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Introduction: Aging is accompanied by immunoscenescence and chronic low-
grade inflammation (inflammaging), contributing to age-related diseases.
Physical exercise is a potent modulator of immune function and systemic
inflammation, yet the effects of acute exercise intensity on immune activation,
cytokine dynamics, and extracellular vesicle release in older adults remain
incompletely characterized, particularly in a sex-specific context. This study
investigated how a single session of acute continuous moderate versus intense
exercise modulates immune cell subsets, cytokine levels, and EV profiles in
healthy older individuals, with emphasis on sex-based differences.

Methods: Thirty-three older adults completed either a moderate (n=14, 54-79
years; 60% VO,max, 30 minutes) or an intense cycling bout (n=19, 61-85 years;
incremental cardiopulmonary exercise test (CPET) to exhaustion). Peripheral
blood was collected at baseline, 30 minutes, and 24 hours post-exercise.
Immune cells were analyzed by flow cytometry. EVs were characterized by
flow cytometry and nanoparticle tracking analysis, and cytokines were quantified
by multiplex assays.

Resuls: Moderate exercise enhanced classical monocyte activation (1CD86,
ICX3CR1) without altering cell counts, and selectively elevated IL-6 in females.
Intense exercise induced stronger innate immune activation, increasing classical
and nonclassical monocytes, CD56°"9"/CD16'°" NK cells, and sustained TNFo
levels. EVs positive for tetraspanins (CD9, CD63, and CD81) were elevated 24h
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after intense CPET. Exploratory sex-disaggregated analyses revealed distinct
profiles: females had increased CD4* EVs, while males showed elevated HLA-
ABC™" EVs.

Discussion: Acute exercise modulates immune responses in an intensity- and
sex-dependent manner in older adults. Extracellular vesicle release was assessed
only in the high-intensity intervention, where significant changes were observed.
These findings support personalized exercise regimens to enhance immune
resilience and promote healthy aging.

KEYWORDS

cardiovascular fitness, healthy aging, inflammaging, extracellular vesicles,
sex differences
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Background

Aging is characterized by a progressive decline in physiological
function and increased susceptibility to chronic diseases such as
cardiovascular (e.g., heart failure, chronic coronary syndrome),
metabolic (e.g., Diabetes Mellitus 2) and neurodegenerative (e.g.,
dementia) diseases, as well as cancer (1-6). Age-related immune
changes, or immunosenescence, contribute to heightened disease
vulnerability and impaired infection response (7-9). Chronic low-
grade inflammation, or inflammaging, is a hallmark of aging and
contributes to the pathogenesis of age-related diseases (10, 11). As
the global population ages, understanding the complex interplay
between exercise, immune function, inflammation, and aging is
essential to promote healthy aging and reduce the burden of age-
related diseases (12, 13).

Physical activity confers numerous health benefits and is essential
for promoting healthy aging. While evidence supports that exercise
positively impacts outcomes and prognoses across numerous diseases
in the elderly (14, 15), the underlying mechanisms of exercise-
induced release, uptake, and communication of bioactive factors in
older adults remain incompletely understood. This is especially true
regarding sex-specific responses as males and females may exhibit
distinct immune adaptations to exercise. Regular exercise modulates
immune function by reducing systemic inflammation markers and
attenuates age-related increases in proinflammatory cytokine levels,
making it a powerful approach for mitigating inflammaging and
mitigate chronic disease risk in older adults (10, 13, 16-19).
Importantly, sex-specific differences in immune function suggest
that personalized exercise regimens could optimize immune
responses and overall health outcomes, highlighting the need for
targeted approaches in exercise prescriptions for aging populations
(20, 21).

Age-related immune changes include alterations in immune cell
composition and function, dysregulation of cytokine signaling, and
impaired immune surveillance (22-26). While the benefits of
physical exercise on immune function are well-documented, the
precise mechanisms driving these effects, particularly in the older
adult population, remain incompletely understood.

In recent years, extracellular vesicles (EVs), particularly those
released in response to exercise (ExerVs), have emerged as a subject
of significant interest due to their role in facilitating intercellular
communication. By transporting proteins, lipids, and microRNAs
to distant organs, EVs act as carriers of bioactive molecules
potentially mediating exercise-induced benefits across the
organism. Evidence suggests that exercise modulates EV release
into circulation pointing toward a pathway through which physical
activity may influence immune responses in aging populations
(27-32).

Despite growing recognition of the importance of physical
exercise in healthy aging, major gaps remain in our
understanding of the mechanisms underlying its effects on
immune function, inflammation, and aging, along with sex-
related discrepancies (10, 18, 33). While most studies emphasize
long-term training adaptations, acute exercise represents the
fundamental unit of physical activity. Acute exercise has long
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been recognized as a potent stimulus for immune surveillance,
mobilizing NK cells, T cells, and neutrophils into circulation (34).
Moderate bouts enhance immunosurveillance and anti-
inflammatory signaling, whereas prolonged strenuous exercise
may transiently suppress immune function (35). Acute immune
and EV responses are thought to accumulate over time, shaping the
trajectory of healthy aging and adaptation.

Thus, our research aimed to investigate these gaps by examining
the effects of acute continuous moderate and intense exercise
interventions on immune responses, cytokine levels, and the
release of EVs in older adults. Exercise intensity is a key
determinant of these effects: moderate activity is well tolerated
and clinically recommended for older adults, whereas intense bouts
may trigger more pronounced but potentially less sustainable
immune responses. Direct comparison allows us to assess how
intensity shapes immune and EV responses, informing exercise
prescriptions for older adults. We selected 30 min and 24 h after
exercise as sampling points to capture early post-exercise changes
and subsequent recovery. Although additional intermediate
measures (e.g., at peak or 3-4 h) might reveal further dynamics,
these timepoints balanced mechanistic insight with practical
considerations in older adults, including participant burden and
study logistics. Furthermore, we aimed to explore the relevance of
sex-specific responses, focusing on how tailored exercise
interventions may promote immune resilience and health in
aging populations. Together, these factors guided our
investigation of how acute exercise intensity shapes immune and
EV responses in older adults.

