescence intensity was measured every 10 sec by plate
reader. (K) Fluo-8-treated pre-OCs in u-Slide | 0.4 Luer were stimulated with 20 dyn/cm? of shear stress generated by the ibidi pump system,
followed by time-lapse images taken every 1sec. Representative image after 1 min of shear flow exposure was displayed. Scale bar: 100 um (L) TRAP
staining or pit formation assay were conducted after 6 days or 9 days of RANKL treatment, respectively. The number of TRAP-positive
multinucleated OCs was measured, and measurement of pit area was performed. Scale bar: 10 um. Data represent the mean + SD of three

independent experiments. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.

3.2 Mechanical stress suppressed RANKL-
induced OC-genesis in vitro

According to a previous report, the blood flow rate in the
microcapillaries of healthy periodontal tissue is approximately 20
dyn/cm?®, whereas that in diseased periodontal tissue is diminished
to approximately 5 dyn/cm? *°. To compare the effect of flow rates, a
microfluidics system was employed to evaluate the effects of fluid
shear stress on RANKL-induced OC-genesis. OC-genesis, as well as
OC-related gene expression (Ocstamp, Mmp9, Acp5, Oscar,
Dcstamp and Nfatcl), were significantly suppressed by a high flow
rate (20 dyn/cmz) compared to a low flow rate (5 dyn/cmz) or static
condition (Figures 1C, D; Supplementary Figure Sla). However,
Piezol expression did not significantly differ between high- or low-
flow conditions and static control (Supplementary Figure Sla).
Moreover, shear flow generated in the tissue culture plate by a
rocker (15° 30 rpm) also suppressed RANKL-induced OC-genesis
(Supplementary Figures S1b, c). Hydrostatic pressure (HP) via the
tissue interstitial fluid has an important role in providing mechano-
stimulation to cells (53). To examine the effect of HP on OC
differentiation, the OCs were cultured in two different culture
flasks following the protocol published by another group (46, 54).
A 5.5 cm deep beaker with 100 ml of medium gives approximately
HP of 3.7 mmHg, compared to a 1.2 cm deep flask with 100 ml of
medium (0 mmHg). Such a difference of HP promoted Piezol
stimulation, which, in turn, significantly suppressed OC
differentiation (Supplementary Figure S1d).

3.3 Piezol expressed on pre-OCs
functioned as a mechanosensory Ca®*
channel

Out of 8 major mechanoreceptors (Piezol, Piezo2, Trpvl, Trpv4,
Stoml3, Kcnk10, Kenk4 and Kenkl), Piezol mRNA was expressed at
the highest level (Figure 1E). The protein expression of Piezol in
pre-OCs was confirmed by both immunofluorescence staining and
flow cytometry (58.5%) (Figures 1F, G). GsMTx4, a spider venom
that selectively inhibits Piezol (55-57), suppressed Ca** influx
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induced in pre-OCs via microfluidics-generated shear flow
(Figure 1H), indicating that pre-OCs appeared to sense shear
flow-generated mechanical force via Piezol.

3.4 Sensing of shear stress by Piezol
expressed on pre-OCs suppressed in vitro
OC-genesis

RANK-positive mononuclear pre-OCs, which are derived from
monocyte lineage cells, circulate in the vasculature and migrate to
bone (58). Fluid shear stress influences the local migration of
circulating immune cells, such as CD4 T cells, neutrophils, and
monocytes (59-61). As demonstrated by the above-noted result
(Figure 1E) and a previous report (62), Piezol, but little, or no,
Piezo2, is expressed by pre-OCs. The functionality of Piezol in pre-
OCs was examined by siRNA-based loss-of-function assay. The
silencing of Piezol mRNA by Piezol-specific siRNA (siPiezol) in
pre-OCs (Figure 11) downmodulated Ca®* influx induced by Yodal,
a chemical agonist of Piezol, which was not observed in the pre-
OC:s treated with siControl (Figure 2]). The shear flow (20 dyn/ cm?)
created in a microfluidics system caused an influx of Ca®" in pre-
OCs. Such shear flow-induced Ca®" influx was, however, abrogated
by treating pre-OCs with siPiezol (Figure 2K). Also, mechanical
stress generated by the rocker suppressed OC-genesis-related genes,
including the expression of OCSTAMP, MMP9 and ACP5, while
mature TRAP+ OC formation and pit formation were
downregulated by treating pre-OCs with siPiezol (Figure 2L;
Supplementary Figure Slg). These data indicated that Piezol
expressed in pre-OCs acts as a mechanosensor that downregulates
RANKL-induced OC-genesis.

