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Impact of immunodeficiencies
on immunity induced by SARS-
CoV-2 infection, mRNA
BNT162b2 vaccination, and
their combination in children
and young adults
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Natalia Turic-Csokova1, Denisa Palova1, Stanislav Katina1,4,
Gabriela Paulikova-Rolkova1,2, Peter Ciznar5, Julia Horakova6,
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and Branislav Kovacech1,2*

1Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia, 2AXON
Neuroscience R&D Services SE, Bratislava, Slovakia, 3Department of Paediatric, National Institute of
Children’s Diseases, Bratislava, Slovakia, 4Faculty of Science, Institute of Mathematics and Statistics,
Masaryk University, Brno, Czechia, 5Department of Paediatric, Medical Faculty Comenius University in
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Institute of Children’s Diseases, Bratislava, Slovakia
Current understanding of how immunodeficiencies impact protective responses

against viral infections and vaccination is primarily derived from adult cohorts that

may not accurately reflect the pediatric, adolescent, and young adult population.

This cross-sectional study aimed to evaluate immune responses in this

underrepresented population affected by various immunodeficiencies after

SARS-CoV-2 infection, two doses of the mRNA BNT162b2 vaccine, or after a

comb ina t ion o f bo th . We ana l yzed b lood samp les f rom 102

immunocompromised patients (IC) (5–25 years) categorized into groups of

primary immunodeficiencies (PID, n=17), bronchial asthma and allergic rhinitis

(BA-AR, n=39), rheumatoid diseases (RD, n=21), and individuals who had

undergone hematopoietic stem cell transplantation (HSCT, n=28), as well as 30

healthy individuals (9–26 years). We measured titres of Spike-specific IgM, IgA,

and IgG antibody classes (including IgG subclasses) in plasma using ELISA and

evaluated their inhibitory potential in a Spike-ACE2 cell-based internalization

assay. Spike-specific CD4 T-cells were examined using a flow cytometry-based

proliferation assay (FASCIA). In the IC group, all participants except eight

generated detectable levels of IgG antibodies. The IgG titres induced by

vaccination (Geometric mean titre (GMTvac) = 205023, 95% CI: 116074-362136)

and a combination of vaccination and infection (GMThyb = 172819, 95%CI: 33133-

901403) were higher than after infection (GMTinf = 3323, 95% CI: 578-19109, Pvac/

inf = .006 and Phyb/inf = .001). On the other hand, the hybrid immunity induced the

highest IgA titres (GMThyb = 2672, 95% CI: 566-12623) compared to vaccination

(GMPvac = 275, 95% CI: 97-777, Phyb/vac = .016) and infection (GMTinf = 60, 95%CI:

13-280, Phyb/inf = .002). The IgG titres in vaccinated and hybrid immunity groups

strongly correlated (rSpearman = 0.86, P <.0001) with the levels of antibodies
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inhibiting the internalization of Spike protein (S protein) in a cell-based assay. Most

IC patients (except five) also developed above-threshold Spike-specific CD4 T-

cell responses, which were not statistically different from the responses in the

healthy control group. Our data show that infection and vaccination can induce

protective humoral or cellular responses against SARS-CoV-2 in IC patients. The

activated cellular response in patients with agammaglobulinemia may assist them

in overcoming viral infections.
KEYWORDS

SARS-CoV-2, primary and secondary immunodeficiencies, mRNA BNT162b2 vaccine,
inhibitory antibodies, CD4 T-cells, Geometric mean titre
1 Introduction

Exposure to new antigens in immunocompromised (IC)

populations, such as the situation that arose during the COVID-

19 pandemic, provided a unique opportunity to evaluate the ability

of patients’ immune systems to elicit functional antibodies and

generate targeted cellular responses. This heterogeneous group of

patients, comprising individuals with primary immunodeficiencies

(PID, commonly referred to as inborn errors of immunity) and

those with secondary immunodeficiencies resulting from chronic

illnesses or their treatments, is actually a spectrum of rare diseases

that share some common characteristics (1). PID comprise a highly

varied group of disorders, with over 500 types recently recognized,

exhibiting symptoms that differ in severity and in the immune

pathways affected (2). While individual PID often have relatively

narrow spectrum mechanisms, secondary immunodeficiencies

typically impact multiple immune pathways.

Recent research has significantly enhanced our understanding of

the host immune responses triggered by natural SARS-CoV-2 infection

and by COVID-19 vaccines. Numerous studies have shown that SARS-

CoV-2 vaccines stimulate both arms of the adaptive immune response

and reduce the severity of COVID-19 disease in immunocompetent

adults (3–7). However, several studies indicated a suboptimal immune

response in immunocompromised adults (8–12). Our current

understanding of how immunodeficiencies influence immune

response against infections and vaccinations is primarily derived

from studies conducted with adult populations. This may not

accurately reflect the immune responses in pediatric and young
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adults, since some investigations indicate that immune response

profiles to SARS-CoV-2 are distinct in children compared to adults

(13–15). Therefore, more information is required to better understand

the specific immune responses following vaccination and infection in

IC children with rare diseases and to improve pediatric clinical practice.

In this study, we included a group of 102 children and

adolescents with primary and secondary immunodeficiencies,

along with 30 age-matched controls.