Methods
Study population

A cohort of 33 healthy older individuals (subproject 1: 14
participants, 54-79 years; 60% VO,max, 30 minutes; subproject 2:
19 participants, 61-85 years; incremental cardiopulmonary exercise
test (CPET) to exhaustion), recruited through the University
Hospital Magdeburg, participated in this study. The inclusion
criteria were age > 55 years and the ability to move freely.
Participants with a history of cardiovascular, endocrinological,
neurological, neoplastic, or psychiatric disorders were excluded.
While the term ‘older adults’ is used throughout this manuscript, we
acknowledge that this is a relative term; in our study, it refers to
individuals aged 55 years and above.

Intervention

Subproject 1

Fourteen healthy adults (median age: 68 years, 57% female)
underwent a moderate acute continuous exercise intervention on a
bicycle ergometer (30 minutes, 60% VO,max). Individual
cardiorespiratory fitness was assessed at least two weeks earlier
using a cardiopulmonary exercise test (CPET) to exhaustion, and
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Moderate exercise alters immune activation in older adults. Clinical and experimental study design and analytical processes for the moderate
exercise intervention. Participants completed a cycling cardiopulmonary exercise testing (CPET) for 30 minutes; peripheral blood was assessed at
baseline and 30 min after the intervention (A). Demographic and exercise data for participants in the moderate intervention. VO,max and
performance parameters (mean power, RPE, peak heart rate, and peak lactate) were obtained during the cardiopulmonary exercise test (CPET) used
to prescribe the 60% VO,max workload for the 30-min cycling intervention. Mean heart rate (105.6 + 21.1 bpm) reflects values recorded during the
30-min moderate-intensity intervention itself. (B). Flow cytometry gating identified single cells, granulocytes, and mononuclear cells via FSC/SSC.
Neutrophils were further gated by co-expression of CD16/CD15. Mononuclear cells were gated on CD3 and CD56 to define NKT (CD3*CD56") and
NK (CD3°CD56") cells. CD3°CD56" cells were assessed for CD20 (B cells), and CD20" cells further gated by CD14 and CD16 for classical
(CD14"CD16), intermediate (CD14"CD16low), and nonclassical (CD14lowCD16"*) monocytes (C). Immune cell fractions are shown in bar charts (D).
Heatmaps showing frequencies of activation marker-positive cells within classical, intermediate, and nonclassical monocyte subsets at baseline and
30min post-exercise. Rows represent markers, columns represent timepoints and subsets. Colors indicate relative frequency (red = higher, blue =
lower) (E). Statistical significance was assessed using non-parametric tests. Panel (A) was created in BioRender (Garza, AP. 2024, https://

BioRender.com/096f904).

the workload for the intervention was calculated as 60% of each
participant’s measured VO,max. The mean Vo,max of participants
in this group was 24.5 mL/kg/min (range 18-38) (Figures 1A, B).
Blood was collected before and 30 minutes after the
intervention (Figure 1A).

Subproject 2

Nineteen healthy adults (median age: 67 years, 47% female)
performed a cardiopulmonary exercise test until exhaustion on a
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bicycle ergometer. The incremental step test included a three-minute
unloaded pedaling at 0 W, following the resistance increased by 25 W
every three minutes. During the incremental cycling test, breath-by-
breath pulmonary gas-exchange data (MetaSoft, Studio: Cortex
Biophysik GmbH Leipzig, Germany), heart rate (Custo med 100,
custo med GmbH, Ottobrunn, Germany) and lactate levels (Lactate
Scout 4, EKF Diagnostic, Barleben, Germany) were assessed.
Perceived exertion was assessed at the end of each step using Borg-
Scale (Borg, 1970). The CPET concluded when (i) the respiratory
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FIGURE 2

Study design and participant characteristics for intense exercise intervention. Clinical and experimental study design and analytical processes for the
intense exercise intervention. Participants completed an incremental cycling cardiopulmonary exercise testing (CPET) to volitional exhaustion;
peripheral blood was assessed at baseline, 30 min, and 24 h after the intervention (A). Demographic and intervention metrics for the cohort (sex
distribution, age, body mass index (BMI), intervention duration, peak power (W), VO,max, Borg RPE score, maximal heart rate and lactate) (B).
Individual participant data for BMI, Watts reached, duration of the intervention in minutes, and VO,max. (C). Panel A was created in BioRender

(Garza, AP. 2024, https://BioRender.com/c87a107).

exchange ratio was above 1.10, (ii) a plateau in VO, occurred (despite
increasing workload) or (iii) the rating of perceived exertion was 18 or
higher on the Borg Scale. Safety criteria for premature termination of
CPET were in the case of major electrocardiographic abnormalities,
excessive blood pressure increase (= 230 mmHg systolic and/or > 110
mmHg diastolic), or individual request (30). The mean VO,max in
this group was 22.1 mL/kg/min (range 16-35) (Figures 2B, C for
individual values). Blood samples were collected at baseline, 30 min
and 24 hours post-intervention (Figure 2A).