3.5 Pharmacological Piezol activator
inhibited OC-genesis and function

Yodal is a chemical agonist that can selectively open Piezol and
promote intercellular Ca®" to initiate a variety of biological events
(63-66). We therefore used Yodal to determine if RANKL-induced
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OC-genesis was regulated by Piezol. We found that TRAP-positive
multinucleated OC formation, as well as bone resorptive activity,
were both significantly diminished by Yodal administration
(Figure 2A). In addition, GsMTx4 inhibited Yodal-induced Ca**
influx in pre-OCs (Supplementary Figure Sle). To test the effect of
Yodal on human OC-genesis, peripheral blood mononuclear cells
(PBMC)-derived pre-OCs were employed. Yodal-mediated Piezol
activation also inhibited RANKL-mediated human OC-genesis
(Supplementary Figure S2a). PCR array was used to screen for
RANKL-stimulated genes that were impaired by Yoda (Figure 2B).
Yodal-mediated suppression of OC-genesis-associated genes
(Ocstamp, Ctsk, Mmp9, Acp5 and Oscar) was also confirmed by
qPCR (Supplementary Figure S2b). Upon stimulation with RANKL,
NFATc1, a master TF of OC-genesis (10, 67, 68), translocates from
cytoplasm to nucleus, and induces the transcription of genes
required for OC-genesis and fusion (69, 70). Yodal inhibited the
expression of Nfatcl gene and its protein during RANKL-induced
OC-genesis (Figures 2C-E and Supplementary Figure S5a).
Furthermore, Yodal inhibited NFATc1 nuclear localization and
disrupted the redistribution of B-actin from the inner to the outer
regions, suggesting that Yodal impairs osteoclast mobility,
preventing fusion with adjacent OCs (Figure 2E). These results
suggested that the pharmacological activation of Piezol caused the
downregulation of RANKL-induced OC-genesis in conjunction
with the suppression of both Nfatcl expression and NFATcl
nuclear translocation.

3.6 Piezol activation by Yodal strongly
suppressed Akt phosphorylation.

Piezol is reported to provoke intracellular signaling activation
in numerous cells (37, 71, 72). However, Piezol-related signaling in
OCs is still unknown. To address this question, a phospho antibody
array was performed to discover the specific signaling of Piezol in
pre-OCs in vitro. A search of the Kyoto Encyclopedia of Genes and
Genomes (KEGG) and Ingenuity® Pathway Analysis (1PA®) found
PI3K/AKkt signaling to be the most likely Piezol signaling pathway
(Figure 3A). Akt is a serine/threonine kinase that plays a critical role
in cell survival, growth, and metabolism. It is well known that Akt is
closely involved in OC-genesis (73, 74). Akt phosphorylation
activates GSK3P, then evokes NFATcl nuclear translocation
during OC formation (75-77). As further confirmation, the
inhibition of PI3K/Akt signaling by LY294002, a morpholine-
containing chemical compound, resulted in suppressed OC
formation and Nfatcl expression, suggesting that PI3K/Akt
signaling is, indeed, involved in OC-genesis (Supplementary
Figure S1f). In addition, Yodal application significantly reduced
Akt phosphorylation and moderately inhibited ERK
phosphorylation (Figure 3B). The inhibitory effect of Yodal on
Akt phosphorylation in OCs was observed in a time-dependent
manner, but it was diminished in Piezol-deficient OCs (Figure 3C;
Supplementary Figure S5b)4f Moreover, shear flow-mediated Akt
dephosphorylation was regulated via Piezol (Figure 3D;
Supplementary Figure S5b). Therefore, Akt dephosphorylation
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induced by Piezol activation is associated with OC formation.
RANKL/RANK signaling is known to involve the TRAF6/PI3K/
Akt pathway in OCs (78). To further clarify the interaction between
Piezol activation and RANK/TRAF6/PI3K signaling, we examined
the effects of Yodal on RANK/TRAF6 binding and PI3K
phosphorylation. Piezol activation by Yodal suppressed RANK/
TRAF6 binding, which was accompanied by a reduction in PI3K
phosphorylation (Figure 3B, E). However, unlike the strong
suppression observed in Akt phosphorylation (Figure 3B), PI3K
phosphorylation was only partially inhibited by Yodal. These
findings indicate that Piezol activation partially regulates OC-
genesis by interfering with RANK/TRAF6/PI3K signaling.