Our study offers a detailed profile of immune responses across

various immunodeficiencies following vaccination, after SARS-

CoV-2 infection, and as a result of a combination of both

vaccination and infection. We measured total S-specific IgG, IgA,

and IgM titres and investigated the different subclasses of IgG

(IgG1, IgG2, IgG3, and IgG4) using ELISA. Additionally, we

evaluated the inhibitory capacity of antibodies in plasma samples

from all participants using cell-based assay. Moreover, we assessed

the CD4 T-cell response triggered by the vaccine, by SARS-CoV-2

infection, and by both. Obtained data are crucial for understanding

the immune system’s capabilities in individuals with deficiencies,

providing valuable insights for clinicians treating young patients

with immune defects.
2 Methods

2.1 Study design and sample collection

Children, adolescents, and young adults diagnosed with

immunodeficiency syndromes, who were regularly monitored by

the National Institute of Children’s Diseases in Bratislava,

participated in the cross-sectional study running from July 2021

to May 2022. The inclusion criteria for study participation required

either SARS-CoV-2 vaccination (Pfizer mRNA BNT162b2 vaccine)

and/or SARS-CoV-2 infection confirmed by RT-PCR. The cohort

consisted of 102 patients, aged between 5 and 25 years, who were

suffering from primary immunodeficiencies (PID) and secondary

immunodeficiencies. The PID group comprised patients with

predominant antibody deficiencies, as well as patients with
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common variable immunodeficiency (CVID), individuals with

severe T lymphocyte deficiencies, and those with newly described

syndromic defects (22). The patients with secondary

immunodeficiencies were categorized into three groups: the BA-

AR group included patients with bronchial asthma and

uncomplicated allergic rhinitis; the RD group comprised patients

with rheumatoid diseases, primarily juvenile idiopathic arthritis;

and the HSCT group consisted of patients who underwent

hematopoietic stem cell transplantation. A control group was

recruited from healthy children, adolescents and young adults to

match the age range of the immunocompromised participants (9–

26 years). The study received approval from the Ethics Committee

of the National Institute of Children’s Diseases in Slovakia (EK6/

2021), as well as from the Ethics Committee of the self-governing

region of Bratislava (number 04848/2021/HF for the control group).

Informed consent for participation was obtained from all subjects

or their legal guardians, and a sample of heparinized whole blood

was collected from patients during a routine health examination.

Peripheral blood cells were used to determine T-cell responses, and

plasma was used to assess the antibody response.
2.2 Preparation of cell line and Spike
protein

Human embryonic kidney HEK293T/17-hACE2 cells with

stable expression of human angiotensin-converting enzyme ACE2

(AXON Neuroscience SE) and recombinant S protein were

prepared as described previously (16).
2.3 Determination of S-specific antibodies
by ELISA

Recombinant S protein (100 ng/well in PBS) was immobilized

on microtitre plates (High Binding plates; Greiner Bio-One,

Germany) at 37°C for 2h. After blocking with PBS-0.1% Tween

20, the plates were incubated overnight with serially diluted patient

plasma samples. After washing (PBS-0.1% Tween 20), bound

antibodies were detected by anti-human immunoglobulins

conjugated to HRP (anti-human class-specific secondary

antibodies for the detection of IgM, IgG, IgA, and IgG subclasses

IgG1, IgG2, IgG3, and IgG4, all from Thermo Fisher Scientific,

USA). The bound secondary antibodies were measured through the

HRP activity with the chromogenic substrate TMB One (Kementec

Solutions A/S, Denmark) at the absorbance of 450 nm. The

resulting signal was compared with that obtained for the negative

human plasma collected before the COVID-19 pandemic (Pooled

Human plasma K3EDTA, #15922, Innovative Research, Inc.). The

titre of the antibodies in the plasma was defined as the highest

dilution at which the absorbance at 450 nm was at least twice the

absorbance of an equally diluted negative plasma sample. To ensure

assay consistency and quality, positive control samples at three

dilutions (for IgG: QC1 – 75,000x; QC2 – 10,000x; QC3 – 1,000x;

for IgM: 20,000x; 3,000x; 500x; for IgA: 8,000x; 2,000x; 200x) of the
Frontiers in Immunology 03
plasma pool from 9 subjects with PCR positive SARS-CoV-2 to each

plate were added. Negative sample plasma was serially diluted like

patient plasma samples on each plate.
2.4 S-ACE2 binding inhibition assay

HEK 293T/17-hACE2 cells stably expressing human ACE2

protein (16), were seeded at 60-70% plating density in a 48-well

plate and cultivated O/N at 37°C, 5% CO2 in DMEM supplemented

with 10% (v/v) fetal bovine serum, 2 mM L-glutamine (all from

GIBCO), gentamicin (0.05 mg/ml, Sigma-Aldrich), and 100 µg/ml

hygromycin (Thermo Fisher Scientific). Recombinant Spike protein

was labelled with Alexa Fluor™546 (Thermo Fisher Scientific)

according to the manufacturer’s recommendations. 40 ng/ml of

labelled S protein was pre-incubated with three-fold serially diluted

plasma sample (from 100x to 24,300x) for 30 min at 37°C. Then the

pre-incubated mixtures were added to HEK 293T/17-hACE2 cells

and incubated for 2 hrs at 37°C, 5% CO2 in a humidified incubator.

Subsequently, cultivation media were removed, and cells were

gently resuspended in 500 µl of PBS and immediately evaluated

for S protein internalization by flow cytometry (BD LSR Fortessa™,

BD Bioscience). Measurements were recorded as mean fluorescent

intensity of Alexa Fluor 546. 10,000 single cells were quantified for

each plate well. Fluorescence of all tested samples was normalized

by expressing it as percentage (sample%) of average fluorescence of

wells with 100x diluted negative human plasma Pooled Human

Plasma K3EDTA, Inc. (100%). The percentage of S protein uptake

inhibition for all plasma samples was calculated by formula

(inhibition% = 100 - sample%). The titre was determined as the

highest dilution of plasma sample with inhibition effect (>= 20%)

on S protein uptake. A positive control, consisting of a defined

plasma pool of nine SARS-CoV-2 positive subjects verified by PCR,

were added to each plate.
2.5 Determination of CD4 T-cell response

For determination of CD4 T-cells, the FASCIA assay was used

(17, 18). Heparinized blood from donors was diluted 1:10 in RPMI

1640 culture medium (GIBCO) supplemented with L-glutamine (2

mM, GIBCO) and gentamicin (0.05 mg/ml, Sigma-Aldrich). The

diluted blood sample was transferred into three sterile tubes in a

volume of 500 µl/tube for stimulation with positive, negative and

test stimuli. One tube (positive control) was stimulated with

Concanavalin A (ConA, Sigma-Aldrich) at a final concentration

of 10 µg/ml, another tube was stimulated with S protein at a final

concentration of 100 µg/ml. The third tube remained unstimulated

and served as a negative control (only diluted blood). The FACS

tubes were incubated for 7 days at 37°C, 5% CO2 and 95% relative

humidity. After incubation, the cell supernatant was removed and

blood cells were stained with a mix of antibodies against activated

T-cell surface markers (CD3-PECy7, CD4-PE, CD8-APC, all BD

Biosciences) for 30 min at room temperature in the dark.