Blood collection and processing

Whole blood was obtained from the antecubital area via
venipuncture using a 21G butterfly needle in sterile BD
Vacutainer blood collection tubes containing 1 mL Acid Citrate
Dextrose/Glucose (ACD). Samples were processed within 1 h of
collection. Whole blood (100 pL) was lysed using 1X Red Blood Cell
Lysis Buffer (BioLegend, 10X) following the manufacturer’s
instructions. After lysis, cells were centrifuged at 400 x g for 5

Frontiers in Immunology

05

min at room temperature. The supernatant was discarded, and two
washing steps were performed using PBS. Cells were resuspended in
300 pL of FACS buffer (1X PBS, 2% FBS, 2 mM EDTA, and 2 mM
NaN3), and 100 uL was added to a 5 mL round-bottom polystyrene
tube. Samples were incubated in 5 pL of Human TruStain FcX
(BioLegend) for 10 min to avoid nonspecific antibody binding. Each
sample was stained with the following antibodies: anti-human
CD16 (FITC), anti-human HLA-DR (Peridinin chlorophyll
protein-Cyanine5.5), anti-human CD86 (Allophycocyanin), anti-
human CD3 (Alexa Fluor 700), anti-human CD66b (Alexa Fluor
700), anti-human CD19 (Alexa Fluor 700), anti-human CD56
(Alexa Fluor 700), anti-human CD36 (Allophycocyanin-Cyanine
7), anti-human CD163 (Brilliant Violet 421), anti-human CD15
(Brilliant Violet 510), anti-human HLA-ABC (Brilliant Violet 605),
anti-human CCR2 (Phycoerythrin), anti-human CD62L
(Phycoerythrin -Dazzle 594), anti-human CD15 (Phycoerythrin-
Cyanine5), anti-human CX3CR1 (Phycoerythrin-Cy7), anti-human
CD4 (Allophycocyanin-Cyanine 7), anti-human CD3 (Brilliant
Violet 510), anti-human CD16 (Brilliant Violet711), anti-human
CD45 (FITC), anti-human CD56 (Phycoerythrin), anti-human
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CD8 (Phycoerythrin-Dazzle 594) and anti-human CD20 (Peridinin
chlorophyll protein-Cyanine5.5). After an incubation period of 30
min, the samples were washed twice and resuspended in 210 pL of
FACS buffer. Samples were acquired using an Attune NxT flow
cytometer (Thermo Fisher Scientific).

Gating strategy

Data were first gated on singlets (FSC-H vs FSC-A) and on size/
complexity (FSC-A vs SSC-A) to exclude doublets and debris.
Within this population, neutrophils were identified as
CD15"CD16" cells in the high-SSC gate. From the lower SSC/FSC
region, lymphocyte populations were further defined: NK cells as
CD3°CD56%, NKT cells as CD3*CD56", and T cells as CD3™ events
subdivided into CD4" helper and CD8" cytotoxic subsets. B cells
were identified as CD3'CD56'CD20". Monocytes were gated as
CD20°CD45" cells, followed by selection for HLA-DR™ events, and
then classified by CD14/CD16 expression into classical
(CD14*CD16°), intermediate (CD14*CD16""), and nonclassical
(CD14'°"CD16"") subsets. Fluorescence Minus One controls
(FMOs) were used to define gates, and single-stained
compensation beads were used to calculate compensation. Data
were analyzed using FlowJo (v10.10.0).

Cytokine assay

Plasma was separated from whole blood by centrifugation at
1,500 g for 10 min. Plasma (1 mL) was transferred to clean
Eppendorf tubes and centrifuged at 400 x g for 10 min at 4 °C to
remove debris. The panel included cytokines, chemokines, and
soluble factors with established relevance for aging, inflammation,
and exercise immunology, encompassing pro-inflammatory (e.g.,
TNF-q, IL-6), anti-inflammatory (e.g., IL-10, IL-33), vascular and
neurotrophic mediators (e.g., VEGF, BDNF, 3-NGF, VILIP-1), and
soluble immune receptors (e.g., SRAGE, sTREM1, sTREM2).
Analytes were assessed using the Human LEGENDplex Multiplex
Assay (BioLegend) including TNF-a., IL-6, VEGF, BDNF, IL-23, IL-
1B, SRAGE, IL-12p70, IL-18, IL-10, IFN-0:2, sSTREM2, IEN-y, P-
NGF, CX3CL1, IL-33, VILIP-1, IL-17A, MCP-1, IL-8, and STREM1;
following the manufacturer’s instructions. The assay utilizes
allophycocyanin-coated beads conjugated with surface antibodies
that allow the specific binding of the analyte of interest. After
incubation of the capture beads with the plasma sample,
biotinylated detection antibodies were added to create a bead-
analyte-detection antibody sandwich, which was further stained
with streptavidin-phycoerythrin. Samples were measured using an
Attune NxT flow cytometer and analyzed using the LEGENDplex
Data Analysis Online Software Suit. Half of the limit of detection
(LOD) was used as a constant value when the predicted
concentrations were below the LOD.
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Extracellular vesicles

ACD blood samples from the intense exercise intervention
group were centrifuged twice at 2,500 g for 20 min at RT,
followed by 2 centrifugation cycles of 14,000 g for 70 min at 4 °C.
The supernatant was carefully removed, and the pellet was
resuspended in 200 pL 0.22 m filtered phosphate-buffered saline
(PBS) without Ca** and Mg*" and vortexed. Thirty-seven EV
surface epitopes were studied using the MACSPlex Human
Exosome Kit (Miltenyi) following the manufacturer’s instructions,
as previously described (36, 37). In short, this assay employs
phycoerythrin and fluorescein isothiocyanate-labeled polystyrene
capture beads that capture plasma EVs during overnight
incubation. Subsequently, allophycocyanin-labeled anti-CD9, anti-
CD63, and anti-CD81 antibodies were added to positively select for
EVs. This results in the formation of a structure encompassing
capture beads, EVs, and detection antibodies, facilitating event
detection and identification of surface epitopes. For each sample,
raw bead-associated signal (MFI) for every epitope was
background-corrected by subtracting the corresponding blank/
isotype signal. To account for between-sample differences in total
EV capture, per-sample normalization was performed by scaling
each epitope’s MFI to the tetraspanin signal measured in the same
well, as commonly applied in bead-based EV assays. Samples were
measured using an Attune NxT flow cytometer, normalized values
were further analyzed using Flow]Jo (v10.10.0).