3.7 PP2A, not Calcineurin, is involved in
Piezol-induced Akt dephosphorylation in
OCs.

In the absence of extracellular Ca**, Yodal was not able to
induce Ca** influx in pre-OCs, whereas Yodal induced Ca®* influx
in pre-OCs suspended with Ca*" at 2 mM (normal Ca*"
concentration in medium) and 40 mM (high Ca*>* concentration
representing on the bone surface) (Figure 4A; Supplementary
Figure S5c). BAPTA-AM is mostly used for cell-permeable
intercellular Ca** chelating agent (79, 80). Whereas BAPTA-AM
could block Yodal-induced intercellular Ca®" influx, Yodal could
induce Akt-dephosphorylation in the presence of BAPTA-AM,
suggesting that a Ca’*-independent pathway mediates Yodal-
induced Akt dephosphorylation in OCs (Figure 4D;
Supplementary Figure S5d). Akt is regulated by the protein
phosphatase family, such as protein phosphatase 2A (PP2A) or
protein phosphatase 2B (PP2B), known as calcineurin (81). We
demonstrated that okadaic acid, a PP2A inhibitor, but not FK506, a
calcineurin inhibitor, could counteract Yodal-induced
dephosphorylation of Akt (Figures 4C, F; Supplementary Figures
S5e, d). Subsequently, as a gain-of-function approach, DT-061, a
PP2A activator (82), was employed to elucidate PP2A’s functional
role in OC-genesis. We demonstrated that DT-061, through its
activation of PP2A, significantly suppressed TRAP+ OC formation,
resorption pit formation, and Akt phosphorylation in RANKL-
stimulated pre-OCs (Figure 5A). RANKL-induced NFATcl
expression was also downregulated by treatment with the PP2A
activator DT-061 (Figure 5C). We found that Yoda 1
downregulated the induction of PP2A phosphorylation at Tyr*"”
in RANKL-stimulated pre-OCs (Figure 4D; Supplementary Figure
S5g). It is noteworthy that the PP2A catalytic subunit (PP2Ac) is
inactivated by single phosphorylation at Tyr’"” residue (83),
whereas phosphorylation of Tyr'?” and Tyr*** can activate PP2Ac
(84). These findings indicate that the activation of Piezol can

307 :
to increase

suppress phosphorylation of PP2A at Tyr
phosphatase activity by PP2A which, in turn, suppresses the
phosphorylation of Akt, ie., Akt dephosphorylation, as well as
NFATcl. RNAi-based silencing of PP2A mRNA expression
(siPP2A), but not calcineurin (siCalcineurin), resulted in

increasing Akt phosphorylation in Yodal-treated OCs (Figure 4E
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FIGURE 2
Pharmacological Piezol activator inhibited OC-genesis and function. (A) Pre-OCs were treated with RANKL (10 ng/ml) in the presence or absence of
Yodal (5 uM) or vehicle control. After 6 days, TRAP-positive OCs with three or more nuclei were counted as mature OCs. Pit formation activity by
OCs was evaluated by imaging and calculation using Image J (Version 1.50). Scale bar: 10 um (B) PCR array was performed to identify osteoclast-
related genes regulated by Yodal. (C, D) NFATc1 mRNA and protein expression was determined from pre-OCs stimulated with or without Yodal at
day 1, day 2 and day 3 by qPCR or Western blot analysis, respectively. GAPDH was loading control. Densitometric analysis of three independent
experiments was performed (Supplementary Figure S11). (E) Immunofluorescence was employed to image the localization of NFATc1 in pre-OCs at
day 3. Nucleus occupancy of NFATcl was evaluated by Imaris. Cells with NFATc1 present in the nucleus were counted. Scale bar: 10 um. Data
represent the mean + SD of three independent experiments. *p < 0.05 ***p < 0.001 ****p < 0.0001
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FIGURE 3