Subsequently, erythrocytes were lysed by adding 1.5 ml of 1x
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lysing buffer/tube (BD Biosciences) for 10 min in the dark. After

removal of the buffer by centrifugation (10 min at 350 g), the cells

were washed with PBS, centrifuged for 10 min at 350 g and then the

supernatant was decanted. Finally, cell pellets were resuspended in

450 ml of PBS and the blast numbers were immediately counted by

flow cytometry (LSR Fortessa™, BD Biosciences) for 60 seconds.

Unstimulated and ConA stimulated controls were applied for gate

setting for resting lymphocytes and blasts (blasts were identified by

their FSc/SSc properties as larger than resting and dying

lymphocytes). CD3+ cells were divided into CD4+ cells (helper

T-cells) and CD8+ cells (cytotoxic T-cells) on separate dot plots and

gated. The number of CD4+ blasts in stimulated and unstimulated

samples was counted, and the fold of activation calculated

(stimulated to unstimulated). Positive cell activation after S

protein stimulus was defined as a minimum 2-fold increase over

the background (unstimulated) condition.
2.6 Statistical methods

Statistical analyses were conducted using R 4.2.2 (19). All

alternative hypotheses were two-sided, and statistical tests were

performed at a significance level of 0.05. Empirical confidence

intervals (CI) of the Wald type, 95%, and two-sided were

calculated. All P-values and CI were reported without correction

for multiplicity. To test a hypothesis about mean differences, the

bootstrap Welch two-sample Student t-test on log-transformed

data, which considered the variance differences between the two

samples, was used. The analysis was conducted utilizing 1000

bootstrap samples (20). For the titre of S-specific antibodies and

IgG subclasses for healthy controls and each immunocompromised

group, the types of immune response were compared. For the titre

of inhibitory antibodies and CD4 T-cells (fold of activation) for

each type of immune response, the healthy controls were compared

with each immunocompromised group. Spearman’s correlation

coefficient (21) was calculated to assess the association between

the titres of S-specific IgG and inhibitory antibodies, as well as the

titres of S-specific IgG in relation to CD4 T-cells. To test a

hypothesis about the correlation coefficient, the one-sample z-test

with Fisher z-transformation was used. This analysis was conducted
Frontiers in Immunology 04
separately for each type of immune response on log-transformed

data for all immunocompromised groups combined.
3 Results

3.1 Characteristics of study participants

A cohort of 102 immunocompromised children and young

adults of the National Institute of Children’s Diseases, Bratislava

(Slovakia) and 30 healthy individuals (HC) were included in the

analysis (Table 1). The IC patients were categorized based on their

diagnoses into four groups: PID (Table E1); BA-AR (Table E2); RD

(Table E3) and HSCT (Table E4). The PID group comprised 17

patients (6 females) with an average age of 14 years. Of them 6

(35%) received the Pfizer mRNA BNT162b2 vaccine, 8 patients

(47%) were diagnosed with COVID-19 confirmed by RT-PCR and

3 patients (18%) were vaccinated and overcame SARS-CoV-2

infection (hybrid immunity). The BA-AR group included 36

patients, 15 (42%) were female, with an average age of 15.5 years.

In this group, 25 patients (69%) received the Pfizer mRNA vaccine,

9 (25%) were both vaccinated and infected, and 2 patients (6%)

were infected. In the RD group, there were 21 children (57% female)

with an average age of 12 years. Of these 6 patients (29%) received

the Pfizer vaccine, 11 patients (52%) had confirmed SARS-COV-2

infection, and 4 (19%) overcame COVID-19 and were vaccinated.

The HSCT group included 28 children aged 5–24 years, of whom 10

(36%) were female. 16 patients (57%) received the Pfizer mRNA

BNT162b2 vaccine, 4 patients (14%) were infected and 8 (29%)

were both vaccinated and infected. The HC group included 30

individuals (21 females and 9 males) with an average age of 20.2

years. 14 individuals (46%) were vaccinated, 8 (27%) had COVID-

19 confirmed by RT-PCR, and 8 (27%) were both vaccinated and

infected with the SARS-CoV-2 virus.

The median time between vaccine administration and blood

sampling for the IC group was 90 days (ranging from 8 to 232 days),

while the median time between PCR-proven SARS-CoV-2 infection

and blood sampling was 59 days (ranging from 14 to 267 days). In

the healthy group, the median time from vaccination to blood

collection was 76.5 days, with a range of 21 to 191 days. The median
TABLE 1 Basic characteristics of study participants.

Diagnosis

Age (years) Sex SARS-CoV-2

Range Mean
Male
n (%)

Female
n (%)

Vaccine
n (%)

Infection
n (%)

Hybrid* n (%)

Total Inf/vac Vac/inf

PID (n=17) 6-24 14.0 11 (65) 6 (35) 6 (35) 8 (47) 3 (18) 2 (12) 1 (6)

BA-AR (n=36) 6-25 15.5 21 (58) 15 (42) 25 (69) 2 (6) 9 (25) 3 (8) 6 (17)

RD (n=21) 6-18 12.0 9 (43) 12 (57) 6 (29) 11 (52) 4 (19) 2 (9.5) 2 (9.5)

HSCT (n=28) 5-24 16.8 18 (64) 10 (36) 16 (57) 4 (14) 8 (29) 6 (22) 2 (7)

Controls (n=30) 9-26 20.2 9 (30) 21 (70) 14 (46) 8 (27) 8 (27) 4 (13.5) 4 (13.5)
fro
PID, Primary immunodeficiencies; BA-AR, Bronchial asthma, Allergic rhinitis; RD, Rheumatic disease; HSCT, Hematopoietic stem cell transplantation; *immunity induced by a combination of
vaccination and SARS-CoV-2 infection; inf/vac - individuals first infected and then vaccinated; vac/inf - individuals first vaccinated and then infected.
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time from PCR-confirmed infection to sample collection was 68.5

days, with a range of 15 to 186 days. There was no statistical

difference in the intervals between vaccination or infection and

sample collection between the IC and HC groups (P = .349, Mann-

Whitney test).