Nanoparticle tracking analysis

NanoSight Pro instrument (Malvern, Worcestershire, UK) was
used to determine the size distribution and concentration of the
EVs. All the EVs samples were diluted in fPBS (1:1000) and then
injected into the sample-carrier cell. The particles were
automatically tracked and sized using Brownian motion to record
five videos of 30 s. The parameters were set at 25 °C, 5 uL/min flow
rate, 39 frame rate and exposure of 25 ms. The cell was cleaned with
fPBS followed by ethanol between samples. The video images were
analyzed by the Nanosight Pro 1.2.0.3 software (Malvern
Panalytical Inc.) The size mode (nm) and concentration (particle
number/mL) of the EVs were calculated by combining the data
from the five records. To effectively represent the distribution of
particle sizes, we utilized a Kernel Density Estimation (KDE)
approach with a shaded deviation region to highlight variability.

Statistical analyses

Statistical analyses were performed using GraphPad Prism 10
(v10.1.1(270)). Data distribution was assessed with D’Agostino &
Pearson and Shapiro-Wilk tests. Differences between two
timepoints were assessed using the Wilcoxon matched pairs
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TABLE 1 Immune cell counts pre- and post-exercise intervention.

Baseline 30 min

14 14

Mean of events per ul

(SEM)
NKT cells 33.25 (4.5) 34.03 (5.4) 0.9598
NK cells 46.74 (5.2) 53.4 (6.9) 0.4879
B cells 272 (3.4) 26.0 (3.0) 0.8036
Cytotoxic T cells 12.1 (1.5) 11.7 (5.3) 0.9189
T helper cells 163.7 (23.8) 145.9 (17.3) 0.6027
Neutrophils 146.9 (15.4) 146.6 (8.6) 0.3380
Classical Monocytes 2.3 (0.2) 2.14 (0.2) 0.4542
Intermediate Monocytes = 2.51 (0.3) 2.59 (0.3) 0.8300
Nonclassical Monocytes | 5.71 (0.4) 6.87 (0.7) 0.3064

Values are presented in events/uL, showing mean and standard error of the mean (SEM) per
cell group within each group. Counts are reported as events/uL to enable direct comparison of
circulating cell numbers independent of leukocyte frequency; complementary frequencies are
presented in Figure 1D. Statistical evaluation was performed using student’s t test, p values are
shown within the table.

signed rank test. Mixed-effects analysis, with Geisser-Greenhouse
correction and Tukey’s multiple comparison test was performed for
the comparison of three time points. Sex-specific analyses were
conducted to determine whether the changes observed in the overall
population were also present when analyzed separately by sex.
Graphical data representations were created using GraphPad
Prism 9, BioRender and Phyton. An alpha value of p < 0.05 was
used for all statistical tests. Statistical significance was set at p < 0.05
and marked with asterisks as follows: * p < 0.05, ** p < 0.001, and ***
p < 0.0001. Data are presented as the arithmetic mean and
corresponding standard error of the mean (SEM).

Results
Subproject 1

Acute moderate continuous exercise intervention
affects monocyte activation 30 min post exercise
in older adults

To investigate the acute effect of moderate exercise, 14
participants completed a 30 min cycling intervention at 60%
VO,max, prescribed on the basis of CPET performed at least 2
weeks earlier (Figures 1A, B). During the intervention, participants
reached a mean heart rate of 105.6 £ 21.1 bpm. Flow cytometric
analysis of whole blood revealed no significant alterations in cell
composition or frequency of adaptive or innate immune
populations following acute continuous moderate-intensity
exercise (Figures 1C, D, Table 1). However, specific changes were
observed in the monocyte subsets. Classical monocytes exhibited
increased frequency of CD86 (pre, 20.12 + 2.83%; post, 26.97 +
2.70%, p = 0.010) and decreased CX3CRI expression post-
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intervention (pre, 54.27 + 2.37%; post, 46.81 + 3.30%, p = 0.034).
Intermediate monocytes displayed decreased CX3CR1 expression
(pre, 80.12 + 3.11%; post, 73.40 + 4.52%, p = 0.034) and reduced
HLA-ABC levels (pre, 100 + 0.11%; post, 99.36 + 0.19%, p = 0.021).
No discernible changes in the nonclassical subset were observed
(Figure 1E). Inflammatory cytokines showed no significant
differences between baseline and post-intervention groups
(Supplementary Figure 1).

Sex specific activation of monocyte subsets and
IL-6 post exercise response

Due to the scarcity of sex-disaggregated data on exercise
interventions in healthy older adult populations, we aimed to
investigate potential sex-specific differences in the immune
response. Given the limited number of participants per group,
these analyses are underpowered and should be considered
exploratory. While overall immune cell counts between male and
female participants did not differ significantly, when examining the
activation of monocyte subsets, our results showed sex-specific
variations following moderate exercise (Figure 3A). Male
participants exhibited a notable decrease in CCR2 expression in
classical monocytes and a significant increase in CXC3CR1 levels in
intermediate monocytes. In contrast, female participants displayed
reduced CD62L expression in intermediate monocytes.
Additionally, only female participants exhibited an increase in
circulating IL-6 levels post-exercise indicating a sex-specific
inflammatory response to moderate exercise (Figure 3B).

Subproject 2

Acute high-intensity exercise intervention affects
monocyte, NK cell and neutrophil changes 24 h
post exercise in older adults

To evaluate the effects of an acute high intensity exercise
session, 19 healthy participants, with a median age of 67 years
and a near-equal distribution of sex (47.3% females), underwent a
maximum-intensity cardiopulmonary exercise test (CPET). The
acute high-intensive exercise intervention was designed to push
participants to their physical limits, enabling the assessment of
immune responses and extracellular vesicle release under maximal
stress conditions (Figure 2A). Participants exhibited a mean BMI of
24.6 and a mean power output of 126 Watts (ranging from 50-
250W) during the intervention, which displayed substantial inter-
individual variability (Figure 2B). The exercise duration and
VO,max displayed notable similarities among participants,
revealing the diverse fitness levels within the cohort (Figure 2C).
All participants performed the same CPET protocol.