Piezo 1 activation by Yodal strongly suppressed Akt phosphorylation. (A) Phospho Explorer Antibody Array was performed to determine Yodal-
mediated signaling pathway in pre-OCs. KEGG and IPA were used for bioinformatics analysis. (B) Pre-OCs were stimulated with RANKL (10 ng/ml) in
the presence or absence of Yodal (5 uM) for 30 min to monitor protein phosphorylation, including Akt, GSK-3b, PI3K, p38™APX ERK, INK and NF-kB.
siRNA-transfected OCs were cultured with shear flow, and samples were collected to monitor Akt phosphorylation by Western blotting.
Densitometric analysis was conducted using ImageJ software (Version 1.50). (C) Pre-OCs from Piezo1"*/"** mice or Piezo1“*M* mice were
stimulated with Yodal for the indicated time courses, and Akt phosphorylation was assessed by Western blotting. (D) Pre-OCs treated with siRNA for
Piezol or negative control were stimulated with shear stress at 20 dyn/cm?, and then Western blotting was preformed to determine Akt
phosphorylation. (E) Pre-OCs were stimulated with Yodal for 30min, and cell lysates were subjected to Co-IP to analyze the interaction between
RANK and TRAF6. Representative band images are shown from three independent experiments. Data represent the mean + SD of three independent
experiments. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.
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FIGURE 4

Piezol activation in OCs induced PP2A-mediated Akt dephosphorylation in a Ca®*-independent manner. (A) Pre-OCs were stimulated with Yodal in the
medium containing 0, 2 or 40 mM Ca®*. Akt phosphorylation was evaluated by Western blotting and Ca influx was observed. (B) Pre-OCs were
preincubated with BAPTA-AM (2uM) constituted in Hanks' Balanced Salt Solution (HBSS) and 0.1% of Pluronic F-127 for 30 min. After washing with HBSS
twice, fresh medium was added followed pre-OCs were stimulated with Yodal. Akt phosphorylation was evaluated by Western blotting and Ca influx
was observed. (C) Following preincubation with okadaic acid (protein phosphatase inhibitor) (250 nM) or FK506 (calcineurin inhibitor) (1 uM) for 1 hour,
pre-OCs were incubated with Yodal (5 uM) for 30 min. Western blotting was performed to detect Akt phosphorylation. (D) Phosphorylation of the

PP2A catalytic subunit at Tyr307 was visualized by Western blotting. Densitometric analysis was performed, and data are shown. (E) Either siPP2A or
siCalcineurin was employed to evaluate Yodal-mediated Akt dephosphorylation by Western blotting. Densitometric analysis was performed, and data are
shown. (F) Pre-OCs were stimulated with Yodal for 30min, and cell lysates were subjected to Co-IP to analyze the interaction between Piezol and
PP2A. (G, H) To determine the effect of PP2A or calcineurin on mechanical force downregulation of OC-genesis, pre-OCs were transfected with siPP2A,
siCalcineurin or siControl, followed by TRAP staining, pit formation assay and qPCR for Ocstamp, Acp5 and Catk expression. Scale bar: 10 um. Data
represent the mean + SD of three independent experiments. *p < 0.05 **p < 0.01 ***p < 0.001 ****p < 0.0001.
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and Supplementary Figure S5h). Furthermore, treatment with
siPP2A, but not siCalcineurin, prevented shear stress-dependent
suppression of RANKL-stimulated OC-genesis, otherwise activated
by PP2A, including TRAP-positive OC formation, pit formation,
and OC-genesis-related gene expression (Figures 4G, H).
Collectively, these results suggested that Piezol-mediated
mechanosensing by pre-OCs suppresses RANKL-induced OC-
genesis through cell signaling that involves the PP2A/Akt-
dephosphorylation pathway toward the suppression of NFATcI,
the master TF controlling OC-genesis. To confirm the correlation
between Piezol and PP2A, a Co-IP assay was performed using an
anti-Piezol antibody. The results demonstrated that PP2A directly
binds to Piezol, indicating that Piezol activation in osteoclasts may
directly regulate PP2A-mediated Akt dephosphorylation
(Figure 4F; Supplementary Figure S5i).