All participants in the group of vaccinees received two doses of

the vaccine (n=67, 100%). The median time between vaccine doses

was 28 days with a range of 21 to 69 days. In the hybrid group

(n=32), 28 participants (88%) received two doses, while the

remaining four patients (12%) were vaccinated once (two patients

with PID, one patient with HSCT, and one patient in the BA-AR

group). In the group of infected patients (n=33), only one (3%)

from the PID group (XLA) overcame COVID-19 twice; all other

infected participants overcame the infection only once (Tables

E1-E4).

In the group of PID patients with induced hybrid immunity

(n=3), two individuals were infected before vaccination, while one

was vaccinated before infection. Among patients with BA-AR

(n=9), three participants were infected and then vaccinated, while

six were vaccinated and then infected. In the group of patients with

RD (n=4), two were infected prior to vaccination, and the other two

were vaccinated prior to infection. In the group of patients who

underwent HSCT (n=8), six had infection before vaccination, while

two were vaccinated prior to infection. In the control group (n=8),

four participants were infected first, and four were vaccinated

first (Table 1).

Out of 17 PID patients, 11 were undergoing immunoglobulin

replacement therapy (IgRT) at the time of sampling, 8 received

subcutaneous immunoglobulin (HyQvia) while 3 were treated with

intravenous immunoglobulin (Kiovig/Privigen). From the HCST

group, only 2 patients were receiving intravenous immunoglobulin

(Kiovig/Privigen). Patients who received IgRT were vaccinated at

least one week before or after their IgRT treatment (Table E1, E4).
3.2 titres of S-specific antibodies

The levels of spike-specific IgG, IgA, and IgM classes of

antibodies induced by infection, vaccination, and a combination

of both (hybrid antibody response) were determined for the entire

immunocompromised group, individual groups stratified based on

diagnosis, and a healthy group using ELISA (Figure 1).

3.2.1 IgG class
The IgG class reached the highest titres in all groups, regardless

of the type of antibody induction (Figure 1, Table E5). Overall, the

IC participants showed significantly higher levels of IgG (expressed

as geometric mean titre, GMT) after vaccination compared to those

who were infected with SARS-CoV-2 (GMTvac = 205023, 95%

confidence interval (CI): 116074–362136 vs GMTinf = 3323, 95%

CI: 578-19109, P = .006). The GMT of antibodies induced by hybrid

immunity in this group was also notably higher than that observed

in the infection cases (GMThyb = 172819, 95% CI: 33133–901403 vs
Frontiers in Immunology 05
GMTinf = 3323, 95% CI: 578-19109, P = .001). However, there was

no difference between the levels of vaccine- and hybrid immunity-

induced IgG levels (P = .849).

The IgG antibody levels in the control HC group followed the

expected pattern, the highest IgG response was induced by hybrid

immunity (GMT = 1229774, 95% CI: 761791-1985000), followed by

the IgG levels after vaccination (GMT = 209327, 95% CI:117764-

372082), and the lowest levels were after the infection (GMT =

29623, 95% CI: 10687-82113). The differences were statistically

significant (Phyb/vac <.00001, Pvac/inf = .002, Phyb/inf <.00001).

Analyses in the individual IC groups confirmed that the IgG

titres after vaccination were higher than those after infection

(Figure 1). These differences were significant only for the PID

(GMTvac = 153995, 95% CI:46838-506306, GMTinf = 839, 95%

CI:7-100040, P = .038) and BA-AR (GMTvac = 266189, 95%

CI:173426-408571, GMTinf = 40915, 95% CI:8049-207983,

P <.00001) patients (see also Table E5). The low levels of

antibodies in the PID group after infection were influenced by the

diagnoses of the patients. Of the 8 patients who overcame the

infection, only 5 (62.5%) had detectable IgG, while two subjects with

XLA and one with cartilage-hair hypoplasia syndrome showed no

S-specific IgG levels (Table E1). Similarly, higher levels of IgG

induced by vaccines were observed in RD and HSCT patients

compared to those induced by infection, but without statistical

significance (see Table E5). Additionally, given the diagnosis and

ongoing treatment, two patients (18.2%) from the RD group (Table

E3, patients no. 3 and 10) who overcame the infection as well as one

vaccinated patient after HSCT (6.3%, Table E4, patient no. 19) were

unable to develop S-specific IgG.

The combined stimulation of immune system through

vaccination and infection (hybrid immunity) resulted in the

generation of IgG in most IC subjects, except for one case in the

PID group (33.3%) and another in the HSCT (12.5%) group

(Figure 1, IgG). Both individuals received two doses of the Pfizer

mRNA vaccine and tested positive for SARS-CoV-2 by RT-PCR.

This lack of antibody response can be attributed to the diagnosis of

the PID patient (nude severe combined immunodeficiency) and

the ongoing therapeutic regimen for the HSCT patient, which

involves corticosteroid administration and anti-TNF therapy

with adalimumab.

Overall, a combination of vaccination and infection did not lead

to a statistically significant increase in anti-S antibody production in

comparison to vaccination in all groups of IC participants. A trend

was observed in the BA-AR group (GMThyb = 584314, 95%

CI:276387–1235000 and GMTvac = 266189, 95% CI:173426-

408571), which was not statistically significant (P = .066).