To evaluate the impact of intense exercise on immune cell
populations, we conducted flow cytometric analysis was performed
on blood samples collected at baseline, 30 minutes post-
intervention and 24 h post-exercise (Figure 2A). This gating
strategy allowed for detailed examination of neutrophils, T helper
cells, cytotoxic T cells, NK cells, B cells, and monocyte subsets
(Figure 4A). Our results revealed significant changes in the cellular
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Sex-specific immune and EV responses to exercise in older adults. Floating bar charts showing sex-disaggregated mean + SEM for monocyte
activation markers (A) and IL-6 levels (B) before and 30 min after moderate exercise. Sex-specific counts of classical monocytes and NK cells (C),
and median signal intensity of CD4", CD62P*, and HLA-ABC™" EVs at baseline, 30 min, and 24 h post-intense exercise (D). Female and male data are
shown with respective symbols (Q left, & right). Statistical tests included non-parametric t-tests (moderate, n=14) and mixed-effects analysis with
Geisser-Greenhouse correction and Tukey's test (intense, n=19). p values are indicated in the figure.

fractions at the different time points, with the most prominent
difference observed at 24 h post-intervention (Figure 4B).
Specifically, our findings indicated a significant increase in
classical and nonclassical monocytes, along with a rise in NK cells
driven by CD56°¢" and CD16"" NK cells contributing to the
increase (Figure 4C). In contrast, neutrophil counts declined 24 h
after the intervention, while components of the adaptive immunity
remained unchanged (Figure 4C). Further sex-disaggregated
analysis revealed that the increase in classical monocytes and NK
cells was predominantly driven by the male participants, whereas
no significant changes were observed in the female
subgroup (Figure 3C).

Monocyte and neutrophil activation after acute
intense exercise

Monocyte and neutrophil activation after acute intense exercise
was investigated to determine if their activation status was
influenced by the intervention. The expression levels of key
activation markers including CCR2, CD36, CD62L, CD86,
CD163, CX3CR1, and HLA-ABC were evaluated across each
monocyte subset. In classical monocytes (Figure 5A), CX3CRI
expression was significantly reduced 30 min post intervention. In
contrast, intermediate (Figure 5B) and nonclassical (Figure 5C)
monocytes did not exhibit significant changes in the studied
markers. For neutrophils, a significant decrease in CD62L
expression was observed between the 30 min and 24 h time
points (Figure 5D).
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Elevated proinflammatory cytokine levels
following acute high intensity exercise

Aging is linked to elevated levels of inflammatory cytokines,
creating an environment conducive to age-related diseases (38).
Additionally, it has been shown that intense acute exercise in young
individuals typically triggers a surge in canonical proinflammatory
cytokines (39), and we aimed to determine if similar responses
occur in an older adult cohort. Therefore, to assess the
inflammatory impact of high-intensity exercise, we measured
various cytokines and regulatory biomolecules at baseline, 30
minutes and 24 hours post-intervention (Table 2). Our study
revealed that high-intensity exercise significantly increased
peripheral TNFo. levels immediately post-exercise (5.32 pg/mL)
compared to baseline (2.68 pg/mL, p = 0.047), and remained
elevated 24 h post-intervention (4.23 pg/mL), evidencing a
sustained inflammatory response (Table 2). IL-6 levels did not
show significant changes across time points, although a slight
decrease was observed at 24 h post-intervention. Similarly,
markers associated with vascular and brain health, such as
SRAGE, sTREM2, and B-NGF, did not exhibit significant changes.
However, a separate analysis showed a significant correlation of
BDNF levels with age 24 h after the continuous acute intense
exercise intervention (Figure 6). Anti-inflammatory cytokine IL-
10 showed a transient non-significant decrease immediately post-
intervention returning to baseline levels by 24 h. Other
proinflammatory cytokines (IL-1f, IL-12p70, IL-18, IL-23, IL-
17A, IFN-y) and chemokines (MCP-1, IL-8, CX3CL1) showed no
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FIGURE 4

Peripheral immune cell subset alterations induced by intense exercise. Flow cytometry gating identified singlets, granulocytes, and mononuclear
cells based on SSC/FSC. Neutrophils were gated by CD16/CD15 expression. Mononuclear cells were defined by CD3/CD56 to distinguish NKT
(CD3*CD56%) and NK (CD3°CD56") cells. NK cells were further subdivided into CD56°"9"CD16'°"/CD56'*“CD16" subsets. CD3 CD56 cells were
assessed for CD20 (B cells); CD20" cells were gated on CD14/CD16 for classical (CD14*CD16°), intermediate (CD14*CD16'°"), and nonclassical
(CD14'°"CD16™*) monocytes (A). Immune cell fractions relative to total single cells at baseline, 30 min, and 24 h post-exercise are shown (B). Bar
charts showing cell fractions of immune cell populations at baseline (black), 30 min (turquoise) and 24 h (dark green) after the intervention (C).

significant changes across timepoints. Likewise, anti-inflammatory
mediators (IL-10, IL-33) and soluble receptors (STREM1, sSTREM2,
SRAGE) remained stable. Neurotrophic and vascular markers
(VEGF, B-NGF, VILIP-1) also did not differ significantly between
timepoints (Table 2).

Increased extracellular vesicle release is a key
response to intense exercise

Following the evaluation of immune cell populations, their
activation status, and peripheral cytokine levels, we examined the
impact of high-intensity exercise on the release of EVs. Plasma-
derived EVs were quantified at baseline, 30 minutes and 24 h post-
intervention. Nano-particle tracking analysis (NTA) showed an
increased concentration of EVs after intense exercise at both
studied timepoints (Figures 7A-C). Flow cytometric analysis
demonstrated a general increase in the concentration of plasma-
derived EVs after 24 hours, as indicated by increased levels of
tetraspanin markers CD9, CD63, and CD81 (Figures 7D, E).
Notably, CD63 and CD81 displayed significant increases in
median fluorescence intensity (MFI) at 24 h compared to 30
minutes post-intervention, while CD9 levels remained unchanged.
Since our EV profile was limited to surface epitope analysis, the
findings should be interpreted as descriptive, and future studies
should address functional properties and cargo composition.