3.8 Yodal administration prevents
osteoclastic bone resorption in a mouse
model of ligature-induced periodontitis

Given the decreased shear stress and increased osteoclastic bone
resorption observed in periodontitis, we examined the effect of
systemic (i.p.) injection of Yodal in the mouse ligature-induced
periodontitis model. Murine periodontitis was induced by the
attachment of a silk ligature at the upper second molar, following
previous reports (49, 50, 85). Systemically administered Yodal
significantly suppressed bone resorption and ligature-induced
TRAP-positive OC formation in alveolar bone compared to
vehicle control (Figure 6A). It also inhibited the mRNA
expression of OCSTAMP, ACP5 and MMPY9, but not RANKL
mRNA (Tnfsfl1) or osteoprotegerin mRNA (Tnfsfl11b)
(Figure 6B). Furthermore, the number of phosphorylated Akt-
positive OCs increased in mouse alveolar bone (Figure 6C).

These results revealed that Piezol activation by Yodal directly
reversed bone resorption in periodontitis by restoring the
mechanical stress-signaling in pre-OCs which was attenuated in
an inflammation-dependent fashion.

4 Discussion

Our findings indicate that Piezol plays a dual role in OC-genesis
and bone resorption. It negatively regulates OC-genesis by suppressing
the expression of key osteoclast marker genes, including Ocstamp,
Acp5, Mmp9, Ctsk, Oscar, and Nfatcl. This suppression occurs in the
context of healthy periodontal bone through the activation of the
negative regulator PP2A, which dephosphorylates Akt within the
RANKL-induced Akt/NFATc] signaling pathway, thereby inhibiting
bone resorption. Finally, Piezol activation by a chemical agonist Yodal
could downregulate pathogenically elevated OC-genesis in the alveolar
bone of periodontally diseased tissue, suggesting the therapeutic
potential of Piezol agonist.

It was reported that murine arthritis-associated osteoclastogenic
macrophages (AtoMs) comprise the CX5CR1™ FoxM1* pre-OCs-
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containing population in inflamed synovium and that they originate
from circulating bone marrow cells (86). Our group also demonstrated
that locally produced macrophage migration inhibitory factor (MIF)
at the inflammatory bone lytic site is engaged in the chemoattraction
of circulating CXCR4" pre-OCs to the inflammatory bone resorption
site (22). Accordingly, owing to lower blood flow velocity in
periodontitis (29), it is plausible that the diminished shear stress
may affect the fate of pre-OCs differentiating into mature OCs. In
support of this hypothesis, we observed a significant alteration in
blood flow during murine ligature-induced periodontitis,
characterized by reduced blood flow in periodontitis-affected tissue
compared to healthy control tissue (Figure 1B). We found that pre-
OCs express a functional Piezol mechanosensory ion channel
(Figure 1E) as a kind of negative rescue factor by the imposition of
shear force that otherwise downregulates OC formation via Piezol Ca*
" ion channel (Figure 1L). Thus, it was further hypothesized that
Piezol may act as a major mechanoreceptor in circulating pre-OCs
and that once activated, Piezol channels could initiate the PP2A-Akt
signaling pathway to downmodulate the expression of genes
associated with OC differentiation.