The levels of hybrid-induced antibodies were higher than

infection-induced antibody levels in the IC groups, but only in

the BA-AR group this difference was statistically significant

(GMTinf = 40915, 95% CI: 8049-207983, GMThyb = 584314, 95%

CI:276387-1235000, P = .002) (see Table E5). The difference in the

PID, RD, and HSCT groups did not reach statistical significance

(Figure 1, see Table E5).
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3.2.2 IgA class
Overall, the titre of IgA reached lower levels compared to IgG in

all groups (Figure 1). In the combined IC group, 72.5% patients
Frontiers in Immunology 06
showed detectable IgA response, and 76.7% in the HC group. In the

IC group, the highest titres of IgA were detected after combined

(hybrid) activation of the immune system (GMThyb = 2672, 95% CI:
FIGURE 1

Antibody response induced by SARS-CoV-2 infection, vaccination, and a combination of infection and vaccination (hybrid immune response)
evaluated by ELISA. S-specific titres of IgG, IgM, and IgA in a pooled group of IC participants and individual groups that were stratified based on
diagnosis —PID,BA-AR,RD, HSCT and HC are shown. The distributions of all variables are visualized using violin plots on a log scale, with the log-
transformed data and their geometric mean (red horizontal lines) superimposed on these plots. Statistical significance between individual
populations was determined by the bootstrap Welch two-sample Student t-test on log-transformed data. For the sake of clarity, only results with
statistical significance are shown (*P <.05; **P <.01; ***P <.001). The results are not corrected for multiplicity.
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566-12623), followed by the levels of vaccine-induced IgA (GMPvac
= 275, 95% CI: 97-777), and lowest levels were observed after

infection (GMTinf = 60, 95% CI: 13-280). The differences were

significant between the hybrid and vaccine induced levels (P = .016)

and between the hybrid and infection induced levels (P = .002). This

pattern of IgA levels was similar to that observed in the HC group,

where the hybrid immunity led to the highest IgA response

(GMThyb = 21548, 95% CI:6472-71744) significantly different

from those in vaccinated (GMTvacc = 87, 95% CI:10-726, P

<.00001) and infected (GMTinf = 172, 95% CI: 11-2809, P = .020)

participants. The analysis in the individual groups of the

immunocompromised participants showed that these differences

in the IgA levels were driven by the BA-AR group. The highest

levels were observed after combination of vaccination and infection

(GMThyb = 9726, 95% CI: 1999-47310) and were significantly

different from those induced either by vaccination (GMTvac =

456, 95% CI:137-1516, P = .007) or infection (GMTinf = 268, 95%

CI:2-42839, P = .003) alone. No difference was observed between

vaccination and infection induced IgA levels (P = .44). The IC

subgroups did not show significant differences between IgA levels

(Table E5). All patients in the BA-AR group generated hybrid IgA

like the healthy control, while one patient from the PID, RD, and

the HSCT groups was a non-responder (Figure 1).

3.2.3 IgM class
The overall IgM antibody response in the entire IC group was

very low (22.5% for IC, 56.7% for HC) compared to that of IgG and

IgA across all analyzed groups, which is also influenced by the time

of sample collection (MeanHC was 73.7 days, 95% CI:53.04-94.4;

MeanIC was 88 days, 95% CI:75.7-100.3, P = .35). Additionally, a

large portion of participants did not exhibit appreciable levels of

antibodies, regardless of the type of immunity. The GMT of IgM in

the immunocompromised group was 3 (95% CI: 1-7) for the

vaccine, 6 (95% CI: 2-21) for infection and 16 (95% CI: 3-73) for
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hybrid; slightly higher GMTs were observed in the control group

(see Table E5).
3.3 S-specific IgG subclass determination

The analysis of the subclasses of S-specific IgG revealed a

predominant induction of IgG1 in both IC and HC groups

irrespective of the type of the inducing immunity (Figure 2). In

the IC group, infection also led to the generation of IgG3 in some

patients; in the healthy group, IgG3 and IgG2 were induced in one

participant each. In the immunocompromised group, IgG3

constituted up to 34% of the total IgG which is higher than 8%

observed in the healthy group. Conversely, vaccination and hybrid

stimulation of the immune response resulted in the production of

all IgG subclasses. The analysis revealed a similar profile of IgG

subclasses induced by the vaccine in both immunocompromised

and healthy groups, with a relatively notable proportion of IgG4

antibodies (18% in the immunocompromised group and 17% in the

healthy group). After the hybrid stimulation of the antibody

response, the amount of IgG4 increased in healthy controls

reaching 25%, while in the immunocompromised group, it

remained at 7%.
3.4 titres of inhibitory antibodies

Next, we analyzed the ability of plasma samples to block the

interaction between the S protein of SARS-CoV-2 and ACE2

expressed on the surface of permissive cells (Figure 3, Table E6).

All individuals who developed vaccine-induced or hybrid-induced

IgG antibodies showed detectable levels of inhibitory antibodies

(except one vaccinated patient in the HSCT group despite the IgG

titre of 45500, Figures 1, 3).
FIGURE 2

The proportion of S-specific IgG subclasses within the total IgG response for the IC and HC groups after infection-, vaccine- and hybrid-induced
immunity. IgG subclasses (IgG1, IgG2, IgG3, IgG4) are expressed as percentages of total IgG. The distributions of all variables are visualized using
violin plots and their means (red lines) are superimposed on these plots. For the sake of clarity, the means are also expressed as numerical values.
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After infection we found relatively low titres of inhibitory

antibodies in immunocompromised and healthy individuals.

Several participants generated detectable titres of S-specific IgG,

yet had undetectable levels of inhibitory antibodies: one individual

in the HC group (IgG titre of 12000), one in the PID group (IgG

titre of 4700), three individuals in the RD group (IgG titres of 32400,

9500 and 8300), and two in the HSCT group (Figure 3). The GMT

of the inhibitory antibodies for the entire IC group was only 22

(95% CI: 7-71), while for the HC group it was 108 (95% CI: 19-597).

These values were lower compared to those of the vaccine and

hybrid immunity-induced inhibitory antibodies (Figure 3, Table

E6). After vaccination, GMT for IC patients was 1252 (95% CI: 770-

2036), which was similar to the GMT of HC individuals (GMT =

1077, 95% CI: 586-1981).

The hybrid immunity induced significantly higher GMT in the

healthy individuals (GMT = 9601, 95%CI: 4668-19747) than in the

total IC group (GMT = 2108, 95% CI: 658-6760, P = .041), which

was caused by the presence of two non-responding patients in the

IC group (they also had IgG titres below detection levels). The

analysis of the individual IC subgroups showed that the BA-AR

patients reached the highest and most consistent levels of inhibitory

antibodies compared to the PID, RD, and HSCT subgroups induced
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by the infection, vaccine or hybrid immunity (Figure 3, Table E6).