A detailed examination of 37 exosomal surface epitopes
revealed a significant increase in surface CD69 expression after 24
h post-intervention (Figure 7F). This increase in CD69, a marker of
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cellular activation, was accompanied by a significant reduction in
CD62P, CD42a, and CD29 markers on EVs at 24 h post-
intervention. Other markers including CD8, CD56, and CD105,
did not show significant changes across the time points (Figure 7G).
Sex-specific differences were also observed in EV profiles. While the
total circulating EV count did not differ between sexes, females
exhibited a significant increase in CD4+ EVs and a decrease in
CD62P+ EVs 24 hours post-exercise. In contrast, male participants
showed a marked increase in HLA-ABC+ EV's following the intense
exercise intervention (Figure 3D).

Discussion

In recent years, the Exercise as Medicine approach has been
increasingly recognized for its multifaceted benefits beyond disease
prevention (40). Exercise acts as a modulator of immune function
and inflammation, key elements in aging and disease processes (33,
41, 42). Training adaptations are ultimately built on repeated acute
bouts of exercise. Characterizing immune and EV responses to a
single session would provide a mechanistic insight into how
physical activity contributes to healthy aging over time.
Therefore, our study aimed to explore the interplay between
exercise and the immune response, revealing alterations in
immune cell populations and cytokine levels following both acute
continuous moderate and intense exercise interventions in older
individuals. Furthermore, we examined exercise induced release
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multiple comparison test. p values are shown in figure.

and selective surface marker modulation of EVs as potential
mediators of systemic immune response, contributing to a
growing body of evidence that exercise plays a vital role in
promoting healthy aging and preventing age-related diseases.
Additionally, sex-stratified responses were explored. These
findings, while intriguing, are based on small subgroup sizes and
should be viewed as exploratory until confirmed in larger cohorts.

Monocyte subsets activation after
moderate exercise

We examined the impact of a single session of acute continuous
moderate exercise on the peripheral innate immune system of older
adults. Although overall cell numbers and distributions were
unchanged, activation patterns of monocyte subsets differed. Prior
work shows that monocyte responses depend on exercise intensity
(43). Our findings align with this, as classical (CD14"CD16°)
monocytes, representing an early differentiation stage are
recruited during moderate aerobic exercise (in our study acute
continuous moderate exercise: 30 minutes, 60% VO,max,
subproject 1). In contrast, mature subtypes (non-classical and
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intermediate monocytes, CD14"CD16") increase predominantly
after high-intensity exercise (CPET to exhaustion, subproject 2).
Since aging is associated with chronic innate immune activation
and expansion of CD16" monocytes, these observations highlight
exercise as a potential intervention target for healthy aging (44).
Classical monocytes, which are key to phagocytosis and
leukocyte recruitment, displayed increased CD86 and decreased
CX3CRI1 expression. CD86, a co-stimulatory molecule rapidly
mobilized from intracellular stores, supports enhanced T cell co-
stimulation (45). Reduced CX3CRI, a chemokine receptor
regulating monocyte differentiation and migration, mirrors prior
findings that its ligand CX3CLI rises in skeletal muscle after
exercise to promote a regenerative microenvironment (46).
Intermediate monocytes also showed decreased CX3CRI,
consistent with peripheral differentiation, accompanied by an
overall increase in intermediate and nonclassical monocytes (47).
Furthermore, we observed a significant reduction in CCR2 on
classical monocytes, restricted to older males. CCR2, a key
chemokine receptor for monocyte recruitment, has shown sex-
specific patterns in younger adults, with females generally
expressing higher levels post-exercise (48, 49). In our cohort,
older females exhibited higher baseline CCR2 than males, but
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TABLE 2 Circulating cytokine levels in the intense exercise intervention.
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Baseline

19

pg/mL (m, IQR)
TNFa 2.68 (0.23) 5.32 (43.14) 423 (11.57) 0.0470
IL-6 4.96 (6.74) 4.63 (8.42) 2.64 (3.5) 0.0927
VEGF 3.79 (11.53) 4.16 (10.69) 8.1 (26.13) 0.1154
BDNF 252.8 (392) 325.7 (499.6) 276.7 (244) 0.1322
IL-23 3.95 (6.18) 9.66 (18.68) 7.00 (11.59) 0.1694
IL-1b 033 (3.79) 0 (0.79) 0(0.17) 0.1881
SRAGE 2536 (4082.3) 1988 (2140) 2414 (3240) 0.2236
IL-12p70 4.72 (4.52) 5.87 (10.80) 3.77 (7.27) 0.2349
IL-18 191.7 (76.7) 199.5 (154.9) 202.4 (122) 03974
IL-10 5.90 (16.69) 323 (6.57) 4.49 (6.43) 0.4509
IFN-a2 3.08 (5.36) 445 (9.17) 4.24 (7.14) 05177
STREM2 3736 (3489) 4484 (3133) 4450 (3890) 0.5390
IFN-y 0.74 (1.88) 0.65 (1.14) 0.97 (2.77) 0.6022
B-NGF 225 (6.73) 1.25 (1.19) 2.67 (4.30) 0.6374
CX3CL1 731.9 (965.6) 836 (1331.5) 1121 (1135.6) 0.7603
IL-33 100.8 (89.1) 109 (143.9) 95.65 (171) 0.7603
VILIP-1 27.05 (212.32) 20.95 (46.35) 88.65 (157.37) 0.8102
IL-17A 0.93 (1.34) 0.75 (1.49) 1.02 (1.23) 0.8487
MCP-1 24.7 (22.83) 25.57 (24.11) 27.22 (25.6) 0.9071
IL-8 8.34 (44.18) 6.54 (30.36) 0.50 (49.81) 0.9081
STREM1 44.6 (90.76) 29.29 (51.62) 46.17 (118.55) 09161

Values are presented in pg/mL, showing median and inter-quartile range (IQR) per analyte within each group. Statistical evaluation was performed using mixed-effects analysis, with Geisser-

Greenhouse correction and Tukey’s multiple comparison test, was performed for the comparison of baseline, 30 min, and 24 h after the intense exercise intervention.

only males showed a post-exercise reduction. This suggests sex-
dependent modulation of monocyte trafficking, potentially shaped
by hormonal influences, and highlights the value of considering sex
in personalized exercise prescriptions for immune health in aging.