Piezol is a key mediator of mechanotransduction in bone cells,
including osteoblasts, osteocytes and mesenchymal stem cells
(54, 87, 88). It is involved in the differentiation of mesenchymal
stem cells into osteoblasts or odontoblasts (46, 54), and is responsible
for creating mechanical force and converting it into biochemical
signals that regulate cellular responses. In response to mechanical
stimuli, Piezol channels open, allowing the influx of Ca®" into OBs;
this Ca** influx then triggers a cascade of intracellular signaling
events that ultimately lead to bone formation, including, as
noted above, activation of ERK or, in our case, Akt cascade (89).
Wang et al. reported that the Piezol/YAP1/collagen pathway is
associated with OB maturation in vivo and in vitro (43). Osteocytes
also sense mechanical force through Piezol, and intracellular
signaling occurs in osteocytes through the Piezol/Akt axis (88)
which appears to be transduced by PI3K (90). Our data
demonstrates that Piezol activation in osteoclasts downregulates
Akt signaling (Figures 3B-D), while shear stress did not alter
Piezol expression levels (Supplementary Figure Sla). This indicates
that Piezol in OCs plays a distinct mechanosensory role compared
with other bone cell types. Moreover, these findings suggest that the
mechanosensory function of Piezol in OCs is driven by its activation
state rather than by changes in expression. More specifically, based on
our study and those of others, mechanosensing via Piezol not only
promotes osteoblastic bone formation but also inhibits osteoclastic
bone resorption through distinctly facilitated Piezol-mediated
cellular signaling pathways (Figure 3).

As previously noted, NFATc] is a master TF controlling OC-
genesis. Ligation of RANKL to RANK expressed on pre-OCs elicits
cell signals involving the TRAF6/PI3K/Akt axis for induction of
NFATc] nuclear-translocation which, in turn, activates OC-genesis
(10, 91). However, Yodal, the Piezol agonist, inhibited NFATc1
expression in pre-OCs stimulated with RANKL (Figures 2C-E).
Phospho Antibody Array (Figure 3A) indicated that Akt plays a key
regulatory function in Piezol-elicited cell signaling for OC-genesis.
Indeed, the PI3K/Akt axis plays a crucial role in OC formation (76),
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DT-061, PP2A activator, attenuates OC-genesis via Akt signaling in periodontitis. (A) DT-061 (5 uM) or vehicle control was added to pre-OCs to
analyze OC-related gene expression, including Ocstamp, Acp5 and Mmp9, along with RANKL-mediated Akt phosphorylation. Scale bar: 10 um

(B) DT-061 (0.4 mg/kg), or vehicle control (DMSO, 0.86%), was systemically injected into the periodontitis area of mice induced by silk ligation.

Scale bar: 1 mm (C) DT-061- (5 uM) or vehicle control-mediated NFATc1 protein expression was imaged. Scale bar: 5 um. Results were presented as
the means + SD. **p < 0.01 ***p < 0.001 ****p < 0.0001.

whereas interaction of Akt-mediated activation of GSK-38  TRAF6 colocalization (Figure 3B; Figure 4F), whereas Akt
downmodulates OC formation via inhibition of nuclear  phosphorylation was strongly suppressed. Taken together, these
translocation of NFATcl (76, 92, 93). Moreover, Yodal only  findings suggest that Piezol-mediated signaling primarily
partially inhibited PI3K phosphorylation downstream of RANK/  suppresses the Akt/NFATcl axis.
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odontitis were employed to image phospho-Akt and OC-STAMP
ositive cells was counted. (D) Schematic illustration of canonical
Results were presented as the means + SD. *p < 0.05 **p < 0.01
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PP2A and PP2B, also known as calcineurin, are protein
phosphatases that dephosphorylate specific substrates and play
important roles in cell signaling and regulation (94, 95). We
demonstrated that Piezol activation in OCs promoted PP2A-
mediated Akt dephosphorylation (Figures 4A-C). Furthermore,
we determined that DT-061, a PP2A activator, exerts a crucial
preventive effect on OC-mediated bone resorption in murine
periodontitis (Figure 5B). Myung et al. reported that PP2A
inactivation promotes OC-genesis (96). Hyun-Jung et al. also
indicated that Dauricine, an isoquinoline alkaloid, decreases OC
formation via activation of PP2A (97). These reports and our results
strongly suggest that activation of PP2A in OCs can negatively
control their differentiation. Furthermore, we discovered, for the
first time, that activation of Piezol negatively regulates OC-genesis
via the PP2A/Akt axis. On the other hand, calcineurin (PP2B) is a
Ca®*- and calmodulin-dependent serine/threonine protein
phosphatase (98). Calcineurin inhibition by FK506 or siRNA was
ineffective in dephosphorylating Akt and failed to abrogate shear
stress-mediated suppression of OC formation (Figures 4C, G, H).
Indeed, chemical-based inhibition of calcineurin results in the
induction of osteoblastic bone formation (99, 100), but
suppression of OC formation (101, 102). In addition, Piezol was
found to colocalize with PP2A in osteoclasts (Figure 4F). Therefore,
we concluded that Piezol-mediated dephosphorylation of Akt
depends on PP2A, not calcineurin, in OCs. Moreover, although
Piezol activation is reported to induce its downstream cell signaling
in Ca®* influx-dependent manner (103, 104), we found that the
activation of Piezol expressed on OCs activates PP2A enzyme in a
Ca**-independent fashion (Figure 4F).