The S-specific IgG levels induced by vaccination and hybrid

immunity positively correlated with the titres of inhibitory

antibodies blocking the S-ACE2 interaction (vaccine IgG: r =

0.864, P <.00001; hybrid immunity IgG: r = 0.863, P <.00001)

(Figure 4). We also observed a significant positive correlation

between the infection-induced S-specific IgG levels and inhibitory

antibodies (r = 0.617; P = .00008), however, the relationship was

weaker than for vaccine- and hybrid immunity-induced antibodies.
3.5 S-specific CD4 T-cells response

Helper T-cells play an essential role in the development and

affinity maturation of antibodies. We analyzed the levels of CD4 T-

cells induced by vaccination, infection, and their combination in

immunocompromised and healthy individuals using the FASCIA

method in fresh whole blood (17, 18, 23, 24). Stimulation of the blood

cells (fold of activation) with the S protein led to the induction of the

S-specific CD4 T-cells in all healthy individuals (Figure 5).

Comparable levels of CD4 T-cell activation were observed across

individual groups, including healthy controls, with no statistically
FIGURE 4

Correlations between the titres of IgG and inhibitory antibodies were assessed in the IC and HC groups. For each group, a linear regression line with
95% confidence band was plotted on a logarithmic scale. Spearman’s correlation coefficient (rs) was calculated to evaluate the association between
S-specific IgG titres and inhibitory antibody titres, along with the corresponding statistical significance based on the P-value.
FIGURE 3

The titres of inhibitory antibodies in the entire IC group, in the individual diagnosis-stratified groups (PID, BA-AR, RD, and HSCT), and in the healthy
participants are shown using violin plots on a logarithmic scale. Geometric means are indicated by red horizontal lines. Statistical significance
between individual groups was assessed using the bootstrap Welch two-sample Student’s t-test on log-transformed data. Differences that reach
statistical significance between the HC and IC groups are marked with an asterisk (*P <.05).
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significant differences (Figure 5). Additionally, the type of immune

response induction, whether due to infection, vaccination, or a

combination of vaccination and infection, did not significantly affect

the levels of the S protein-specific CD4 T-cells, as demonstrated by the

geometric mean values (GMV, Table E7). For healthy individuals who

were infected, the GMV was 35 (95% CI: 8-158), while for the IC

patients who were infected, it was 14 (95% CI: 8-25). The GMV of the

CD4 T-cell response to the vaccine in healthy controls was 20 (95% CI:

10-39), and was similar to that in the combined group of the IC

patients (GMV = 23, 95% CI: 16-35). The IC group contained two

patients with the strongest T-cell response among all participants (both

belonged to the RD group) with activation levels of 402-fold and 465-

fold. The hybrid CD4 T-cell response reached the GMV of 37 (95% CI:

14-99) in the healthy group, and 19 (95% CI: 11-34) in the IC group.

Additionally, we found a weak correlation between vaccine-

induced S-specific CD4 T-cell responses and S-specific IgG

responses when considering all individuals combined (r = 0.333;

P = .0057). The correlations in the infected and hybrid groups were

not statistically significant (see Figure E1). This limited correlation

highlights a mismatch between humoral and cellular responses in

some patients with immune deficiencies.
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3.6 Profile of immune responses across
immunodeficiencies

Using the collected data on antibody and cell responses, we

assessed the proportions of responders and non-responders (S-

specific IgG titres and fold activation of CD4 T-cells) in all groups

after vaccination, infection, and hybrid-induced immunity

(Figure 6). In this context, a responder was defined as an

individual who can react to stimuli – such as a vaccine, an

infection, or a combination of both – by generating at least one

type of immune response.

All healthy individuals generated both antibody and cell

responses, regardless of the nature of the inducer of the immune

response. Unsurprisingly, the proportion of non-responders that

failed to mount either humoral or cellular response was highest in

the PID group (29%). Among these, two were diagnosed with XLA

and after infection did not mount detectable IgG response but

exhibited CD4 T-cell responses (39-fold and 12-fold activation).

The other two patients had cartilage-hair hypoplasia syndrome and

FOXN1 deficiency and they were unable to generate any IgG or

cellular response after infection or a combination of vaccination
FIGURE 6

The percentage of individuals with S-specific IgG and/or S-specific CD4 T-cells is displayed. The relative frequencies are illustrated using bar plots
scaled to 100% for the entire immunocompromised group (IC, n = 102), individual diagnostic groups (n = 28, responders 93%; RD, n = 21,
responders 90%; BA-AR, n = 36, responders 97%; PID, n = 17, responders 71%) and the HC group (n = 30, responders 100%). A responder was
defined as an individual capable of reacting to immune stimuli by generating at least one type of immune response, either humoral or cellular.
FIGURE 5

S-specific CD4 T-cell responses following infection, vaccination, and hybrid exposure. Fold changes in T-cell activation are shown in violin plots on
a logarithmic scale. Data are presented for the pooled IC participants, individual subgroups (PID, BA-AR, RD, and HSCT) and the HC group.
Geometric means are indicated by red horizontal lines.
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and infection. Additionally, one patient with combined

immunodeficiency had relatively low levels of antibodies (IgG

titre of 4700) and did not develop detectable CD4 T-cells

response. In the BA-AR group, only one patient did not mount

detectable CD4 T-cells response (3%). In the RD group, we found

two individuals with negative humoral responses (10%), one also

with a borderline-positive cellular immune response. Furthermore,

in the HSCT group, one patient (with hybrid immunity) showed

undetectable levels of both antibodies and CD4 T-cell activation,

while another patient failed to show an antibody response (7%).
3.7 Immune response of patients with IgRT
therapy

Out of 17 PID patients, 11 were receiving IgRT during the

duration of the study. Among them, five were from the infected

group, four from the vaccinated group, and two from the hybrid

group. In two patients with XLA, we did not detect any specific

antibodies following viral infection; however, S-specific CD4 T-cells

were significantly stimulated in these patients (fold of activation 39

and 12, respectively). In a patient with CID, we observed relatively

low titres of S-specific IgG, IgM, and IgA antibodies (titre of 4700,

900, and 400, respectively) and no activation of CD4 T-cells.