Intermediate monocytes also showed reduced HLA-ABC
expression, a class I MHC antigen involved in antigen
presentation. While microglial HLA-ABC expression increases
with age and may contribute to vulnerability to structural brain
changes (50, 51), its reduction in circulating monocytes could
indicate a transient state of altered immune surveillance. In
addition, we observed a decrease in CD62L, an adhesion molecule
required for monocyte rolling and endothelial transmigration (52,
53). Prior studies report higher CD62L expression in older adults
compared to younger cohorts (54). Interestingly, in our study, this
reduction was specific to females, suggesting enhanced adhesion
and transmigration capacity post-exercise. In contrast, the relatively
stable CD62L levels observed in males may reflect less efficient
monocyte trafficking, potentially contribute to higher chronic
inflammation and the greater risk of cardiovascular disease in men.
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Circulating pro-inflammatory cytokines
after one moderate session of exercise in
older adults

Prior studies report increases in IL-6 and TNF-o after moderate
exercise (39, 55, 56), but we observed no cytokine changes 30 min
post-exercise. The broader cytokine and biomarker panel also
remained stable, suggesting that moderate exercise did not elicit a
systemic inflammatory response in this cohort. Participants
reported an average Borg RPE of 15 (range 13-18), indicating
effort levels theoretically sufficient to provoke cytokine release
(57). The absence of detectable increases may reflect sampling
time or participants regular engagement in physical activity.
Notably, IL-6 was increased selectively in females. Prior work
links sex hormones to IL-6 dynamics, with women often
exhibiting higher IL-6 than men under stress or ischemic
conditions (58). In older adults, IL-6 also correlates with
sarcopenia in a sex-dependent manner (59). Our data therefore
suggests that moderate aerobic exercise may elicit distinct
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Peripheral BDNF correlates with age after intense exercise. Scatter plots including linear regression lines displaying peripheral levels of brain-derived
neurotrophic factor (BDNF), tumor necrosis factor-alpha (TNF-a), and interleukin-6 (IL-6) in relation to age across the three studied time points:
baseline (black), 30 min post-exercise (turquoise), and 24 h post-exercise (dark green). Data points represent individual participants, with black,
turquoise and dark green colors indicating different time points as specified. r’ and p values are shown in plot; statistical analysis was performed

using simple linear regression.

inflammatory responses in older women versus men, underscoring
the need to consider sex when evaluating exercise-induced immune
effects in aging populations. While these sex-specific effects are
intriguing, they should be interpreted with caution given the small
subgroup sizes, and future studies with larger cohorts are needed to
confirm them.

Intense exercise modifies the innate
immune response

Exercise-induced leukocyte mobilization is well documented,
and is partly attributed to cortisol-mediated release from the bone
marrow (60, 61). We hypothesized that an intense exercise would
exert stronger effects than moderate exercise, and indeed observed
enhanced innate responses, particularly in NK cells and monocytes
24h post-intervention. In line with previous work identifying NK
cells as the most responsive subset (39, 62-65), increases were
mainly driven by CD56°"¢™ and CD16'°" NK cells. Intense exercise
also induced a sustained rise in TNFa, likely reflecting cytokine
production from activated NK cells (66, 67).

In contrast, other cytokines including IL-6, IL-10, IL-23, IL-
12p70, IL-18, chemokines (MCP-1, IL-8, CX3CL1), and
neurotrophic/vascular factors such as BDNF, VEGF, B-NGF, and
soluble receptors (SRAGE, sTREMI, sTREM2), remained largely
unchanged suggesting that the cytokine signature of intense exercise
in older adults is relatively restricted. Further studies with larger
cohorts are needed to fully elucidate the broader immunological
impact of intense physical activity in older individuals.

Classical and nonclassical monocytes also increased at 24h,
accompanied by reduced CX3CR1 expression, consistent with a
shift toward a proinflammatory phenotype. Neutrophils count
declined at 24h, likely reflecting recruitment to damaged muscle
tissue, as reported in animal models (68, 69). This aligns with
previous findings by Nunes-Silva et al. who reported that exhaustive
treadmill exercise in mice induced rolling, adhesion, and
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transmigration of neutrophils into muscle tissue (70). Supporting
this, neutrophils in our cohort exhibited increased CX3CR1
expression, a mechanism shown to facilitate muscle infiltration
during exercise (71).

BDNF, a neurotrophic factor consistently elevated by acute and
long-term exercise (72-74) showed a transient increase 30 min
post-intervention, returning toward baseline at 24h. Notably, BDNF
correlated positively with age at 24h, suggesting that older
individuals exhibit a more prolonged response. This may
represent an age-related adaptation in BDNF sensitivity or a
compensatory neuroprotective mechanism. Whether this delayed
response translates into functional benefits such as improved
recovery or neuroplasticity warrants further study.

Extracellular vesicle release after exercise
in older adults

EVs mediate many of the beneficial effects of physical activity by
transporting proteins, lipids, and nucleic acids that shape
intercellular communication and metabolism (75-78). Prior work
in younger athletes showed exercise-induced EV release primarily
from lymphocytes, monocytes, platelets, endothelial cells, and
MHC-II+ cells (79). In our older cohort, both sexes exhibited
increases in EVs derived from lymphocytes and leukocytes (CD8,
CD14, HLA, CDS86), platelets (CD62P, CD42a, CD41b), and
endothelial cells (CD105, CD31), consistent with these earlier
findings (30, 79). We also observed increased CD69 expression on
EVs 24h post-exercise, reflecting leukocyte activation in parallel
with NK cell and monocyte mobilization (80). Platelet markers
(CD62P, CD42a) were increased at 30 min but declined by 24h
suggesting transient platelet activation that may contribute to
recovery processes in aging individuals.