Ca*" influx is strongly associated with OC-genesis. RANKL/
RANK binding allows Ca*" influx, following NFATcl activation
(10). RANKL-mediated OC genesis requires a costimulatory signal
characterized by Ca*" influx from ITAM receptors, such as OSCAR
and TREM2, triggered by type 3 collagen (11, 12). However, both
RANKL and type 3 collagen did not induce Ca®" influx in pre-OCs
(Supplementary Figure $3). Ionomycin, a Ca>" ionophore, is
reported to induce Ca®" influx and OC-genesis (105). Instead,
however, ionomycin administration at previously reported
concentration (500 nM) increased Ca** influx, but suppressed
OC-genesis (Supplementary Figures S4a-c). Thus, it was clear
that intracellular calcium influx is not necessarily a positive
regulator of OC-genesis.

Ligature-induced periodontitis in mice is a well-established
model of periodontitis, as published in our previous reports (49,
106, 107). Here, we demonstrated that systemic Yodal application
in mice significantly prevented murine periodontal bone loss
induced by placement of ligature (Figure 6A). Yodal is widely
used as a specific pharmacological activator of Piezol and has
applications in the analysis of the bioactivity of Piezol in various
cells (63, 108, 109). For example, Yodal administration in mice
bolstered microglial phagocytosis resulting in AP clearance in
Alzheimer’s disease (110). Yodal administration did not alter the
body weight of mice; instead, it increased cortical thickness and
cancellous bone mass in the distal femur of mice (111). Our results
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indicated that Yodal alone doesn’t affect bone resorption in the
control without-ligature group (data not shown). In addition to
significantly counteracting bone loss in the mouse model of
ligature-induced periodontitis, Yodal suppressed gene markers of
OC-genesis, including Ocstamp, Acp5 and Mmp9, but not Tnfsfl1
and Tnfsfl11b (Figure 6B), and phosphorylated Akt-positive OCs at
the alveolar bone surface of murine periodontitis (Figure 6C). These
results suggest that Yodal directly suppressed ligature-induced OC
formation in vivo.

In summary, we have identified that pre-OCs express
functional Piezol, but not Piezo2, and that mechanical and
chemical activation of Piezol expressed on pre-OCs
downregulates RANKL-primed OC-genesis through Ca®
"-independent dephosphorylation of Akt by PP2A, rather than
the canonical Ca®*-dependent Piezol pathway reported in various
cell types (59, 87, 112). This mechanism ultimately suppresses the
expression of NFATcl, a master TF for RANKL-induced OC-
genesis (Figure 6D). Furthermore, systemic administration of
Yodal, a Piezol chemical agonist, can substitute the mechanical
stress which was attenuated in the inflamed periodontium of the
mice with ligature-induced periodontitis, resulting in the
inhibition of local bone resorption mediated by osteoclasts. The
feedforward mechanism by Piezol chemical agonist that can
substitute the mechanical stress lost in the inflammatory bone
lytic lesion is anticipated to develop a novel regimen for
periodontitis as well as other inflammatory bone lytic diseases
such as rheumatoid arthritis and osteoporosis.
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