Additionally, a patient diagnosed with Cartilage-Hair Hypoplasia

syndrome did not exhibit any immune response, and despite

receiving IgRT (Kiovig/Privigen), no antibodies were detected.

However, this patient passed away due to complications

associated with COVID-19, specifically respiratory failure. In

contrast, another patient showed relatively high levels of IgG and

IgA (titre of 100800 and 4400, respectively) and CD4 T-cells (fold of

activation 4).

In four IgRT-receiving patients in the vaccinated group, we

observed IgG titres ranging from 29300 to 557500 and activated

CD4 T-cells (fold of activation from 4 to 181).

There were two patients in the hybrid group receiving IgRT

therapy. In one of these patients, no S-specific antibodies or T-cells

were detected, even after being vaccinated twice and subsequently

infected. Conversely, the second patient displayed very high levels

of antibodies (IgG titre of 1684300; IgA titre of 33400) and

significant cellular immunity (fold of activation 80).

During the sampling period, only two patients from the HSCT

group who received the vaccine were undergoing IgRT. In one

patient, the IgG titre of 51700 and significant activation of CD4 T-

cells (fold of activation 136) were observed. In the second patient,

the vaccination did not induce an antibody response, only a cellular

response, as indicated by CD4 T-cell activation with a fold of

activation of 24.
4 Discussion

This study aimed to evaluate how various primary and

secondary immunodeficiencies influence the immune response
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to SARS-CoV-2 infection, mRNA vaccination, or a combination

of both. The cohort included 102 immunocompromised children,

adolescents and young adults with conditions such as primary

immunodeficiencies, asthma/allergic rhinitis, rheumatoid

diseases, and those who had hematopoietic stem cell

transplants. The study assessed antibody responses and CD4 T-

cell responses, focusing on the titres of antibody isotypes

targeting the S protein (IgG, IgM, IgA, and IgG subclasses

IgG1, IgG2, IgG3, and IgG4) . I t a l so evaluated the

neutralization capacity of these antibodies and their correlation

with S-specific binding antibody titres.

In our study, we demonstrated that major i ty of

immunocompromised patients developed a diverse range of

matured, multi-isotype antibody responses specific to the S protein,

induced by vaccination, infection, or a combination of both. Among

these inducers, infection resulted in the lowest levels of S-specific

antibodies. This finding aligns with a previous study by Lafon et al.

(25), which reported that convalescent COVID-19 patients had lower

levels of antibodies compared to those receiving the mRNA-1273,

BNT162b2, or ChAdOx1 vaccines. Similarly, de Gier et al. (26) found

that the concentration of S-specific antibodies was lower in infection-

induced immunity compared to vaccine-induced or hybrid immunity.

Vaccination combined with SARS-CoV-2 infection creates hybrid

immunity, resulting in the highest levels of S-specific antibodies. We

observed an IgG response to the S protein in most IC patients, which

indicates that immune mechanisms are functioning, leading to

secondary high-affinity IgG responses. Since we did not identify any

individuals with only primary IgM responses, we can assume that class

switching to high-affinity secondary IgGs was not impaired by

immunodeficiencies (except where disease directly thwarts B-cell

responses). This finding is extremely important from the perspective

of antiviral immunity in immunocompromised patients.

Our previous research demonstrated that S-specific antibodies

capable of inhibiting the S-ACE2 interaction exhibited strong

neutralizing activities against the SARS-CoV-2 virus (16).

Consequently, the S-ACE2 inhibition assay indicated that

vaccination, viral infection, and the combination of vaccination

and infection all induced high-quality antibodies with neutralizing

activity. Importantly, our data revealed a significant positive

relationship between S-specific IgG levels and the corresponding

neutralization activities for all three types of stimuli (infection,

vaccination, and vaccination plus infection). These results suggest

that the induced antibody response has a protective nature and is a

crucial component of antiviral immunity. We suppose that even

antibodies binding to the S protein but not neutralizing SARS-CoV-

2 may still play a beneficial role in immune control of the infection.

It is important to note that, beyond neutralization, high-affinity IgG

antibodies are associated with a wide range of Fc-dependent effector

functions, making them a crucial component of protection against

SARS-CoV-2 infection (27–29). In this context, IgG1 and IgG3 are

powerful pro-inflammatory antibodies capable of inducing effector

functions, whereas IgG2 and IgG4 are considered anti-

inflammatory with a limited capacity to mediate such functions

(30, 31).
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During the sampling period of the ongoing study (July 2021 to

May 2022), IgRT products were shown to contain varying

concentrations of SARS-CoV-2 antibodies (32, 33). We did not

have the possibility to determine the levels of the anti-S antibodies

in the IgRT preparations, therefore, it was not possible to accurately

assess the proportion of IgRT-derived antibodies in the plasma of

the study participants. In some cases, despite administering IgRT,

we found no S-specific antibodies, and in PID patients (XLA) we

only detected the S-specific CD4 T-cells. In other instances, we

observed specific IgG antibodies, as well as IgA and CD4 T-cells.

The levels of IgA antibodies in IgRT are relatively low with short

half-lives (34), which contrasts with the significantly high IgA titre

seen in a patient with CVID following an infection and subsequent

vaccination. This indicates that IgA and CD4 T-cells were generated

following immune system stimulation due to infection or

vaccination. Based on these observations, we assume that the

antibodies observed in patients undergoing IgRT therapy

primarily result from immune response to infection or

vaccination, and the contribution of IgG antibodies from IgRT is

minimal. Similarly, recent studies have indicated that none of the

IgRT products significantly impact overall antibody levels (12,

33, 35).

Given the important role of IgG antibodies in antiviral

immunity, we analyzed the abundance of anti-S IgG subclasses.