Although total numbers did not differ by sex, distinct patterns
emerged. Females showed an increase in CD4" T cell-derived EVs,
whereas males exhibited higher HLA-ABC+ EV's 24h after exercise.
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FIGURE 7

Extracellular vesicles release in response to acute continuous intensive exercise. Plasma-derived EV concentrations were quantified by nanoparticle
tracking analysis (NTA) across all timepoints (A). Representative EV imaging (B) and size distribution histogram are shown (C). Bead-based flow
cytometry assessed 37 EV surface markers, with representative gating and fluorescence profiles (D). Tetraspanin expression (CD9, CD63, CD81) is
presented as mean + SEM and individual values (E). Heatmap showing normalized mean fluorescence intensity (MFI) of 34 differentially expressed
markers scaled to tetraspanin expression (CD9, CD63 and CD81). Rows represent timepoints (pre-, 30 min, and 24 h post-exercise); columns
represent markers. Colors indicate relative expression (dark green = higher, light green/white = lower). Asterisks denote significant changes between
timepoints (F). Signal intensities of selected immune, endothelial, and platelet-derived markers (CD8, HLA, CD56, CD105, CD62P, CD42a, CD29,
CD69) are shown (G). Statistical analysis used mixed-effects modeling with Geisser-Greenhouse correction and Tukey's test. p values are indicated in

the figure.

These findings suggest sex-dependent adaptive immune
modulation not apparent at the cellular level, potentially
influenced by hormonal factors such as estrogen, which enhances
CD4" T cell activity, or testosterone, which promotes antigen
presentation (81). Physiological adaptations may also contribute,
with females exhibiting stronger immune modulation and males
favoring recovery and resolution pathways. While the mechanisms
remain speculative, our data indicate that exercise-induced EV
responses may vary in a sex-dependent manner, underscoring the
need for future research. Importantly, as our EV analyses relied on
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surface epitope profiling, functional properties and cargo
composition should be addressed in future studies.

Conclusions and limitations

Physical exercise impacts several physiological systems beyond
solely skeletal muscle, with growing recognition on its role in
promoting healthy aging (13, 82). In our study, acute moderate
and intense exercise in older adults altered immune cell subsets,
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cytokine production and EV release. These findings support the
concept that tailored exercise prescriptions, accounting for
individual and sex-specific responses, may optimize immune
resilience and health outcomes in aging populations. EV
responses, however, were only observed following high-intensity
exercise, and thus our conclusions regarding exercise intensity and
EV modulation should be interpreted with caution. The observed
modulation of EV surface markers highlights their potential as
biomarkers and possible mediators of exercise-induced immune
effects, warranting further investigation into their functional roles.

At the same time, these results should be viewed as exploratory.
The sample size was relatively small, particularly for sex-stratified
analyses, limiting power to detect subtle effects. The parallel-group
design, rather than a crossover, prevented within-subject
comparisons across intensities. Participants were healthy, active
older adults of predominantly European background, which may
not generalize to sedentary individuals, those with chronic disease,
or more diverse populations. Although VO,max values were
comparable between groups, we cannot exclude the influence of
baseline cardiorespiratory fitness on the immune responses
observed. In addition, although the moderate bout was prescribed
at 60% VO,max, relative intensity defined by VO,max may not
always correspond to traditional heart rate or lactate thresholds.
This divergence has been noted previously in adults, including older
cohorts, where VO,max-based and threshold-based measures of
intensity show only modest concordance and substantial
interindividual variability in older populations (83, 84). Blood was
collected at three timepoints, but additional sampling could provide
a more complete temporal profile of immune and EV dynamics.
Finally, EV profiling was restricted to surface epitope analysis, and
potential confounders such as diet, sleep or hormonal status were
not systematically controlled.

Taken together, our findings indicate that both moderate and
intense exercise induce measurable changes in immune cell activation
in older adults. In addition, EV release was assessed in the high-
intensity intervention, where significant changes were observed.
Preliminary evidence suggests potential sex-specific differences.
While limited in scope, these results underscore the value of
integrating exercise into healthy aging strategies and highlight the
need for larger, more diverse, and mechanistically focused studies to
fully define the therapeutic potential of exercise as medicine.
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Glossary
ACD
APC
BDNF
BMBF
BMI
CD
CPET
EDTA
EV
ExerVs
FACS
FBS
FITC
fPBS
FSC
FSC-A
HLA
IL

IQR

Acid Citrate Dextrose/Glucose
Allophycocyanin

Brain-derived Neurotrophic Factor
Federal Ministry of Education and Research
Body Mass Index

Cluster of Differentiation
Cardiopulmonary Exercise Testing
Ethylenediaminetetraacetic acid
Extracellular Vesicle

Exercise-released Extracellular Vesicles
Flow Cytometry

Fetal Bovine Serum

Fluorescein

Filtered Phosphate Buffered Saline
Forward Scatter

Forward Scatter — Area

Human Leukocyte Antigens
Interleukin

Inter-quartile Range
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KDE
LOD
MEFI
MHC-I
NGF
NK
NKT
NTA
PBMC
PBS

PE

RPE
SEM
SsC
SSC-A
STREM2
TNE
VO,

VO,max

10.3389/fimmu.2025.1661161

Kernel Density Estimation

Limit of Detection

Median Fluorescence Intensity

Major Histocompatibility Complex Class I Antigen
Nerve Growth Factor

Natural Killer

Natural Killer T cells

Nanoparticle tracking analysis

Peripheral Blood Mononuclear Cells

Phosphate Buffered Saline

R-Phycoerythrin

Rate of Perceived Exertion

Standard Error of the Mean

Side Scatter

Side Scatter - Area

Soluble Triggering Receptor Expressed on Myeloid Cells 2
Tumor Necrosis Factor

Volume of Oxygen

Maximum Volume of Oxygen
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