As expected, the analysis revealed the predominant presence of pro-

inflammatory S-specific IgG1 across all groups. We observed

unexpectedly high levels of IgG3 in IC patients following

infection. In three participants the proportion of IgG3 ranged

from 50% to 98%, even though the total levels of IgG antibodies

were relatively low. Since the class switching is regulated by

cytokines, we hypothesize that changes in the balance of the

cytokine environment due to anti-inflammatory therapy may

affect the class switching to the IgG3 subclass. We also detected

the S-specific IgG4 subclass in individuals with both vaccine-

induced and hybrid-induced response. Interestingly, no S-specific

IgG4 antibodies were found in individuals with only infection-

induced immunity. In vaccinated IC and HC individuals, we

observed a switch in the antibody response to IgG4 in those

tested more than 58 days after receiving two vaccinations

(ranging from 58 to 232 days, with an average of 140 days).

These findings are in line with a recent study indicating the

emergence of S-specific IgG4 antibodies in the sera of individuals

5 to 7 months after their second vaccine dose (36). In the hybrid

immunity group (IC and HC), after two vaccine doses, SARS-CoV-

2 infection probably acted like a third dose, promoting the

induction of IgG4. Boosting of vaccine-induced immune memory

by SARS-CoV-2 infection was already reported to induce a switch

in the antibody response to IgG4 (36). However, the implications of

this class switching from pro-inflammatory IgG1 to anti-

inflammatory IgG4 for antiviral defense remain unclear.

To provide a comprehensive overview of induced antibodies, we

measured the levels of IgM and IgA in subjects with vaccine-

induced, infection-induced, and hybrid immunity. Consistent
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with findings from other studies, we observed that more than half

of the participants had very low or undetectable IgM levels (37–39),

which may reflect the kinetics of IgM in plasma following antigenic

stimulation. Thus, one possible explanation for the low IgM levels

could be an extended interval between IgM induction and

blood collection.

We found that IgA levels did not reach the levels observed for

IgG, despite the significant role that IgA antibodies play in viral

immunity. We observed relatively low IgA levels induced by SARS-

CoV-2 infection; however, vaccination followed by infection

resulted in a notable increase in IgA levels, which could be

beneficial for the patient.

All participants in the group of vaccinees received two doses of

the vaccine, although it may not be sufficient to induce an adequate

immune response, particularly for immunocompromised patients.

Several studies indicated that the effectiveness of immune response

following the third and fourth doses of the vaccine varies based on

the degree of immune impairment of the patient (33, 35, 40) and a

recent publication demonstrated that booster vaccinations

significantly enhanced the immune response in patients with

inherited immune deficiencies with a milder clinical phenotype

(12). Therefore, it will be important to identify which patients

benefit most from additional vaccine doses. Our data showed that,

regardless of diagnosis, the majority of patients developed antibody

and helper T-cell responses comparable to those of healthy controls.

Only patients with serious immune system defects or those

undergoing immunosuppressive therapy were unable to respond

adequately to the immune stimulators. Four patients with

secondary immunodeficiencies, two with RD and two who had

HSCT, did not mount an antibody response. The patients with RD

included one with juvenile dermatomyositis and one with juvenile

idiopathic arthritis and both were treated with methotrexate at the

time of sampling. Of the two HSCT patients, one was diagnosed

with B-cell acute lymphoblastic leukemia (B-ALL) and was

receiving CAR T-cell immunotherapy, and the other had an X-

linked inhibitor of apoptosis protein deficiency and was treated with

cyclosporine A and hydrocortisone. These therapies likely inhibited

the antibody production. These findings are in line with previously

published studies, which suggest that immune dysregulation in

patients leads to suboptimal adaptive immunity (8–11, 41, 42). The

individuals with undetectable antibodies or CD4 T-cells were found

only in the immunocompromised groups, not between healthy

participants, which is consistent with earlier reports (41, 43).

As expected, we did not detect any antibody response in SARS-

CoV-2-infected patients with XLA; however, this antibody

deficiency was compensated by an S-specific CD4 T-cell response.

Several other studies have documented induced S-specific T-cells in

children with XLA (11, 44–46). CD4 helper T-cells are multipotent

and play a critical role in protecting against SARS-CoV-2 infection

by performing a wide range of helper and effector functions (47).

They promote the proliferation and differentiation of CD8 T-cells

into effector cytotoxic cells, and they also have direct antiviral

activities or can differentiate into effector cells, such as Th1-cells
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(48, 49). Since patients with XLA were able to overcome SARS-

CoV-2 infection, it seems likely that the virus-induced CD4 T-cells

provided substantial antiviral immunity. The significant role of T-

cells in immunity is further supported by case reports from Soresina

et al. (50), which described two patients with XLA who overcame

severe COVID-19 without mounting an antibody response. These

findings highlight the important role of T-cells in virus protection

and suggest that a lack of antibody response does not necessarily

indicate a lack of immunity.

This is a cross-sectional study with several limitations. The

nature of the study did not allow us to assess the temporal dynamics

of the immune response. Our cohort is highly heterogeneous,

comprising a broad range of diagnoses and ongoing therapies,

which may affect the outcomes to varying degrees. 11 patients

with PID, as well as two with HSCT, have been on IgRT therapy.

This treatment may have affected the levels of antibodies detected in

some cases. Additionally, the individual IC groups included

vaccinated individuals, infected individuals, and vaccinated

individuals who have recovered from a SARS-CoV-2 infection.

Although all participants in the vaccine group received two doses

of the vaccine, in the hybrid group 12% received only one dose.

The small number of patients in each IC group makes it

impossible to draw definitive conclusions. Variations in the time

intervals between the immune stimulation and blood collection was

not considered in the statistical analysis and might have contributed

to high variability in the measured components of the immune

response. The study did not assess the CD8 T-cell response, which is

crucial due to its direct antiviral cytotoxic activity and is necessary

to obtain a comprehensive understanding of the induced immunity.

In conclusion, our data suggest that antibody-mediated

immunity is generated in a diverse group of immunocompromised

patients after vaccination and infection, indicating their potential to

provide effective protection against SARS-CoV-2, and possibly

against other infectious pathogens. Furthermore, patients with

impaired antibody production due to immunodeficiency exhibited

activated T-cell-mediated immunity, which likely played a role in

overcoming SARS-CoV-2 infection.
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